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Abstract

Inductive generalization, where people go beyond the data provided, is a basic cognitive capability,

and it underpins theoretical accounts of learning, categorization, and decision making. To complete

the inductive leap needed for generalization, people must make a key ‘‘sampling’’ assumption about

how the available data were generated. Previous models have considered two extreme possibilities,

known as strong and weak sampling. In strong sampling, data are assumed to have been deliberately

generated as positive examples of a concept, whereas in weak sampling, data are assumed to have

been generated without any restrictions. We develop a more general account of sampling that allows

for an intermediate mixture of these two extremes, and we test its usefulness. In two experiments, we

show that most people complete simple one-dimensional generalization tasks in a way that is consis-

tent with their believing in some mixture of strong and weak sampling, but that there are large indi-

vidual differences in the relative emphasis different people give to each type of sampling. We also

show experimentally that the relative emphasis of the mixture is influenced by the structure of the

available information. We discuss the psychological meaning of mixing strong and weak sampling,

and possible extensions of our modeling approach to richer problems of inductive generalization.
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1. Introduction

The ability to make sensible inductive inferences is one of the most important capabilities

of an intelligent entity. The capacity to go beyond the data and make generalizations that

can hold for future observations and events is extremely useful, and it is of interest not only

to psychologists but also to philosophers (e.g., Goodman, 1955) and researchers with an

interest in formal theories of learning (e.g., Solomonoff, 1964). From a psychological
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perspective, experimental research dating back to Pavlov (1927) demonstrates the tendency

of organisms to generalize from one stimulus to another, with learned contingencies being

applied to novel but similar stimuli. Critically, in many cases these generalizations do not

involve a failure of discrimination. Stimulus generalization is better characterized as a form

of inductive inference than of perceptual failure, and indeed the two have a somewhat

different formal character (Ennis, 1988). As Shepard (1987, p. 1322) notes, ‘‘we generalize

from one situation to another not because we cannot tell the difference between the two situ-

ations but because we judge that they are likely to belong to a set of situations having the

same consequence.’’

One of the best-known analyses of inductive generalization is Shepard’s (1987) expo-

nential law, which emerges from a Bayesian analysis of an idealized single-point general-

ization problem. In this problem, the learner is presented with a single item known to

belong to some target category and the learner is asked to judge the probability that a

novel item belongs to the same category. Shepard’s analysis correctly predicts the empiri-

cal tendency for these generalization probabilities to decay exponentially as a function of

distance in a psychological space (this decay function is called a generalization gradient).
The exponential generalization function is treated as a basic building block for a number

of successful theories of categorization and concept learning (e.g., Kruschke, 1992;

Love, Medin, & Gureckis, 2004; Nosofsky, 1984; Tenenbaum & Griffiths, 2001a) that

seek to explain how people learn a category from multiple known category members.

The analysis by Tenenbaum and Griffiths (2001a), in particular, is notable for adopting

much the same probabilistic formalism as Shepard’s original approach, while extending

it to handle multiple observations and cases where spatial representations may not be

appropriate (see also Russell, 1986). In a related line of work, other researchers have

examined much the same issue using ‘‘property induction’’ problems, leading to the

development of the similarity-coverage model (Osherson, Smith, Wilkie, Lopez, &

Shafir, 1990), as well as feature-based connectionist models (Sloman, 1993) and a range

of other Bayesian approaches (Heit, 1998; Kemp & Tenenbaum, 2009; Sanjana &

Tenenbaum, 2003).

In this article we investigate the implicit ‘‘sampling’’ models underlying inductive gener-

alizations. We begin by discussing the ideas behind ‘‘strong sampling’’ and ‘‘weak sam-

pling’’ (Shepard, 1987; Tenenbaum & Griffiths, 2001a) and by developing an extension to

the Bayesian generalization model that incorporates both of these as special cases of a more

general family of sampling schemes. We then present two experiments designed to test

whether people’s generalizations are consistent with the model, and more specifically, to

allow us to determine what sampling assumptions are involved. These experiments are

designed so that we are able to look both at the overall tendencies that people display but

also so that we can infer the sampling models used by each individual participant. Our main

findings are that there are clear individual differences in the mixture between strong and

weak sampling used by different people, and that these mixtures are sensitive to the patterns

of observed data. We conclude with a discussion of the psychological meaning of mixing

strong and weak sampling, and of possible extensions of our modeling approach to richer

problems of inductive generalization.
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2. Bayesian models of inductive inference

In Bayesian accounts of inductive inference, the learner makes use of two different

sources of information: the pre-existing knowledge that he or she brings to the task (the

prior), and the information in the problem itself (the likelihood). If we let x denote the infor-

mation in the problem and let h denote some hypothesis about the property to be inferred,

then Bayes’ theorem implies that:

PðhjxÞ ¼ PðxjhÞPðhÞP
h0 Pðxjh0ÞPðh0Þ

: ð1Þ

The numerator in this expression is composed of two terms: the prior P(h), which acts to

characterize the prior beliefs, and the likelihood P(x|h), which describes the probability that

one would have observed the data x if the hypothesis h were correct. The denominator is

composed of the same two terms, summed over all possible hypotheses (i.e., over all possi-

ble h¢). When combined in this manner, the prior and the likelihood produce P(h|x), the lear-

ner’s posterior belief in the hypothesis h. It is important to recognize that Bayesian

cognitive models are typically functionalist in orientation: They represent analyses of the

computational problem facing the learner (Marr, 1982) and tend to remain agnostic about

specific psychological processes. For the current purposes, this means that we are interested

in determining whether people’s generalizations are in agreement with the predictions of a

Bayesian analysis.

2.1. Priors

Much of the variation among Bayesian induction models can be characterized in terms

of different choices of prior. In the simplest case, the learner has an unstructured set of

hypotheses, which form the hypothesis space H, and places some simple (possibly uni-

form) prior over all h 2H. However, it is possible to adopt a more structured approach,

in which latent mental representations constrain the hypothesis space and generate a

more sophisticated and psychologically plausible prior over the hypothesis space (e.g.,

Kemp & Tenenbaum, 2009; Sanjana & Tenenbaum, 2003). For instance, in Shepard’s

analysis there was assumed to exist some low-dimensional space in which stimuli are

mentally represented, and candidate hypotheses typically correspond to connected regions

in that space. Alternatively, hypotheses could be organized into a tree structure, a causal

graph, or any of a range of other possibilities (see Kemp & Tenenbaum, 2008, 2009).

In our experiments, we restrict ourselves to the case where the prior is constrained by a

simple spatial representation.

2.2. Likelihoods

In contrast to the extensive array of mental representations that can constrain the prior,

the likelihood functions considered in the Bayesian literature on inductive reasoning have

largely been restricted to two possibilities, ‘‘strong sampling’’ and ‘‘weak sampling,’’ with
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almost no examples of empirical tests of these assumptions existing in the literature (see

later).1 Many models (Heit, 1998; Kemp & Tenenbaum, 2009; Shepard, 1987) assume that

the only role of the likelihood function is to determine whether the data are consistent with

the hypothesis. If the data are inconsistent with a hypothesis, then the hypothesis is ruled

out and so the likelihood is zero, P(x|h) ¼ 0. If the data are consistent with the hypothesis,

then the likelihood function is constant, P(x|h)�1. Accordingly, the relative plausibility of

two hypotheses h1 and h2 that are consistent with the data does not change:

Pðh1jxÞ
Pðh2jxÞ

¼ Pðh1Þ
Pðh2Þ

: ð2Þ

This kind of likelihood function is referred to as ‘‘weak sampling.’’2

A different approach, introduced by Tenenbaum and Griffiths (2001a), suggests that

the learner might assume data are generated from the true hypothesis. This ‘‘strong

sampling’’ assumption can take many different forms. In the simplest case, a hypothesis

h that is consistent with |h| possible observations (i.e., has ‘‘size’’ |h|) is associated with

a uniform distribution over these possibilities. As with weak sampling, if hypothesis h is

inconsistent with the data x, then P(x|h) ¼ 0. However, when the data are consistent with

the hypothesis, then P(x|h) ¼ 1/|h|. What this means is that if two hypotheses h1 and h2

are both consistent with the data, their relative plausibility now depends on their relative

sizes:

Pðh1jxÞ
Pðh2jxÞ

¼ jh2jjh1j
� Pðh1Þ
Pðh2Þ

: ð3Þ

Supporting the original theoretical work by Tenenbaum and Griffiths (2001a), the strong

sampling approach has been applied successfully to property induction (Sanjana & Tenen-

baum, 2003), similarity judgment (Navarro & Perfors, 2010), and word learning (Xu &

Tenenbaum, 2007b).

Other models are less explicit in their sampling assumptions. For instance, the featural

similarity model used by Sloman (1993) relies on the contrast model for featural similarity

(Tversky, 1977). It does not explicitly re-weight hypotheses according to their size, and it

more closely approximates the weak sampling rule in Eq. 2 than the strong sampling rule in

Eq. 3. The similarity-coverage model does not make any explicit statements either, but inso-

far as the ‘‘coverage’’ term attempts to measure the extent to which the observations span

the range of possibilities encompassed by the hypothesis, it is consistent with strong

sampling. Relatedly, if the generalization gradients used by various category learning mod-

els (e.g., Kruschke, 1992; Love et al., 2004; Nosofsky, 1984) are interpreted in terms of the

Bayesian generalization model, then a strong sampling model would require the steepness

of the generalization gradient to increase as a function of the number of exemplars. In some

models (e.g., Nosofsky, 1984) this is not the case, and so we might consider them to be

weak sampling models. In other cases, the model allows the width of the the generalization

gradient to be adapted over time in order to match the observed data (e.g., Nosofsky, 1984),

and so it might be considered to embody a strong sampling assumption, though the mapping

is not exact.
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3. Why do sampling assumptions matter?

As outlined at the start of the article, inductive inference is a central problem in cognitive

science and has therefore been studied a great deal. What may be less obvious is the critical

importance played by sampling assumptions. Most work in this area has focused on how

inductive inferences are shaped by the pre-existing biases of the learner, and on the mental

representations that underpin these biases. However, induction is in large part a process in

which the learner’s beliefs are shaped by data. In order for that to happen, the learner must

rely on some (probably implicit) assumptions about the evidentiary value of his or her

observations. In other words, he or she needs to have some theory for how the data were

sampled, and some way of linking that theory to beliefs about the state of the world. The

‘‘strong sampling’’ and ‘‘weak sampling’’ models are two examples of such a theory, but

the basic issue is more general.

To illustrate the generality of the issue, consider the dilemma faced by 17th-century Euro-

pean ornithologists trying to catalog the birds of the world. To their knowledge, nobody had

ever observed a non-white swan. Should they have inferred that all swans are white? This

question, identified by Popper (1935/1990) while discussing David Hume’s problem of

induction, is a classic. Although the learner in this instance has a very large number of obser-

vations of white swans, the obvious inference (that all swans are white) is of course incor-

rect. As it turned out, European swans are systematically different from Australian swans,

and so the inference fails. A naive learner does not account for the systematic spatial varia-

tion and overestimates the informativeness of the observed data. Indeed, the evidentiary

value of observations are shaped by a great many factors. The data might be very old (a new

mutation might produce black swans), collected by someone untrustworthy (medieval besti-

aries do not provide reliable biological data), or copies of one another (the same swan could

be seen multiple times). Moreover, people are often quite sensitive to these factors (Ander-

son & Milson, 1989; Anderson & Schooler, 1991; Welsh & Navarro, 2007), altering their

inferences based of their assumptions about the informativeness and relevance of the data.

These issues are all sampling assumptions: They relate to the learner’s theory of how the

data are generated. Within the Bayesian framework, such issues are handled through the

likelihood function. To return to the specific issues discussed in the previous section, a lear-

ner who makes a strong sampling assumption (Eq. 3) is clearly relying on a very different

theory of the data than one who uses a weak sampling model (Eq. 2), and his or her beliefs

and inductions change accordingly. In other words, what these equations are saying is that

the informativeness of a particular observation changes depending on how it was sampled.

It is for this reason that the sampling assumptions play a key role in the specification of any

Bayesian theory. That being said, these issues are by no means restricted to Bayesian theo-

ries. Rather, all theories of learning are reliant on assumptions about the nature of the obser-

vations. For instance, connectionist models (e.g., Hinton, McClelland, & Rumelhart, 1986)

implement learning rules that describe how networks change in response to feedback, with

different learning rules embodying different assumptions about data. Decision heuristics

(Gigerenzer & Goldstein, 1996) specify a learning method by describing how to estimate

‘‘cue validities’’ and related quantities, with different estimation methods producing
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different inferences (Lee, Chandrasena, & Navarro, 2002). In short, although our approach

to this problem is explicitly Bayesian, and covers only some of the issues at hand, the under-

lying problem itself has much broader scope.

4. Conservative learning in a complicated world

The previous section illustrates the central role played by sampling assumptions in guid-

ing inductive inferences, and it illustrates that the core issue is much more general than the

‘‘strong versus weak’’ distinction. In particular, the focus on the evidentiary value of data is

critical. In the weak sampling model described previously, an observation that is consistent

with two hypotheses is assumed to convey no information about their relative plausibility.

In contrast, a strong sampling assumption means that the observation is highly informative.

However, in light of the issues raised in the last section (old data, untrustworthy data, corre-

lated data, and so on) it seems plausible to suspect that some people would adopt a kind of

intermediate position: When an observation is consistent with hypotheses h1 and h2, such a

learner will make some adjustment to his or her beliefs, but this adjustment will be less

extreme than the jh2j=jh1j scaling that Eq. 3 implies. In fact, it has long been recognized that

people generally adapt their beliefs more slowly than the naive application of Bayes’ theo-

rem would imply, a phenomenon known as conservatism (Phillips & Edwards, 1966). More-

over, one of the main reasons why conservatism might be expected to occur is that people

are sensitive to the fact that real-life observations are correlated, corrupted, and so on

(Navon, 1978).

To illustrate the implications of conservative learning, consider the problem faced by a

learner who encounters only positive examples of some category. If all category members

are equally likely to be observed, and all observations are generated independently from the

true category, then a strong sampling model is the correct assumption to make (Tenenbaum

& Griffiths, 2001a). However, few if any real-life situations are this simple, so while a

‘‘naive’’ learner would adopt a strong sampling model, a more skeptical learner would not.

In the most extreme case, our skeptical learner might decide that the sampling process is not

informative and come up with a weak sampling model as a consequence. What this makes

clear, however, is that strong and weak sampling are two ends of a continuum, since it is

perfectly sensible to suppose that the learner is not completely naive (not strong) but not

completely distrusting (not weak).

How might such a learner think? To motivate this, consider the problems associated with

learning how alcoholic a beer is. The first beer that the world provides to the learner might

be a Victoria Bitter (4.6% alc/vol), as is the second. The third beer might be Tooheys New

(4.6% alc/vol), and the fourth a Coopers Pale Ale (4.5% alc/vol). If (as per strong sampling)

the learner were to construe these as independent draws from a uniform distribution over

beers, he or she would have strong evidence in favor of the hypothesis that all beers have

alcohol content between 4% and 5% by volume. However, a little thought suggests that this

inference is too strong. The problem is that sampling scheme here is neither uniform nor

independent, making it inappropriate to apply the strong sampling model in a straightforward
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fashion. In this example, the learner might reasonably conclude that the second Victoria Bitter

‘‘token’’ is really just an example of the same ‘‘type’’ of beer and conveys no new evidence

over the first. Moreover, since Tooheys New and Victoria Bitter are both lagers, one might

expect them to be a little more similar to one another than two randomly chosen beers might

be. Finally, since all three brands are Australian beers and are often served in similar estab-

lishments, it is probable that none of them are truly independent, and so a conservative learner

might be unsurprised to discover that Duvel (a Belgian beer) has 8.5% alc/vol. In short, while

all four observations are legitimate positive examples of the category ‘‘beer,’’ it would not be

unreasonable to believe that only one or two of them actually qualify as having been strongly

sampled.

To formalize this intuition, we construct a sampling model in which there is some proba-

bility that an observation is strongly sampled (drawn independently from the true distribu-

tion) but with some probability the observation conveys no new information, and it may

therefore be assumed to be weakly sampled. With this in mind, let h denote the probability

that any given observation is strongly sampled, and correspondingly 1)h is the probability

that an observation is weakly sampled. Then, cleaning up the notation, the learner has the

model:

Pðx; x 2 hjh; hÞ ¼ ð1� hÞ 1
jXj þ h

1

jhj if x 2 h

0 otherwise,

(
ð4Þ

where X is the set of all possible stimuli, and jXj counts the total number of possible items.

When h ¼ 0 this model is equivalent to weak sampling, and when h ¼ 1 it is equivalent to

strong sampling. For values of h in between, the model behaves in accordance with the

‘‘beer generation’’ idea discussed above: Only some proportion h of the observations are

deemed to be strongly sampled. As a consequence, this more general family of models

smoothly interpolates between strong and weak sampling.

What interpretation should we give to this more general family of models? One psycho-

logically plausible possibility is suggested by the beer sampling model discussed earlier:

Some observations are deemed to be correlated, so much so that while he or she has

observed n ‘‘tokens’’ (observations), they correspond to only m ‘‘types’’ (genuine samples

from the distribution to be learned), where m ¼ hn < n. This idea has some precedent in the

computational learning literature (e.g., Goldwater, Griffiths, & Johnson, 2006) and seems

very plausible in light of both the conservatism phenomenon (Phillips & Edwards, 1966)

and its rational explanation in terms of violations of independence (Navon, 1978). This idea

explains why the learner might want to adopt this class of models: If he or she thinks that

the world is messy, and generates observations in a correlated fashion rather than indepen-

dently from the true category distribution, then Eq. 4 describes a sensible psychological

assumption for the learner to make. Like both strong and weak sampling, it is an idealiza-

tion: In any particular learning situation, the particular way in which the world turns out to

be ‘‘messy’’ will produce a slightly different family of sampling models. Nevertheless, we

suspect that the simple idea of reducing n strongly sampled observations to some smaller

value m ¼ hn can provide a sensible first approximation to use in many cases.
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More generally, while the primary justification for the model is based on the theory of

psychological conservatism, it is curious to note that Eq. 4 has an interpretation as an exam-

ple of a ‘‘James-Stein-type’’ shrinkage estimator (see Hausser & Strimmer, 2009; Schäfer &

Strimmer, 2005) for the distribution that generates the data.3 The weak sampling model acts

as a low-variance, high-bias estimator, whereas the strong sampling model is high variance

and low bias (see, e.g., Hastie, Tibshirani, & Friedman, 2001 for a statistical introduction,

and Gigerenzer & Brighton, 2009 for a psychological discussion). Our ‘‘mixed’’ sampling

model is based on the assumption that the learner aggregates these two. The interesting point

is that James-Stein-type estimators have the ability to outperform either of the two estima-

tors from which they are constructed (James & Stein, 1961; Stein, 1956). As such, the

usefulness of the mixed sampling model may extend across a quite broad range of situations.

5. Testing sampling assumptions

The Bayesian theory of generalization was developed a decade ago (Tenenbaum, 1999;

Tenenbaum & Griffiths, 2001a), with the assumption of strong sampling playing a key role

in the extension to Shepard’s (1987) exponential law. The strong–weak distinction appears

in a different form within the theoretical literature on computational learning theory, with

some things being difficult to learn with a weak sampling model (Gold, 1967), but other evi-

dence suggesting that strong sampling methods are able to do so (Muggleton, 1997). Yet to

date, the psychological evidence for this theoretical principle is somewhat limited.

Previous work (Navarro & Perfors, 2010; Sanjana & Tenenbaum, 2003; Tenenbaum,

1999; Xu & Tenenbaum, 2007a, 2007b) provides some support to the notion, but the evi-

dence available tends to be restricted in various ways. The stimuli used tend to be organized

into a tree-structured hypothesis space (Xu and Tenenbaum 2007a, 2007b) or variation

thereof (Sanjana & Tenenbaum, 2003), with only a few studies examining generalization

with respect to spatially organized stimuli (Tenenbaum, 1999) or less structured representa-

tions (Navarro & Perfors, 2010). In some cases, the participants are explicitly told that the

stimuli are randomly sampled from the true concept (Tenenbaum, 1999), or are given some

other more subtle indication of which sampling model is appropriate (Xu & Tenenbaum,

2007a). While none of these restrictions seem critical and indeed tend to reflect various dif-

ferent situations that exist in real life—it does highlight a lack of diversity in the available

evidence.

One respect in which the limited research is quite noticeable is that in all cases the data

presented are aggregated across participants. This raises the issue of individual differences

(Lee & Webb, 2005; Navarro, Griffiths, Steyvers, & Lee, 2006). It has been long known

(Estes, 1956) that this can induce very large distortions in the data. Do people tend to make

the same default assumptions about sampling, or is this something that varies across individ-

uals? If so, can the Bayesian generalization theory capture this variation? Indeed, the reas-

surance that the theory holds for individual people is of particular importance in this case,

where the learner receives only positive instances of a category. In such ‘‘positive-only’’

learning scenarios there is an ongoing question about what it is theoretically possible for the
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human learner to actually learn from the data, dating back to Gold’s (1967) theorem regard-

ing language acquisition. The distinction between strong sampling and weak sampling

matters in this regard: Under weak sampling, positive data are not powerful enough for the

learner to acquire some types of complex knowledge structures, whereas under strong sam-

pling a great deal more is learnable (see, e.g., Perfors et al., 2006). If it were to be the case

that only some people apply strong sampling assumptions, then it may be more difficult to

use strong sampling as an explanation for phenomena (such as language acquisition) that

are genuinely universal across people.

6. Stimulus generalization in psychological space

In this section, we describe the Bayesian theory of generalization as it applies to stimuli

that vary along a single continuous dimension, and we illustrate how inductive generaliza-

tions change as a function of the sampling assumptions and the prior beliefs of the learner.

6.1. Learning from examples

Suppose that the learner has observed a single item x that is known to possess some prop-

erty. Since stimuli vary along a continuous dimension, we follow the approach taken by

Shepard (1987) and Tenenbaum and Griffiths (2001a) and assumes that there exists a true

‘‘consequential region’’ (denoted rt) over which the property is true. If the property of inter-

est is constrained to occupy a single connected region, then we may define the learner’s

hypothesis space to be R, the set of all such regions. For instance, the stimulus dimension

might be the latitude of a geographical location on planet Earth, and the property in question

could be whether the location lies within the tropics. In this scenario, the stimulus dimension

ranges from a latitude of )90� to 90�, and the consequential region for the tropics corre-

sponds to the range from )23.5� to 23.5�. In general, consequential regions need not corre-

spond to a single interval: For instance, the temperate zone on Earth covers two

disconnected regions, the southern temperate zone from )66.5 to )23.5� and the northern

temperate zone from 23.5� to 66.5�. As discussed by several authors (Navarro, 2006; Shep-

ard, 1987; Tenenbaum & Griffiths, 2001b), the Bayesian generalization model can be

extended to handle these situations without conceptual difficulty, but for the purposes of the

current article the simpler version is sufficient. The basic idea is shown on the left-hand side

of Fig. 1, which depicts 10 possible hypotheses that the learner might have about how far

the tropics extend.

When presented with this learning scenario, one natural goal for the learner is to discover

the identity of this unknown region. What information does he or she have to work with?

Notice that there are two distinct pieces of information inherent in this problem. First, the

learner has observed the item x itself (and not some other possible item), which may or may

not be a useful clue. Secondly, the learner has discovered that this item x possesses the prop-

erty of interest: that is, he or she knows that x 2 rt. Suppose now that the learner hypothe-

sizes that the correct region is r; that is, that rt ¼ r. What is the probability
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Pðrt ¼ rjx; x 2 rtÞ that this hypothesis is correct, in light of the information presented to

the learner? We may calculate this probability by applying Bayes’ rule (Eq. 1), which gives

Pðrt ¼ rjx;x 2 rtÞ ¼
Pðx; x 2 rtjrt ¼ rÞPðrt ¼ rÞR

R Pðx;x 2 rtjrt ¼ r0ÞPðrt ¼ r0Þ dr0 : ð5Þ

The denominator in this expression is an integral rather than a sum, because the space of

possible regions is continuous rather than discrete. In Appendix, we present the solution to

all of the integrals relevant to this article, but for the purposes of explaining the basic ideas,

these solutions are not important. As such, it is convenient to ignore the denominator (since

it is just a normalizing constant), and note that

Pðrt ¼ rjx;x 2 rtÞ / Pðx; x 2 rtjrt ¼ rÞPðrt ¼ rÞ: ð6Þ

This makes clear that the learner’s degree of belief in r depends on two things. First, it

depends on the extent to which he or she originally believed that r was the true region,

which is expressed by the prior probability P(rt ¼ r). Secondly, it depends on the likeli-

hood Pðx; x 2 rtrt ¼ rÞ, which describes probability that the learner would have observed

x and learned that x 2 rt if the learner’s hypothesis were correct. We will discuss these

two terms in detail shortly, but notice that at a bare minimum the likelihood term

Pðx;x 2 rtjrt ¼ rÞ is zero if the hypothesized region does not contain the item (i.e.,

if x=2r).

As noted by Tenenbaum and Griffiths (2001a), the theory extends to multiple examples

in a very simple way. We now imagine that the learner has encountered n items that possess

the property, corresponding to the observations x ¼ ðx1; . . . ;xnÞ. In this situation, the lear-

ner knows that the items x have been generated, and he or she also knows that these items

belong to the true consequential region, x 2 rt. If we suppose that the items are condition-

ally independent4 and apply Bayes’ rule, we obtain the expression

Fig. 1. A schematic illustration of the tropics example, showing a collection of possible hypotheses (left), a data

set and novel query items (right), and showing how only some of the hypotheses are consistent with the data

(middle).
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Pðrt ¼ rjx;x 2 rtÞ / Pðx; x 2 rtjrt ¼ rÞPðrt ¼ rÞ: ð7Þ

¼
Yn
i¼1

Pðxi;xi 2 rtjrt ¼ rÞ
 !

Pðrt ¼ rÞ: ð8Þ

Given the simplicity of this expression, multiple items may be handled easily. Moreover,

since it is constructed from the same two functions (the prior and the likelihood), there is

nothing conceptually different about the multiple-item case. Again, noting that the likeli-

hood is zero for any region r that does not contain all of the training items x, one part of the

learning process is to eliminate all hypotheses that are inconsistent with the data. To con-

tinue with the ‘‘tropics’’ example earlier, the learner might be told that Cairns (latitude

)16.9�) and Singapore (latitude 1.3�) lie in the tropics. On the basis of this knowledge,

many of the originally possible regions are eliminated, as illustrated on the right-hand side

of Fig. 1.

6.2. Making predictions

When solving an inductive generalization problem, the learner’s task is slightly more

complex. Rather than needing to infer the true consequential region associated with the

property, the learner needs to determine whether some novel item y also shares the property.

In the tropics example, this might correspond to a situation in which the learner has been

told that Cairns and Singapore lie in the tropics, and is asked to guess if Brisbane (latitude

)27.4�) also lies in the tropics. Formally, the problem at hand is to infer the probability that

y 2 rt given that the learner has observed x and knows that x 2 rt. Clearly, if the identity of

the true region is known to the learner, then this problem becomes trivial. However, the lear-

ner does not have this knowledge. Instead, what the learner has is a set of beliefs about the

plausibility of different regions, as captured by Pðrt ¼ rjx; x 2 rtÞ as discussed earlier. If

the learner weights each hypothesis according to its probability of being correct, then he or

she can infer that the probability that the new item also possesses the property, as follows:

Pðy 2 rtjx;x 2 rtÞ ¼
Z
R

Pðy 2 rtjrt ¼ rÞPðrt ¼ rjx;x 2 rtÞ dr: ð9Þ

In this expression the Pðy 2 rtjrt ¼ rÞ term is very simple: It is just the ‘‘probability’’ that

y falls inside some known region r. Therefore, it equals 1 if y is inside this region and 0 if it

is not. Not surprisingly then, only those regions that include y make any contribution to the

integral in Eq. 9, and so we can simplify this expression by restricting the domain of the

integration to Ry, the set of regions that contain y. Thus, we may write

Pðy 2 rtjx;x 2 rtÞ ¼
Z
Ry

Pðrt ¼ rjx; x 2 rtÞ dr; ð10Þ

As noted earlier, the solution to this integral is presented in the Appendix for all cases rele-

vant to this article. However, in order to understand the behavior of the model, it suffices to
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note that all this integral does is ‘‘add up’’ the total degree of belief associated with those

regions that include y. To return again to our tropics learning example in Fig. 1, there are

five hypotheses that are consistent with the training data (Singapore and Cairns). Of those

five hypotheses, four also contain the query item (Brisbane). Therefore, if the learner treats

all five of these hypotheses as equally likely, he or she would rate the probability of Bris-

bane being tropical at 80%. Of course, in the actual model the learner’s hypothesis space

consists of all possible regions, not just the ten shown in the figure, but the basic principle is

the same: The learner generalizes using only those hypotheses that are consistent with the

data. The more important issue is whether the learner would really treat all of the data-

consistent hypotheses as equally plausible. To answer that question, we must now look at

the priors and the likelihoods in detail.

6.3. Priors and likelihoods

To complete the model, we need to specify P(rt ¼ r), the learner’s prior degree of belief

in region r, and the likelihood function Pðx;x 2 rtjrt ¼ rÞ. As discussed earlier, the family

of likelihood functions that we consider in this article are those that correspond to the

‘‘mixed sampling’’ model (Eq. 4). In order to do so, we may (without loss of generality)

assume that the range X over which stimuli can vary is the unit interval, [0,1]. In the tropics

example, for instance, we can do this by dividing the latitude by 180 and then adding 0.5. In

these new co-ordinates, the tropics correspond to the region that runs from 0.37 to 0.63.

Having made this assumption, the mixed sampling likelihood functions are given by

Pðx; x 2 rtjrt ¼ r; hÞ ¼ ð1� hÞ þ h 1
jrj ifx 2 r:

0 otherwise

�
ð11Þ

where |r| denotes the size of the region, and as discussed previously h ¼ 0 yields the weak

sampling model and h ¼ 1 is the strong sampling model. In these normalized co-ordinates,

therefore, the size of the tropics is 0.63 ) 0.37 ¼ 0.26.

What degree of prior belief should the learner place in the hypothesis that region r is the

correct one? One natural possibility is the uniform prior, P(rt ¼ r)�1, in which the learner

treats every possibility as equally likely. However, this is not the only possibility that the

learner might consider. Consider the region r that covers the interval [l,u]. The size of this

region is given by |r| ¼ u)l, and the location of this region is the center c ¼ (u+1)/2. In

keeping with Shepard (1987), we assume that it is only the size of a region that matters, not

its location. With this in mind, one natural choice of prior is the simple one-parameter

Beta(1,/) model, in which

Pðrt ¼ rÞ / jrj0/� 1: ð12Þ

Although simple, this prior is quite principled. It has the same structure as the likelihood

function (i.e., size raised to some power), which means that / can be interpreted as pseudo-

data. That is, increasing / by one has exactly the same effect on the generalization function

as decreasing the sample size by one. In other words, if the learner’s pre-existing knowledge

can be described ‘‘as if’’ it corresponded to a set of fictitious previous observations, then the
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prior distribution should take this form. The result is a family of priors in which / ¼ 1

corresponds to a uniform distribution over possible regions, whereas / < 1 expresses a prior

assumption that the region is small, and / > 1 corresponds to a prior belief that the region

extends over a larger range. To illustrate this idea, Fig. 2 shows the prior distribution that

would be involved in the tropics example, if the 10 hypotheses shown in Fig. 1 were in fact

the entire hypothesis space. When / ¼ 1 (middle panel), all regions are treated as equally

plausible a priori. A prior that is biased toward small regions (/ ¼ 0.5) is shown in the left

panel, while the right panel depicts a bias toward larger regions (/ ¼ 2).
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Fig. 2. The tropics prior. Lower panels show 10 different hypotheses the learner might have regarding how far

the tropics extend. The top panels plot the prior degree of belief that a learner might have, depending on the

value of /.
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Fig. 3. The tropics posterior. Lower panels show five hypotheses that are consistent with the observed data (i.e.,

the fact that Singapore and Cairns are both tropical), while the upper panels show the posterior degree of belief

that the learner might have, depending on the sampling assumptions h (assuming that / ¼ 1). The black bars

depict hypotheses that would predict Brisbane to be tropical as well, while the gray bars correspond to the

hypothesis that predicts Brisbane not to be tropical.
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Now that we have both the prior and the likelihood specified, the influence of the sam-

pling assumptions h can be made explicit. Fig. 3 plots three posterior distribution for the tro-

pics problem, where the prior distribution is assumed to be uniform (as per the middle panel

of Fig. 2), using a weak sampling model (h ¼ 0), a strong sampling model (h ¼ 1), and an

intermediate model (h ¼ .33). Note that the pattern of falsification is the same in all three

cases: Regardless of the value of h, hypotheses 1, 2, 5, 6, and 10 are all inconsistent with the

data, because the corresponding regions do not contain both Singapore and Cairns. Thus,

the posterior probability for these regions is zero. In weak sampling (left panel), this is the

only change from the prior distribution, and so the five remaining hypotheses are equally

weighted. Since the only one of the remaining hypotheses not to contain Brisbane is hypoth-

esis 3 (shown in gray), in this case the learner would say that there is an 80% chance that

Brisbane lies in the tropics. However, if h > 0, then the likelihood favors the smallest

regions that are consistent with the data (i.e., contain Singapore and Cairns). Thus, the likeli-

hood will always favor hypothesis 8 most strongly, followed by hypotheses 3, 7, 4, and 9 in

that order. When h is near 1, this effect is very strong (right panel of Fig. 3), whereas for h
close to 0 this effect is much smaller. As a result, when h ¼ .33, the learner’s estimate of

the probability that Brisbane is tropical falls to 77%, which drops to 75% when h ¼ 1.

6.4. Constructing a generalization gradient

Up to this point, the tropics example that we have used to illustrate model behavior has

relied on an ad hoc hypothesis space consisting of only 10 possible consequential regions.

Moreover, we have only examined the model predictions for a single query item (i.e., Bris-

bane, latitude )24.4�). However, in order to understand the overall behavior of the model,

we need to remove both of these restrictions. To start with, suppose we expanded the

hypothesis space to include all regions where the edge points are a member of the set

.05,.15,…,.85,.95 (i.e., a very crude discrete approximation to R). Using this expanded

hypothesis space, we can then calculate the posterior distribution over possible regions

Pðrt ¼ rjx; x 2 rtÞ for different choices of the two parameters h and /, as well as the gener-

alization probability Pðy 2 rtjx;x 2 rtÞ for all possible query items y.

In the simplest case, suppose the learner has a uniform prior over regions / ¼ 1 and

applies a weak sampling model h ¼ 0. This case is illustrated in the left panels of Fig. 4.

The lower part of the plot draws all of those regions that are consistent with the two obser-

vations (Singapore and Cairns). Since all of these regions were equally likely in the prior,

and the weak sampling likelihood function only acts to falsify regions that do not contain

the data, all of these regions remain equally likely in the posterior (illustrated schematically

by the fact that all of the lines are of the same thickness). In the top part of the panel, we plot

the generalization probability Pðy 2 rtjx; x 2 rtÞ for all possible latitudes of the query item

y. Since all of the regions in the lower panel are weighted equally, for a given value of y this

probability is just a count of the proportion of non-falsified regions that contain the query

item.

When we use other parameter values, it is no longer the case that all regions are equally

likely. For instance, suppose the learner switched from a weak sampling model to a strong
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sampling model, by increasing h from 0 to 1. It is now the case that the likelihood function

strongly favors the smallest regions that contain both Singapore and Cairns. This situation is

shown in the middle panel of Fig. 4. The lower part of the plot schematically illustrates the

effect of the likelihood on the posterior distribution over regions: Smaller regions are more

likely and are thus drawn with thicker lines. The upper panel shows what effect this has on

the generalization gradient: It ‘‘tightens’’ around the data, because the narrowest regions are

preferred by the learner.

The right-hand panel of Fig. 4 shows what influence the prior has, by raising / from 1 to 5.

By choosing a prior with / ¼ 5, the learner has a prior bias to believe that the region is

large (i.e., that the tropics covers a very wide band of latitudes). Even though the learner has

a weak sampling likelihood function (i.e., h ¼ 0), the posterior distribution in the lower

panel is quite uneven, as a result of the learner’s prior biases. In this case, because the prior

bias was to favor large regions, the effect of the generalization gradient is the opposite of

the effect we observed in the middle panel: The generalization gradient spreads out and, in

fact, becomes convex.

One critical implication of this phenomenon should be made explicit: The effects of /
and h are very similar if we consider only a single generalization gradient. That is, raising h
has the same effect as reducing /. Indeed, this is a general property of Bayesian models. In

order to disentangle the influence of the learner’s prior beliefs (/) from his or her assump-

tions about data (h), it is necessary to look at how the overall pattern of generalizations

changes across multiple generalization gradients.
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Fig. 4. Construction of the generalization gradients. The lower three panels show a collection of hypotheses that

are consistent with the training data in the tropics problem (i.e., Cairns and Singapore), where the width of each

line illustrates the degree of belief that the learner has in that hypothesis. The generalization gradients at the top

are constructed by calculating the probability of being tropical for all possible query items, as a function of their

latitude. The differences between the plots arise due to differences in sampling models and priors.
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Obviously, the stepped generalization functions shown in Fig. 4 are not psychologically

plausible. This lack of smoothness is an artifact of limiting the hypothesis space to a discrete

approximation. If we expand the hypothesis space to consist of all possible regions, the prob-

lem becomes continuous, as do the corresponding generalization gradients. In the Appendix,

we present solutions to the integrals involved in the continuous case, allowing us to directly

calculate smooth generalization gradients rather than relying on numerical approximations.

6.5. Generalization gradients in the full model

Having illustrated how the model predictions are constructed, we now turn to a discussion

of what kinds of generalization patterns can be produced by varying the prior (via /) and

the likelihood (via h). Of the two parameters, the one in which we are interested is h, but it

is important to show how to disambiguate the two. To do this, consider what happens to the

generalization gradients when the learner makes three observations but sees them one at a

time. For simplicity, assume that / ¼ 1, so the learner treats all regions as equally plausible

a priori. The generalizations that are possible in this situation are illustrated in Fig. 5. In the

weak sampling case, the generalization gradients are linear and do not tighten.5 Critically,

notice that for any h > 0 the generalization gradients get tighter as more data are observed

(from left to right). As will become clear when we discuss the priors, this is the critical pre-

diction—the non-linear shapes of the gradients in the lower panels can easily be mimicked

by weak sampling if we choose the priors in the right way, but the tightening from left to

right cannot. This is illustrated in Fig. 6, which shows what happens when we vary / (while

keeping h fixed at 0). The prior cannot influence the manner in which generalizations

change as a function of data. It is this critical regularity that we seek to investigate experi-

mentally.

7. Experiment 1

The question we want to investigate in this experiment is the extent to which people

change their generalizations as a function of the number of observations they make.

According to the weak sampling hypothesis (Heit, 1998; Kemp & Tenenbaum, 2009;

Shepard, 1987), the generalization gradients should not tighten purely because more data

are available. In contrast, the strong sampling hypothesis as per Tenenbaum and Griffiths

(2001a), and Sanjana and Tenenbaum (2003) implies that the generalization gradients

should narrow as data arrive, even if the new observations fall within the same range as

the old ones.

7.1. Method

7.1.1. Participants
Participants were 22 undergraduates (16 female, 6 male) from the University of Adelaide,

who were given a $10 book voucher for their participation.
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7.1.2. Materials and procedure
Participants were asked about three different induction problems, presented in a random

order via computer. All problems involved stimuli that varied along one continuous dimen-

sion. One problem involved the temperatures at which a bacterium can survive, another

asked about the range of soil acidity levels that produce a particular colored flower, and the

third related to the times at which a nocturnal animal might forage. The cover story then

explained that a small number of ‘‘training’’ observations were available—in the bacterial

scenario, for instance, it would indicate temperatures at which the bacterium was known to

survive—and asked participants to make guesses about whether or not the property general-

ized to different stimulus values (the ‘‘query’’ items). The cover stories are provided in the

Appendix.
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Fig. 5. The effect of varying the sampling model h, for a situation in which the learner places uniform priors

over all possible connected regions that contain the training items. The top panels show the weak sampling case

(h ¼ 0), with the three panels showing the situation when the learner has observed one, two, and three training

items, respectively. Note that in the weak sampling case, the generalization gradients do not tighten. In contrast,

the middle panel shows an intermediate case (h ¼ .33), while the lower panel shows the strong sampling case

(h ¼ 1); in both cases the gradients get steeper from left to right. Note also that including some strong sampling

in the mixture has a clear effect, in the sense that the curves for h ¼ .33 are more similar to those for h ¼ 1 than

they are for h ¼ 0.
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To minimize any differences between the psychological representation of the stimuli and

the intended one, participants were shown a visual representation of the data, which marked the

locations of training items with a black dot, and the query item was shown using a red question

mark. The cover stories were constructed to imply that the to-be-inferred property did not hold

for beyond the range shown on screen. Responses were obtained by allowing people to position

a slider bar using the mouse, with response values ranging from 0% probability to 100% proba-

bility. Once the participant was satisfied with the positioning of the slider bar, he or she clicked

a button to move to the next question. For every set of training data, we presented 24 query

items, spread evenly across the range of possible items and presented in a random order.

Since it is impossible to infer the sampling model from a single generalization gradient,

we measured three generalization gradients for each problem, as illustrated in Fig. 7.
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Fig. 6. The effect of varying /, when the sampling model is weak (h ¼ 0) for a case involving three training

items (black dots). The middle row shows the case where the prior is uniform (/ ¼ 1) and is thus identical to

the top row in Fig. 5. The top row shows a situation where the learner has a prior bias to expect the region to be

small (/ ¼ .05), yielding convex gradients that look very similar to those observed in the lower panels of Fig. 5.

The bottom row, on the other hand, shows what happens when the learner has a prior bias to believe that the

region will be large: The generalization gradients become concave.
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Initially, participants were asked to make generalizations from a small number of observa-

tions. These were then supplemented with additional observations, and people were asked to

generalize from this larger sample. Finally, the data set was expanded a third time to allow

us to measure a third generalization gradient. In effect, we present people with three sam-

ples—collectively referred to as a ‘‘data structure’’—and obtain the corresponding general-

ization gradients. The assignment of cover stories (bacterial, soil, foraging) to data

structures was fixed rather than randomized, as illustrated in Fig. 7 (we address this in

experiment 2). For example, the top panel shows the data structure associated with the bac-

terial cover story. Each of the three rows corresponds to the three samples: Three known

observations were initially given, which was then expanded to five data points, and then

finally to a sample of ten observations. In total, each participant made 216 judgments (3

scenarios · 3 samples · 24 queries).

7.2. Basic results

Fig. 8 plots all 216 judgments made by two of the participants. In both cases the judg-

ments appear sensible, but it is clear that the generalization gradients are quite different

from one another. Indeed, inspection of the raw data across all 22 participants made clear

that individual differences are the norm rather than the exception. With this in mind, in the

model-based analyses presented later in this section we took care not to average data across

participants. Moreover, later in the article we examine the individual-level data in some

detail. However, before modeling the data, we present some more basic analyses.

As discussed earlier, the basic effect that we are looking for is the ‘‘gradient-tightening’’

effect shown in Fig. 5. That is, do people narrow their generalization gradients as sample

size increases? A simple way to test this proposition is to note that the experimental design
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Fig. 7. The experimental design. Each panel corresponds to one of the three scenarios and shows the three differ-

ent sets of stimuli known to possess the property. The axis marks are located at each of the test points. See main

text for details.
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is such that there are multiple occasions where more data are added to the sample, but at

least one of the two edge points remains unchanged (Fig. 7 ). For instance, one of the seven

cases corresponds to the transition from the first to the second sample in the bacterial

scenario: On the left-hand side, the edge point does not change. To a first approximation, it

is reasonable to assume that if h > 0, the generalization probabilities should decrease for the

query items that lie beyond this edge.6 In total, there are seven situations in which the edge

point does not change, yielding a total of 64 pairs of queries. Since there are 11 query items

to the left of the leftmost training example in this instance, this contributes 11 of the 64

query pairs that we can consider, and thus a total of 22 · 64 ¼ 1,408 pairs of responses. For

each such pair of queries, we are interested in the difference between generalization proba-

bilities reported by each participant, since this provides a measure of the extent of ‘‘gradient

tightening.’’ On average, people showed a small but significant amount of gradient tighten-

ing: The generalization probabilities are lower on average when the sample size is larger

(t1407 ¼ )4.98, p < .001). Individually, the trend is the correct direction for 51 of the 64

query pairs, and for 17 of the 22 participants. However, notice that this a small effect: The

raw judgments vary from a probability of 0% to 100%, but the average change corresponds

to a decrease in generalization probability of only 2.3% from one case to the next.
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Fig. 8. All 216 judgments made by participant 14 (dark solid lines) and participant 2 (light dashed lines).

The gradients are all sensible, but the participants clearly differ from one another.
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7.3. Model-based analyses

The simplified analysis in the previous section provides some evidence that the ‘‘gradient

tightening’’ effect is present in these data, but the effect is quite weak and leaves a great

many questions unanswered. Is the tightening effect actually consistent with the strong sam-

pling model proposed by Tenenbaum and Griffiths (2001a), or indeed with any of the sam-

pling models discussed in this article? Is the effect present for all scenarios, or only one or

two? Do people tend to rely on the same sampling assumptions, or do people differ in this

respect? In order to answer these questions, we need to fit the model to data explicitly.

In this section, we present an analysis that discusses two key questions: (a) the extent to

which the Bayesian model successfully fits the data, and (b) what assumptions about h are

implied by these data. However, although we are careful not to average data across partici-

pants because of the individual differences that exist, we do not discuss these differences in

any detail in this section; we return to this topic later in the article.

The first question of interest relates to the adequacy of the generalization model. In order

to address this question, we estimated the best-fitting values of h and / separately for all 22

participants and all three scenarios, yielding a total of 66 parameter estimates (details are

provided in the Appendix). We then measured the correlation between human responses and

the model predictions at these best-fitting parameters, where the correlation is taken over

the 72 judgments (24 queries · 3 cases) that each participant made in each scenario. Note

that this set up means that the model needs to predict every single judgment made by every

participant: No aggregation of data at any level is involved. The resulting correlations are

plotted in Fig. 9. After making a degrees of freedom adjustment to account for the two extra
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Fig. 9. Correlations between human data and model predictions in experiment 1, displayed for all 22 participants

and all three scenarios. After making degrees of freedom corrections for the two extra free parameters (h and /),

there are four non-significant correlations among the 66 cases, involving participants 5 (scenarios 2 and 3), 8

(scenario 3), and 16 (scenario 16). These four cases are plotted as having a correlation of zero. Of the remaining

62 significant correlations, 61 are significant at the .001 level, and 1 is significant at the .01 level. Gray bars plot

the thresholds used to classify model performance as ‘‘good,’’ ‘‘moderate,’’ or ‘‘poor.’’
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free parameters (i.e., h and /), almost all correlations (62 of 66) are significant. More impor-

tant, the correlations are quite strong, especially in view of the fine grain at which we are

modeling the data: The median correlation is 0.77, with an interquartile range of [.65, .85].

Overall, it is clear that the model is able to describe the data well.

Given that the model fits appear to be quite good, it is natural to ask what values of h are

involved. As the histograms in Fig. 10 illustrate, there is evidence for both strong sampling

and weak sampling in this task. However, there are also clear differences between people

and between scenarios. While the distributions are unimodal and biased toward weak sam-

pling (small h) in two of the three scenarios, the distribution of estimates for the foraging

scenario is rather bimodal.

7.4. Discussion

The overall pattern of results to experiment 1 highlights several points. First, there is

quite strong evidence that the Bayesian generalization model is able to describe accurately

the behavior of participants at a quite fine-grained level of analysis (prediction of every

judgment in the experiment). However, it is important to take note of the technical literature

that discusses how to measure safely the adequacy of a model’s performance, addressing

issues such as model complexity (e.g., Myung, 2000; J.I. Myung, Navarro, & Pitt, 2006; Pitt,

Myung, & Zhang, 2002), individual differences (e.g., Lee & Webb, 2005; Navarro et al.,

2006), and contaminant processes e.g., (Huber, 1981; Ratcliff & Tuerlinckx, 2002; Zeigenfuse

& Lee, 2010). In fact, although we glossed over the details, our analysis does in fact accom-

modate all of these topics: The Appendix provides a discussion of how this was done.

Secondly, the data are quite informative as regards the default assumptions that people

make about how observations are generated (at least in some contexts). Notice that the
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Fig. 10. Distributions over h observed in experiment 1. Each panel plots the distribution of best estimates (gray

histograms) across the 20 participants, with each panel corresponding to one of the three scenarios. The black

lines plot essentially the same analysis, but using the full posterior distributions over h rather than just the best

estimate for each participant. Reassuringly, the two versions of the analysis are in close agreement.
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scenario descriptions did not explicitly state how the data were generated: Participants were

expected to supply the missing ‘‘sampling’’ assumption on their own. That said, there is a

sense in which the data themselves suggest a strong sampling model, since participants only

ever observed positive examples of a category. If people relied solely on this as a cue, then

we would expect a bias toward larger values of h. Despite this, the reverse is true: On the

whole, smaller values of h tended to predominate.

Thirdly, the pattern of variation in the estimated h values between scenarios is interesting.

When the scenarios were originally designed, we did not anticipate finding any differences

between them; it was assumed that these differences would be presentational gloss and no

more. Nevertheless, what we in fact observed is a relatively substantial difference in the dis-

tributions over h. People did seem to have a strong bias toward weak sampling in two of the

scenarios, and a weak bias to prefer strong sampling in the third.

This third point deserves further investigation. Specifically, the fact that we found differ-

ences across the scenarios raises additional questions regarding the origin of these differ-

ences. In particular, we note that the ‘‘foraging’’ scenario (which induced larger h values

than the other two) differed from the other two problems in two respects. First, as illustrated

in Fig. 7, the changes in sample size involve an increase from 1 to 3 data points, and from 3

to 5 data points. In contrast, while the other two scenarios also have a jump from 3 to 5, the

jump from 5 to 10 data points involves a smaller proportional increase (doubling) than the

jump from 1 to 3 (tripling). One possible explanation for the use of strong sampling in this

situation is that the ratios in the ‘‘1:3:5’’ structure are larger than in the ‘‘3:5:10’’ case,

which (a) makes it easier for us to detect an effect, and (b) may make the sampling regime

more salient to people. More generally, the data structures involved in the three cases are

noticeably different to one another, suggesting the possibility that this is the source of the

difference.

An alternative explanation involves the cover stories themselves. In particular, the bacte-

rial temperature and soil pH scenarios both suggested an element of ‘‘experimental

control,’’ whereas the bandicoot foraging scenario did not. Experimental control over the

sampling locations means that the absence of data in other locations is uninformative. That

is, if an experimenter chooses the locations at which observations are to made, then these

locations clearly are not sampled from the true hypothesis. Thus, for the purposes of gener-

alization it implies weak sampling. Accordingly, the effect may be due to the cover story

and not the data structure. In essence, the cover stories may have subtly given participants

instructions as to which sampling model is most plausible. Given that we have multiple

hypotheses for the origin of the effect, the next section describes an experiment that disam-

biguates between the two.

8. Experiment 2

The goals for experiment 2 were three-fold. First, we aimed to replicate the effects from

experiment 1 using a new set of cover stories. Secondly, we aimed to disambiguate between

the ‘‘different data structure’’ explanation and the ‘‘implicit instruction’’ explanation for
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the scenario differences. Finally, we altered methodological aspects of the task slightly, to

check that the results are robust to these manipulations. Specifically, queries were phrased

as confidence judgments rather than probability estimates, and responses were given on a

Likert scale rather than by positioning a continuous slider bar.

8.1. Method

8.1.1. Participants
Twenty participants (7 male, 13 female, aged 18–36) were recruited from the general uni-

versity community. Since the cover story manipulation relied on participants’ reading the

materials carefully and understanding the nuances, all participants were fluent English

speakers, and most were graduate students. All were naive to the goals of the study, though

one was familiar with Bayesian generalization models.

8.1.2. Materials and procedure
The experiment presented people with a cover story in which they were asked to imagine

themselves as an explorer collecting samples of tropical plants and animals, and asked them

to make inferences about the different types of foods encountered on the journey. There

were three scenarios, relating to ‘‘bobo fruit,’’ ‘‘walking birds,’’ and ‘‘pikki-pikki leaves.’’

After presenting people with introductory text explaining the experiment, text appeared on

screen introducing one of the three scenarios.

Participants were then shown a number of stimuli and asked to make generalizations,

under an implicit ‘‘strong sampling’’ or implicit ‘‘weak sampling’’ regime. For instance, if

the scenario was bobo fruit and the sampling regime was strong, the text indicated that a

local guide gives them delicious fruit to eat. This is presumably a strong sampling situation,

since a helpful guide is not going to choose bad-tasting fruit as an example of the local

cuisine. In contrast, under a weak sampling regime the text implied that the participant had

collected the fruit themselves, more or less at random.

Participants responded using the keyboard, indicating their confidence on a 9-point Likert

scale (1 ¼ very low confidence and 9 ¼ very high confidence). The locations of the training

data and the generalization questions were identical to those used in experiment 1. Each

participant saw all three data structures (i.e., all three panels in Fig. 7), and all three cover

stories (bobo fruit, walking bird, pikki-pikki leaves). The assignment of cover story to data

structure was randomized, and the data structures were presented in a randomized order.

Participants either saw all three scenarios in the strong sampling form, or all three in weak

sampling form. Twelve participants saw the weak sampling version and eight saw the strong

sampling version.

In order to make the cover story feel more engaging to participants, the actual task was

accompanied by thematically appropriate background music, various props (including pith

helmets among other things), and the onscreen display had images of cartoon tropical trees

to add to the atmosphere. Qualitative feedback from participants did suggest that they found

the task both engaging and enjoyable, and indicated that they did spend some time thinking

about the scenarios.
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8.2. Basic results

The analysis for experiment 2 proceeds in the same fashion as for experiment 1.

As before, we examine the 64 simple test cases to see whether the generalization gradients

tighten due to sample size. If we translate the Likert scale responses to probability judg-

ments in the obvious way (i.e., treating 1 as 0%, 9 as 100%, and interpolating linearly for all

other values), then what we observe in the data corresponds to an average decrease in gener-

alization probabilities of 3.0%. Once again, this is a significant (t1299 ¼ )6.5, p < .001) but

weak effect, of a similar magnitude to the 2.3% decrease found in experiment 1.

8.3. Model-based analyses

As with experiment 1, we found the best-fitting values of h and / for each participant and

each scenario. The correlations between model predictions and human responses were

somewhat higher in experiment 2. As shown in Fig. 11, all 60 correlations were significant,

with a median of .90 and interquartile range of [.83, .94]. Overall, the model performance is

at least moderately good in all cases, and it is usually very good.

The main difference between experiments 1 and 2 is that the cover story, data structure,

and the sampling scheme implied by the cover story were all varied independently. After

checking that (as expected) there were no effects of the cover story itself (i.e., no differences

between bobo fruits, walking birds, and pikki-pikki leaves) and no interaction effects, we

ran a 3 · 2 anova with main effect terms for data structure and sampling scheme (weak vs.

strong) implied by the cover story, using the best-fitting value of h as the dependent variable.

The results suggest that the data structure influenced the choice of h (F2,52 ¼ 2.98,p ¼ .06),
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Fig. 11. Correlations between human data and model predictions in experiment 1, displayed for all 22 partici-

pants and all three data structures. All 60 correlations are significant at the .001 level, even after making degrees

of freedom corrections for the two extra free parameters (h and /). Gray bars plot the thresholds used to classify

model performance as ‘‘good,’’ ‘‘moderate,’’ or ‘‘poor.’’
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but that people did not make adjustments to h as a result of the different sampling schemes

implied by the cover story (F1,52 ¼ 0.004, p ¼ .95).

8.4. Discussion

Overall, the results from experiment 2 replicate those from experiment 1 and suggest that

the differences in h across conditions are largely due to the data structure and not to an

implicit instruction buried in the cover story. Consistent with our original intuition, the

cover stories in these experiments are too ‘‘generic’’ to induce strong differences in people’s

sampling assumptions.

A question that these results raise is why there was no effect of cover story, especially

in light of the results of Xu and Tenenbaum (2007a). One possibility might be that the par-

ticipants simply did not read the cover story closely, and hence did not take the implied

sampling scheme into account. This seems rather unlikely, since the participants were

explicitly told to pay close attention to the story. This is no guarantee that they did, but

most participants did spend some time reading the stories. More plausibly, the manipula-

tion may simply have been too subtle: People may not have given a great deal of thought

to the implied sampling assumptions and made no accommodation of them as a result.

This suggests that a more overt manipulation of actual sampling procedures (such as the

one used by Xu and Tenenbaum [2007a]) is likely to have an effect, but subtle differences

in cover story may not. In the meantime, it seems that it is the data structure that is the ori-

gin of the effect. One possible reason for this might be that people are learning about the

sampling model itself as the experiment progresses, and that the 1:3:5 structure induces a

different amount of learning to the 3:5:10 scenarios. Future research might address this

possibility.
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Fig. 12. Distributions over h observed in experiment 2. Each panel plots the distribution of best estimates (gray

histograms) across the 20 participants, with each panel corresponding to one of the three data structures (black

lines plot essentially the same analysis, but using the full posterior distributions over h rather than just the best

estimate for each participant).
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9. The sampling assumptions of individuals

Between the two experiments there are a total of 126 posterior distributions over h (42

participants · 3 scenarios each). In the analyses presented up to this point we have

attempted to summarize these individual distributions in terms of the marginal distributions

in Figs. 10 and 12. However, the aggregate distributions do not tell the whole story.

First, a focus on the aggregate distributions and goodness-of-fit statistics tends to obscure

the actual behavior of people and the model. For instance, consider the comparison between

the data from participants 2 and 15 in the bacterial temperatures scenario from experiment

1, shown in Fig. 13. In the first panel, the generalization gradients are quite similar, because

the differences in priors (/ ¼ 1.03 and / ¼ 1.71 respectively) are almost perfectly bal-

anced by the differences in sampling assumptions (h ¼ .02 and h ¼ .47) when the learner

has seen only three observations. However, as more data are observed, the two people

diverge in their predictions, because the differences in the likelihood functions come to

dominate their beliefs. Analogous examples can be found in experiment 2.

The opposite effect can be seen by comparing participants 10 and 19 in scenario 3 in

experiment 1. These two people have different priors (/ ¼ 1.79 and / ¼ 5.77, respectively)
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Fig. 13. A comparison between participants 2 (top) and 15 (bottom) on scenario 1 (bacterial temperature), as the

sample size is increased (from left to right). The solid black lines are the theoretical generalization gradients,

and white circles denote the actual responses given. Black circles show the observations given to the partici-

pants. Parameter estimates are h ¼ .02 and / ¼ 1.03 for participant 2, and h ¼ .47 and / ¼ 1.71 for participant

15.
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but the same likelihood (best-fitting value is h ¼ 1 in both cases). When only a single datum

is observed (left panels), these participants behave in quite different ways, but these differ-

ences begin to disappear as more data arrive (right panels). As is generally the case with

Bayesian models, the data ‘‘swamp’’ the prior. That is, in the previous comparison

(Fig. 13), participants made different assumptions about sampling, and so grew more dis-

similar as the sample size increased. However, in this second comparison (Fig. 14), partici-

pants agree about how data are produced; as a consequence, their prior differences are

erased as the sample size increases from left to right.

The second thing that is missing from the earlier analyses is a detailed examination of the

posterior distributions over h for each participant. In analyses to this point we have focused

on the best-fitting values of h, giving little consideration to the full posterior distribution.

Nevertheless, for each participant and each scenario we have 72 judgments available, so the

analysis is worth doing. We used standard Markov chain Monte Carlo techniques (MCMC;

Gilks, Richardson, & Spiegelhalter, 1996) to estimate a complete posterior distribution over

h for every participant and every scenario (assuming a uniform prior). Specifically, we

employ a Metropolis sampler with Gaussian proposal distribution, with burn in of 1,000
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Fig. 14. Comparing two people with different priors and the same likelihood. Data are from participants 10 (top)

and 19 (bottom), for the foraging scenario. For both participants the most likely sampling model was a purely

strong account, with h ¼ 1, but the best-fitting value of / differed. Participant 10 uses a prior that has very little

by way of bias (/ ¼ 1.79), whereas participant 19 has a quite strong prior bias to expect the concept to have

fairly broad extension (/ ¼ 5.77). The key thing to note is that the participants have very different generaliza-

tion profiles when only a single datum is observed (left panels), but these differences begin to disappear as more

data arrive (right panels).
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iterations, and the distributions are estimated using 5,000 samples drawn at a lag of 10

iterations between successive samples.

For experiment 1, Fig. 15 plots each of the 66 posterior distributions over h separately.

As is clear from inspection, the apparent bimodality involved in the foraging scenario is an

artifact of aggregating over participants. All of the individual distributions over h are unimo-

dal, but they are centered on different values. For both the bacterial and soil scenarios, most

people either adopted a weak sampling model or used a mixed sampling model centered on

a fairly modest value of h. For the foraging scenario, however, larger values of h dominate,

with only a few participants adopting weak sampling assumptions. The corresponding plots

for experiment 2 are shown in Fig. 16, and it shows a similar pattern.

10. General discussion

The tendency to observe modest but non-zero values of h in the experiments is strikingly

similar to the phenomenon of conservatism in decision making: People’s belief revision

tends to be slower than the rate predicted by simple Bayesian models (e.g., Phillips &

Edwards, 1966). In the experiments reported here, there is a sense in which h ¼ 1 is the

‘‘correct’’ sampling model to use, since the experimental design was such that all observed

data points were constrained to lie inside the true consequential region r. Nevertheless,

although some participants show clear evidence of having done so, most are at least a little

conservative (h < 1). Indeed, some participants do not adjust their generalization gradients

at all (h ¼ 0), appearing to be insensitive to the effects of increasing the sample size (as per

Tversky & Kahneman, 1974).

Conservative sampling assumptions also help resolve an odd discrepancy between two

different types of theory. Most category learning models (e.g., Anderson, 1991; Kruschke,

1992; Love et al., 2004) do not tighten the generalization gradients as the experiment pro-

gresses,7 and they are capable of fitting empirical data on the basis of this implicit weak

sampling assumption. Our findings are more or less consistent with this: Although a small

number of people did display very strong tendencies to tighten their generalization gradi-

ents, most did not. The typical change of 2%–3% is small enough that it would probably not

be noticed in a great many categorization experiments. This seems particularly likely in

view of the fact that all of our problems were ‘‘positive evidence only’’ in design (in which

strong sampling is the true model), whereas the majority of category learning experiments

involve supervised classification designs (in which weak sampling is the true model). The

conservative h ¼ .2 value even in this case goes a long way toward explaining why strong

sampling is not the typical assumption made when modeling category learning.

In light of this result, the heavy reliance on strong sampling observed in other contexts

(e.g., Tenenbaum & Griffiths, 2001a; Xu & Tenenbaum, 2007b) might seem unjustified.

However, note that these models are typically concerned with learnability questions, often

over developmental timeframes. In such cases, the critical problem facing the model is to

ask how it is possible for the learner to acquire rich mental representations when exposed

only to positive examples (Muggleton, 1997), and in order to do so, some variation of the
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Fig. 15. Posterior distributions over h for each participant, for all three scenarios in experiment 1. In these plots,

we treated the model fit as ‘‘good’’ if the model correlated above 0.8 with the raw data, ‘‘moderate’’ if the corre-

lation was between 0.5 and 0.8, and ‘‘poor’’ if the correlation fell below 0.5. All plots are on the same scale,

with h ranging from 0 to 1 on the horizontal axis and the probability density ranging from 0 to 12 on the vertical

axis.
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Fig. 16. Posterior distributions over h for each participant, for all three data structures in experiment 2. Starred

cases correspond to participants who saw the cover story in the strong sampling form. In these plots, we treated

the model fit as ‘‘good’’ if the model correlated above 0.8 with the raw data, ‘‘moderate’’ if the correlation was

between 0.5 and 0.8, and ‘‘poor’’ if the correlation fell below 0.5. All plots are on the same scale, with h ranging

from 0 to 1 on the horizontal axis and the probability density ranging from 0 to 12 on the vertical axis.
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strong sampling assumption is often implicitly adopted. For instance, in a language learning

context, the amount of data strictly required to acquire abstract knowledge about syntax

may be surprisingly small (Perfors et al., 2006; Perfors, Tenenbaum, & Regier, 2011): The

data presented to the model by Perfors et al. (2006) correspond only to a few hours of verbal

input. In real life, of course, children require a great deal more data, presumably because

they have other things to learn besides syntax, their raw data are messier than preprocessed

corpus data, they have processing constraints that slow the learning, and so on. These factors

should act to weaken the sampling model, but, as long as the resulting model is not strictly

weak (i.e., as long as h > 0), the learner should eventually acquire the knowledge in ques-

tion. In fact, as Fig. 17 illustrates for the spatial generalization problem we considered in

this article, as the sample size gets arbitrarily large, every sampling model except weak sam-

pling eventually becomes indistinguishable, because they all converge on the true region.

Thus, a learner who consistently employed a h ¼ .0001 model would acquire knowledge in

a fashion that is consistent with both the ‘‘strong sampling’’ pattern used in some models of

language acquisition, and the ‘‘weak sampling’’ pattern often found in categorization exper-

iments.

A number of other avenues for future work present themselves. Even within the context

of simple spatial generalization problems, the assumption that the underlying hypothesis

space consists solely of connected regions is probably too simple (Tenenbaum & Griffiths,

2001b). In particular, people may be willing to entertain the notion that the correct hypothesis
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Fig. 17. Distinguishability from the strong sampling case as sample size increases. Distinguishability is mea-

sured as the mean absolute difference in generalization probability across the entire range of possible query

items [0,1], where training data always span the range [0.3,0.6]. The topmost curve plots the h ¼ 0 case, with

the curves beneath increasing all the way to h ¼ 1 in increments of 0.1. Except for the pure weak sampling case,

all sampling models eventually look indistinguishable from strong sampling as the sample size gets large.
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consists of multiple regions (see Navarro, 2006, for a formalization of this idea). To the

extent that people believe that categories can cover multiple regions, the effects on the gen-

eralization gradients are likely to be two-fold. First, consistent with the general findings

from our experiments, the generalization gradients over the extrapolation region (i.e.,

beyond the training data) should tighten more slowly than would be expected under the sim-

pler model, because the learner remains open to the possibility that there exists some addi-

tional region of the stimulus space for which the hypothesis is true, about which he or she

has yet to uncover any information. Secondly, the generalization gradients will not remain

flat inside the interpolation region, because the learner must entertain the hypothesis that

the training data that he or she has seen actually come from multiple regions. In fact, Fig. 8

shows evidence of this effect. Participant 14 (dark lines) decreases the generalization proba-

bility in the gaps between training examples, whereas participant 2 (lighter lines) does not.

More generally, if we examine the interpolation judgments across experiment 1 generally,

there is a weak correlation (Spearman’s q ¼ ).16, p � 10)5) between the generalization

probability and the distance from the nearest training exemplar to the query items. This is

both consistent with standard exemplar models, as well as with Bayesian generalization

models that allow multiple regions. However, since the experimental designs used in this

article were not optimized for examining interpolative judgments (i.e., there is a strong ceil-

ing effect in these data since most people gave generalization judgments very close to 1 for

all interpolation questions), this remains an open question for future work.

The use of uniform distributions as a basic building block is fairly standard for models in

which the learner’s goal is to identify a ‘‘consequential set’’ (e.g., Navarro, 2006; Sanjana

& Tenenbaum, 2003; Shepard, 1987; Tenenbaum & Griffiths, 2001a), and it helps avoid the

circularity of explaining graded generalizations in terms of graded sampling distributions.

However, it is important to recognize that it too is an oversimplification. One of the more

interesting extensions that one might consider is the situation in which the learner has to

determine both the extension of the consequential set itself (i.e., which things are admissible

members of the category) as well as the distribution over those entities (i.e., which things

are more typical members of the category). Along similar lines, we have considered only

those situations in which the learner observes positive and noise-free data from a single

category. Natural extensions to the work would look at how sampling assumptions operate

in other experimental designs, and in the presence of labeling noise. In the meantime, how-

ever, it seems reasonable to conclude that individual participants’ inductive generalizations

are in close agreement with the predictions of the Bayesian theory, but they vary consider-

ably in terms of the default assumptions about how data were generated.
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Notes

1. Note that this is a comment about the likelihood functions used in models for classic

inductive reasoning tasks: In the Bayesian literature more generally, there has of

course been a much wider range of likelihoods used by modelers.

2. It is important to recognize that Eqs. 2 and 3 are simplifications. They depend both on

the ‘‘strong versus weak’’ distinction (namely, the extent to which the distribution

generates stimuli is dependent on the distribution over category labels) and on the spe-

cific form that the likelihood function takes (uniform distributions in this case). The

story is not so simple in general; for simplicity, we restrict our discussion to the case

relevant to the experiments in this article.

3. We thank Fermin Moscoso del Prado Martin for drawing our attention to this link.

4. In view of our discussion about correlated environments, this assumption may seem

odd. However, it is important to recognize that conditional independence is not inap-

propriate: Part of the qualitative idea behind the mixed sampling model is to use h to

express the dependencies among items. That is, with probability h the generation of

observation x may be deemed to be formative, but it is otherwise deemed to convey

no new information.

5. The linearity may seem surprising, since Shepard’s (1987) analysis produced expo-

nential gradients: The difference is partly due to the priors and partly due to the

restriction to finite range.

6. This is not strictly correct, insofar as the behavior of a strong sampling model can

sometimes depend on what happens to both of the edge points, not just the nearest

one. Even so, the results of this simple analysis are in accordance with the results of

the more detailed model fitting presented later in the article.

7. It is true that these models do adjust the generalization gradients in order to accommo-

date learned selective attention, the effect is generally to tighten generalization along

one dimension at the expense of other dimensions. What is not generally part of the

model is an overall tightening along all dimensions, as per strong sampling.
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