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1 Introduction
In an appendix, Mendelson (1964, p. 259) gives an account of a formulation
of a system in which Karl Schütte (1951) proves consistency of number the-
ory. A formulation of classical sentential logic can be abstracted from this,
identical with the system discussed later by Belnap and Anderson (1959) and
Hunter (1971, pp. 125-34). The rules of inference of this system all share the
feature that the premise(s) are shorter than the conclusion. Accordingly, the
rule variously called cut or modus ponens is not among them. Backwards ap-
plication of the rules to any formula generates a tree the branches of which
contain successively shorter formulas. Eventually, at the tip of each branch
there is a formula which is either an axiom or no rule can be applied to it to
shorten it further, and the tree is complete. If the formula at the tip of every
branch is an axiom, then the original formula is a theorem and the tree has
generated a proof. Otherwise, the formula is not a theorem.

Since theorem-proving becomes a very simple mechanical process in this
system, it has obvious pedagogic virtues. It is worthwhile investigating
whether this feature can be extended to a system of normal modal logic based
on the same underlying system of classical sentential logic. The results of
such an investigation are presented here. In the next section, the system of
classical sentential logic is outlined and some of its general features briefly
discussed. This system is extended to a system K of normal modal logic in
the following section, which is developed to illustrate the ease with which
theorems can be demonstrated. The effect of adding the cut rule, yielding a
system K+, is discussed in section 4.
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2 Classical Sentential Logic
The system S of sentential logic has negation and disjunction as the primitive
logical constants and the vocabulary consists of the signs:

∼,∨,(,),

together with an infinite list of sentence letters, A1,A2,A3,A4, . . . . Well-
formed formulas are defined as usual and other connectives are introduced
metaliguistically in the usual way. Brackets are sometimes eliminated by the
use of dots in standard fashion. A disjunction ϕ1 ∨ϕ2 ∨ . . .∨ϕn is called an
expression of the law of excluded middle if one of its disjuncts is the negation
of another. The single axiom schema is

(Sax) Any expression of the law of excluded middle,

i.e. axioms are of the kind

(i) ψ ∨ ϕ ∨ ∼ϕ ,

where there may be no disjunct ψ , and the order of the disjuncts is immaterial.
There are two rules:

(S1)
ψ ∨ ϕ

ψ ∨ ∼∼ϕ

(S2)
ψ ∨ ∼ϕ ψ ∨ ∼χ

ψ ∨ ∼(ϕ ∨χ)
.

Again, it is understood that there may be no disjunct (side formula) ψ , and the
order of the disjuncts is immaterial.

To illustrate the application of the axioms and rules, consider the proof of

(ϕ ⊃ ψ) ∧ (ψ ⊃ χ) .⊃. ϕ ⊃ χ.

In primitive notation, this is ∼∼(∼(∼ϕ ∨ψ) ∨∼(∼ψ ∨χ)) ∨∼ϕ ∨χ , which
can be demonstrated by the following proof tree:

Axiom

∼ψ ∨ ∼ϕ ∨χ ∨ψ

∼ψ ∨ ∼ϕ ∨χ ∨ ∼∼ψ

|

S1
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Axiom

ϕ ∨ ∼(∼ψ ∨χ) ∨ ∼ϕ ∨χ

∼∼ϕ ∨ ∼(∼ ψ ∨χ) ∨ ∼ϕ ∨χ
S1

|
Axiom

∼ψ ∨ ∼ϕ ∨χ ∨ ∼χ

∼ψ ∨ ∼ϕ ∨χ ∨ ∼(∼ ψ ∨χ)
S2

∼(∼ϕ ∨ψ) ∨ ∼(∼ψ ∨χ) ∨ ∼ϕ ∨χ
S2

∼∼(∼(∼ϕ ∨ψ) ∨ ∼(∼ψ ∨χ)) ∨ ∼ϕ ∨χ
S1

The tree is easily established by starting at the bottom with the formula to
be proved, and applying the rules backwards as appropriate until an axiom is
reached on every branch. (For typographical reasons, the left-hand branch of
the uppermost fork in the right-hand branch has been split into two parts, and
the vertical line, ‘|’ indicates the join.) Because the premises of the rules are
shorter than their conclusions, backwards application will eventually lead to a
disjunction in which all the disjuncts are either atomic formulas or negations
of atomic formulas if an axiom is not reached beforehand, when no further
application of the rules is possible. So decidability is straightforward.

System S is easily shown to be sound and semantically complete (Hunter
1971, pp. 130-2). But to catch all valid consequences as deductions, S is ex-
tended to system S+ by addition of the cut rule:

(S3)
ϕ ∼ϕ ∨ ψ

ψ
.

No further theorems are introduced by the addition of this rule:

Theorem 1 The theses of S+ are the same as those of S.

Proof. Clearly, all theses of S are included in those of S+, since its axioms
and rules of inference are part of S+. To show the converse, suppose %S+ ϕ .
Construction of the appropriate truth table shows that S3 preserves truth, so
the conclusion of any application of S3 is always a valid consequence of its
premises. Accordingly, if S3 is applied in the proof of ϕ , it applies only to
axioms, which are clearly valid, or their valid consequences, and introduces
only valid consequences of these, so ϕ is valid. But by the completeness of S,
%S ϕ , and ϕ is a thesis of S. Q.E.D.

A simple corollary of this is that although the cut rule does not hold as a
general rule of inference for S (to be used in deductions), it does holds in the
form of a rule of proof:

Corollary 1.1 Cut holds as a rule of proof in S; i.e.

If %S ϕ and %S ϕ ⊃ ψ , then %S ψ .

Proof. Assume %S ϕ and %S ϕ ⊃ ψ . Then ! ϕ and ! ϕ ⊃ ψ by soundness of
S, from which it follows that ! ψ . Then %S ψ by semantic completeness of S.
Q.E.D.
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From this corollary it is a straightforward matter to establish

Corollary 1.2 The substitutivity of provable equivalents holds in S; i.e.

%S ϕ ≡ ϕ ′ ⇒ %S ψ ≡ ψ ′,

where ψ ′ is the result of replacing an occurrence of ϕ in ψ by ϕ ′.

But corollary 1.1 is not sufficient for the extended completeness of S+, which
requires rule S3:

Theorem 2 Extended completeness of S+

If ψ1, . . . ,ψn ! ϕ , then ψ1, . . . ,ψn %S+ ϕ

Proof. ψ1, . . . ,ψn ! ϕ holds iff ! ψ1 ∧ . . .∧ψn .⊃ ϕ by application of truth ta-
bles. So, by the completeness of S+, %S+ ψ1∧ . . .∧ψn .⊃ ϕ . The latter implies
ψ1, . . . ,ψn %S+ ϕ by n applications of S3 ensuring

ϕ j+1, . . . ,ϕn %S+∼ϕ1 ∨ . . .∨ ∼ϕ j ∨ψ ⇒
ϕ j,ϕ j+1, . . . ,ϕn %S+ ∼ϕ1 ∨ . . .∨ ∼ϕ j−1 ∨ψ .

3 The Modal System K
The language is now extended with the addition of the necessity operator, ".
Well-formed formulas are defined as usual and the possibility operator, !, is
defined as ∼"∼. The modal system K is defined by adding to the axioms and
rules of S all axioms of the kind

(ii) ∼(ϕ ∨ ∼ϕ) ∨ "(ψ ∨ ∼ψ)

together with the rule

(RKN)
ϕ ∨ ∼ψ1 ∨ . . . ∨ ∼ψn

"ϕ ∨ ∼"ψ1 ∨ . . . ∨ ∼"ψn
, n ≥ 0.

As before, the order of the disjuncts is not significant.
Clearly, the rule of necessitation is simply a special case of RKN with n = 0:

(RN) % ϕ ⇒ % "ϕ

This makes it clear why an additional side formula cannot be added as a dis-
junct χ to the premise and conclusion of RKN thus:

χ ∨ ϕ ∨ ∼ψ1 ∨ . . . ∨ ∼ψn

χ ∨ "ϕ ∨ ∼"ψ1 ∨ . . . ∨ ∼"ψn
, n ≥ 0.
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By analogy with the rule of necessitation, this would sanction the rule

% χ ∨ ϕ ⇒ % χ ∨ "ϕ ,

which in the special case that χ is ∼ϕ would lead to the trivialisation % ϕ ⊃
"ϕ . Although it would certainly trivialise modal logic if this general schema
where to hold, there are, however, special cases that are not objectionable.
Theorems such as expressions of the law of excluded middle are certainly
necessary if anything is, and special cases of the form ϕ ∨∼ϕ .⊃"(ϕ ∨∼ϕ)
should be reckoned among the theorems. Because they cannot be accommo-
dated by extending the rule RKN with side formulas, they have been added
for completeness as additional axioms.

In order to illustrate the ease with which theorems can be proved with this
formulation, the system is developed to show how standard results are estab-
lished. We begin with the derived rule

(RKP)
∼ϕ ∨ ψ1 ∨ . . . ∨ ψn

∼!ϕ ∨ !ψ1 ∨ . . . ∨ !ψn
n ≥ 0.

Proof
∼ϕ ∨ ψ1 ∨ . . . ∨ ψn

∼ϕ ∨ ∼∼ψ1 ∨ . . . ∨ ∼∼ψn

n×S1

"∼ϕ ∨ ∼"∼ψ1 ∨ . . . ∨ ∼"∼ψn

RKN

∼∼"∼ϕ ∨ ∼"∼ψ1 ∨ . . . ∨ ∼"∼ψn

S1

∼!ϕ ∨ !ψ1 ∨ . . . ∨ !ψn

D f !

The standard theorems of basic normal modal logic are easily proved. Note
that the proofs don’t call for specific strategies relying on previously proved
theorems. Each theorem is proved from scratch, directly from the axioms.

Kt1 "(ϕ ∧ψ) ≡. "ϕ ∧ "ψ

Proof First the left-to-right implication, remembering that the disjuncts in
RKN can be taken in any order.

Axiom
∼ϕ ∨ ∼ψ ∨ ϕ

∼"∼(∼ϕ ∨ ∼ψ) ∨ "ϕ
RKN, S1

Axiom
∼ϕ ∨ ∼ψ ∨ ψ

∼"∼(∼ϕ ∨ ∼ψ) ∨ "ψ
RKN, S1

∼"∼(∼ϕ ∨ ∼ψ) ∨ ∼(∼"ϕ ∨ ∼"ψ)
S2, S1
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Then the right-to-left implication:
Axiom

∼ϕ ∨ ∼ψ ∨ ∼∼ϕ
Axiom

∼ϕ ∨ ∼ψ ∨ ∼∼ψ

∼ϕ ∨ ∼ψ ∨ ∼(∼ϕ ∨ ∼ψ)
S2, S1

∼"ϕ ∨ ∼"ψ ∨ "∼(∼ϕ ∨ ∼ψ)
RKN

∼∼(∼"ϕ ∨ ∼"ψ) ∨ "∼(∼ϕ ∨ ∼ψ)
S1

The corresponding principle of distribution of possibility over disjunction,

Kt2 !(ϕ ∨ ψ) ≡. !ϕ ∨ !ψ ,

can be similarly proved in two parts:

Proof The left-to-right implication:
Axiom

∼ϕ ∨ϕ ∨ ψ
Axiom

∼ψ ∨ϕ ∨ ψ

∼(ϕ ∨ ψ) ∨ ϕ ∨ψ
S2

∼!(ϕ ∨ ψ) ∨ !ϕ ∨ !ψ
RKP

The right-to-left implication:
Axiom

∼ϕ ∨ϕ ∨ ψ

∼!ϕ ∨ !(ϕ ∨ ψ)
RKP

Axiom
∼ψ ∨ϕ ∨ ψ

∼!ψ ∨ !(ϕ ∨ ψ)
RKP

∼(!ϕ ∨ !ψ) ∨ !(ϕ ∨ ψ)
S2

Necessity distributes over implication as an implication which can’t be
strengthened to an equivalence:

Kt3 "(ϕ ⊃ ψ) ⊃. "ϕ ⊃ "ψ

Proof
Axiom

ϕ ∨ ∼ϕ ∨ ψ
Axiom

∼ψ ∨ ∼ϕ ∨ ψ

∼(∼ϕ ∨ ψ) ∨ ∼ϕ ∨ ψ
S2, S1

∼"(∼ϕ ∨ ψ) ∨ ∼"ϕ ∨ "ψ
RKN

Attempting to prove the converse of Kt3 results in a tree with a branch
tipped by a formula which is not an axiom and cannot be shortened by further
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application of any of the rules:

"A1 ∨ "(∼A1 ∨ A2)

Axiom
∼A2 ∨ ∼A1 ∨ A2

∼"A2 ∨ "(∼A1 ∨ A2)
RKN

∼(∼"A1 ∨ "A2) ∨ "(∼A1 ∨ A2)
S2, S1

Necessity doesn’t distribute over disjunction with an equivalence, but just
in accordance with the implication

Kt4 "ϕ ∨ "ψ .⊃ "(ϕ ∨ψ)

Proof
Axiom

∼ϕ ∨ ϕ ∨ ψ

∼"ϕ ∨ "(ϕ ∨ ψ)
RKN

Axiom
∼ψ ∨ ϕ ∨ ψ

∼"ψ ∨ "(ϕ ∨ ψ)
RKN

∼("ϕ ∨ "ψ) ∨ "(ϕ ∨ ψ)
S2

Although the converse of Kt4 doesn’t hold, what we do have is

Kt5 "(ϕ ∨ ψ) ⊃. !ϕ ∨ "ψ

Proof
Axiom

∼ϕ ∨ ϕ ∨ ψ
Axiom

∼ψ ∨ ϕ ∨ ψ

∼(ϕ ∨ ψ) ∨ ϕ ∨ ψ
S2

∼"(ϕ ∨ ψ) ∨ ∼"∼ϕ ∨ "ψ
RKN, S1

Correspondingly, possibility distributes over conjunction in the form of the
implication

Kt6 !(ϕ ∧ ψ) ⊃. !ϕ ∧ !ψ

Proof
Axiom

∼ϕ ∨ ∼ψ ∨ ϕ

∼!∼(∼ϕ ∨ ∼ψ) ∨ !ϕ
RKP, S1

Axiom
∼ϕ ∨ ∼ψ ∨ ψ

∼!∼(∼ϕ ∨ ∼ψ) ∨ !ψ
RKP, S1

∼!∼(∼ϕ ∨ ∼ψ) ∨ ∼(∼!ϕ ∨ ∼!ψ)
S2, S1

The converse of Kt6 doesn’t hold, but what we do have is "ϕ ∧!ψ .⊃
!(ϕ ∧ψ), or
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Kt7 ∼!ϕ ∧ !ψ .⊃ !(∼ϕ ∧ ψ)

Proof
Axiom

ϕ ∨ ∼ψ ∨ ∼ϕ
Axiom

ϕ ∨ ∼ψ ∨ ∼∼ψ

ϕ ∨ ∼ψ ∨ ∼(∼∼ϕ ∨ ∼ψ)
S2

∼∼(∼∼!ϕ ∨ ∼!ψ) ∨ !∼(∼∼ϕ ∨ ∼ψ)
S1, RKP

Together with negation, possibility and necessity are related to one another
much as disjunction and conjunction are related by DeMorgan’s laws. A few
theorems will put us in a position to introduce a general relationship of duality.

Kt8 "ϕ ≡ ∼!∼ϕ

Proof
Axiom

∼ϕ ∨ ∼∼ϕ

∼∼"∼ϕ ∨ ∼"∼ϕ
S1, RKN

Axiom
∼ϕ ∨ ϕ

∼∼"∼ϕ ∨ ∼"∼ϕ
S1, RKN, S1

We now define "n as a string of n necessity operators:

Df "n "0ϕ is ϕ

"nϕ is ""n−1ϕ .

A string of n possibility operators, !n, is defined analogously.

Kt9 ∼!nϕ ≡ "n∼ϕ

Proof Basis: where n = 0, the theorem reduces to ∼ϕ ≡ ∼ϕ .
Induction step. The left-to-right and right-to-left implications are proved in
turn.

Axiom
ϕ ∨ ∼ϕ

!ϕ ∨ "∼ϕ
D f .!, RKN, S1

....
!n−2ϕ ∨ "n−2∼ϕ

∼"∼!n−2ϕ ∨ ""n−2 ∼ϕ
RKN, S1

!n−1ϕ ∨ "n−1∼ϕ
D f .!

∼∼∼"∼!n−1ϕ ∨ ""n−1∼ϕ
S1, RKN, S1
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Induction hypothesis

"n−1∼ϕ ⊃ ∼!n−1ϕ

∼"n−1∼ϕ ∨ ∼!n−1ϕ
D f .⊃

∼""n−1∼ϕ ∨ "∼!n−1ϕ
RKN

∼""n−1∼ϕ ∨ ∼∼"∼!n−1ϕ
S1

And analogously,

Kt10 ∼"nϕ ≡ !n∼ϕ .

Proof Basis: where n = 0, the theorem reduces to ∼ϕ ≡ ∼ϕ .
Induction step. The left-to-right and right-to-left implications are proved in
turn.

Axiom
ϕ ∨ ∼ϕ

"ϕ ∨ ∼"∼∼ϕ
RKN, S1

....
""n−2ϕ ∨ ∼"∼!n−2∼ϕ

"n−1ϕ ∨ !n−1∼ϕ
D f .!

""n−1ϕ ∨ ∼"∼!n−1∼ϕ
RKN, S1

∼∼""n−1ϕ ∨ ∼"∼!n−1∼ϕ
S1

Induction hypothesis

!n−1∼ϕ ⊃ ∼"n−1ϕ

∼!n−1∼ϕ ∨ ∼"n−1ϕ
D f .⊃

"∼!n−1∼ϕ ∨ ∼""n−1ϕ
RKN

∼∼"∼!n−1∼ϕ ∨ ∼""n−1ϕ
S1

Def Modality

A modality is simply a sequence of monadic operators ∼, !, and ",
including the empty sequence. An affirmative modality is a modality
containing no negation.
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Def Dual of an Affirmative Modality

The dual, M d, of an affirmative modality M is the affirmative modality
obtained by uniformly substituting each ! in M by " and each " in
M by !

Examples of modalities are ∼; " ∼; !!"; !; """!∼"; – (the empty
sequence); etc. Now, a negation sign attached to one end of a modality can be
moved to the other end, provided all the "Ã•s and !Ã•s are interchanged for
one another, to produce a new formula logically equivalent with the original
one. Suppose, for example, that the negation is on the left of the modality. By
Kt9 or Kt10, depending on whether the negation sign is followed by !n or "n,
the negation can be moved n places to the right and the modality replaced by
its corresponding dual, "n or !n, respectively. The negation will then either (i)
be to the left of an atomic formula, or (ii) precede another affirmative modality
or (iii) precede another negation. In case (ii), either Kt9 or Kt10 is applicable
as before, and the negation can be moved further to the right. In case (iii)
the double negation can be eliminated. Either then negation now precedes an
atomic formula, or the process can be repeated, and since formulas are of finite
length, the negation will eventually precede an atomic formula. We thus have
the

Duality theorem If M is an affirmative modality and M d is its dual, then

∼M ϕ ≡ M d∼ϕ.

Note, furthermore, that M ddϕ ≡ M ϕ .

4 Cut and Completeness
Consider the system K+ obtained by adding the cut rule S3,

(S3)
ϕ ∼ϕ ∨ ψ

ψ
,

to K as defined in the last section. The additional axiom schema (ii) of system
K, over and above the excluded middle axiom schema, is redundant in K+,
being provable from the ‘paradox of implication’, ϕ ⊃. ψ ⊃ ϕ (which is just
an instance of excluded middle) and S3, thus:

Axiom
ψ ∨ ∼ψ

"(ψ ∨ ∼ψ)
RN Axiom

∼"(ψ ∨ ∼ψ) ∨ ∼(ϕ ∨ ∼ϕ) ∨ "(ψ ∨ ∼ψ)

∼(ϕ ∨ ∼ϕ) ∨ "(ψ ∨ ∼ψ)
S3
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Since S is complete, the system K+ includes the standard system of basic
normal modal logic K because it includes Kt3 as a theorem as well as having
necessitation and the cut rule as rules of inference. It includes, for example,
system K as defined by Hughes and Cresswell (1996, pp. 24-5). But it will
transpire that the theorems of K are exactly the same as those of K+, so that
K does capture all of basic normal modal logic. Using the standard algebraic
technique, it will be shown that a normal modal algebra can be defined which
is characteristic of system K in the sense that it verifies exactly the theorems
of K. Since all the formulas verified by the algebra are provable in K, and K+

differs from K only in the additional rule S3, which can be shown to preserve
verifiability and so does not introduce non-verified formulas as theorems of
K+, it follows that K+ has the same theorems as K.

The correspondence between the properties of the sentential operators ∼
and ∨ and the operators − and ∪ of Boolean algebra is well known. Boolean
algebras can be extended with an additional operator corresponding the ne-
cessity operator as follows:

Def. Normal Modal Algebra
Where 〈B,−,∪〉 is a Boolean algebra, a modal algebra is a quadruple
〈B,−,∪,!〉 which is closed under the operation ! (i.e. if a ∈ B, then
!a ∈ B) and satisfies the following conditions:

M1 !1 = 1
M2 !(a∩b) = !a∩ !b

In order to consider how this corresponds to features of modal logic, a defi-
nition of a Boolean algebra is given and some standard results stated without
proof for future reference.

Def. Boolean Algebra
A Boolean algebra is a triple 〈B,−,∪〉, where B is a set of at least two
elements closed under the operations − and ∪ (i.e. if a, b ∈ B, then
−a ∈ B and a∪ b ∈ B), complying with the following definitions and
axioms:

Def 1 1 = a∪−a
Def 0 0 = −1
Def ∩ a∩b = −(−a∪−b)
Def ⊆ a ⊆ b iff a∪b = b
B1 a∪b = b∪a
B2 a∪ (b∪ c) = (a∪b)∪ c
B3 For all a and b, if for some c, a∪−b = c∪−c, then a∪b = b
B4 For all a and b, if a∪b = b, then for all c, a∪−b = c∪−c
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Some straightforward properties of Boolean algebras that will be used in the
sequel are simply stated in the following theorem:

Theorem 3 If 〈B,−,∪〉 is a Boolean algebra, then for any a,b,c ∈ B,

(a) a∪1 = 1 (f) −(a∪b) = −a∩−b
(b) a∪0 = a (g) −(a∩b) = −a∪−b
(c) a∩1 = a (h) a∪ (b∩ c) = (a∪b)∩ (a∪ c)
(d) −−a = a (i) a∪b = b iff a∩b = a
(e) −a∪b = 1 iff b ⊆ a (equivalent definition of ⊆)

An important property of modal algebras is established in the following
theorem:

Theorem 4 If 〈B,−,∪,!〉 is a modal algebra, then for any a,b ∈ B,

a ⊆ b ⇒ !a ⊆ !b

Proof Suppose a ⊆ b, i.e. a∩b = a [equivalent definition of ⊆]
⇒ !a∩ !b = !(a∩b) = !a [M2, supposition]
⇔ !a ⊆ !b [equivalent definition of ⊆]

Q.E.D.

Modal algebra can be related to modal logic by an assignment, V , which
associates each sentence letter, Ai, with an element, ai of the set B, and assigns
an element of B to each compound formula in accordance with the general
rules:
1. If V (ϕ) = a, then V (∼ϕ) = −a and V ("ϕ) = !a.
2. If V (ϕ) = a and V (ψ) = b, then V (ϕ ∨ψ) = a∪b.
A normal modal algebra is then said to verify a formula ϕ if, for every as-
signment V , V (ϕ) = 1. A formula ϕ is falsified by a normal modal algebra
if for some assignment V , V (ϕ) 3= 1. We now show that every normal modal
algebra verifies every theorem of system K.

Theorem 5 Every normal modal algebra verifies every theorem of system K.

Proof We show that the axioms are verified and the rules in inference preserve
the property of being verified.

Suppose that a normal modal algebra falsifies some expression of the law
of excluded middle, ϕ ∨ ∼ϕ ∨ ψ . Then there is an assignment V for which
V (ϕ ∨∼ϕ ∨ ψ) 3= 1. Thus, where V (ϕ) = a and V (ψ) = b, (a∪−a)∪b 3= 1.
But by Def. 1, this implies 1∪b 3= 1, which contradicts theorem 3 (a).

Suppose that a normal modal algebra falsifies some instance of axiom (ii),
so that for some assignment V , V (∼(ϕ ∨ ∼ϕ)∨"(ψ ∨ ∼ψ)) 3= 1. Then, if
V (ϕ) = a and V (ψ) = b,
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1 3= −(a ∪−a)∪ !(b ∪−b))
= −1 ∪ !1 [Def. 1]
= 0∪1 [Def. 0, M1]
= 1 [Theorem 3 (a)]

which is a contradiction.
Suppose that the rule of inference S1 does not preserve the property of being

verified. Then for some formulas ϕ and ψ , and assignment V , V (ϕ ∨ ψ) = 1
and V (∼∼ϕ ∨ ψ) 3= 1. Thus, where V (ϕ) = a and V (ψ) = b, a ∪ b = 1
and −− a ∪ b 3= 1. But by theorem 3 (d), the latter reduces to a ∪ b 3= 1,
contradicting the former.

Suppose that the rule of inference S2 does not preserve the property of
being verified. Then for some formulas ϕ , ψ and χ , and assignment V ,
V (ψ ∨ ∼ϕ) = 1, V (ψ ∨ ∼χ) = 1 and V ((ψ ∨∼(ϕ ∨ χ)) 3= 1. Thus, where
V (ϕ) = a, V (ψ) = b and V (χ) = c, b∪−a = 1, b∪−c = 1 and

1 3= b ∪−(a∪ c)
= b ∪ (−a∩−c) [Theorem 3 (f)]
= (b ∪−a)∩ (b ∪−c) [Theorem 3 (h)]
= 1∩1 [Given b∪−a = 1 and b∪−c = 1]
= 1 [Theorem 3 (c)]

which is a contradiction.
To show that the rule of inference RKN preserves the property of being

verified, suppose, for some formulas ϕ , ψ1, . . . , ψn and assignment V , that
V (ϕ ∨ ∼ψ1∨ . . .∨ ∼ψn) = 1. Thus, where V (ϕ) = a, V (ψ1) = b1 and . . . and
V (ψn) = bn, then a∪−b1 ∪ . . .∪−bn = 1. We want to show that (!a∪−!b1 ∪
. . .∪−!bn) = 1, so that V ("ϕ ∨ ∼"ψ1 ∨ . . .∨ ∼"ψn) = 1. Now

1 = a∪−b1 ∪ . . .∪−bn = a∪−(b1 ∩ . . .∩bn) [3 (f)]
⇔ a ⊆ (b1 ∩ . . .∩bn) [B1, 3 (e)]
⇒ !a ⊆ !(b1 ∩ . . .∩bn) [Th 4]
⇔ !a∪ !(b1 ∩ . . .∩bn) = !(b1 ∩ . . .∩bn) [Def ⊆]
⇒ !a∪−!(b1 ∩ . . .∩bn) = 1 [B4]
⇔ !a∪−(!b1 ∩ . . .∩ !bn) = 1 [M2]
⇔ !a∪−!b1 ∪ . . .∪−!bn = 1 [3 (g)]

Accordingly, V ("ϕ ∨ ∼"ψ1 ∨ . . .∨ ∼"ψn) = 1, and RKN preserves the
property of being verified. Q.E.D.

The next step in the argument is to define a specific normal modal alge-
bra which is characteristic of system K, i.e. which verifies exactly the theo-
rems of system K and no others. For this purpose, a normal modal algebra
〈B,−,∪,!〉 is constructed in which the elements of B are equivalence classes
of formulas provably equivalent in K. The class of formulas equivalent with
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ϕ , {ψ : %K ψ ≡ ϕ}, is denoted by |ϕ|. The operations of the modal algebra are
then defined by laying it down that −|ϕ| is |∼ϕ|, !|ϕ| is |"ϕ| and |ϕ| ∪ |ψ|
is |ϕ ∨ψ|.

Any two theorems ϕ,ψ are provably equivalent. For %K ϕ , which implies
%K ∼ψ ∨ϕ , and %K ψ , which implies %K ∼ϕ ∨ψ , therefore jointly imply %K
∼ψ ∨ϕ .∧. ∼ϕ ∨ψ , and thus %K ϕ ≡ ψ . All theorems are therefore members
of |A1 ∨∼A1|, which will be the unit element, 1, since this is defined as a∪−a.
The null element, 0, which is defined as −1, will be |∼(A1 ∨ ∼A1)|.

Theorem 6 The structure just defined is a normal modal algebra character-
istic of K.

Proof To show that this is, indeed, a normal modal algebra, it must satisfy the
conditions B1-4 and M1-2. For B1, note that %K (ϕ ∨ψ) ≡ (ψ ∨ϕ). Accord-
ingly, ψ ∨ϕ ∈ |ϕ ∨ψ| and |ϕ ∨ψ| ∈ |ψ ∨ϕ|, and so |ϕ ∨ψ| = |ψ ∨ϕ|. Thus,
where a is |ϕ| and b is |ψ|, a∪b = b∪a.

For B2, where a is |ϕ|, b is |ψ| and c is |χ|, we have %K ϕ∨(ψ∨χ) .≡. (ϕ∨
ψ)∨χ . Thus, |ϕ ∨ (ψ ∨χ)| = |(ϕ ∨ψ)∨χ|, so that a∪ (b∪ c) = (a∪b)∪ c.

For B3, where a is |ϕ|, b is |ψ| and c is |χ|,

%K (ϕ ∨ ∼ψ .≡. χ ∨ ∼χ) ⊃ (ϕ ∨ψ .≡ ψ) [Theorem of S]
%K (ϕ ∨ ∼ψ .≡. χ ∨ ∼χ) ⇒ %K (ϕ ∨ψ .≡ ψ) [Corollary 1.1]

∴ a∪−b = c∪−c ⇒ a∪b = b.

For B4, suppose a∪ b = b, which means that, where a is |ϕ| and b is |ψ|,
that |ϕ ∨ψ| = |ψ|. Thus, %K ϕ ∨ψ .≡ ψ . Now consider ϕ ∨ ∼ψ . From %K
ϕ ∨ψ .≡ ψ it follows by the substitution of provable equivalents (Corollary
1.2) that

%K ϕ ∨ ∼ψ .≡. ϕ ∨ ∼(ϕ ∨ψ)
⇒ %K ϕ ∨ ∼ψ .≡. ϕ ∨ (∼ϕ ∧ ∼ψ)
⇒ %K ϕ ∨ ∼ψ .≡. (ϕ ∨ ∼ϕ) ∧ (ϕ ∨ ∼ψ)
⇒ %K ϕ ∨ ∼ψ .≡. ϕ ∨ ∼ϕ
⇒ |ϕ ∨ ∼ψ| = |ϕ ∨ ∼ϕ|
⇒ |ϕ ∨ ∼ψ| = |χ ∨ ∼χ|, for any formula χ
⇒ a∪−b = c∪−c, where c is |χ|.

For M1, since 1 is |A1 ∨ ∼A1|, then !1 is |"(A1 ∨ ∼A1)|. Now
since %K ϕ ⊃. A1 ∨ ∼A1, for any formulas ϕ , then in particular,
%K "(A1 ∨ ∼A1) ⊃. A1 ∨ ∼A1. The converse is an instance of the
axioms schema (ii). Accordingly, %K A1 ∨ ∼A1.≡ "(A1 ∨ ∼A1), and so
|A1 ∨ ∼A1| = |"(A1 ∨ ∼A1)|. Thus, 1 = !1.

For M2, %K "(ϕ ∧ψ) ≡. "ϕ ∧"ψ , so that |"(ϕ ∧ψ)| = |"ϕ ∧"ψ|, and
!(a∩b) = !a∩ !b.
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The structure is, therefore, a normal modal algebra, and so verifies all the
theorems of K. To show that it falsifies all the non-theorems, suppose ϕ is
such a non-theorem, and let V (ϕ) = |ϕ|. Now if |ϕ| were 1, so that |ϕ| =
|A1 ∨ ∼A1|, then it would hold that %K ϕ ≡. A1 ∨ ∼A1. But then in particular
a proof tree of the right-to-left implication, ∼(A1 ∨ ∼A1)∨ϕ , could not be a
proof of ∼(A1 ∨ ∼A1) together with an arbitrary disjunct, and so must be a
proof of ϕ with an arbitrary disjunct, contradicting the assumption that ϕ is
not a theorem. Accordingly, any verified formula is a theorem of K. Q.E.D.

Theorem 7 The theses of K+ are the same as those of K.

Proof. Clearly, all theses of K are included in those of K+ since its axioms
and rules of inference are part of K+. To show the converse, consider the
rule S3, which is the only additional feature distinguishing K+ from K. Rule
S3 preserves the property of being verified (by a normal modal algebra). For
suppose, where V (ϕ) = a and V (ψ) = b, that V (ϕ) = 1 and V (∼ϕ ∨ψ) = 1.
Then −a∪b = 1, and since V (ϕ) = a = 1, this becomes 0∪b = 1. But 0∪b = b
by theorem 3 (b), so that 1 = b =V (ψ), and S3 preserves the property of being
verified. Accordingly, any application of S3 in proving a thesis of S+ will be
applied to verified axioms or their verified consequences, and so will yield
only verified consequences. But all and only the verified formulas are theses
of K. Therefore, the theses of K+ are theses of K. Q.E.D.

5 Conclusion
The metalogical results of the last section establish the claim made in the in-
troduction, that K includes all the theses of K+. But the main point has been
to present a formulation of the basic system of normal modal logic generally
known as K which allows the theorems to be very easily proved. I hope this
will be found pedagogically more enlightening than treatments relying en-
tirely on argument by reductio ad absurdum or which obscure the distinction
between the model theory and the proof theory in an attempt to avoid the per-
ceived difficulties of manipulating traditional Hilbert-style axiomatisations of
modal logic.
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