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Abstract

The axiomatic presentation of modal systems and the standard formula-
tions of natural deduction and sequent calculus for modal logic are reviewed,
together with the difficulties that emerge with these approaches. Generaliza-
tions of standard proof systems are then presented. These include, among
others, display calculi, hypersequents, and labelled systems, with the latter
surveyed from a closer perspective.

1 Introduction

In the literature on modal logic, an overall skepticism on the possibility of developing
a satisfactory proof theory was widespread until recently. This attitude was often
accompanied by a belief in the superiority of model-theoretic methods over proof-
theoretic ones.

Standard proof systems have been shown insufficient for modal logic: Natural
deduction presentations of even the most basic modal logics present difficulties
that have been resolved only partially, and the same has happened with sequent
calculus. These traditional proof system have failed to meet in a satisfactory way
such basic requirements as analyticity and normalizability of formal derivations.
Therefore alternative proof systems have been developed in recent years, with a lot
of emphasis on their relative merits and on applications.

We review first the axiomatic presentations of modal systems and the standard
formulations of natural deduction and sequent calculus for modal logic, and the
difficulties that emerge with these approaches. We then move to the generalizations
of standard proof systems. These include, among others, display calculi, hyperse-
quent, and labelled systems. The last ones are presented from a closer perspective;
we discuss their methodological, computational, and metatheoretical properties:
the way they answer the challenge of extending proof-theoretic semantics to non-
classical logics, their expressive power, analyticity, applicability to proof search, the
possibility to obtain direct completeness proofs without artificial Henkin-set con-
structions, and their use in the solution of problems that usually involve complex
model-theoretic constructions such as negative results in correspondence theory and
modal embeddings among different logics. All these results can be obtained in an
elementary way through methods of proof analysis of labelled sequent calculi. These
calculi cover most modal and non-classical logics that permit a relational semantics.

2 Axiom systems

The language of propositional modal logic is obtained by adding to the language of
propositional logic the two modal operators 2 and 3, to form from any given formula
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A the formulas 2A and 3A. These are read as “necessarily A” and “possibly A,”
respectively.

An axiom system for modal logic can be an extension of intuitionistic or clas-
sical propositional logic. In the latter, the notions of necessity and possibility are
interdefinable by the equivalence 2A ⊃⊂ ¬3¬A.

It is seen that necessity and possibility behave analogously to the quantifiers: In
one interpretation, the necessity of A means that A holds in all circumstances, and
the possibility of A means that A holds in some circumstances. The definability of
possibility in terms of necessity is analogous to the classical definability of existence
in terms of universality.

The first axiomatization of modal logic is usually attributed to Lewis and Lang-
ford (1932) but it seems that the historically correct attribution is MacColl (1906),
as documented in a series of paper appeared in Astroh and Read (1998) and in
Rahman and Redmond (2008). The axiomatization was based on “strict implica-
tion,” a notion introduced to solve the paradoxes of material implication, so that
the way the system was specified was not through an extension of classical logic.
The axiomatization in use nowadays, given in Lemmon (1957), is instead directly
an extension of classical logic. Part III of the book by Hughes and Cresswell (1968)
contains a detailed historical account on the development of axiomatic modal logic.

The system of basic modal logic, denoted by K in the literature, adds to the
axioms of classical propositional logic and modus ponens the following schemes:

1. Axiom: 2(A ⊃ B) ⊃ (2A ⊃ 2B),

2. Rule of necessitation: From A to infer 2A.

The axiom states that the necessity operator distributes over implication. The rule
of necessitation, in turn, can be applied only to premisses that are derivable in the
axiomatic system, i.e., it states that if A is a theorem, also 2A is a theorem. The
condition is automatically satisfied in traditional axiomatic systems but not in their
extensions that permit inference from assumptions, and for this reason the rule has
caused some confusion in the literature; we shall return to this issue in the next
section.

Sometimes axioms are given using propositional variables and a rule of substi-
tution is given that permits to substitute any formula for them. We shall instead
regard axioms as schematic, so that substitution is superfluous and indeed admis-
sible.

The early study of modal logic, to the late 1950s, consisted mainly of suggested
axiomatic systems based on an intuitive understanding of the basic notions. Certain
axiomatizations became standard and are collected here in the form of a table. All
of them start with the axioms of classical propositional logic and the axiom and
rule of basic modal logic K. The systems obtained in this way are called normal
modal logics.

Name Axiom
T 2A ⊃ A
4 2A ⊃ 22A
E 3A ⊃ 23A
B A ⊃ 23A
3 2(2A ⊃ B) ∨2(2B ⊃ A)
D 2A ⊃ 3A
2 32A ⊃ 23A
W 2(2A ⊃ A) ⊃ 2A

Well-known extensions of basic modal logic are obtained through the addition of
one or more of the above axioms to system K, for instance K4 is obtained by adding
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axiom 4, S4 by adding axiom T and 4, S5 by adding axioms T, 4, and E (or axioms
T, 4, and B), and deontic S4 and S5 by replacing axiom T with axiom D in S4 and
S5, respectively. The addition of W gives what is known as the Gödel-Löb system
GL. Axiom 2, also known as axiom M, gives the extensions of K4 and S4 known as
K4.1 and S4.1, respectively. Axiom 3 is used for instance in the extension S4.3 of
system S4.

Of these systems, GL has been of particular interest for mathematical logic,
because it encodes logical properties of the notion of provability. It can be shown
that the notion of derivability in a formal system of arithmetic, when internalized in
arithmetic as in Gödel’s incompleteness theorem, is captured by GL: An arithmetic
provability predicate ∃nPr(n, m) expresses that there exists a Gödel number n of
a formal derivation of the formula A with the Gödel number m. To the arithmetic
notion of provability corresponds a modal operator 2A that expresses the provability
of A. Solovay’s theorem, one of the highlights in research on modal logic, proves
that the logic GL is complete with respect to arithmetic provability in a precisely
definable sense (cf. Solovay 1976).

An axiomatic proof starts from instances of the axiom schemes of propositional
logic or of the specific modal logic in question and proceeds by application of the
rules of modus ponens and necessitation. Whereas the presentation of a logic in
axiomatic terms and the recognition of what counts as a proof in an axiomatic
system is unproblematic, the actual finding of proofs is painstaking. Typically one
has to start from complex instances of the axioms even to get to obvious conclusions
such as A ⊃ A. For this reason, in presentations that limit themselves to axiomatic
systems, as a preliminary to the actual use of such systems, a number of rules are
shown admissible: If A is derivable and B is derivable, then A&B is derivable,
if A is derivable, then A ∨ B is derivable, and so on. These results are not only
of practical value; they are also needed for proving the equivalence of axiomatic
systems and systems of natural deduction or sequent calculus. Another necessary
move in proving such equivalence is the extension of the notion of derivability in an
axiomatic system to the notion of derivability from assumptions and the proof of the
deduction theorem. The latter states that if B is derivable from A and some other
assumptions Γ, then A ⊃ B is derivable from the assumptions Γ alone. This roughly
amounts to the fact that implication internalizes in the object language the notion
of derivability. The rule of necessitation then requires a restriction, otherwise we
could conclude 2A from any given assumption A. Since A ⊃ 2A is not derivable in
basic modal logic, this argument has been widely used to sustain the claim that the
deduction theorem fails in modal logic, and alternative statements of the deduction
theorem have been proposed to circumvent the apparent problem. By imposing
the restriction that the necessitation rule be applied only to derivations without
assumptions, the deduction theorem holds in its usual formulation also for modal
logic. If one thinks of the analogy between necessity and universal quantification,
it appears that the restriction is analogous to the variable condition in the rule
for introducing the universal quantifier. For a survey on the debate around the
deduction theorem in modal logic, see Hakli and Negri (2011).

3 Natural deduction

Axiomatic systems for modal logics are easy to formulate–one just needs to add
certain axioms to a given stock of other axioms and rules–but they are inadequate
both for proof search and for the study of the structure of formal derivations.
Once a proof has been found, there is no possibility to transform it into some
standard form that would make its structure transparent. Natural deduction was
introduced by Gentzen as a formalism with strong structural properties that permit
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to establish decidability and consistency results through a combinatorial analysis of
derivations. This analysis is made possible by the conversion, called normalization,
of a derivation to a normal form that does not contain redundant parts and that
satisfies the subformula property, a basic requirement of analytic calculi.

Modal logic is an extension of classical logic, and the difficulties in developing
a normalizing system of natural deduction for classical logic, that led Gentzen to
the definition of another formalism, sequent calculus, are well known. To obtain
a normalizing system of natural deduction for classical logic with the subformula
property, Prawitz limited the rule of indirect proof (if from ¬A follows ⊥, then A)
to atomic formulas. The rule is then admissible for all formulas in the fragment
without disjunction and the existential quantifier. Since in classical logic these are
definable from the other connectives, one obtains in this way a normalizing system
for classical logic. It remained, however, an open problem to extend the result to
the full language of classical logic, and several proposals have been made in the
literature. In addition to these difficulties, modal logic has a context-dependent
rule (the rule of necessitation) that cannot be applied to arbitrary derivations. It
is therefore not surprising that the search for a normalizing system for the full
language of modal logic, with a subformula property without exceptions, is still a
subject of active investigation.

Prawitz (1965, pp. 74–80) gives systems of natural deduction for S4 and S5 based
on classical, intuitionistic, and minimal logic. The first system for S4 allows ap-
plication of the necessitation rule to derivations of formulas (without assumptions)
and to derivations with only modal assumptions (formulas with 2 as outermost
sign). For S5 also negations of modal formulas are allowed among the assumptions.
The necessitation rule is regarded as the introduction rule for 2, whereas the elim-
ination rule is simply 2A/A. Although “natural,” the system is not normalizable,
as there are non-eliminable detours. Prawitz introduces for this reason a liberal-
ization on the restriction to the rule of necessitation and allows as assumptions
essentially modal formulas. These are defined inductively as modal formulas, their
disjunctions, conjunctions, and falsity (and their negations for S5, and the clause
for implication for the classical base). Another example shows that it is not al-
ways possible to eliminate detours from derivations in this system. Prawitz’ third
system makes a further liberalization on the applicability of the necessitation rule:
Necessitation on A can be applied whenever every branch of the derivation of A con-
tains an essentially modal formula that does not not depend on any assumptions on
which A does not depend (we say that the derivation has an essentially modal bar).
Medeiros (2006), however, gives an example of a derivation in Prawitz’ third system
for classical S4 in which the conversion for the rule of indirect proof produces an
illicit application of necessitation, because a formula on which the essentially modal
formula depends is discharged before the step of necessitation. The move to obtain
a normalizable system in the work of Medeiros, as well as in Martins and Martins
(2005) for system S5, consists in generalizing the rule of indirect proof to arbitrary
formulas. They show that a normalizing system of natural deduction is obtained
for the full language of S4 (resp. S5), but without the subformula property.

The situation is simpler for modal logic based on intuitionistic logic, as there is
no rule of indirect proof. A system with a rule of 2-introduction that formalizes
Prawitz’ modal bar condition is presented by Bierman and de Paiva (2000) and
it is shown that the subformula property for normal derivations can be recovered
with the addition of suitable permutation conversions to the standard ones. This is
also the system upon which Medeiros (2006) builds her classical systems. Another
system for intuitionistic S4 was presented by von Plato (2005). The basic idea of this
work lies instead in the use of general elimination rules. These are E-rules written
in the way of ∨-elimination, so that what are known as permutative conversions
apply uniformly to all E-rules, with the effect that normality can be defined as:
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All major premisses of E-rules are assumptions (see von Plato 2001 or Negri and
von Plato 2001). It is shown that the resulting system is closed under composition
and that all derivations can be transformed into the said kind of normal form. The
propositional rules are the standard introduction and general elimination rules and
the rules for 2 are as follows

2B1, . . . ,2Bn....
A

2A
2I

....
2A

A....
C

C
2E

Von Plato shows that the use of general elimination rules together with 2I and 2E
blocks the problematic counterexample to normalizability of Prawitz’ first system,
so that there is no need to use either of the two liberalizations (essentially modal
assumptions or essentially modal bar) for the application of 2I.

We observe that intuitionistic S4 can also be obtained as a fragment of intu-
itionistic linear logic. A well-behaved system of natural deduction has been pre-
sented in Negri (2002), where references to earlier literature on natural deduction
for intuitionistic linear logic can be found. This work followed the same power-
ful methodology of general elimination rules and showed normalization indirectly,
through a translation to sequent calculus, cut elimination, and translation back to
natural deduction. The procedure works because general elimination rules preserve
the correspondence, otherwise lost, between cut-free derivations in sequent calcu-
lus and normal derivations in natural deduction. Useful insights from the study
of natural deduction for intuitionistic linear logic for a proof-theoretical treatment
of intuitionistic S4 closer to Prawitz’ original formulation can instead be found
in Troelstra (1995), where additional permutative conversions are used to obtain
normal derivations with the subformula property.

4 Sequent systems

Sequent calculus was introduced by Gentzen to overcome the difficulties encountered
with normalization of natural deduction for classical logic. Cut elimination, the
analogue of normalization for natural deduction, holds with no exceptions for the
full language of classical logic. In sequent calculus, unlike in natural deduction,
all the rules are local, to the effect that all the open assumptions at each step of
inference are explicitly listed in the antecedent context of the rules. Rules such
as necessitation, then, do not have a special status in sequent calculus, and their
applicability does not depend on any global condition that would involve a survey
of the whole derivation; They are simply rules with a particular condition on the
context of their premisses, in this case that the context be empty.

Sequent calculi for the modal logics K, T, S4, and S5 are presented in Ono (1998).
A sequent calculus GK for the logic K is obtained by adding to the (propositional
part) of the standard sequent system LK the single rule

Γ → A
2Γ → 2A

2

The rule of necessitation is the special case of the rule with Γ empty, and the
axiom 2(A ⊃ B) ⊃ (2A ⊃ 2B) is derivable by rule 2 together with the rules for
implication.

A sequent system for T is then obtained by adding to GK the rule

A,Γ → ∆
2A,Γ → ∆

2 →
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and a sequent system for S4 by adding also the rule

2Γ → A
2Γ → 2A

2 →1

Cut elimination is established for each of the systems thus obtained (cf. Ohnishi
and Matsumoto, 1957, and the survey by Ono, 1998).

Instead of starting with the original Gentzen system LK, one can take the calcu-
lus G3c as a base. The calculus, introduced by Ketonen and successively improved
and refined by Kleene, Dragalin, Troelstra, and extended by Negri and von Plato
has, besides cut, the structural rules of weakening and contraction admissible (cf.
Negri and von Plato 2001 for a thorough presentation and historical references).
Contraction can have an effect as bad as cut for the purpose of proof search be-
cause there is no a priori bound on the number of duplications of formulas needed,
so G3-calculi have been preferred to the original Gentzen sequent calculi in recent
proof-theoretic literature, especially for applications to automated deduction (cf.
e.g. Beeson 1991) and to extensions of proof analysis to mathematical theories (von
Plato 2008, Negri and von Plato 2011).

With G3c as a base, a cut-free sequent system for K is obtained by the rule

Γ → A
Φ,2Γ → 2A,Ψ

LR2

A detailed proof of the structural properties of the calculus thus obtained and of its
equivalence with an axiomatic system for K is presented in Hakli and Negri (2011).
This equivalence was used to prove that 2A is not derivable from A in the axiomatic
system, and to show that the standard argument of failure of the deduction theorem
in modal logic rests therefore on an untenable assumption.

A cut- and contraction-free sequent system for S4 is presented in Troelstra and
Schwichtenberg (Ch. 9, 2000). It is obtained as an extension of G3c by the following
rules for necessity and possibility, where both 2 and 3 are retained as primitive to
maintain the symmetry of the system:

Γ, A, 2A → ∆
Γ,2A → ∆

L2
2Γ → A,3∆

Γ′,2Γ → 2A,3∆,∆′ R2

2Γ, A → 3∆
Γ′,2Γ,3A → 3∆,∆′ L3

Γ → A,3A,∆
Γ → 3A,∆

R3

The calculus is then used to give a syntactic proof of faithfulness of a variant of
Gödel’s (1933) embedding of intuitionistic logic into the modal logic S4. Another
proof that takes advantage of G3-style calculi as a common ground is given in Egly
(2001).

Difficulties in the Gentzen-style formalization of modal logic were, however,
encountered at a very elementary level, for instance in the search of an adequate
cut-free sequent calculus for the modal logic S5. In 1957 Ohnishi and Matsumoto
presented sequent calculi with cut elimination for various modal logics, but showed
in a subsequent paper in 1959 that cut elimination failed for the system for S5 they
had presented. A decision procedure was instead established indirectly by the use
of a translation that bounds the number of modalities in an S5-formula.

Mints (1968) gave a sequent calculus for S5 with quantifiers that enjoys cut
elimination but not the subformula property. The same limitation is encountered in
Sato (1980). A more elegant treatment is presented in Shvarts (1989), who gave an
indirect proof of cut elimination: A is provable in S5 if and only if 2A is provable in
a suitable cut-free calculus. A similar idea, translated in terms of tableaux systems,
was exploited in Fitting (1999). Braüner (2000) proved cut elimination for a calculus

6



for S5 with global design constraints, thus departing from what is usually accepted
as an orthodox system of sequent calculus, where all the rules are local.

Another logic that receives an unproblematic sequent system presentation is the
deontic logic D. A cut-free sequent calculus was obtained by Valentini (1993) by
the addition, to a previously formulated system for K, of a rule that corresponds to
the axiom ¬2 ⊥

Γ →
2Γ →

We observe that Valentini used a system with an explicit rule of weakening and
a contraction rule implicit in the treatment of “sequents as sets.” As discussed in
Chapter 6 of Negri and von Plato (2011) this approach, when completely formalized,
would bring contraction back into the system among other structural rules, so it is
not genuinely contraction free.

A sequent system for GL was obtained by the addition of the rule

2Γ,Γ,2A → A

2Γ → 2A

to a system for classical propositional logic (Sambin and Valentini 1980, Leivant
1981). Sambin and Valentini (1982) and Avron (1984)1 presented semantic proofs of
closure with respect to cut for the resulting system, and Valentini (1983) presented
a syntactic proof of cut elimination. In the early 1980s there was also another
competing approach to the proof theory of GL by Bellin (1985) who gave a proof
of normalization for a system of natural deduction for provability logic.

There has been recently a renewed interest in the sequent calculus proof theory
of GL, in particular a quest for a fully convincing and simple syntactic proof of
cut elimination after a criticism of the previous approaches. Goré and Ramanayake
(2008) used an argument from von Plato (2001a) to tackle the problematic case
that arises in Valentini’s proof if an explicit rule of contraction is used in place of
the implicit “sequents as sets” treatment.

It seems that the difficulties with the proof theory of provability logic arise from
the general design of its sequent calculus rules: They have a single rule (both left
and right) for 2 that results in a lack of harmony. Semantically originated rules for
the constants of modal logic should result in harmonious pairs of rules that ensure
cut-elimination, as emphasized in Negri 2005. Harmony is achieved by the labelled
approach which permits, in particular, a very simple proof of cut elimination for
provability logic (Negri 2005).

5 Generalizations of Gentzen systems

As we have seen in the previous sections, traditional Gentzen systems have proved
inadequate even for the simplest propositional modal logics. Alternative proof sys-
tems have therefore been proposed in recent years for modal logic and a variety of
non-classical logics.

Systems that internalize the semantics of the logical constants, either implicitly
through a more structured language, or explicitly through the use of labels, have
been an intense object of enquiry, with emphasis on their range of applicability and
on their relative merits.

1Avron presented, in the same paper, a cut-free sequent system for the logic of provability Grz,
characterized by reflexive, transitive, and well founded Kripke frames, obtained by adding the rule

2(A ⊃ 2A), 2Γ→ A

2Γ→ 2A

to an LK-based system for T.
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5.1 Display calculi, hypersequents, etc.

Display calculi are justified by the Galois correspondence that can be used to explain
the rules of logic. In particular, if P is the modality of possibility in the past
and 2 the modality of necessity in the future, one can observe that they form a
residuated pair, in the sense that PA → B is valid if and only if A → 2B is. The
basic idea of display logic, introduced by Belnap (1982), is the exploitation of such
correspondences and an extension of the set of “structural connectives.” Whereas in
standard sequent systems there is only one such connective, the multivalent comma,
which is interpreted as conjunction on the left and disjunction on the right, in display
systems there are monovalent binary and unary connectives. The rules of display
systems are grouped into “logical rules,” the initial sequents and the cut rule (usually
admissible), “structural rules,” which are rules that govern the interrelations of the
structural connectives, and “operational rules.” These last rules correspond to
the usual rules that introduce the logical connectives and modalities, but have the
full variety of structural connectives in their premisses rather than just commas.
Display systems obey a principle according to which different logical systems should
be obtained by modifying only the structural rules, while maintaining the logical
part unchanged (Došen, 1988, p. 352). In contrast, labelled systems, such as those
presented by Negri (2005) have, as we shall see, a common core of logical rules
and also admissibility of the usual structural rules. “Logical” and “structural” are
both intended here in the traditional Gentzen sense: the former refers to the rules
for the logical constants and the latter to the rules of weakening, contraction, and
cut. Different systems are obtained through a modification of the “mathematical
rules,” that is, of the rules that express the frame properties of Kripke semantics.
An exception to this general picture has been made for logics such as GL and Grz.
These have frame properties that are not expressible by a first-order sentence but
that can nevertheless be internalized through a simple modification of the standard
rules for the modality (Negri, 2005, 2006, Dyckhoff and Negri 2009a).

An introduction to display calculi in modal logic can be found in Wansing (2002).
This survey also presents a synthesis of alternative approaches to the sequent cal-
culus proof theory of modal logic. All these systems are shown to lack some of
the properties presented in a preliminary list of desiderata (expressive power, mod-
ularity, cut-elimination, etc.) and the display systems argued to be preferable.
The alternative systems include Došen’s higher level sequent systems for S4 and
S5 (1985), Martini and Masini’s 2-sequents (1996), multiple-sequent systems, that
is, sequent systems with more than one sequent arrow, by Indrzejczak (1998), and
hypersequents (see Avron 1996 for an overview of this method). Hypersequents
are, roughly, lists of sequents interpreted disjunctively. They have great flexibility,
have been shown to capture wide families of non-classical logics, for example, many-
valued logics as in Baaz, Ciabattoni, and Montagna (2004), and can be generated in
an automated way from the semantics, as in the case of logics characterized by non-
deterministic matrices (Avron and Konikowska 2005). The calculi are also analytic,
but the presence of internal and external structural rules, usually non-eliminable,
make them less suitable for the purposes of automated deduction.

In recent years sequent calculi for modal logic have been generalized to sys-
tems in which the semantics becomes an implicit part of a more structured syntax,
such as a nested structuring of rules in tree-sequents (as done in Kashima 1994
for temporal logic and in Cerrato 1996 for modal logic) and in tree hypersequents
(Poggiolesi 2009) and to systems that employ the method of deep inference (Stewart
and Stouppa 2005, Stouppa 2007, Brünnler 2009), but we shall not enter into the
details of these developments.
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5.2 Labelled calculi

The study of modal logic underwent a great conceptual unification with the intro-
duction of Kripke, or relational, semantics (see Kripke 1963, for a first systematic
presentation and Copeland 2002, for a historical survey on the precursors of the
idea), to the extent that semantical methods have often become the privileged ap-
proach to modal logic of philosophers, mathematicians, and computer scientists,
whereas proof-theoretic methods have been often marginalized.

We shall not explain in detail the semantics in this survey on the proof theory
of modal logic but just recall that a Kripke frame is a set the elements of which are
called possible worlds, with an accessibility relation. A model on a frame is defined
by stating for every world which atomic formulas are true in it. The evaluation is
then extended to arbitrary propositional formulas by inductive clauses: a conjunc-
tion is true at a world if both conjuncts are, a disjunction if either disjunct is, an
implication if the succedent is true whenever the antecedent is, and a 2-modalized
formula is true at a world whenever the formula is true at all worlds accessible from
that world. The accessibility relation can be required to be reflexive, transitive,
symmetric, or serial, just to list a few elementary first-order properties of frames.
Then axioms T, 4, E, D, respectively, are validated in any model built on a frame
with those properties. Also the converse holds, namely, if those axioms are valid,
the frame has to satisfy those properties. The basic insight of Kripke semantics,
that the specific axioms of various modal systems correspond to specific frame prop-
erties, and the subsequent results by Sahlqvist in the seventies have given birth to
the field of correspondence theory. Precise statements of the central results and
references to the vast literature can be found in the recent survey by Blackburn and
van Benthem (2007), in Blackburn et al. (2001), and in van Benthem (1984).

The idea underlying what are nowadays commonly designated as labelled sys-
tems is to internalize in the calculus, be it a natural deduction, a tableau or a
sequent calculus, the explanation of modalities in terms of relational semantics.
This cannot be regarded as semantics in disguise since the treatment is completely
syntactic and no trace of external semantic reasoning is left.

This idea, with early precursors as far as in Kanger (1957), has been developed
in several forms. Inference systems have been presented that incorporate possible
worlds in the form of tableaux (Fitting 1983, Catach 1991, Nerode 1991, Goré 1999,
Massacci 2000), in the form of natural deduction (Fitch 1966, Simpson 1994, Basin,
Matthews, Viganó 1998), and in the form of sequents (Mints 1997, Viganó 2000,
Kushida and Okada 2003, Castellini and Smaill 2002, Castellini 2005). The use of
a syntax that includes the relational semantics has been central also in the work
on first-order encodings of modal logic (Ohlbach 1993, Schmidt and Hustadt 2003)
and in what is called hybrid logic (Blackburn 2000). Internalization of the algebraic
- rather than relational - semantics into a natural deduction style presentation is
instead mainly used in Labelled Deductive Systems (Gabbay 1996, Russo 1995).
Labelled inference is often at the basis of automated proof systems, such as the
LoTREC prover developed by Herzig et al.2 An up-to-date presentation of various
labelled proof systems is given in the recent monograph by Indrzejczak (2010).

Orlowska’s relational proof systems for non-classical logics are also based on
relational semantics, but this is not to be confused with what is commonly called
nowadays relational semantics, that is, Kripke semantics. It is instead inspired by
Tarski’s calculus of relations (1941) in the tradition established by Rasiowa and
Sikorski (1963), with the semantics based on Boolean algebras of relations with a
monoid of designated elements. Given an assignment for propositional variables,
arbitrary formulas are translated into terms of the algebra. The propositional con-
nectives are interpreted into the usual corresponding boolean operations, and the

2See http://www.irit.fr/Lotrec/.
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modalities through composition with designated relations in (the monoid) of the al-
gebra. Proofs in relational proof systems rely on completeness of relational seman-
tics: they start from the translation of the formula to be proved into the relational
semantics and proceed by rules that decompose it into smaller expressions until the
proof tree closes. The survey by Orlowska (1996) gives an overview of the method
and references to its applications in several sub-branches of non-classical logic. A
comprehensive algebraic study of the relational semantics of non-classical logics is
presented in the recent monograph by Bimbo and Dunn (2008).

Rather than presenting in detail the results of the labelled systems mentioned
above, we shall give a compact outline of the labelled sequent calculi proposed by the
author of this survey. This method stems from a program initiated in Negri (1999)
of extending basic logical calculi such as sequent calculus and natural deduction
by rules for specific theories while keeping all the structural properties unaffected,
and, in general, by following the guiding principles of harmony and the criteria for
a good definition of a logical system, as presented in Chapter 1 of Negri and von
Plato (2001).

Read (2008) discusses the labelled natural deduction systems of Simpson (1994)
in the context of harmony and inferentialism. Our approach gives a satisfactory
solution, for classical modal systems, to the inferentialist challenge of extending
proof-theoretic semantics to non-classical logics. The meaning explanation of logical
constants, and at the same time their formulation as rules of inference, is obtained
as usual in labelled systems through the inductive definition of validity in terms of
Kripke semantics. From

x  2A iff for all y, xRy implies y  A

one obtains

If y : A can be derived for an an arbitrary y accessible from x, then x : 2A can be derived

that is formalized as the rule

xRy,Γ → ∆, y : A

Γ → ∆, x : 2A
R2

Arbitrariness of y becomes the variable condition y not in Γ,∆.
From the introduction rule and through the inversion principle, as stated in

Negri and von Plato (2001) in the form “Whatever follows from a proposition must
follow from the direct grounds for asserting that proposition,” one obtains the rule

Γ → ∆, xRy y : A,Γ → ∆
x : 2A,Γ → ∆

L2

The rule can be equivalently given as a one-premiss rule in the following form

y : A, x : 2A, xRy,Γ → ∆
x : 2A, xRy,Γ → ∆

L2

The rules for the modality of possibility 3 are obtained similarly from the se-
mantic explanation

x : 3A iff for some y, xRy and y : A

Systems for various modal logics are obtained in a modular way by adding rules
that correspond to their characterizing frame properties. To achieve that, first these
properties are converted into normal forms consisting of conjunctions of geometric
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implications or, more simply, of universal closures of quantifier-free axioms in con-
juctive normal form3. Each of these conjuncts can then be converted to a rule that
follows a general scheme for axioms of this form, called the geometric rule scheme,
or the regular rule scheme, respectively. For example, the rules to be added to the
basic systems to obtain a system for S4 are reflexivity and transitivity

xRx,Γ → ∆
Γ → ∆

Ref
xRz, xRy, yRz, Γ → ∆

xRy, yRz, Γ → ∆
Trans

and to obtain a system for deontic logic, the axiom of seriality ∀x∃y.xRy is turned
into the rule

xRy,Γ → ∆
Γ → ∆

Ser

where y is a fresh variable.
By the general results proved in Negri and von Plato (1998) and in Negri (2003),

extensions of G3c with rules maintain the structural properties of the basic G3
system. The same holds if the extension is made for a labelled system, as presented
in Negri (2005). The resulting labelled calculi enjoy, besides a full cut elimination,
strong structural properties such as height-preserving invertibility of all the rules,
height-preserving admissibility of weakening and contraction, and the possibility to
apply certain rules in a restricted way to obtain decision procedures directly from
the sequent calculus. These properties were expressed as a desideratum in Simpson
(1994) and were achieved in full for the first time in Negri (2005).

Labels for possible worlds and accessibility relations provide a conservative ex-
tension of the syntax and permit a methodologically uniform investigation of a vast
class of non-classical logics. Specific systems for modal and other non-classical log-
ics, such as intermediate and substructural logics, are obtained by the addition of
rules that correspond to frame properties (Negri 2005, Negri 2006, Dyckhoff and
Negri 2009).

The addition of rules that correspond to frame properties is common to most
labelled and hybrid approaches mentioned above. It is an idea that goes back to
the syntactic characterization of frame properties as rules for tableau construction
(Kripke 1963, Catach 1991, Nerode 1991).

Traditional completeness proofs for modal logic use an adaptation of Henkin’s
method of maximal consistent sets of formulas. Completeness for labelled calculi
can, instead, be achieved in a direct way, which is closer to Kripke’s original con-
structive completeness proof: For any given sequent either a proof in the given
logical system or a countermodel in the corresponding frame class is found (cf.
Negri 2009). The proof search method also gives a heuristic for finding frame cor-
respondents of modal axioms, as exemplified in Hakli and Negri (2011a). Failed
correspondences, such as the result stating that there is no modal axiom that corre-
sponds to the frame property of irreflexivity, are established as simple consequences
of a combinatorial proof analysis (Negri 2005).

The expressive power of the class of calculi generated by the approach encom-
passes what are known as properly displayable logics (Kracht 1996, Wansing 1998),
which are captured by the extension with rules for geometric implications. In ad-
dition, the approach covers also the treatment of quantifiers in modal logic, of
systems with frame conditions that are not expressible as first-order sentences, such
as Gödel-Löb or Grzegorczyk logic (Negri 2005, Dyckhoff and Negri 2009a), of sys-
tems with transitive closure of accessibility relations, such as the logic of Priorean
linear time (Boretti and Negri 2010), and it can be used directly in the multi-modal

3References to earlier literature on geometric theories, in particular their representation as rules
that extend natural deduction (Simpson 1994), can be found in Negri and von Plato (2005) and
in the notes to Chapter 8 of Negri and von Plato (2011).
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setting of applications in formal epistemology and logics of social interaction (Hakli
and Negri 2008, 2011a) and in dynamic epistemic logic (Maffezioli and Negri 2010).
The method developed by Negri (2005) was also applied to formulate analytic cal-
culi and decision procedures for conditional logics in Olivetti et al. (2007) and
subsequent work.

Although these systems do not have a full subformula property, analyticity is
nevertheless guaranteed by the admissibility of the structural rules together with
a subterm property: all terms (labels) in the derivation are either eigenvariables,
introduced by rules that remove a modality, or are terms found in the conclusion. (A
similar property would have been difficult to establish for other labelled systems in
the literature, such as the calculi of Castellini and Smaill 2002, where all relational
formulas disappear from premisses to conclusion.) Whereas admissibility of the
structural rules is established once and for all in a modular way for all systems that
belong to the class of geometric extensions, the subterm property usually needs to
be established through a case-by-case analysis. Uniformity in the calculi obtained
provides a valuable tool for all results concerned with the comparison and interaction
of different logics. One such result is a uniform proof of soundness and faithfulness of
the embedding of intuitionistic logic and classical logic into S4 and S5 respectively,
and of a large family of intermediate logics into their corresponding modal logic
(Dyckhoff and Negri 2009). A similar approach had been used by Kushida and
Okada (2003) to prove faithfulness of the first-order translation of S4, extending an
earlier result by Mints (1968a). An important difference is that in the system used
by Kushida and Okada, the frame properties become axioms, rather than rules, of
the labelled system. An advantage of the purely syntactic proof of these embedding
results over the existing model-theoretic ones is that the correspondences obtained
are on the level of proofs rather than on the level of provability. In addition, the
method based on rules rather than axioms can be extended to logics that are not
characterized by first-order frame properties (Dyckhoff and Negri 2009a).

When comparing different proof systems, some aspects emerge that are superior
in some and inferior in others, but no proof system is unanimously recognized as
superior in all aspects and the choice of which system to use is dictated by the
intended applications. In order to transfer results from one system to another,
methods have been developed for moving among different proof systems: These
include translations from Kripke’s original labelled tableaux to labelled sequents and
from labelled sequents with reflexive, transitive and symmetric accessibility relations
to display calculi (Mints 1997), translations from hypersequents to display sequents
(Wansing 1998a), and translations from display systems to labelled systems (Restall
2006). The relationship between hypersequent and labelled calculi for intermediate
logics with geometric frame conditions is explored in Rothenberg (2010). It remains
to be seen whether labelled systems can be interpreteted in a general way in terms
of display or hypersequent formalisms.

The use of a labelled calculus has been sometimes criticized, as mixing semantic
elements into what should be a purely syntactic proof system. To this it can be said
that even the logical rules of a calculus are motivated by semantical considerations,
they reflect the intuitive meaning of the logical constants. The aversion to labels
resembles the criticisms that were leveled against the use of complex numbers in the
19th century. Complex numbers permitted the solution of problems, such as the
integration of real valued functions without a primitive, with the use of powerful
and general methodologies. In the same way, the use of labels permits an extension
of the scope of syntactic methods to logics and classes of problems that could not
be treated before.

For lack of space, we could not even survey all the approaches to the proof
theory of modal logic. A rather detailed presentation of Fitch-style proof systems,
of semantic and labelled (or prefixed) tableaux, as well as of hypersequents for
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modal logic can be found in Fitting (2007). We have omitted also the proof theory
of first-order modal logic (for which a labelled sequent calculus along the method
presented here can be found in Chapter 12 of Negri and von Plato 2011) and of
infinitary proof systems, such as those arising in the treatment of the epistemic
operator of common knowledge (see Jäger et al. 2007) and in the logic of time
(see e.g. Boretti and Negri 2010 where a finitization within a labelled approach
is provided). Also the Curry-Howard isomorphism for modal logic (see Pfenning
and Wong 1995) and resolution-based calculi, popular in the automated reasoning
community, have had to be omitted from this short survey.
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Works (1986), vol. I, pp. 300–303.

Hakli, R. and S. Negri (2008) Proof theory for distributed knowledge, in F. Sadri and
K. Satoh (eds) Computational Logic in Multi-Agent Systems, Springer Lecture Notes in
Artificial Intelligence, vol. 5405, pp. 100–116.

Hakli, R. and S. Negri (2011) Does the deduction theorem fail for modal logic? Synthese,
in press.

Hakli, R. and S. Negri (2011a) Reasoning about collectively accepted group beliefs, Journal
of Philosophical Logic, vol. 40, pp. 531–555.

Hughes, G. E. and M. J. Cresswell (1968) An Introduction to Modal Logic, Methuen,
London.

Indrzejczak, A.(1998) Cut-free double sequent calculus for S5, Logic Journal of the IGPL,
vol. 6, pp. 505–516.

Indrzejczak, A. (2010) Natural Deduction, Hybrid Systems and Modal Logics, Springer.

14
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