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ABSTRACT. Probability transformation functions were introduced into models of be-
havior toward risk to allow them to accommodate violations of the expected utility
hypothesis. This paper examines the shape of the probability transformation function,
its interpretation as optimism or pessimism, and how the ranking of outcomes becomes
important when probability transformations are used. It also explores two behavioral im-
plications: the overweighting of unlikely, extreme outcomes, and intertia around certainty.
Finally, the rationality of transforming the probability distribution is discussed.

1. INTRODUCTION

In its original form, prospect theory (Kahneman and Tversky 1979) makes
two important changes to the expected utility model of rational choice.
One is the idea that individuals care not about final wealth levels, but
rather about changes from some reference level of wealth, with losses
treated differently from gains. The other papers in this symposium deal
with the implications of this idea. The second contribution of prospect the-
ory is that for the purposes of representing preferences, the mathematical
expectation of the utility values of the outcomes should not be based on
the true, objective probabilities, but instead that the probabilities should
be transformed before the expectation is computed. The nature of these
probability transformations, the evidence pertaining to them, and their
behavioral implications are the focus of this paper.

Oddly enough, the different social sciences have focused on different
aspects of prospect theory. Research within political science and sociology
has concentrated almost exclusively on the reference dependence of util-
ity. In contrast, most of the research related to prospect theory within the
economics literature concerns issues pertaining to probability transforma-
tions. Only psychologists have paid considerable attention to both issues.
This fact that most of the research on probability transformations has been
performed by economists and psychologists means that little will be said
about political science or sociology in this paper.
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The intuition behind probability transformations is quite simple. Ex-
perimental evidence makes it apparent that individuals tend to overweight
unlikely, extreme outcomes and underweight likely, extreme outcomes,
relative to their objective probabilities. Expected utility, by definition,
weights outcomes by their objective probabilities, so it is inconsistent
with this experimental evidence. Preference representations that employ
probability transformations are simply an effort to accommodate these
violations of expected utility.

Somewhat ironically, the most frequently-used preference represent-
ation that employs probability transformations is not the one proposed
by Kahneman and Tversky in their original prospect theory paper. In-
stead, the state-of-the-art stems from the work of Quiggin (1982), Yaari
(1987), and Schmeidler (1989). The original prospect theory formulation
called for each probability to be transformed individually, whereas the
other representations call for the entire probability distribution to be trans-
formed at once. The resulting model is known as rank-dependent utility.
In their revision of prospect theory, Tversky and Kahneman (1992) utilize
rank-dependent utility along with reference dependence.

It is worth stating at the outset what proper and improper interpretations
of probability transformations are. The goal of a preference representation
is to construct a mathematical formula that is capable of either predict-
ing or accommodating the choices of an individual in a specific setting.
With the rank-dependent utility representation, the mathematical formula
states that the (monetary) outcomes are transformed by a utility function,
the probability distribution is transformed by a transformation function,
and the mathematical expectation of the utility values is taken using the
transformed probabilities. This formulation does not imply that individuals
incorrectly assess monetary payoffs; rather, it simply uses the utility func-
tion as a tool for modeling preferences. Likewise, the formulation does
not imply that individuals incorrectly assess probabilities; rather, it simply
uses the transformation function as a tool for representing preferences.

The paper proceeds as follows. Section 2 introduces rank-dependent
utility, compares it to expected utility, and shows that it meets the standard
minimal rationality requirement for preferences toward risk – an abil-
ity to allow a preference for first-order stochastically dominating shifts
in probability distributions. Section 3 goes on to discuss properties of
the probability transformation function, and introduces new notions of
risk attitudes – optimism and pessimism. Sections 4 and 5 discuss be-
havioral implications. Section 4 covers implications of the shape of the
probability transformation function, and these implications arise from the
overweighting of extreme, unlikely events. Section 5 covers implications



PROBABILITY TRANSFORMATIONS 173

of rank-dependence, which can be interpreted as inertia around certainty.
The paper concludes in Section 6 with a discussion of the notion of ration-
ality, as it pertains to preferences toward risk, in light of the results of the
rank-dependent utility model.

2. THE FORM OF RANK-DEPENDENT UTILITY

Let X be a finite subset of the real numbers, {x1, . . . , xn}, and let P(X)

be the set of probability distributions defined over X. Each x ∈ X is a
prize or outcome, and each distribution p ∈ P(X) is a lottery. The lottery
p is sometimes written p = (p1, . . . , pn), where pi is the probability of
the outcome xi . An individual has preferences defined over P(X). The
basic task of utility theory is to construct a function that represents pref-
erences; that is, to construct a preference function V : P → R such that
V (p) ≥ V (q) if and only if the lottery p is weakly preferred to the lottery
q. Typically these preference functions are held to either normative or
positive standards, or both. For example, expected utility has normative
appeal because of the axioms it satisfies, and it has positive appeal because
it is able to describe behavior in a wide variety of settings.

In this section I introduce the preference function associated with rank-
dependent utility. Before doing so, it is useful to characterize expected
utility, both as a point of departure and as a point of comparison. When the
lottery has n outcomes, expected utility takes the form

(1) EU(p) = ∑n
i=1 piu(xi),

where u(x) is the utility function. The existence of a utility function has
proven to be extremely useful for several reasons. First, as shown by Ar-
row (1974) and Pratt (1964), for example, risk attitudes can be captured
by the curvature of the utility function, with a concave utility function
corresponding to risk aversion, a convex utility function corresponding to
risk seeking, and a linear utility function corresponding to risk neutrality.
Second, and perhaps more importantly, the utility function allows the re-
searcher to govern attitudes toward risk in an (n − 1)-dimensional space
(i.e., the probability space P(X)) using a one-dimensional function. This
property becomes especially important when one is concerned with con-
tinuous probability distributions instead of discrete ones, because then the
utility function allows the researcher to collapse an infinite-dimensional
space into a single dimension.

The expected utility preference function in (1) can be rewritten in a way
that clarifies the presentation of rank-dependent utility. Assume, without
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loss of generality, that the members of X are numbered so that x1 < · · · <

xn. Rewriting (1) yields

(2) EU(p) = p1u(x1) + ∑n
i=2[(p1 + · · · + pi) − (p1 + · · · +

pi−1)]u(xi).

Letting F denote the standard cumulative distribution function, so that
F(x0) = Prob{x ≤ x0}, Equation (2) can be further rewritten as

(3) EU(p) = F(x1)u(x1) + ∑n
i=2[F(xi) − F(xi−1)]u(xi).

As Equation (1) shows, in expected utility the “decision weight” is simply
the probability of the prize, or, as Equation (3) shows, the decision weight
is also the difference between the cumulative probability of the prize,
F(xi), and the cumulative probability of the next-best prize, F(xi−1).

Rank-dependent utility differs from expected utility by utilizing a dif-
ferent scheme of decision weights. The rank-dependent utility preference
function is given by

(4) V (p) = h(p1)u(x1) + ∑n
i=2[h(p1 + · · · + pi) − h(p1 + · · · +

pi−1)]u(xi),

or, using the cumulative distribution function notation,

(5) V (p) = h(F(x1))u(x1) + ∑n
i=2[h(F(xi)) − h(F(xi−1))]u(xi),

where h: [0, 1] → [0, 1] is a probability transformation function with the
properties that it is strictly increasing with h(0) = 0 and h(1) = 1.

The only difference between expected utility and rank-dependent utility
is that rank-dependent utility transforms the probability distribution be-
fore computing the expectation of utility. Where expected utility uses the
(discrete) probability distribution F , rank-dependent utility uses the trans-
formed probability distribution h(F). Since h is increasing with h(0) = 0
and h(1) = 1, h(F) is also a probability distribution, and so expectations
are well-defined.

To see how the probability transformation function makes a difference,
consider the special case of lotteries with just two outcomes, x1 < x2. The
rank-dependent utility of the lottery p is

(6) V (p) = h(p1)u(x1) + [1 − h(p1)]u(x2).

If h(p1) > p1, the individual overweights the lower outcome, x1, rel-
ative to expected utility, making the lottery less attractive. Similarly, if
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h(p1) < p1, the individual underweights the lower outcome relative to
expected utility, and therefore overweights the larger outcome, making the
lottery more attractive. In general, and letting E[·] denote the expectation
operator, if E[h(p)] > E[p], the individual is said to be optimistic about
the lottery p, and if E[h(p)] ≥ E[p] for all lotteries in P with the strict
inequality holding for at least one p, the individual is said to be optimistic.
Similarly, if E[h(p)] < E[p], the individual is said to be pessimistic about
the lottery p, and if E[h(p)] ≤ E[p] for all lotteries in P with the strict
inequality holding for at least one p, the individual is said to be pessim-
istic. Optimism and pessimism can work either with or against the risk
aversion embodied by the utility function u, leading to different behavioral
patterns than expected utility does. Some of these are investigated in the
next section.

Before going on to discuss specific properties of rank-dependent utility
and its probability transformation function, it is enlightening to investig-
ate why the function transforms the probability distribution instead of the
individual probabilities. Consider for the moment the preference function

(7) W(p) = ∑n
i=1 g(pi)u(xi),

where g: [0, 1] → [0, 1] is an increasing, onto function. Such a functional
form has been proposed by Handa (1977), Karmarker (1978), and Kahne-
man and Tversky (1979), although it is now out of fashion. In fact, even
though prospect theory was originally formulated using a functional form
like that in (7), Tversky and Kahneman (1992) revised prospect theory to
give it a rank-dependent utility form, and named the new version cumulat-
ive prospect theory. The reason is that the functional form in (7) implies
that individuals must dislike some first-order stochastically dominating
shifts unless g is linear. A first-order stochastically dominating shift is a
rightward shift of probability mass, and so individuals with expected utility
preferences and increasing utility functions should prefer them.

To see the problem with (7), suppose that there are just two outcomes,
x1 < x2, let 0 < α < β < 1, and construct four probability distributions,
p, q, p′ and q ′, with p1 = α, q1 = β, p′

2 = β, and q ′
2 = α. Then p

first-order stochastically dominates q since it places less weight on the low
outcome than q does, and p′ first-order stochastically dominates q ′ since
it places more weight on the high outcome than q does. The individual
prefers p to q if and only if

(8) g(α)u(x1) + g(1 − α)u(x2) > g(β)u(x1) + g(1 − β)u(x2),

which can be rearranged to yield

(9)
g(β) − g(α)

g(1 − α) − g(1 − β)
<

u(x2)

u(x1)
.
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Similarly, the individual prefers p′ to q ′ if and only if

(10)
g(1 − α) − g(1 − β)

g(β) − g(α)
<

u(x2)

u(x1)
.

As x1 approaches x2, the right-hand sides of both (9) and (10) approach
one from above. Consequently, the left-hand sides of both expressions can
be no greater than one. Since they are inverses of each other, they must be
equal to one. The final step is to notice that (1 − α) − (1 − β) = β − α.
So, the left-hand side of (10) being equal to one implies that

(11)
g(β) − g(α)

β − α
= g(1 − α) − g(1 − β)

(1 − α) − (1 − β)
,

which in turn implies that g has a constant slope, which can only occur if
g(p) = p.

Rank-dependent utility avoids this problem because the probabil-
ity transformation is applied to the distribution function, not the indi-
vidual probabilities. In fact, if both u and g are increasing, the rank-
dependent utility preference function must exhibit a preference for first-
order stochastically dominating shifts. Using the same lotteries p and q as
above, with p first-order stochastically dominating q, yields

(12) V (p) = h(α)u(x1) + [1 − h(α)]u(x2),

and

(13) V (q) = h(β)u(x1) + [1 − h(β)]u(x2).

Since α < β and h is increasing, h(α) ≤ h(β) and therefore V (p)

places greater weight on the higher utility value, u(x2), then V (q) does.
Consequently, V (p) must be larger.1

The ability of a preference representation to accommodate a preference
for first-order stochastically dominating shifts is a minimal rationality re-
quirement. In a nonstochastic setting, this would correspond to the ability
of a preference representation to accommodate a preference for increases
in the size of the consumption bundle. Note that the desired property is a
representation that can handle a preference for increases in consumption,
not a representation that must imply a preference for increases in consump-
tion. There are situations in which an individual might dislike increases in
consumption, due to satiation, for example. But, if the representation is
unable to accommodate a preference for increases in consumption, then it
must be the case that there are increases in consumption that the individual
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must dislike. This is a very strong restriction on preferences, and one that
researchers are unwilling to consider rational. The same arguments hold
for preferences for first-order stochastically dominating shifts. If a rep-
resentation implies that the decision-maker must dislike some first-order
stochastically dominating shifts, that representation is usually discarded
on rationality grounds. Rank-dependent utility fits this minimal rationality
requirement.

3. THE PROBABILITY TRANSFORMATION FUNCTION

In Section 2, rank-dependent utility was presented as a mathematical con-
struct. This is not how it originated, however. Rank-dependent utility was
created as the solution to the puzzle that arose from experimental viola-
tions of expected utility. The best-known violation is the Allais paradox. In
the Allais paradox, individuals make choices in two pairs of hypothetical
lotteries. Lottery A gives the individual $1 million with certainty, while
lottery B gives the individual $5 million with probability 0.10, $1 million
with probability 0.89, and $0 with probability 0.01. Lottery C pays the
individual $1 million with probability 0.11 and pays $0 otherwise, and
lottery D pays $5 million with probability 0.10 and pays $0 otherwise. A
majority of experimental subjects prefer A to B, a majority prefer D to C,
and the modal choice pair is A and D. The puzzle arises because this modal
preference violates expected utility.

To see why, suppose that u is any utility function. An expected utility
maximizer prefers lottery A to lottery B if

(14) u(1M) > 0.01u(0) + 0.89u(1M) + 0.10u(5M),

which reduces to

(15) 0.11u(1M) > 0.01u(0) + 0.10u(5M).

Lottery D is preferred to lottery C if

(16) 0.90u(0) + 0.10u(5M) > 0.89u(0) + 0.11u(1M),

which can be rewritten

(17) 0.01u(0) + 0.10u(5M) > 0.11u(1M).

Obviously, there is no utility function for which both (15) and (17) can be
true, so expected utility is violated.
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The standard explanation for making the expected-utility violating
choices in the Allais paradox is that, when deciding between lotteries A
and B, the individual is unwilling to forego a sure $1 million and risk
getting $0. Put another way, even though it also has a 10% chance of a
much higher outcome ($5 million), the individual is unwilling to choose B
because the probability of getting zero is too large. When deciding between
lotteries C and D, the individual views a positive outcome as unlikely in
both cases, but the increase in the size of the payoff in D outweighs the
small decrease in the probability. In other words, the 0.01 increase in the
probability of receiving zero is outweighed by the increase in the payoff
if the individual wins. The 0.01 increase in the probability of getting $0
figures into both decisions, but it is weighed more heavily in the choice
between A and B than in the choice between C and D.

Rank-dependent utility handles this asymmetric treatment of the 0.01
probability increase very easily. With rank-dependent utility, lottery A is
preferred to lottery B if

(18) u(1M) > h(0.01)u(0) + [h(0.90 − h(0.01)]u(1M) + [1 −
h(0.90)]u(5M),

and the decision weight placed on the 0.01 increase in the probability of
$0 is h(0.01). Lottery D is preferred to lottery C if

(19) h(0.90)u(0) + [1 − h(0.90)]u(5M) > h(0.89)u(0) + [1 −
h(0.89)]u(1M).

Here the decision weight placed on the 0.01 increase in the probability
of $0 is h(0.90) − h(0.89). If h(0.01) > h(0.90) − h(0.89), the Allais
paradox can arise.2

The Allais paradox choices seem to suggest that h(p) ≥ p, at least
for small values of p. Researchers, mostly psychologists, have undertaken
a more systematic approach to determine the shape of the probability
transformation function. There are two important issues relevant to using
experimental data to determine the probability transformation function,
and I briefly discuss them here.

First, any attempt to uncover the shape of the probability transforma-
tion function using experimental evidence must keep the task performed
by the subjects fixed. Psychologists have long argued that changing the
task biases the results (Hershey et al. 1992). Perhaps the best example of
this is the preference reversal phenomenon (Lichtenstein and Slovic 1971;
Grether and Plott 1979; Tversky et al. 1990). Subjects are faced with a
P-bet that assigns a high probability to a moderate outcome, and a $-bet
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that assigns a low probability to a high outcome.3 In one task each subject
states a preference between the two gambles. In the other task each subject
assigns a value to each of the two gambles. All utility theories predict
that the preferred gamble should have a higher value. A large body of
experimental evidence shows that this prediction fails. A large number of
subjects prefer the P-bet to the $-bet but assign a higher value to the $-bet.
Although these findings raise some serious issues about utility theories,
they are not considered here. Instead, the preference reversal evidence is
taken as a warning that experimental evidence must be used very carefully.
Evidence can only be aggregated when the tasks are the same, and the
results should only be interpreted within the context of the task.4

Second, there is some disagreement among the different social sciences
about whether subjects should be paid on the basis of their choices or not.
Economists, who tend to be more cognizant of incentives, argue forcefully
that they should, and it is unusual for an experiment that does not pay
subjects based on choices to be published in economics journals. They
argue that making good choices requires some mental effort, and without
payments based on choices, subjects will not use much mental effort and
the results will be unrepresentative of behavior in situations where choices
matter. Researchers in the other social sciences remain unconvinced. Some
economists have performed experiments where some subjects were paid
on the basis of their choices and others were paid a flat fee (Camerer
1989; Conlisk 1989; Battalio et al. 1990). The results tend to show that
the direction of preferences seem to be the same with both real and hypo-
thetical payoffs, but that the strength of preference and the standard errors
are different. For example, Battalio et al. find that, quantitatively, subjects
responding to real payoffs tend to be slightly more risk averse than subjects
responding to hypothetical payoffs, but that qualitative conclusions based
on the two settings tend to be the same.

With a few exceptions, the experimental data used to determine the
shape of the probability transformation function is based on a single task,
pairwise choices, and was generated using real payoffs. Typically, subjects
are given a large number of choice pairs and instructed to state their pref-
erence in each pair. One of the choice pairs is selected at random, the two
gambles are played, and each subject is paid according to the outcome
of the gamble he or she chose. The gambles usually involve amounts of
money in the $10 to $30 range for the highest payoff, large enough so that
subjects take all of the choices seriously even though only one of them will
matter.

The first efforts to attempt to identify the shape of the probability trans-
formation function used a single parameterized form of the function (see
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Figure 1.

Tversky and Kahneman 1992; Camerer and Ho 1994; Wu and Gonzalez
1996):

(20) h(p) = pγ

(pγ + (1 − pγ )
1
γ

.

For values of γ between zero and one, this function takes the form shown
in Figure 1. Notice that when p is sufficiently small, h overweights the
probability, capturing pessimism, and when p is large, h underweights the
probability, which engenders optimism. One problem with this approach
is that the functional form itself rules out certain types of behavior. For
example, it is impossible for this functional form to have h(p) ≥ p for all
values of p. So, a non-parametric approach might be better.

A non-parametric approach is taken by Gonzalez and Wu (1999), Blei-
chrodt and Pinto (2000), and Abdellaoui (2000). All three studies find that
the general pattern of Figure 1 is robust. Subjects tend to overweight small
probabilities and underweight large ones, with the crossover point lying
somewhere between p = 0.25 and p = 0.5.

A completely different approach to the problem is taken by Prelec
(1998). He devises a set of axioms which imply that the probability
transformation function takes a specific functional form:

(21) h(p) = exp(−(− ln p)α),

which has the same general shape as that shown in Figure 1. In Prelec’s
model, no matter what the value of α, the crossover point must be at p =
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1/e ≈ 0.37. So, according to the probability transformation function in
(21), probabilities less than 0.37 are overweighted and probabilities greater
than 0.37 are underweighted.

It is compelling that several experimental datasets, two different estim-
ation approaches, and an approach based on normative theoretical axioms
all lead to the same general patterns. Because of this, in the remainder of
the paper the probability transformation function will be assumed to have
the general shape shown in Figure 1. In terms of optimism and pessimism,
when the lottery under consideration has only two outcomes, the individual
is pessimistic about a lottery when the probability of the low outcome is
below the crossover point, and he is optimistic about a lottery when the
probability of the low outcome is above the crossover point. He can be
neither everywhere pessimistic nor everywhere optimistic.

This is a rather strange pattern of optimism and pessimism. People are
optimistic when success is unlikely, and pessimistic when failure is un-
likely, which seems backwards. Is this a property that is genetically burned
into people’s decision-making apparatus, or is it learned? Insight into this
question is provided by an experiment on elementary school children, per-
formed by Harbaugh et al. (2002). They find that children use a probability
transformation function, but one with a pattern opposite that as Figure 1.
Children tend to underweight low probabilities and overweight high ones,
which means that children are optimistic when success is likely and pess-
imistic when failure is likely. The Figure 1 pattern found for adults must
be learned, then. This raises another interesting question – is the pattern in
Figure 1 cultural or universal? If the pattern is learned, people in different
cultures might exhibit different patterns, and there may be something par-
ticularly western about overweighting small probabilities, being optimistic
when failure is likely, and being pessimistic when success is likely. As yet,
there is no research on this topic.

4. IMPLICATIONS I – OVERWEIGHTING UNLIKELY, EXTREME

OUTCOMES

The probability transformation function depicted in Figure 1 has an im-
portant property that affects predicted behavior: it overweights unlikely,
extreme outcomes. In the case of an extreme loss, the decision weight
placed on the utility of the loss is the transformed probability of the
loss, which is higher than the true probability. In the case of an extreme
gain, the decision weight placed on the utility of the gain is one minus
the transformed cumulative probability of all lower outcomes, and since
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this cumulative probability is large, it is underweighted. Consequently, the
extreme gain is overweighted.

The most straightforward application of this pattern is to insurance and
gambling. It is readily apparent that people insure against large, unlikely
losses but not against likely ones. For example, most people would be
willing to pay $1 to insure against a 1/10,000 chance of losing $10,000,
but very few people would be willing to pay $9000 to insure against a
9/10 chance of losing $10,000. Rank-dependent utility can help explain
this. People buy insurance when the reduction in risk is worth the price of
the premium. When the probability of the loss is small, the loss is over-
weighted, making the purchase of insurance more attractive. In contrast,
when the probability of the loss is large, the loss is underweighted, and
individuals are less likely to purchase insurance. In the language of op-
timism and pessimism, individuals tend to be pessimistic about risks that
involve large, unlikely losses, but are optimistic about risks that involve
large, likely losses.

The above argument is independent of the shape of the utility func-
tion. Most psychologists and economists believe that the utility function
is S-shaped, being risk-seeking over losses and risk averse over gains
(Kahneman and Tversky 1979). If utility is risk-seeking over losses, then
an expected utility maximizer would never purchase insurance unless it
was heavily subsidized. However, the pessimism of the probability trans-
formation function makes a rank-dependent utility maximizer more risk
averse when the probability of the loss is small, and if the pessimism of
the probability transformation function is enough to overcome the risk-
seeking effect of the utility function, the individual purchases insurance.
When the probability of the loss is large, both the utility function and
the probability transformation function contribute to risk seeking, and the
individual would not purchase insurance against likely risks.

The opposite pattern holds with gambling. People often bet on small
chances to win large prizes, but do not bet on large chances to win large
prizes. For example, many people would forego a dollar in favor of a
1/10,000 chance of winning $10,000, but not many people would forego
$9000 in favor of a 9/10 chance of winning $10,000. The probability trans-
formation function underweights large probabilities of a gain (because they
correspond to a small probability of the worse outcome) and overweights
small probabilities of a gain. Since people are generally considered to have
risk averse utility functions over gains, the contribution of the probability
transformation function makes them even more risk averse when the gain
is likely but may make them risk seeking when the gain is unlikely.
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A second application of the pattern of overweighting unlikely, extreme
outcomes arises from the study of sequential search. Consider the problem
of an individual searching for the lowest price. Each period that he searches
he pays a search cost and then draws a price independently from a random
price distribution. The standard economic model, based on expected utility,
states that the individual should continue searching as long as the expected
marginal benefit from further search exceeds the marginal cost (Rothschild
1974). The expected benefit of search is computed as the additional utility
the individual receives from the lower price multiplied by the probability of
finding that price, summed over all lower prices. If the individual is a rank-
dependent utility maximizer, though, this calculation must be changed,
with the transformed probability taking the place of the true probability
in determining the marginal benefit of further search. The most extreme
gain corresponds to the lowest price, and if finding that lowest price is
unlikely, the rank-dependent utility maximizer overweights the gain from
the lowest price. This leads to more intensive search with rank-dependent
utility. In the language of optimism and pessimism, when the probability
of the lowest price is small, the searcher is optimistic about the process,
and searches more intensively.

Rank-dependent utility also predicts a greater intensity of research and
development activity when the probability of an extremely successful de-
velopment is small. With the expected utility model, an R&D project is
undertaken when the expected benefit from the project exceeds the cost.
With rank-dependent utility, the expectation of the benefit is taken using
the transformed probability distribution, which exaggerates success when
it is unlikely and understresses failure when it is likely.

The results for search and for R&D activity have the same flavor. Rank-
dependent utility maximizers spend more resources trying for the big prize
than an expected utility maximizer would. This logic should extend to con-
tests in which participants expend effort in the hopes of winning a prize.
If the number of contestants is large, the probability of winning should
be suitably small. In these cases, rank-dependent utility overweights the
small probability of winning, leading contestants to exert more effort in an
attempt to win than expected utility theory would predict.

A third application of the rank-dependent utility pattern of overweight-
ing unlikely, extreme events, this time with policy implications, arises
from the study of crime and punishment. An individual commits a crime,
resulting in a gain. With some probability the offender is caught and pun-
ished, resulting in a loss. An expected utility maximizer weighs the gain
from crime against the expected punishment when deciding whether or not
to commit the crime (Becker 1968). A rank-dependent utility maximizer
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transforms the probability of punishment in his benefit-cost calculations,
and whether he underweights or overweights the punishment probability
depends on how high that probability is. If the punishment probability is
low, the individual overweights the probability, and criminal behavior is
deterred more than the expected utility model predicts. If, on the other
hand, the punishment probability is high, the individual underweights the
probability, and deterrence is reduced compared to the expected utility
case.

Policy implications arise because the law enforcement agency can, at
least in part, choose the probability of punishment. In some cases the prob-
ability of punishment is very low. For example, Bernasconi (1998) ana-
lyzes tax compliance in the United States. The probability of being audited
in the U.S. is, on average, less than 2%. This means that the probability of
punishment is in the range that is overweighted by rank-dependent utility
maximizers. Because of the overweighting, rank-dependent utility predicts
less cheating than expected utility does.

Given that rank-dependent utility maximizers overweight small probab-
ilities of bad outcomes, and given that law enforcement is costly, agencies
that set low punishment probabilities are getting more "bang for the buck"
than agencies that set high punishment probabilities. When the probability
is low the decision weight attached to punishment is enhanced, but when
the punishment probability is high the decision weight attached to punish-
ment is dampened. Standard models of costs suggest that law enforcement
becomes increasingly costly as the probability of punishment rises, imply-
ing that punishment probabilities should be kept low enough to allow the
probability transformation function to enhance the probability.

All of these applications show that the overweighting of extreme, un-
likely events has potentially important implications for both understanding
and predicting behavior and also for policy making. But, the actual rel-
evance of these implications is yet to be established. The evidence for
the overweighting of extreme, unlikely events is still incomplete. Experi-
mental subjects seem to show the pattern in pairwise choice tasks. The fact
that people insure against unlikely losses and gamble on unlikely gains is
clearly consistent with the pattern, but may arise from other considerations,
and is certainly not direct evidence of the shape of the probability trans-
formation function. Before the implications of the shape of the probability
transformation function should be used to form policy, the shape should be
investigated using real-world data on real decisions in a variety of contexts.
Only then will policy-makers have sufficient confidence in the underlying
assumptions of the model to warrant basing policy on them.
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5. IMPLICATIONS II – INERTIA AROUND CERTAINTY

The probability transformation function is not the only feature of rank-
dependent utility that makes it different from expected utility. The rank-
dependent functional form itself also has implications that are separate
from the implications of the shape of the transformation function. The
feature of rank- dependent utility exploited here is the fact that the out-
comes of the distribution are ordered from lowest to highest before the
probability transformation is applied, and the property that arises is inertia
around certainty.5

Consider a simple portfolio allocation problem. There are two assets in
which an individual can invest. If he invests everything in the safe asset,
his portfolio will be worth x in a year. If he invests everything in the risky
asset, in a year his portfolio will be worth y with probability p and z with
probability 1 − p. To make the problem interesting, assume that 0 < y <

x < z, so that neither asset obviously dominates the other. The investor
must choose what fraction a of his wealth to invest in the risky asset. If
0 < a < 1 his portfolio contains a mixture of the two assets. If a > 1
he purchases a negative amount of the safe asset, which can be interpreted
as borrowing. If a < 0 he purchases a negative amount of the risky asset,
which can be thought of as selling short.

An expected utility investor chooses a to maximize

(22) EU(a) = pu(ay + (1 − a)x) + (1 − p)u(az + (1 − a)x).

The optimal value of a can be found by setting the derivative of EU(a)

equal to zero:

(23) pu′(ay+(1−a)x)[y−x]+(1−p)u′(az+(1−a)x)[z−x] = 0.

If u is concave, which it tends to be when outcomes are gains, the second
order condition for maximization is satisfied.

We are interested in circumstances in which the investor chooses not
to take a position in the risky asset; that is, situations in which a = 0. A
necessary condition for this can be found by fixing x, y, and p, and setting
a = 0 in Equation (23):

(24) pu′(x)[y + x] + (1 − p)u′(x)[z − x] = 0.

Under the standard assumption that u′(x) > 0 for all x, this expression
can be solved for z0 = (x − py)/(1 − p). When z > z0 the risky asset
becomes more attractive and he invests a positive amount in it, and when
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z < z0 the risky asset is less attractive and he invests a negative amount
in it. The important point, though, is that there is only one value of z for
which the investor takes no position in the risky asset.

Now consider the case of a rank-dependent utility investor. Remember
that it now matters which of the payoffs is larger, which in turn depends on
whether the investor buys the risky asset or sells it short. When he invests
a in the risky asset the outcomes are ay + (1 − a)x and az+ (1 − a)x with
y < x < z, so when a > 0 the lower outcome is ay + (1 − a)x, and when
a < 0 the lower outcome is az + (1 − a)x. For positive values of a, then,
the rank-dependent utility is

(25) V (a) = h(p)u(ay + (1 − a)x) + [1 − h(p)](az + (1 − a)x),

and for negative values of a, the rank-dependent utility is

(26) V (a) = [1−h(1−p)]u(ay+(1−a)x)+h(1−p)(az+(1−a)x).

Now follow the same logic as in the expected utility case. The investor
chooses a > 0 when the derivative of (25) is positive at a = 0, and
chooses a < 0 when the derivative of (26) is negative at a = 0. The
former condition reduces to z > [x − h(p)y]/[1 − h(p)], and the latter
reduces to z < [x −[1−h(1−p)]y]/h(1−p). The rank-dependent utility
investor takes no position in the risky asset if

(27)
x − [1 − h(1 − p)]y

h(1 − p)
≤ z ≤ x − h(p)y

1 − h(p)
.

In the expected utility case, h(1 − p) = 1 − h(p), so the left- and right-
hand terms of (27) are identical and equal to (x − py)/(1 − p), as above.
For general rank-dependent preferences, however, the two are unlikely to
be equal. If the left-hand term is less than the right-hand term, (27) defines
a range of values of z for which the investor takes no position in the risky
asset, that is, he neither buys it nor sells it short.

This behavior can be interpreted as inertia around certainty. With ex-
pected utility, certainty is a knife-edge condition; it occurs only for a
single, precise value of z. This value of z is easy to interpret. If z0 =
(x − py)/(1 − p) then py + (1 − p)z0 = x, so the risky and safe assets
have the same expected payoff. The risky asset is risky, though, so a risk
averse investor avoids it. For any other value of z, however, the two expec-
ted payoffs are different, and the expected utility investor takes a nonzero
position in the risky asset. So, any infinitesimal move away from z0 moves
the investor away from certainty. With rank-dependent expected utility,
certainty is no longer a knife-edge condition. Once a value of z is found
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in the interior of the interval in (27), it takes a discrete (non-infinitesimal)
change in z to induce the investor to move away from certainty.

Inertia around certainty occurs when h(1 − p) > 1 − h(p), which
deserves more exploration. Rearranging this condition yields h(p)+h(1−
p) > 1, which can occur when the function h is subadditive.6 To under-
stand how it works, look back at the investor’s decision. When deciding to
buy the risky asset, the low outcome occurs when the asset takes the low
value y, and this outcome is weighted by h(p) in Equation (25). When
deciding to sell the risky asset short, the low outcome occurs when it takes
the high value z, and this outcome is weighted by h(1 − p) in Equation
(26). Subadditivity implies that together the two of these weights are large,
or at least larger than they would be under expected utility. When h(p) is
large, buying the risky asset is unattractive, and when h(1 − p) is large,
selling it short is also unattractive. So, the investor does neither.

It is also possible that h(p) + h(1 − p) < 1, consistent with h being
superadditive. In this case the investor prefers both buying the risky asset
and selling it short to taking no position. Consequently, when h(p)+h(1−
p) < 1, there is a different sort of inertia around certainty. This time,
though, the investor’s position in the risky asset is bounded away from
zero.

The probability transformation function given in expression (20) and
shown in Figure 1 is superadditive, not subadditive. But, casual observance
of asset markets finds that investors take positions in only a small minor-
ity assets, which is inconsistent with the superadditive function shown in
Figure 1. The functional form has also been criticized on other grounds
by Neilson and Stowe (2002). While the basic shape of the transforma-
tion function seems to fit, with it overweighting low probabilities of the
low outcome and underweighting high probabilities of the low outcome,
the specific functional form in (20) fails. A more appropriate probability
transformation function would have h(p) + h(1 − p) > 1 for some values
of p. Given that the crossover point is less than 1

2 , though, this inequality
will only hold for probabilities outside of the middle range.

Inertia around certainty also pertains in other settings. For example, an
expected utility maximizer purchases insurance with full coverage only
when the premium is actuarially fair; that is, when the premium is equal
to the expected benefit payment received from the insurance company in
the case of a loss. If a rank-dependent utility maximizer has a subadditive
probability transformation function over the relevant range, he will buy full
insurance even if the premium is actuarially slightly unfavorable. In real-
ity, insurance companies charge premia that are higher than their expected
payouts, so expected utility would never predict the purchase of full cov-
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erage. Many people buy auto insurance with no deductible, though, which
is consistent with rank-dependent utility but not with expected utility.

In general, inertia around certainty can be thought of as saying that
rank-dependent utility maximizers are more cautious, or more conservat-
ive, than their expected utility counterparts. They find the safe alternative
attractive under a wider variety of circumstances, and small changes in
the environment are less apt to make them change their position away
from the safe one. This is related to, but fundamentally different from,
risk aversion. Expected utility maximizers can be risk averse, but for them
certainty is always a knife-edge condition. For rank-dependent utility max-
imizers, however, certainty holds a special attraction (or repulsion) that
other probability distributions do not possess.

6. CONCLUSION

The rank-dependent utility model, with its probability transformation func-
tion, represents an expansion in flexibility over the standard expected
utility model, and it gives rise to new notions of attitudes toward risk and
to two new behavioral patterns that promise to be of importance. The new
notions are optimism and pessimism, and the two new patterns are the
overweighting of unlikely, extreme outcomes and inertia around certainty.
The fact remains, though, that expected utility is the foundation of rational
choice theory, and the decision weights it assigns to outcomes are the
probabilities of those outcomes. In rank-dependent utility, because of the
probability transformation function, the decision weights differ from the
probabilities. Can rank-dependent utility be considered rational, then, or
is rank-dependent utility merely a means of describing a certain type of
irrationality?

So far in this paper we have addressed three distinct “layers” of “ra-
tionality”. One is that preferences are complete and transitive. Letting �
denote the relation “preferred or indifferent to”, the preference ordering is
complete if for any p and q in P , either p � q, or q � p, or both. It is
transitive if for any p, q, r in P , p � q and q � r implies that p � r.
Clearly if a function V : P → R represents preferences in the sense that
p � q if and only if V (p) ≥ V (q), these two conditions must hold by
the property that the real numbers can be ordered. More specifically, com-
pleteness must be satisfied because V will rank any two lotteries according
to which is the greater of V (p) and V (q), and V will exhibit transitivity
because if V (p) ≥ V (q) and V (q) ≥ V (r), then V (p) ≥ V (r). All of the
preferences discussed above, including expected utility, rank-dependent
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utility, and prospect theory, satisfy completeness and transitivity, and so
exhibit the first layer of rationality.

The second layer of rationality requires that preferences at least be cap-
able of exhibiting first-order stochastic dominance preference. First-order
stochastic dominance preference is consistent with the notion that the indi-
vidual likes movements to unambiguously better probability distributions,
as in Section 2, and is the correct stochastic notion of “more is better”.
As demonstrated in Section 2, both rank-dependent utility preferences and
expected utility preferences are capable of exhibiting this property, but
prospect theory, which transforms each probability individually, is not.

The third layer of rationality is that the preference function use the
probabilities of the outcomes as the decision weights on those outcomes.
This property is exhibited by expected utility, but not by rank-dependent
utility. But, is this layer of rationality as fundamental as the other two, or is
it simply a by-product of our familiarity with expected utility as the basis
of rational choice theory?

Most economists who are familiar with rank-dependent utility would
agree that the first two layers of rationality are fundamental, but that the
third is not. A failure of completeness means that the preference ordering is
not well-specified, and that upon sufficient reflection an individual should
be able to rank two alternatives, even if that ranking is indifference. A
failure of transitivity means that the individual can be subjected to a Dutch
book process, and can lose money because of it. First-order stochastic
dominance preference is an extension of the notion that individuals like
money and prefer more of it to less, and any model that must violate
first-order stochastic dominance preference is unable to represent the pref-
erences of a selfish person. While it is not necessarily the case that people
are always selfish, it is an entirely different matter to preclude selfishness
altogether with the preference representation.

Beyond these requirements, everything else is just risk attitude. Any
given pairwise choice that is not governed by first-order stochastic
dominance preference can be explained by either expected utility or
rank-dependent utility as long as the utility function is chosen appropri-
ately. Rank-dependent utility’s probability transformation function simply
provides a second vehicle for capturing risk attitudes. With expected utility,
risk attitudes are governed by the payoffs alone, while in rank-dependent
utility risk attitudes are governed by both the payoffs and the probability
distribution of the lottery being analyzed. Once one admits a definition of
rationality that allows for risk attitudes, why is it necessary to restrict them
to being determined by the payoffs and not by the probabilities inherent
in the lottery? The fact that rank-dependent utility, through its probabil-
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ity transformation function, can accommodate common combinations of
pairwise choices that do not violate first-order stochastic dominance pref-
erence but do violate expected utility, simply shows that risk attitudes are
too complicated for the expected utility model to handle. The beauty of the
rank-dependent utility model is that it captures complex risk attitudes in a
compelling, plausible, and useful way.
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NOTES

1 A general proof based on distribution functions is also possible. The distribution F first-
order stochastically dominates G if and only if every expected utility maximizer with an
increasing utility function prefers F to G, which in turn occurs if and only if F(x) ≤ G(x)

for all x (see, for example, Hadar and Russell, 1969). Since the probability transformation
function h is increasing, h(F(x)) ≤ h(G(x)) for all x, and every expected utility maxim-
izer with an increasing utility function prefers h(F) to h(G). But this is the same as saying
that every rank-dependent utility maximizer with probability transformation function h and
an increasing utility function prefers F to G.
2 Of course, there are other ways in which decision weights can be used to allow for the
Allais paradox choices in a rank-dependent utility setting. Focusing on the change in the
probability of $0 is the most common.
3 For example, a P-bet might be an 80% chance of winning $4 (or else winning nothing),
and a $-bet might be a 20% chance of winning $16 (or nothing).
4 The issue of framing is similar, and it is covered in the other papers in this issue. See
also Tversky and Kahneman (1981).
5 Segal and Spivak (1990) call this first-order risk aversion.
6 Subadditivity is the property that the whole is less than the sum of the parts. In this
instance, h(p) + h(1 − p) > h(p + 1 − p) = 1.
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