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Abstract. A concept language with role intersection and number restriction is defined and its modal
equivalent is provided. The main reasoning tasks of satisfiability and subsumption checking are
formulated in terms of modal logic and an algorithm for their solution is provided. An axiomatization
for a restricted graded modal language with intersection of modalities (the modal counterpart of the
concept language we examine) is given and used in the proposed algorithm.
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1. Motivation

This paper is mainly concerned with investigating the question of which new fea-
tures show up in a modal language when counting and intersection of modalities
are introduced. The focus is on finding axioms describing the interaction between
counting and intersection. To our knowledge, no such axiomatization has been
published so far. There are two reasons for choosing to work with a restricted
modal language (without negation and disjunction) rather than with the full modal
language. First, by doing so we can concentrate on the new features of the lan-
guage that are due to counting and intersection. Second, the approach of syntactic
decomposition of formulas in the process of finding the axiomatization also gives
a way for subsumption checking in a concept language without negation where the
usual approach (checking for satisfiability of a concept and the negation of another
concept) cannot be taken.

2. From Concept Languages to Modal Logic

Concept languages are knowledge representation languages devised for express-
ing knowledge about concepts and concept hierarchies. The basic building blocks
are primitive concepts and primitive roles. Concepts describe the common prop-
erties of a collection of individuals and are interpreted as the sets of individuals
possessing those properties. Roles are interpreted as binary relations between in-
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dividuals. In each concept language a number of language constructs (such as
intersection, union, role quantification, etc.) are offered and used for the construc-
tion of compound concepts and roles. The main reasoning tasks are satisfiability
and subsumption checking and in most cases other deductive tasks can be reduced
to those two. The central role of subsumption in concept language reasoning has
motivated numerous studies of its computational complexity (e.g., Donini et al.,
1991, 1994) but in the work to follow we will not be interested in the efficiency of
computation or in possible implementations and optimization details.

A concept language is defined in which concepts (denoted by C and D) can be
built according to the following syntactic rule:

C,D −→ � | ⊥ | A | ¬A | C
⋂

D | ∀R.C | (≥ nR) | (≤ nR),

where A is a primitive concept, n is a natural number and R is a primitive role or
an intersection of primitive roles.

A pair 〈W, I 〉 is called an interpretation for the concept language if W is a non-
empty set, I is a function, mapping every concept from the language to a subset of
W and every role to a subset of W ×W , and

I (�) = W, I (⊥) = ∅,
I (¬A) = W \ I (A),
I (C ∩D) = I (C) ∩ I (D),

I (∀R.C) = {a ∈ W | ∀b((a, b) ∈ I (R) ⇒ b ∈ I (C))},
I ((≥ nR)) = {a ∈ W || {b | (a, b) ∈ I (R)} |≥ n},
I ((≤ nR)) = {a ∈ W || {b | (a, b) ∈ I (R)} |≤ n},
I (R ∩Q) = I (R) ∩ I (Q),

where R and Q are roles.
An interpretation 〈W, I 〉 is called a model for a concept C if I (C) is a non-

empty set. A concept is said to be satisfiable if a model for it exists and unsatisfiable
otherwise. C is subsumed by D if I (C) ⊆ I (D) for every interpretation.

DEFINITION 1. A modal language is defined, consisting of:

− Constant symbols � and ⊥;
− a countable set of propositional variables P = {p1, p2, p3, . . .};
− conjunction & and negation ¬;
− Op – a set of unary operators of the kind [R];
− Oq – a set of unary operators of the kind [R]n and 〈R〉n, where n is a natural

number.

DEFINITION 2. A formula in the modal language is inductively defined by the
formation rules:
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− � and ⊥ are formulas;
− every propositional variable is a formula;
− if p is a propositional variable, then ¬p is a formula;
− if 〈R〉n, [R]n ∈ Oq, then 〈R〉n� and [R]n⊥ are formulas;
− if ϕ and ψ are formulas, then ϕ&ψ is a formula;
− if ϕ is a formula and [R] ∈ Op, then [R]ϕ is a formula.

DEFINITION 3. M = 〈M,R, v〉, where M is a non-empty set, for every element
in Op and Oq of the kind [R], 〈R〉n, [R]n there is a corresponding element R in R
such that R ⊆ M × M and v is a valuation (v : M × P → {0, 1}, where P is the
set of variables in the language) is called a model for the modal language.

DEFINITION 4. M = 〈M,R, v〉 is tree-like if 〈M,
⋃

R∈R R〉 is a tree.

DEFINITION 5. The truth conditions for a formula ϕ in a model M = 〈M,R, v〉
and x ∈ M are inductively defined by:

(i) M, x |= � and M, x �|= ⊥ for all x ∈ M;
(ii) M, x |= p iff v(x, p) = 1;
(iii) M, x |= ¬p iff v(x, p) = 0;
(iv) M, x |= ϕ1&ϕ2 iff M, x |= ϕ1 and M, x |= ϕ2;
(v) M, x |= [R]ϕ iff ∀y(xRy ⇒ M, y |= ϕ) for [R] ∈ Op;
(vi) M, x |= 〈R〉n� iff |{y | (x, y) ∈ R}| > n for 〈R〉n ∈ Oq;
(vii) M, x |= [R]n⊥ iff |{y | (x, y) ∈ R}| ≤ n for [R]n ∈ Oq.

According to the above definition [R]⊥ is equivalent to [R]0⊥ and occasionally
we will switch from one notation to the other.

There is a direct correspondence between the described concept language and
the language of basic modal logic. More exactly, transformations δ and � exist,
such that δ translates concepts into modal formulas and � transforms models for
a concept to models for the modal formula corresponding to that concept. The
connection between modal and concept languages was first considered in Schild
(1991).

For the transformations δ and � we have:

δ(�) = �, δ(⊥) = ⊥,
δ(Ai) = pi and δ(¬Ai) = ¬pi,

where Ai is a primitive concept, and pi is a propositional variable.

δ(C ∩D) = δ(C)&δ(D),

δ(∀R.C) = [R]δ(C),
δ(≥ nR) = 〈R〉n−1�,
δ(≤ nR) = [R]n⊥, and

�(〈M, I 〉) = (M, {R}R∈R, v),
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where R is the set of binary relation symbols, corresponding to the roles in the
concept language, and v(x, p) = 1 iff x ∈ I (A) and δ(A) = p.

In fact, x ∈ I (C) ⇔ �(〈M, I 〉), x |= δ(C).

DEFINITION 6. Let � be a set of modal formulas, M a model and x ∈ M. We
will write M, x |= �, if M, x |= ϕ for every ϕ ∈ �.

DEFINITION 7. In order to express the problems of satisfiability and subsump-
tion from the concept language, we introduce configurations of the kind � �→ ψ ,
where � ∪ ψ is a finite set of modal formulas. Informally, � �→ ψ means that in
every model M and x ∈ M ψ is true, given that all the formulas from � are true.
Formally,

� �→ ψ � ∀M∀x ∈ M(M, x |= � ⇒ M, x |= ψ).

The configuration � �→ ψ will be verbalized as “ψ follows from �” or “� implies
ψ ,” or we will also say “the configuration is admissible.” If � is a singleton, � =
{ϕ}, we will directly write ϕ �→ ψ .

By writing M, x �|= � �→ ψ we denote that the model M and the point x in
it witness that the configuration � �→ ψ is not admissible, that is, that ψ does not
follow from �.

The reason for introducing the above configurations is the lack of implication
(disjunction and negation) in the examined modal language.

Now it can be said that a concept C is satisfiable iff the configuration δ(C) �→ ⊥
is not admissible, i.e., a model M and a point x in it exist such that M, x �|= δ(C) �→
⊥. Similarly, C subsumes D iff δ(D) follows from δ(C). Also, C does not subsume
D iff a model M and a point x in it exist such that M, x �|= δ(C) �→ δ(D).

From here on the entailment problem ϕ �→ ψ will be examined. Section 3 deals
with this problem in a modal language with three modalities and their intersections.
This case is general enough and shows the way the solution can be formulated
for a language with arbitrary number of modalities and their intersections. The
existence of an algorithm for solving the entailment problems and the properties
of this algorithm show that the satisfiability and subsumption tasks are decidable.
The algorithm for solving the entailment problem ϕ �→ ψ also plays the role of
completeness theorem for the formal system introduced in the next section.

3. Three Modalities and their Intersections

We are interested in recognizing the admissibility of the configuration ϕ �→ ψ .
More exactly, we are looking for an algorithm, that given a configuration ϕ �→
ψ returns a witness for its inadmissibility or a formal proof for it. The witness
for inadmissibility is a tree-like model and its root. The work to follow can be
considered an ideological continuation of Tinchev (1993). The traditional tableau
method proof techniques from Fitting (1983) and Smullyan (1968) are used – the
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two formulas in the configuration are systematically decomposed and in the process
of decomposition the truth conditions for a formula are exploited in order to build
a model in which the left-hand side of the configuration is true and the right-hand
side is not. Obstacles for building such a model are used as indications about how
a formal proof for the configuration is to be obtained.

The formulas we will work with are of the form

ϕ ::= p | ¬p | ⊥ | � | ϕ1&ϕ2 | [R]ϕ | 〈R〉n� | [R]n⊥.
There are three basic modalities in the language (R1, R2, R3) and the remaining

modalities are interpreted in the models as the set theoretic intersection of the
interpretations of the basic ones and respectively denoted as R12 = R1 ∩ R2,
R13, R23, R123. For convenience, we will sometimes write [a], [a]n, 〈a〉n instead
of [Ra], [Ra]n and 〈Ra〉n. Also, we will say that index i is part of index j if the
interpretation of Rj is the result of intersecting the interpretation of Ri with some
other relation from the interpretation of the language (that is, if we look at the
indices as numeric strings, all digits that appear in i appear in j as well).

The structural properties and axioms Ax1 to Ax13 in the formal system we will
define are taken from Van der Hoek and De Rijke (1992).

1. �→ has the following structural properties-rules of inference:
Monotonicity � �→ ψ ⇒ �

⋃{φ} �→ ψ ,
Cut � �→ ψ and �

⋃{ψ} �→ χ ⇒ � �→ χ ,
Distribution∗ � �→ ψ ⇒ {[R]γ | γ ∈ �} �→ [R]ψ .

2. The configuration-axioms are:

Ax1 p,¬p �→ ⊥,
Ax2 ϕ �→ �,
Ax3 ϕ,ψ �→ ϕ&ψ ,
Ax4 ϕ&ψ �→ ϕ and ϕ&ψ �→ ψ ,
Ax5 [R](ϕ&ψ) �→ ([R]ϕ&[R]ψ) for every R,
Ax6 [R]ϕ, [R]ψ �→ [R](ϕ&ψ) for every R,
Ax7 [R]⊥, 〈R〉� �→ ⊥ for every R,
Ax8 ⊥ �→ ϕ,
Ax9 〈i〉n� �→ 〈i〉n−1� for every i,
Ax10 [i]n⊥ �→ [i]n+1⊥ for every i,
Ax11 〈i〉n� �→ 〈j〉n�, if the index j is part of the index i,
Ax12 [i]n⊥ �→ [j ]n⊥, if the index i is part of the index j ,
Ax13 [i]n⊥&〈i〉n� �→ ⊥.

Unfortunately, the combination of intersection and counting has deeper con-
sequences than those handled by the above axioms. Given a model M and a
point x in M, let xi be the number of all Ri-successors of x and X1 = {(x, y) |
xR1y}, X2 = {(x, y) | xR2y}, X3 = {(x, y) | xR3y}, X12 = X1 ∩ X2,
X13 = X1 ∩X3, X23 = X2 ∩X3 and X123 = X1 ∩X2 ∩X3.
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Ax12 and Ax13 capture the idea that, for example, X123 ⊆ X12 ⊆ X1 and
X123 ⊆ X13 ⊆ X1, but those are seen as independent facts and we do not
have any way to express the requirement that X12 ∪X13 is a subset of X1 and
consequently |X12 ∪X13| ≤ |X1|, and thus x12 + x13 − x123 ≤ x1.
By similar reasoning one can see that in order to satisfy the requirement some
of the relations to be the set theoretic intersection of others, conditions in the
form of the above inequality should be fulfilled for the number of successors
of point x at which we want a formula with graded modal part to true.
The axiom that follows incorporates those conditions.

Ax14 Let γ be the formula that consists of graded modal part only, with at
most one modal operator per relation, and each [i] has index mi and each 〈i〉
has index ni .

Then γ �→ ⊥, if there is no solution 〈x1, x2, x3, x12, x13, x23, x123〉 to the
following system of inequalities A:

nk < xk ≤ mk for k = 1, 2, 3,
n12 < x12 ≤ min{m1,m2,m12},
n13 < x13 ≤ min{m1,m3,m13},
n23 < x23 ≤ min{m2,m3,m23},
n123 < x123 ≤ min{m1,m2,m3,m12,m13,m23,m123},
xi ≤ xj for all pairs of i and j such that j is part of i,
x1 − x12 − x13 + x123 ≥ 0,
x2 − x12 − x23 + x123 ≥ 0,
x3 − x13 − x23 + x123 ≥ 0.

Remark. The first inequalities rule out the possibility of obtaining evidence for
the insatisfiability of γ by application of axioms Ax1 to Ax13. The inequality
x1 + x2 + x3 − x12 − x13 − x23 + x123 ≥ 0 is not included in A because it
follows from the rest.

Remark. Axiom Ax14 gives necessary and sufficient conditions for a formula
γ to be made true at some point x. If the system A has a solution, the required
number of successors can be built so that γ becomes true. First, x123 R1−, R2-
and R3- (R123-)successors of x are added. Then, new x12 − x123 R1- and R2-
(R12-), new x13 − x123 R1- and R3- (R13-) and new x23 − x123 R2- and R3-
(R23-) successors of x are added. Finally, new x1 − x12 − x13 + x123 R1-,
x2 − x12 − x23 + x123 R2- and x3 − x13 − x23 + x123 R3-successors of x are
added. The possibility to build the required number of new successors at each
step is guaranteed by the fact that x is a solution to the system A.

Ax15 γ �→ 〈i〉p�, if for every solution to the system A we have that p < xi ,
Ax16 γ �→ [i]q⊥, if for every solution to the system A we have that xi ≤ q.
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DEFINITION 8. A literal is a propositional variable or its negation.

DEFINITION 9. The number of nested modal operators in a configuration or
a formula ϕ is called modal depth of the configuration or ϕ and is denoted by
d(ϕ �→ ψ) or d(ϕ) respectively:

− d(L) = 0, L – literal or constant;
− d(ϕ&ψ) = max{d(ϕ), d(ψ)};
− d(Oψ) = d(ψ)+ 1, if O ∈ Op ∪Oq and ψ is a formula;
− d(ϕ �→ ψ) = max{d(ϕ), d(ψ)}.

DEFINITION 10. A sequence �1 �→ ψ1, �2 �→ ψ2, . . . , �k �→ ψk = � �→ ψ is
called a formal proof for � �→ ψ if all of its terms are either axioms or are obtained
by preceding configurations by the rules of inference.

PROPERTY 1. If χ �→ ϕ and ϕ �→ ψ , then χ �→ ψ (Transitivity of �→).

PROPERTY 2. {ϕ1, . . . , ϕn} �→ ψ ⇔ ϕ1& . . .&ϕn �→ ψ .

PROPERTY 3. ϕ1 �→ ψ1, ϕ2 �→ ψ2 ⇒ ϕ1&ϕ2 �→ ψ1&ψ2.

CORRECTNESS THEOREM. If a formal proof for � �→ ψ exists, then this
configuration is admissible.

Example 1. Let us have a formula that consists of graded modal part only. For
better legibility, the formula is represented in a table – the first row shows the
diamond indices and the second row the box indices for the corresponding relation
symbol:

R1 R2 R3 R12 R13 R23 R123

2 3 4 2 1 0 0 �
3 6 8 3 3 6 1 �

A model for this formula cannot be built. The tuple 〈3, 4, 5, 3, 2, 1, 1〉 cannot
be a solution to the system A for this formula because x1 − x12 − x13 + x123 = −1
and none of the positive terms can grow because of the restrictions imposed by the
box operators in the formula.

Example 2. Let us have a formula with the following graded modal part:

R1 R2 R3 R12 R13 R23 R123

0 3 4 2 1 0 0 �
8 6 8 3 3 6 2 �

There is a solution to the system A for this formula – 〈3, 4, 5, 3, 2, 2, 2〉 and x1

cannot be less than 3, even though there is no explicit requirement for such number
of successors in the formula itself.
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THEOREM 1. An algorithm A exists such that for any configuration ϕ �→ ψ

after a finite number of steps A returns a tree-like witness model or a proof for
ϕ �→ ψ .

Proof. Since the potential conjunctive terms in the formulas from the configu-
ration can be too numerous, the following notations are introduced:

− The greatest index of a 〈Ri〉 term in ϕ is denoted by ni;
− the least index of a [Ri] term in ϕ is denoted by mi;
− the greatest index of a 〈Ri〉 term in ψ is denoted by ni ;
− the least index of a [Ri] term in ψ is denoted by mi .

All the other indices can be ignored.

− Bϕ,Bψ – the Boolean part of ϕ and ψ respectively;
− Mϕ,Mψ – the non-graded modal part of ϕ and ψ respectively;
− Gϕ,Gψ – the graded modal part of ϕ and ψ respectively.

DEFINITION 11. If ψ1 is one of the conjunctive terms in ψ , we will write ψ1 �
ψ .

Base: If d(ϕ �→ ψ) = 0, the witness model or the proof is found by direct
propositional arguments.

Inductive assumption: Let the algorithm be already built for d(ϕ �→ ψ) = n.
Let the modal depth of ϕ �→ ψ be n+ 1.
A witness model will not exist if ϕ is itself unsatisfiable. Cases 1 to 5 cover all

the possible ways in which ϕ can be unsatisfiable and show a proof for the initial
configuration. Otherwise we proceed by attempting to extend one possible model
for ϕ so that ϕ remains true but ψ is false in it. If all such attempts fail, we end up
with a proof for the initial configuration.

1. If ⊥ occurs in ϕ, we have the following proof: ϕ �→ ⊥, ⊥ �→ ψ and by
transitivity we obtain ϕ �→ ψ .

2. If p and ¬p occur in the Boolean part of ϕ, we have the proof ϕ �→ p&¬p,
p&¬p �→ ⊥, ⊥ �→ ψ and by transitivity we obtain ϕ �→ ψ .

3. Formula ϕ is unsatisfiable because its graded modal part is unsatisfiable.
If 〈i〉n� and [j ]m⊥ occur in ϕ, and n ≥ m and the index j is part of the index
i, we have 〈i〉n� �→ 〈j〉n�, 〈j〉n� �→ 〈j〉m�, but
〈j〉m�, [j ]m⊥ �→ ⊥. Thus we obtain a proof for ϕ �→ ψ .
If none of the above is the case, we have the following possibilities:
The valuation is defined at a point x in a way, such that x |= L1 for all L1 �
Bϕ.

DEFINITION 12. A subproblem engendered by a relation Ri from the con-
figuration ϕ �→ ψ is the configuration that should be examined if Bϕ and Bψ
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have shown that ϕ does not necessarily imply ψ but there is a Ri-successor
requirement in ϕ (〈Ri〉ni� � ϕ), so further examinations are needed. That is
the configuration ϕ1 �→ ⊥ where ϕ1 = ∧

j part of i
{∧{N |[j ]N � ϕ}}.

The algorithm is set to work on the subproblems engendered by the relations
Ri for which 〈i〉ni� occurs in ϕ. All of those subproblems are of modal depth
less or equal to n and therefore for all the subproblems either a witness model
Mi or a proof will be found. Any time a prove is returned by the algorithm, it
will be extended to a prove for the initial configuration ϕ �→ ψ .

4. Formula ϕ is unsatisfiable because it has a term that requires a successor to be
made, but the non-graded modal part of ϕ is unsatisfiable.
Let 〈i〉ni� occur in ϕ, but the algorithm returns a proof for the subproblem
M �→ ⊥ engendered by Ri . This proof can be continued in the following
way: [i]M �→ [i]⊥, ϕ �→ [i]M, ϕ �→ [i]⊥, ϕ �→ 〈i〉ni�, 〈i〉ni� �→ 〈i〉�,
[i]⊥&〈i〉� �→ ⊥, ϕ �→ ⊥, ⊥ �→ ψ , ϕ �→ ψ .

5. Assume that there is no solution to the system A for the graded modal part of
ϕ. Then ϕ �→ ⊥, ⊥ �→ ψ , ϕ �→ ψ .

6. Formula ϕ does not have successor requirements and falsifying ψ can be
achieved by Boolean arguments, so a trivial witness model is built.
If (*) ∃L-literal(L � Bψ&L �� Bϕ) and no 〈R〉n occurs in ϕ, then 〈{x}, {R1 =
∅, R2 = ∅, R3 = ∅}, v〉 is a witness model for the configuration, where
v(L, x)

= 1 for all L occurring in Bϕ and v(L, x) = 0 for some L that satisfies
(*).
For all the cases to follow we assume that v(L, x) = 1 for all L occurring in
Bϕ.

7. Formula ϕ has successor requirements and ψ can be made false either by
Boolean arguments or the first solution to A happened to violate some of
its successor conditions. Later, if nothing else succeeds we will try all the
solutions for A.
Let x be a solution to the system A for the graded modal part of ϕ and some
〈i〉ni� occurs in ϕ and

(a) (*) ∃L-literal(L � Bψ&L �� Bϕ) , or
(b) for some i mi < xi or xi ≤ ni .

In case (a), the valuation is extended with v(L, x) = 0 for some L satisfying
(*).
In both 7a and 7b x �|= ψ . To build a witness model, for every i we add
yi copies of Mi as successors to x, where 〈x1, x2, x3, x12, x13, x23, x123〉 is a
solution to the system A for ϕ, Mi is the witness model for the subproblem
engendered by Ri , and y123 = x123, y12 = x12 − x123, y13 = x13 − x123,
y23 = x23 − x123, y1 = x1 − x12 − x13 + x123, y2 = x2 − x12 − x23 + x123,
y3 = x3 − x13 − x23 + x123.



76 A. NENKOVA

DEFINITION 13. A complete subproblem engendered by the relation Ri

from the configuration ϕ �→ ψ is the configuration ϕ1 �→ ψ1 where ϕ1 =∧
j part of i

{∧{N |[j ]N � ϕ}} and ψ1 = ∧
j part of i

{∧{S|[j ]S � ψ}}. In
other words, it is the configuration that should be explored if the examinations
so far show that ϕ implies ψ but d(ϕ �→ ψ) > 0 and Ri-successor can be
made at the next step.

8. Now we try to falsify ψ by looking into its non-graded Boolean part.
The subproblems for all the relations are considered. Their modal depth is less
or equal to n and therefore for all Ri the algorithm will return either a witness
model Ni or a proof for the complete subproblem engendered by Ri .
(a) If a suitable witness model for the subproblem is found, it is extended to a
witness model for the initial configuration.
If the algorithm returns a witness model for at least one of the complete sub-
problems and a solution z for the system A exists such that for the relation Ri ,
engendering the complete subproblem, zi > 0, then the witness model M for
the initial configuration is build as in 6, but in the yi successors of x copies
of Ni are added instead of copies of Mi . Obviously, Ni �|= Ni and therefore
M, x �|= ψ .
(b) Even if we found witness models for some subproblems, we might be
unable to use them because ϕ does not allow for the building of any more
successors and then a proof for the initial configuration is obtained.
If zi = 0 for every solution z to the system A, then [j ]⊥ occurs in ϕ for some
index j that is part of the index i. In this case we have a proof for ϕ �→ Ni –
⊥ �→ Ni , [i]⊥ �→ [i]Ni , ϕ �→ [j ]⊥, [j ]⊥ �→ [i]⊥, ϕ �→ [i]Ni .

9. If 1–8 are not the case and (**) ∀i(ni ≤ ni&mi ≤ mi), then ϕ �→ ψ because
Gϕ �→ Gψ from (**), Mϕ �→ Mψ from 8 (all complete subproblems returned
with a proof and those are easily extended by Distribution∗ ), Bϕ �→ Bψ from
7.

10. Finally, all the possibilities to break a successor requirement in ψ are system-
atically explored. If any of them succeeds – a witness model is obtained, else
we end up with a proof of the fact that ψ follows form ϕ.
If (#) ∃i(ni < ni < mi) or (##) ∃i(ni < mi < mi), we examine the formulas
ϕni that is the same as ϕ except that the index of [i] is ni instead of mi if i
satisfies (#), and ϕmi

that is the same as ϕ except that the index of 〈i〉 is mi

instead of ni if i satisfies (##).
For all i satisfying (#) or (##), the system A for the formula described above
is formed. If there is a solution to A for some of those formulas, a witness
model for the initial configuration is built as in 7.
If there is no solution to the system A for any of the modified formulas, then
for every solution x to the system for ϕ xi > ni and xi ≤ mi . If this were not
so, some of the systems for the modified formulas would have had a solution.
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So, we have that Gϕ �→ Gψ , but Mϕ �→ Mψ from 7 and Bϕ �→ Bψ from 6
and therefore we have a proof for ϕ �→ ψ . �

4. Conclusions

The formal system introduced in Section 3 shows what the axiomatization of the
restricted graded modal language with intersection of arbitrary number modalities
should look like. Set-theoretic principals are incorporated in the axioms and they
indicate that the problem of satisfying the graded modal part of a formula at a
point can in fact be transformed into the problem of realizing a tuple of numbers as
mutually intersecting sets (showing that sets with cardinalities specified in the tuple
can indeed exist). Working with a restricted language allows us to exemplify more
clearly these aspects that become somewhat obscured by technical complications
in the case of a full modal language.
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