Skip to main content
Log in

Impure Systems and Ecological Models (II): Components and Thermodynamics

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

This paper refers to a subjective approach to Ecosystems, referred to as Impure Systems to capture a set of fundamental properties. There are four main phenomenological components: directionality, intensity, connection energy and volume. A fundamental question in this approach to Impure Systems is the intensity or forces of a relation. Concepts as the system volume, and propose a system thermodynamic theory based in the Law of Zipf and the temperature of information are introduced. It hints at the possibility of adapting the fractal theory by introducing the fractal dimension of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Methane production can be described as a dissipative process of entropy when a highly organized organic structure is decomposed to basic simple compounds.

References

  • Abramson, N. (1980). Information theory and coding. New York: McGraw-Hill Book Company Inc.

    Google Scholar 

  • Altmann, E. A., Dias, L., & Gerlach, M. (2017). Generalized entropies and the similarity of texts. Journal of Statistical Mechanics: Theory and Experiment, 2017, 1–13.

    Article  Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge: MIT Press.

    Google Scholar 

  • Chomsky, N. (1969). Syntactic structures. La Haye: Mouton.

    Google Scholar 

  • Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gash, H. (2014). Fixed or probable ideas. Foundations of Science, 19(3), 283–284.

    Article  Google Scholar 

  • Gell-Mann, M., & Lloyd, S. (1996). Information measures, effective complexity, and total information. Complexity, 2(1), 44–52.

    Article  Google Scholar 

  • Gershenson, C. (2001). Comments to neutrosophy. In Proceedings of the first international Conference on Neutrosophy, neutrosophic logic, set, probability and statistics. University of New Mexico, Gallup, December 1–3, 2001.

  • Gershenson, C., & Fernández, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity, 18(2), 29–44.

    Article  Google Scholar 

  • Latif, N., Pečarić, Ð., & Pečarić, J. (2017). Majorization, Csiszár divergence and Zipf-Mandelbrot law. Journal of Inequalities and Applications, 2017(1), 197.

    Article  Google Scholar 

  • Lloret, M., Villacampa, Y., & Usó, J. L. (1998). System-linkage: Structural functions and hierarchies. Cybernetics and Systems, 29, 29–39.

    Google Scholar 

  • Lloret-Climent, M., Usó-Doménech, J. L., Patten, B. C., & Vives-Maciá, F. (2002). Causality in H-semiotic systems of ecosystems. Routes and tours. International Journal of General Systems, 31(2), 119–130.

    Article  Google Scholar 

  • Lloret-Climent, M., Usó-Domènech, J. L., Sastre-Vazquez, P., Vives-Maciá, F., & Patten, B. C. (2001). Epistemological and mathematical considerations on the structure of H-semiotic systems. Cybernetics and Systems., 33(5), 507–535.

    Google Scholar 

  • Mandelbort, B. (1954). Structure formelle des texts et communication. Deux études. Word, 10, 1–27.

    Article  Google Scholar 

  • Mandelbort, B. (1961). Word frequencies and Markovian models of discourse. In Structure of language and its mathematical aspects. Procedings of symposia in applied mathematics (Vol. 12, pp. 190–219). American Mathematical Society, Providence, Rhode Island.

  • Mandelbort, B. (1975). Les objects fractals: Forme, harsard et determination. Paris: Flammarion. (in French).

    Google Scholar 

  • Margalef, R. (1980). La Biosfera entre la termodinámica y el juego. Barcelona: Ediciones Omega SA. (in Spanish).

    Google Scholar 

  • Nescolarde-Selva, J., & Usó-Doménech, J. L. (2012). An introduction to Alysidal Algebra (III). Kybernetes, 41(10), 1638–1649.

    Article  Google Scholar 

  • Nescolarde-Selva, J., & Usó-Doménech, J. L. (2013). An introduction to Alysidal Algebra V: Phenomenological components. Kybernetes, 42(8), 1248–1264.

    Article  Google Scholar 

  • Nescolarde-Selva, J., & Usó-Doménech, J. L. (2014a). Semiotic vision of ideologies. Foundations of Science, 19(3), 263–282.

    Article  Google Scholar 

  • Nescolarde-Selva, J., & Usó-Doménech, J. L. (2014b). Reality, Systems and impure systems. Foundations of Science, 19(3), 289–306.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Usó-Doménech, J. L., & Gash, H. (2015a). A logic-mathematical point of view of the truth: Reality, perception, language. Complexity, 20(4), 58–67.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Usó-Doménech, J. L., Lloret-Climent, M., & González-Franco, L. (2015b). Chebanov law and Vakar formula in mathematical models of complex systems. Ecological Complexity, 21, 27–33.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Usó-Doménech, J. L., & Sabán, M. J. (2015c). Linguistic knowledge of reality: A metaphysical impossibility? Foundations of Science, 20(1), 27–58.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Vives-Macía, F., Usó-Doménech, J. L., & Berend, D. (2012a). An introduction to Alysidal Algebra (I). Kybernetes, 41(1/2), 21–34.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Vives-Macía, F., Usó-Doménech, J. L., & Berend, D. (2012b). An introduction to Alysidal Algebra (II). Kybernetes, 41(5/6), 780–793.

    Article  Google Scholar 

  • Patten, B. C. (1978). Systems approach to the concept of environment. Ohio Journal of Science, 78(4), 206–222.

    Google Scholar 

  • Patten, B. C. (1980). Systems approach to the concept of niche. Synthese, 43, 155–181.

    Article  Google Scholar 

  • Patten, B. C. (1982). Environs: Relativistic elementary particles for ecology. The American Naturalist, 119, 179–219.

    Article  Google Scholar 

  • Patten, B. C., & Auble, G. T. (1981). System theory of the ecological Niche. The American Naturalist, 117, 893–922.

    Article  Google Scholar 

  • Patten, B. C., Bosserman, R. W., Finn, J. T., & Cale, W. G. (1976). Propagation of cause in ecosystems. In B. C. Patten (Ed.), Systems analysis and simulation in ecology (Vol. 4, pp. 457–579). New York: Academic Press.

    Chapter  Google Scholar 

  • Patten, B. C., Richardson, T. H., & Barberm, G. (1982). Path. Analysis of a reservoir ecosystem model. Canadian Water Resources Journal, 7(1), 252–282.

    Article  Google Scholar 

  • Sagan, C. (1975). Note distributed by The Coevolution Quart.

  • Sastre-Vazquez, P., Usó-Doménech, J. L., & Mateu, J. (2000). Adaptation of linguistics laws to ecological models. Kybernetes, 29(9/10), 1306–1323.

    Article  Google Scholar 

  • Stehlik, M., Aguirre, P., Girard, S., Jordanova, P., Kiselak, J., Torres Leiva, S., et al. (2017a). On ecosystems dynamics. Ecological Complexity, 29C, 10–29.

    Article  Google Scholar 

  • Stehlík, M., Dušek, J., & Kiseľák, J. (2016). Missing chaos in global climate change data interpreting? Ecological Complexity, 25, 53–59.

    Article  Google Scholar 

  • Stehlik, M., Hermann, P., Torres, S., Kiselak, J., & Rivera, A. (2017b). On dynamics underlying variance of mass balance estimation in Chilean glaciers. Ecological Complexity. https://doi.org/10.1016/j.ecocom.2017.06.008.

    Google Scholar 

  • Ulanowicz, R. E., Goerner, S. J., Lietaer, B., & Gómez, R. (2009). Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecological Complexity, 6(1), 27–36.

    Article  Google Scholar 

  • Usó, J. L., & Mateu, J. (2004). Teoría del medio Ambiente. Modelización. Castelló de la Plana: Publicacions de la Universitat Jaime I. (in Spanish).

    Google Scholar 

  • Usó-Doménech, J. L., Lloret-Climent, M., Vives-Maciá, F., Patten, B. C., & Sastre-Vazquez, P. (2002a). Epistemological and mathematical considerations on the structure of H-semiotic systems. Cybernetics and Systems, 33(5), 507–535.

    Article  Google Scholar 

  • Usó-Doménech, J. L., Mateu, J., & Lopez, J. A. (1997). Mathematical and statistical formulation of an ecological model with applications. Ecological Modelling, 101, 27–40.

    Article  Google Scholar 

  • Usó-Doménech, J. L., Mateu, J., & Patten, B. C. (2002b). Mathematical approach to the concept of environment: Open systems and processes. International Journal of General Systems, 31(3), 213–223.

    Article  Google Scholar 

  • Usó-Doménech, J. L., & Nescolarde-Selva, J. (2012). Mathematic and semiotic theory of ideological systems. Sarrebruck: Editorial LAP.

    Google Scholar 

  • Usó-Doménech, J. L., Nescolarde-Selva, J. A., & Lloret-Climent, M. (2016a). Complex impure systems: Sheaves, freeways, and chains. Complexity. https://doi.org/10.1002/cplx.21750.

    Google Scholar 

  • Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M., & Meng, F. (2016b). Synonymy relationship and stochastic processes in determination of flow equations in ecological models. Ecological Complexity, 26, 79–88.

    Article  Google Scholar 

  • Usó-Doménech, J. L., Villacampa, Y., Stübing, G., Karjalainen, T., & Ramo, M. P. (1995). MARIOLA: A model for calculating the response of mediterranean bush ecosystem to climatic variations. Ecological Modelling, 80, 113–129.

    Article  Google Scholar 

  • Vakar, N. P. (1966). A word count of spoken Russian: The Soviet usage. Cincinnati, OH: Ohio State University Press.

    Google Scholar 

  • Villacampa, Y., & Usó-Doménech, J. L. (1999). Mathematical models of complex structural systems. A linguistic vision. International Journal of General Systems, 28(1), 37–52.

    Article  Google Scholar 

  • Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge: Mass.

    Google Scholar 

Download references

Funding

This work has been funded by the Conselleria de Educación, Investigación, Cultura y Deporte of the Community of Valencia, Spain, within the programme of support for research under project (GV/2018/061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué-Antonio Nescolarde-Selva.

Appendix

Appendix

1.1 The Mariola Model

a. State variables

Y

Description (unit)

BL

Woody biomass (g)

BV

Green biomass (g)

MOTS

Total organic soil material (%)

NRO

Organic material of animal origin on the ground (g)

RBL

Litter of woody biomass on the ground (g)

RBV

Litter of green biomass on the ground (g)

b. Flow variables

X

Description (unit)

ARRS

Rate of loss of the organic soil material through dragging and washing (%)

CRBL

Rate of production by growth of the woody biomass (g)

CRBV

Rate of production by growth of the green biomass (g)

DBLAR

Rate of destruction of the woody biomass through the action of arthropods (g)

DBLPL

Rate of destruction of the woody biomass through the action of phytoplagues (g)

DBVFS

Rate of destruction of the green biomass through the action of mammals (g)

DBVI

Rate of destruction of the green biomass through the action of insects (g)

DBVPL

Rate of destruction of the green biomass through the action of phytoplasgues (g)

DCBL

Rate of catastrophic destruction of the woody biomass (g)

DCBV

Rate of catastrophic destruction of the green biomass (g)

DF

Rate of defoliation (g)

DMOTS

Rate of decomposition of the total organic soil material (%)

DRBL

Rate of decomposition of the litter of the woody biomass on the soil (g)

DRBV

Rate of decomposition of the litter of the green biomass on the soil (g)

DRO

Rate of decomposition of the detritus of an animal narure (g)

MOFD

Rate of finely divided organic material (%)

PMOTS

Rate of production of organic soil material (humus) (%)

PRO2

Rate of production of organic detritus of animal origin (g)

VMN

Rate of destruction of the woody biomass (g)

c. Exogenous variables [semes of first level]

e

Description (unit)

H

Environmental humidity (%)

IFAP

Maximum intensity of precipitation (max.l/h)

PLU

Precipitation (l)

POBHV

Population of mammals (Oryctolagus cuniculus) (number of individuals)

T

Environmental temperature (°C)

VEVI

Wind speed (km/h max)

d. Auxiliary variables and parameters

a

Description (unit)

BT

Total biomass (g)

CRO2

Parameter of residual production of the rodents (g)

PORDT

The herbivore diet (%)

1.1.1 State Equations

$$\begin{aligned} \frac{dBV}{dt} & = CRBV - DF - DCBV - DBVFS - DBVI - DBVPL \\ \frac{dBL}{dt} & = CRBL - VMN - DCBL - DBLAR - DBLPL \\ \frac{dRBV}{dt} & = DF + DCBV - DRBV \\ \frac{dRBL}{dt} & = VMN + DCBL - DRBL \\ \frac{dNRO}{dt} & = PRO2 - DRO \\ \frac{dMOTS}{dt} & = PMOTS + MOFD - DMOTS - ARRS \\ \end{aligned}$$

Flow and auxiliary equations for MARIOLA (Cistus albidus) [SEMEMES]

CRBV = BT(0.0011T + 0.0028 H − 0.0271) + 0.012 PLU − 0.1436

CRBL = 0.6773 BT − 0.0079 BT H + 0.0004 BT PLU − 3.1864

BT = BV + BL

DF = 1.2382BV 2 − 0.0025BV − 0.0063BV T − 0.0081 BV H + 17.47630/PLU) − 0.9696

DBVFS = 0.000428BV 2 + 0.087560BVPOBHV − 0.184747

DCBV = 0.0020 BV IFAP + 0.0007 BV VEVI + 0.0007 exp(0.1 IFAP) + 0.0020

DBVPL =− 0.00064BV 2 + 0.0066BV T − 0.3142cos H − 1.0665

VMN = 0.0187 BL + 0.0001 BL PLU − 0.5732

DCBL = 0.7023 cos BL + 0.0005 BLIFAP + 0.0003 BL VEVI − 0.4707

DBLPL = 0.0022BL T + 259.9959exp(− 0.1 BL) − 1.4981cosBL − 3.59

CR02 = 1900

PORDT = 2.8949log(DBVFS) − 5.0052

PR02 = POBHV CR02 × (PORDT/100)

DRBV = 0.0007 T 2 − 0.0041T RBV + 0.0021 H RBV + 0.00002exp(0.1 H) − 0.3774

DRBL = − 0 .0030 T 2 + 0.0005 TH + 0.121 exp(0.1T) + 0.0170cos H − 0.3125

DRO = 0.0538NRO T − 0.0016 T 2 + 1.1457cosNRO − 0.8088

PMOTS = (0.0045T 2 − 0.0013 TH − 0.1623 T DBL + 0.3111T DBV + 0.5191 cos T + 1.1102DRO + 1.0542)/100

MOFD = (− 0.0287 T 2 + 0.0058 TH + 1.0304exp(0.1T)− 0.0002exp(0.1 H)− 2.3152)/100

DMOTS = [MOTS(− 0.0509 MOTS + 0.0133 T + 0.0012 H + 0.0014 PLU) + 0.0018 T 2 − 0.0509)/100

ARRS = (− 0.0065 T 2 + 0.0024

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nescolarde-Selva, JA., Usó-Doménech, JL. & Lloret-Climent, M. Impure Systems and Ecological Models (II): Components and Thermodynamics. Found Sci 24, 427–455 (2019). https://doi.org/10.1007/s10699-018-9575-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-018-9575-x

Keywords

Navigation