
Journal for the History of
Analytical Philosophy

Volume 6, Number 3
Editor in Chief

Kevin C. Klement, University of Massachusetts

Editorial Board
Annalisa Coliva, University of Modena and UC Irvine
Greg Frost-Arnold, Hobart and William Smith Colleges

Henry Jackman, York University
Sandra Lapointe, McMaster University

Consuelo Preti, The College of New Jersey
Marcus Rossberg, University of Connecticut

Anthony Skelton, Western University
Mark Textor, King’s College London
Audrey Yap, University of Victoria
Richard Zach, University of Calgary

Review Editors
Sean Morris, Metropolitan State University of Denver

Sanford Shieh, Wesleyan University

Design
Daniel Harris, Hunter College

jhaponline.org

© 2018 Matthias Neuber

Perception and Coincidence in Helmholtz’s Theory
of Measurement

Matthias Neuber

The present paper is concerned with Helmholtz’s theory of mea-
surement. It will be argued that an adequate understanding of
this theory depends on how Helmholtz’s application of the con-
cepts of perception and coincidence is interpreted. In contrast
both to conventionalist and (neo-)Kantian readings of Helm-
holtz’s theory, a more realistic interpretation will be suggested.

Special Issue:Method, Science, and Mathematics:
Neo-Kantianism and Analytic Philosophy

Edited by Scott Edgar and Lydia Patton

https://jhaponline.org


Perception and Coincidence in Helmholtz’s
Theory of Measurement

Matthias Neuber

1. Introduction

In his 1870 article “Über den Ursprung und die Bedeutung der
geometrischen Axiome,” Hermann von Helmholtz established
a “principle of congruence” according to which perception, es-
pecially spatial perception, has its foundation in the coincidence
of point pairs in rigid bodies “with the same fixed point pairs
in space.” This principle of congruence in turn lay at the very
bottom of Helmholtz’s theory of measurement: when executing
measurements, certain sections of the respective measuring de-
vices are brought into congruence with the entities measured, so
that, for example, certain point pairs of a measuring rod coincide
with the endpoints of a given spatial extension. Thus the expe-
rience of perceptual coincidences is, according to Helmholtz,
the fundamental fact on which the theory of measurement is
grounded.

As is well known, Helmholtz’s—supposedly Kantian—con-
ception was, at least to some extent, appropriated by Moritz
Schlick who, in his 1918 Allgemeine Erkenntnislehre, stressed
the epistemological importance of what he called the “method
of coincidences.” However, in his 1921 comments on Helm-
holtz’s Epistemological Writings, Schlick modified the original
Helmholtzian approach by a (Poincaréan-inspired) convention-
alist reading which turned out to be highly decisive for his philo-
sophical reconstruction of Albert Einstein’s general theory of
relativity. As will be shown in the course of this paper, Schlick’s
interpretation gave rise to an extended historiographic contro-

versy with Alberto Coffa on the one side and (among others)
Michael Friedman and Thomas Ryckman on the other. While
Coffa sided with Schlick in seeing in the “real” Helmholtz an
important forerunner of a “conventionalized” form of empiri-
cism, Friedman and Ryckman insisted on the fundamental role
of Kantian elements in Helmholtz’s theory. On the whole, it will
be argued that an adequate understanding of Helmholtz’s deter-
mination of the relation of perception and coincidence depends
on the question whether Helmholtz’s account can—without any
serious loss—be separated from the Kantian (apriorist) tradition
in which Helmholtz himself without any doubt located his en-
tire point of view. I answer this question with a tentative “yes,”
but this does not imply that Schlick’s (and Coffa’s) conventional-
ist reading is the only way to go. A more realistic interpretation
is worth considering in some detail.

2. Helmholtz’s Theory of Measurement in Outline

Let us begin with a preliminary review of Helmholtz’s theory
of measurement. There can be no doubt that the most encom-
passing presentation of this theory is to be found in Helmholtz’s
seminal “Zählen und Messen” from 1887. As the title already
indicates, Helmholtz focuses in this paper on the connection
between number and measurement. As Olivier Darrigol (2003,
516) has pointed out, Helmholtz was one of the first physicists
who reflected on measurability rather than on measurement as
such; that is, he raised the question under which conditions is
measurement possible at all. More precisely, Helmholtz’s per-
spective was an epistemological one. Thus his essay starts with
the diagnosis that “[a]lthough numbering and measuring are
the foundations of the most fruitful, sure and exact scientific
method known to us all, relatively little work has been done on
their epistemological foundations” (Helmholtz 1887, 72). Helm-
holtz takes up exactly these epistemological foundations.
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Now the pivotal point of Helmholtz’s whole approach is that
counting and measuring have their epistemological foundation
in certain empirical—perceptual—facts. In his 1868 paper on
“the facts that lie at the basis of geometry,” Helmholtz had al-
ready argued that the axioms of geometry are not a priori in a
Kantian sense (Helmholtz 1868, 149). In his 1887 essay, he at-
tempts to show the same for the axioms of arithmetic. Or in his
own words:

[I]f the empiricist theory—which I besides others advocate—re-
gards the axioms of geometry no longer as propositions unprovable
and without need of proof, it must also justify itself regarding
the origin of the axioms of arithmetic, which are correspondingly
related to the form of intuition of time. (Helmholtz 1887, 72)

So whereas the axioms of geometry pertain to the concept of
space, the axioms of arithmetic pertain to the concept of time,
which, according to Helmholtz, should be conceived as a form of
intuition. Relying on Hermann Grassmann’s Ausdehnungslehre
from 1878, Helmholtz specifies seven such axioms, among them
the transitivity of equality (i.e., the proposition that if two magni-
tudes are both alike with a third, they are alike amongst them-
selves), the associative law of addition, “(a + b) + c � a + (b + c)”,
and the commutative law of addition, “a + b � b + a”.1 Further-
more, Helmholtz is of the opinion that cardinal numbers can be
reduced to ordinal numbers, for otherwise it would be impossi-
ble to account for the temporal order of the underlying perceptual
sequences (Helmholtz 1887, 75–76). Thus time, as a form of intu-
ition, provides us with a series of ordinal positions, such as first,
second, third, etc., whereby these positions are denominated by
“arbitrarily chosen symbols” (1887, 76), such as one, two, three,
etc.

This procedural conception of numbers (and their signifi-
cance) provides the basis for the systematic claim that the axioms

1For an extended discussion of the contemporary mathematical context of
Helmholtz’s account, see Darrigol (2003, 520–35).

of arithmetic are applicable to concrete objects. More specifically,
according to the view defended by Helmholtz, measurement
amounts to the assignment of numerical values to physical mag-
nitudes. Proceeding from what was to him a crucial assumption
that arithmetic (or the theory of pure numbers) be considered as
“a method constructed upon purely psychological facts” (1887,
75), he first elucidates the basic concepts of his theory of mea-
surement (1887, 88–89). One of these concepts results from the
consideration of objects that are alike in a particular respect.
Helmholtz calls them units and, in a next step, defines a denom-
inate number (benannte Zahl) as the relation of a pure (cardinal)
number and the corresponding unit. Furthermore, by magni-
tudes (Größen) Helmholtz means properties of objects standing
in the relation of being greater or smaller than other properties
of the same kind. The value of a magnitude is, according to Helm-
holtz, expressed by a denominate number, and the procedure by
which the respective denominate number becomes determined
is, Helmholtz holds, the measurement of the magnitude.

These are the basic elements of Helmholtz’s theory of mea-
surement.2 However, a further point needs to be emphasized
in this connection: it is instructive to observe how Helmholtz
attempts to combine his (psychologically motivated) arithmetic-
based metrological conception with his inquiry into the foun-
dations of geometry. In the 1887 essay, under the heading “Dis-
tances between two points,” he discusses the notion, “congruent
coincidence” (1887, 92), which already played an essential role
in his former writings on geometry. Recall that, for Helmholtz,
magnitudes are those properties of objects which are capable
of being distinguished into greater or smaller by comparison
to other properties of the same kind. The central metrological
question, then, is, “what is the objective sense of our expressing
relationships between real objects as magnitudes, by using de-

2For a recent (and very insightful) detailed reconstruction of this theory, see
Biagioli (2016, chap. 4).
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nominate numbers; and under what conditions can we do this?”
(1887, 75; emphasis added). As he makes plain in his discussion
of the notion “congruent coincidence,” the simplest geometrical
structure for which a magnitude is specifiable is the “distance
between a pair of points” (1887, 92). The question of the objectiv-
ity of measurement thus becomes the problem of giving specific
values to distances.

According to Helmholtz, what is needed in the first place
to cope with this problem is a method of comparison, or what he
alternatively calls the “method of likening distance for two pairs
of points” (1887, 92). The application of this method allows the
determination of the likeness of distances. It thereby becomes
possible to account for the fact that two point pairs that are
congruent with a third point pair are also congruent among
themselves. However, in order to determine that distances are
not only like or unlike but stand in the relation of greater or
smaller to each other, the concept of length is needed. Helmholtz
writes:

We make the length of two bounded straight lines alike if the dis-
tance between the end points is alike, thus when the latter can be
placed in congruence, whereby the lines too coincide congruently.
To this extent the concept of length gives something more than
does the concept of distance. (Helmholtz 1887, 93)

Thus, for example, if we have two point pairs a , b and a , c,
which—when considered as parallel straight lines—coincide at
a and which at the same time differ in distance, then either b

falls upon the line ac or c upon the line ab. Accordingly, we
are in a position to determine which of the two lines is smaller
(shorter) or greater (longer) than the other one. In order to do
so, it is not enough to merely compare the distances. Rather, it
must be possible to calculate the greater distance as the sum of
the smaller and their respective difference. In short, a method of
addition must be at hand as well.3

3In the introduction to his lectures on theoretical physics from 1893, Helm-
holtz clarifies this point as follows: “The method of comparison does not

As Moritz Schlick pointed out in his comments on Helm-
holtz’s Epistemological Writings, the conception of “congruent
coincidence” had tremendous impact on the development of
modern physics. Thus Schlick declares:

‘Congruence’ is established by observing the coincidence of ma-
terial points. All physical measurements can be reduced to this
same principle, since any reading of any of our instruments is
brought about with the help of coincidences of observable parts
with points on a scale, etc. Helmholtz’ proposition can therefore
be extended to the truth that no occurrences whatsoever can be as-
certained physically other than meetings of points, and from this
Einstein has logically drawn the conclusion that all physical laws
should contain basically only statements about such coincidences.
(Schlick 1921, 33–34)

Given this assessment, it appears warranted to have a closer look
at the epistemological presuppositions on which the coincidence
concept is based.

3. From Perception to Coincidence

To begin with, Helmholtz’s account of coincidence forms an in-
tegral part of his thinking about geometry and space in general.
As said before, he employed the coincidence concept already in
earlier writings. Thus in his 1870 “Über den Ursprung und die
Bedeutung der geometrischen Axiome,” Helmholtz offered the
following definition of a rigid body:

[T]here must exist, between the coordinates of any two points be-
longing to a fixed body, an equation which expresses an unchanged
spatial relationship between the two points . . . for any motion of
the body, and one which is the same for congruent point pairs,
while point pairs are congruent, if they can successively coincide
with the same point pair fixed in space. (Helmholtz 1870, 15)

provide us with an answer to the question: which of the unequal magnitudes
is the greatest? . . . Only the method of addition determines the concepts of
smaller and greater” (Helmholtz 1903, 36). See, in this connection, also Biagi-
oli (2016, 96–98).
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Given this definition, it can be stated that measuring amounts to
repeatedly applying an identical measuring rod. For a measuring
rod can be characterized as a body on which at least two points
are marked, the separation of which remains constant. These
points in turn are brought into coincidence with corresponding
points of the object to be measured.

Going one step further, Helmholtz claims that all geometrical
measurements rest ultimately on a “principle of congruence”
(1870, 18). This principle of congruence implies the free mobility
of rigid bodies and is as such tightly connected with the as-
sumption that “all measuring instruments which we take to be
fixed, actually are bodies of unchanging form” (1870, 19). Thus
by transporting a measuring rod from one place to another its
non-deformability is presupposed. As concerns measuring in-
struments in general, this means that they “undergo no kinds of
distortion other than those which we know, such as those of tem-
perature change, or the small extensions which ensue from the
different effect of gravity in a changed location” (1870, 19). What
in principle remains unaltered are the coincidences of pairs of
points.

Now the presupposition of the free mobility of rigid bodies
has, according to Helmholtz, its epistemological foundation in
certain facts of perception. In his own words:

When we measure, we are only doing, with the best and most
reliable auxiliary means known to us, the same thing as what
we otherwise ordinarily ascertain through observation by visual
estimation and touch, or through pacing something off. In the latter
case, our own body with its organs is the measuring instrument
which we carry around in space. (Helmholtz 1870, 19)

So the crux of the matter is that the assumption of the free mo-
bility of rigid bodies in contexts of measurement has its origin
in our own bodily movements and the respective perceptual ex-
periences. That is, the assumption of free mobility is conceived
of as being derivable from our experience of moving in arbi-

trary directions: up to, away from and around the objects “in”
space. On the whole, any apriorist (Kantian) understanding of
space and spatial perception seems to be ruled out by such a ma-
neuver. Consequently, the question to be raised next is whether
Helmholtz’s discussion of the connection between perception
and coincidence entails a thoroughly empiricist understanding
of the epistemology of measurement.

4. Was Helmholtz an Empiricist?

It is interesting to see that the first reactions to Helmholtz’s
theory of measurement, as he had presented it in his 1887 es-
say, came from the side of contemporary mathematicians. Most
of these reactions were negative. Thus, for example, Gottlob
Frege explicitly rejected Helmholtz’s attempt at a psychological
grounding of arithmetic, arguing for a purely logical founda-
tion instead. Richard Dedekind went in the very same direc-
tion, claiming that “arithmetic is part of logic” and that the
concept of number is “entirely independent of the notions or in-
tuitions of space and time” (Dedekind 1888/1901, 31). Perhaps
the most vehement reaction came from Georg Cantor, according
to whom . . .

Helmholtz and Kronecker plead the extreme empirico-psycho-
logical standpoint with a vigor which one would scarcely deem
credible, if it did not here appear twice embodied in flesh and
blood . . . With these investigators, numbers shall be signs first and
foremost, but not indeed signs for concepts that relate to sets, but
symbols for things counted by the subjective number process. (Cantor
1887, 382; quoted from Darrigol 2003, 558)

The mathematician Leopold Kronecker had indeed defended a
view of arithmetic that was rather close to the conception pro-
posed by Helmholtz. Kronecker’s essay “Über den Zahlbegriff”
(1887) appeared in the same volume as Helmholtz’s “Zählen
und Messen,” and it was Cantor’s conviction that both Helm-
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holtz and Kronecker represented a brute “academic-positivistic
skepticism” (Cantor 1887, 383; quoted from Darrigol 2003, 558)
that prevented an adequate understanding of the status of num-
bers and of arithmetic in general.

In view of these objections it appears plausible that Helm-
holtz, in fact, was an empiricist (or even positivist). Further
evidence for this diagnosis is provided, not only by Helmholtz’s
own characterization of his theory as “empiricist” (see the quo-
tation at the beginning of Section 2), but also by his celebrated
thought experiment with the mirrored sphere, which pertains
directly to the realm of geometry (see Helmholtz 1870, 20). As is
well known, Helmholtz, in this thought experiment, lets us think
of the image of the world in a convex mirror. The inhabitants of
this world would, from our perspective, perceive straight lines
as curved and rigid motions as distorted. The reflected bod-
ies and measuring rods in the mirror image would appear as
expanding and contracting along the curvature of the mirror.
However, the respective measuring outcomes would, from the
perspective of the inhabitants of the mirror world, agree with
ours. They would think of their own space as Euclidean, and
our space, on the other hand, would appear to them as that of
a convex mirror. That is, there seems, according to Helmholtz’s
thought experiment, to be no way to determine which of the
two perspectives—our own or the one of the inhabitants of the
mirror world—is the “correct” one. Since all bodies (including
the supposedly rigid measuring rods) in the mirror world are
equally distorted, the respective congruent coincidences would re-
main unchanged. Yet, as soon as we reflect on the underlying
laws of mechanics, a choice between the two perspectives can ob-
viously be made. It is for this reason that Helmholtz comments
on the situation in the thought experiment as follows:

[I]f the men of the two worlds could converse together, then neither
would be able to convince the other that he had the true and the
other the distorted situation. I cannot even recognise that such a

question has at all any sense, as long as we introduce no mechanical
considerations. (Helmholtz 1870, 20)

In short, the laws of mechanics play, for Helmholtz, the decisive
role for empirically determining the “true” geometry. Accord-
ingly, geometry and mechanics are to be seen as inseparable
from each other, and exactly this seems to entail an empiricist
conception.4

However, this sort of interpretation is somewhat controver-
sial (if not to say perplexing). As Robert DiSalle very aptly re-
marks, “precisely what distinguished Helmholtz’s empiricism
from its more naïve predecessors—his appreciation of the phys-
ical meaning of our concepts of congruence and straightness—
invited its reinterpretation as conventionalism” (DiSalle 2006a,
125). What exactly is at stake? Is there any crucial difference be-
tween an empiricist and a conventionalist conception of geome-
try and measurement? And if so, what would be the systematic
consequences of such a contraposition of views?

First of all, it is important to realize that the putative empiri-
cal character of the principles of geometry appeared to rest on
a problematic premise. More precisely, there seemed to be an
element in Helmholtz’s conception that lay beyond empirical
control. Recall that, for Helmholtz, it was a matter of fact that
rigid bodies are capable of being moved around in space without
changing their shape or dimension. If a body failed to satisfy this
condition, then, Helmholtz apparently presupposed, this could
be empirically determined by comparing that body with another
body that indeed fulfilled the condition of being rigid. How-

4Robert DiSalle attributes to Helmholtz a “relatively sophisticated empiri-
cism” and specifies it as follows: “Before Helmholtz, the empiricist alternative
to Kant was a naïve one, based on the idea that geometrical postulates are ar-
rived at by straightforward induction . . . . Helmholtz saw a subtler connection
between geometry and experience, not directly of the postulates of geometry
but of underlying physical facts” (DiSalle 2006a, 124). As we will see in a mo-
ment, this assessment has to be qualified in light of the subsequent reception
of Helmholtz’s alleged “relativization of geometry.”
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ever, an infinite regress seemed to be inevitable under that very
presupposition: Comparing one body with another obviously
necessitated to avail a further body with the property of being
rigid, this further body standing in need of being compared with
still another “actually” rigid body, and so on. So, how can this
regress be stopped? As is well known, it was Henri Poincaré who
gave the answer that Helmholtz’s allegedly empirical geometri-
cal principles were, in fact, definitions or, better, stipulations. Ac-
cordingly, conventionalism—rather than empiricism—seemed
to follow (see, in this connection, the respective discussion in
DiSalle 2006b, 79–97).

Yet an interpretation of geometry and measurement along
purely conventionalist lines runs the risk of losing touch with
what can be empirically determined. Why, then, not combine
empiricism with conventionalism? Exactly this was the strategy
adopted by Schlick. In one of his comments to Helmholtz’s 1870
geometrical paper he pointed out:

What kind of sense is there in saying that a body is actually rigid?
According to Helmholtz’s definition of a fixed body . . . , this would
presuppose that one could speak of the distance between two
points ‘of space’ without regard to bodies; but it is beyond doubt
that without such bodies one cannot ascertain and measure the
distance in any way. . . . If the content of the concept ‘actually’ is
to be such that it can be empirically tested and ascertained, then
there remains only the expedient . . . to declare those bodies to be
rigid which, when used as measuring rods, lead to the simplest
physics. . . . Thus, what has to count as ‘actually’ rigid is then not
determined by a logical necessity or intuition, but by a convention,
a definition. (Schlick 1921, 34)

As can be easily inferred from this comment, Schlick embraced
the Poincaréan conventionalist “expedient.”

However, at the same time, Schlick promoted an empiricist—
and likewise “realistic”—reading of the relationship between
perception and coincidence in Helmholtz’s sense. Thus in his
1918 Allgemeine Erkenntnislehre he established what he called the

“method of coincidences” (Schlick 1918/1974, 272). It was this
method which already figured prominently in his 1917 Raum
und Zeit in der gegenwärtigen Physik. There, he described it as
follows:

In order to fix a point in space, we must in some way or other,
directly or indirectly, point to it: we must make the point of a
pair of compasses, or a finger, or the intersection of cross-wires,
coincide with it (i.e. bring about a time-space coincidence of two
elements which are usually apart). Now these coincidences always
occur consistently for all the intuitional spaces of the various senses
and for various individuals. It is just on account of this that a
‘point’ is defined which is objective, i.e. independent of individual
experiences and valid for all. . . . Upon close investigation, we find
that we arrive at the construction of physical space and time by
just this method of coincidences and by no other process. (Schlick
1917/1979, 262–63)

The idea is that by applying the method of coincidences the psy-
chological description of subjective spatial perception and the
physical description of objective spatial structures are brought
together. According to Schlick, we construct the objective physi-
cal ordering on the basis of singularities in our various perceptual
spaces. These singularities are nothing else but concrete sections
of the whole perceptual situation. To use one of Schlick’s exam-
ples: when I see the tip of my pencil touch my finger, I have two
perceptual singularities at the same time, one in my visual field
and one in my tactile field. Both fields have a completely differ-
ent intuitive (qualitative) spatiality: my visual perception has no
intuitive relation to my tactile perception. By the method of co-
incidences, however, I bring both fields into relation. I construct
a single nonintuitive ordering which contains both the pencil and
my finger. Completely abstracting from the qualitative peculiar-
ities of my various perceptual spaces I thereby generate a single
point in objective—physical—space.

There has indeed already been extensive work on Schlick’s
method of coincidences and its relation to Helmholtz’s theory
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of perception and measurement (see, for example, Friedman
1997, 25–28; Pulte 2006, 198–99; Neuber 2012a, 174–77; Oberdan
2015, 41–42). For the present concerns, it may suffice to note
that Schlick saw a close connection between the method of co-
incidences and Einstein’s general theory of relativity. Hence, he
concluded that by taking seriously his own analysis of space
and time one will encounter “just that significance of space and
time which Einstein has recognized to be essential and unique
for physics, where he has established it in its full right” (Schlick
1917/1979, 262–63).5 And, it should be added, it is exactly here
that Schlick locates the heritage of Helmholtz’s alleged empiri-
cism.

However, as we have seen before, Schlick does not agree with
Helmholtz’s definition of a rigid body. According to Schlick,
that definition—which fundamentally contains the assumption
of congruence—is blatantly circular. Or, in his own words:

This definition reduces congruence (the equality of two tracts) to
the coincidence of point pairs in rigid bodies ‘with the same fixed
point pairs in space’ and thus presupposes that ‘points in space’ can
be distinguished and held fixed. This presupposition was explicitly
made by Helmholtz . . . , but for this he had to presuppose in turn
the existence of ‘certain spatial structures which are regarded as
unchangeable and rigid’. Unalterability and rigidity . . . cannot for
its own part again be specified with the help of that definition of
congruence, for one would otherwise clearly go round in a circle.
For this reason the definition seems not to be logically satisfactory.
(Schlick 1921, 31)

5Einstein’s own account of the importance of coincidence can be found in
his 1916 seminal paper “Die Grundlage der allgemeinen Relativitätstheorie.”
There he writes: “All our space-time verifications invariably amount to a deter-
mination of space-time coincidences. If, for example, events consisted merely
in the motion of material points, then ultimately nothing would be observable
but the meeting of the material points of our measuring instruments with
other material points, coincidences between the hands of a clock and points
on the clock dial, and observed point-events happening at the same place at
the same time” (Einstein 1916/1923, 117). For an elaboration of this assertion,
see Howard (1999).

One escapes the circle, Schlick continues, “only by stipulating
by convention that certain bodies are to be regarded as rigid,
and one chooses these bodies such that the choice leads to the
simplest system of describing nature” (1921, 31). Here again, it is
conventions that provide the alternative to Helmholtz’s original
conception.

To be sure, empiricism plays an essential role for Schlick’s
account of space and spatial measurement. But it must be seen
that the empiricist component is significantly qualified by the in-
tegration of conventions in the Poincaréan sense. In order to
determine the rigidity of bodies, we must, according to Schlick,
rely on conventions. But then rigidity—as well as congruence—
is dependent on what we are doing (and not on what there is).
In short, if one follows the interpretation provided by Schlick,
then Helmholtzian and Poincaréan elements must be combined
in such a way, that a sophisticated—“conventionalized”—form
of empiricism results.

5. The (neo-)Kantian Predicament

It was Alberto Coffa who initiated the more recent discussion
about Schlick’s appropriation of Helmholtz’s theory. Accord-
ing to Coffa, “Schlick was the first to attempt a systematic for-
mulation of the picture of knowledge implicit in Helmholtz’s
writings” (Coffa 1991, 171–72). In Coffa’s view, Schlick’s con-
ventionalized empiricism in fact contributed to an adequate
reinterpretation of Helmholtz’s original position. However, that
diagnosis did not remain uncontested. Michael Friedman, for
example, thinks that Coffa and other commentators “have been
far too quick . . . simply to take Schlick’s attempt at appropriation
[of Helmholtz’s ideas] at face value” (Friedman 1997, 44 n 14).
And, to quote another example, Thomas Ryckman is of the opin-
ion that one must sharply distinguish between “Helmholtz and
Schlick’s Helmholtz” (Ryckman 2005, 67). So, one may ask, what
is the alluded un-Schlickean alternative?
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Following Friedman’s view it is tempting to say that the alter-
native is through and through Kantian. More carefully speaking,
it is the apparent transcendental element in Helmholtz’s theory
which in Friedman’s reading plays the essential role. Conse-
quently, the free mobility of rigid bodies required for congru-
ence should, on this reading, be understood as the basic fact or,
more aptly, the condition of the possibility of spatial measurement.
And indeed: according to Helmholtz, one must distinguish be-
tween space, on the one hand, and spatial measurement, on
the other. Whereas space forms part of theoretical knowledge,
spatial measurement forms part of the concrete practice of em-
pirical science. The axioms of geometry, Helmholtz maintains,
are embodied in the system of spatial measurement. Therefore,
he thinks that they are not synthetic a priori. On the other hand,
space itself—and with it the free mobility of rigid bodies—is
for Helmholtz the precondition of all measurement and, conse-
quently, of the axioms of geometry as well. Or as Helmholtz
himself famously put it: “Space can be transcendental without
the axioms being so” (1977, 149).

So the assumption of the free mobility of rigid bodies forms
part of our concept of space as a precondition of all measure-
ment. Space—via its overarching feature of free mobility—is for
Helmholtz “a given form of intuition, possessed prior to all ex-
perience” (Helmholtz 1870, 124), and therefore transcendental.
Concerning the axioms of geometry, Helmholtz recognized the
possibility of different (both Euclidean and non-Euclidean) sys-
tems of such axioms, thereby being an empiricist in so far as he
thought that the decision about which system physically “fits”
is a matter of empirical discovery.6 Thus, on the whole, it can be
said that “Helmholtz argued against the Kantian philosophy of
geometry while retaining an inherently Kantian theory of space”
(Ryckman 2005, 73–74).7

6See, for example (and especially), Helmholtz (1868, 25): “[S]uch a system of
propositions is given an actual content, which can be confirmed or refuted by
experience, but which for just that reason can also be obtained by experience.”

7In the same vein, Helmut Pulte speaks of Helmholtz’s idea of an “a priori-

Now the problem with this line of interpretation is that it
immediately prompts the question whether Helmholtz did con-
tradict himself. To be sure, on Ryckman’s reading, Helmholtz’s
definition of rigid bodies definitely does not amount to a stip-
ulation, but must be considered as a constraint imposed by the
a priori form of spatiality itself. However, the problem arises
as soon as this a priori form is equated with the concept of in-
tuition. As Francesca Biagioli has recently made plain, “Helm-
holtz argued against the Kantian philosophy of geometry be-
cause he did not admit a meaningful use of ‘pure intuition’ as
distinguished from psychological intuition” (Biagioli 2016, 16).
Likewise Joel Michell, in his essay on the origins of the “repre-
sentational” theory of measurement, already pointed out that
“Helmholtz’s reinterpretation of Kant . . . attempts to locate the
Kantian forms of intuition and categories within the nervous
system. It is the nervous system which constructs experience”
(Michell 1993, 190). So we are obviously faced with some sort of
(neo-)Kantian predicament: space and with it the free mobility of
rigid bodies is, according to Helmholtz, to be seen as an a priori
form of intuition; on the other hand, this form of intuition is
analyzed in terms of empirio-perceptual psychology alone. But
then it cannot be a priori in the Kantian sense anymore. In short,
the (neo-Kantian) predicament entails the overtly un-Kantian
strategy of naturalizing both the transcendental and the a priori.8

rigidity” (Pulte 2006, 199). And Liesbet De Kock points out that “Helmholtz’s
criticism of Kant’s analysis of (pure) intuition did not amount to a categorical
rejection of the a priori altogether” (De Kock 2016, 31).

8As Liesbet De Kock (2016, 27 n 40) makes clear, this sort of “physiological
neo-Kantianism” provoked the critical reaction by Hermann Cohen (and other
members of the Marburg School of neo-Kantianism). The essential tension
lurking in the background is described by de Kock as follows: “Helmholtz’s
nativist interpretation of the a priori in terms of physiological organization
transforms it from a formal condition to an empirically verifiable fact. Hence,
the necessity of the a priori as a constitutive condition of experience is dissolved
into the contingency of the empirical subject, which is why Kant . . . explicitly
set this kind of ‘physiology of understanding’ apart from his critical project”
(2016, 27 n 40). However, it should be seen that while Helmholtz was writing,

Journal for the History of Analytical Philosophy vol. 6 no. 3 [87]



Admittedly, Ryckman is entirely aware of the problems as-
sociated with this strategy. In fact, his own view of the matter
is not committed to the naturalistic paradigm. But it is highly
questionable whether his (and Friedman’s) Kantian reading of
Helmholtz’s theory indeed reveals the “real” Helmholtz. In my
view, the spirit of Helmholtz’s theory was significantly less Kan-
tian than suggested by Ryckman (or by Friedman). Yet this does
not necessarily mean that the only way to go is following Schlick
(and Coffa) by taking the Poincaréan conventionalist “expedi-
ent.” A more realistic reinterpretation is available, and I shall in
what follows indicate what this reinterpretation amounts to.

6. Kaila, Helmholtz, and Metrological Structural
Realism

Historically, my central point of reference is a monograph by
Eino Kaila who, early in his career, defended a certain form
of “critical” realism and, later on, attempted to combine this
point of view with the fundamental tenets of logical empiri-
cism.9 The monograph in question is titled On the Concept of
Reality in Physical Science which appeared originally in German
in 1941. Chapter V of this small book is devoted to the theory
of measurement which, according to Kaila, is “the nucleus of

it was an entirely open question how best to interpret Kant on the question
of naturalism. E.g., neo-Kantians of the “first generation” such as Friedrich
Albert Lange (1866) thought a psychological/physiological description of cer-
tain structures of the nervous system was precisely how one could provide
scientific confirmation for Kant’s theory of the a priori. Exactly this, though, was
contested by Cohen and other neo-Kantians of the “second generation” such
as Ernst Cassirer who, explicitly referring to Lange’s “genetic” account, spoke
of “the deficiencies of the empirico-physiological interpretation of Kantian
Apriorism” (Cassirer 1929, 215). More comprehensive discussions of the at-
tempt to naturalize the Kantian a priori are to be found in Allison (1995) and in
Patton (2009). For an extended discussion of Cohen’s reception of Helmholtz’s
interpretation of Kant, see Biagioli (2016, 71–77).

9For an instructive overview of Kaila’s philosophical development, see von
Wright (1979). See further Niiniluoto (1992).

the general theory of physical science” (Kaila 1941, 157). As he
points out, there are two opposing views within the theory of
measurement: a “conventionalist” (“positivist”, “formalistic”),
on the one hand, and an “empiricist” (“realist”) on the other”
(1941, 157). The first view is, according to Kaila, represented by
the writings of Poincaré and especially Ernst Mach, the second
by the writings of Helmholtz and Norman Robert Campbell.

Now the crucial point in Kaila’s own conception is that it is
based on the notion of invariance. “In knowledge,” he contends,
“we are always concerned with ‘invariances’ alone” (1941, 131).
Accordingly:

The aim of exact science is to discover the higher invariances of the
domain of experience in question. We shall show that “physico-
scientific reality” (as to its content) consists in nothing other than
the system of the higher invariances of the everyday physical world
and thus (in the last analysis) “immediate experience”. (Kaila 1941,
152)

The connection with the theory of measurement becomes evi-
dent, when Kaila discusses the two opposing views. The conven-
tionalist view, he points out, implies that measurement consists
in the mere imposition of numerals onto phenomena, whereas
the empiricist (realist) view initially contends that the correla-
tion between phenomena and numerals must be discovered by
executing measurements. Kaila writes:

According to the conventionalist view, . . . one starts in every mea-
surement from arbitrary stipulations of some kind and finds, if one
is lucky, by assigning the measured numerical values to the phe-
nomena according to the conventions adopted, some kind of lawful
dependencies of the measured values; according to the empiricist
view, one starts (in all theoretically important cases) conversely
from the existence of some kind of lawful relationship which first
is only qualitatively known and searches then for a principle of cor-
relation of the measured numerical values by means of which this
lawful relationship can be quantitatively expressed. (Kaila 1941,
158)
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The conventionalist consequently aims at a convention-based
most economical description of measurable data, while the em-
piricist is looking for invariant and, at the same time, quantita-
tively expressible relationships among such data. The decisive
contrast, then, is to be found between economy, on the one hand,
and invariance, on the other.10

On the whole, Kaila rejects the conventionalist standpoint
since, as he maintains, measurement is more than a mere arith-
metical method for the economical designation of properties.
Hence he repeatedly declares the principle of economy as being
merely an aspect (or consequence) of the more universal and
pervasive principle of invariance (Kaila 1941, 154, 191–92).11

10In current philosophy of science, empiricism is often opposed to realism.
In Kaila’s case, however, both currents are reconcilable with each other: while
empiricism enters the picture by taking seriously the epistemology of measure-
ment, realism is needed for accounting for the ontological status of concrete
measurement outcomes. More precisely, it is the prominent role Kaila ascribes
to what he programmatically calls the “principle” of invariance (Kaila 1941,
chap. II) by which his realism is driven. In the 1936 monograph Über das System
der Wirklichkeitsbegriffe, he explicitly declares that “[t]he different levels of re-
ality . . . correspond to different degrees of invariance” (Kaila 1936, 102). In the
1941 contribution, he coins the related slogan “The real is what is in some respect
(relatively) invariant” (1941, 185). This is what he later called the “relativization
of reality” (1960, 271). Hence, the greater the invariance of a given structure,
the greater its reality; furthermore, whatever possesses greater reality is, ac-
cording to Kaila, of greater generality, and thus more lawlike. Accordingly,
by executing measurements quantitative systems of numbers are correlated
with—and at the same used to represent—qualitative lawful relationships. The
contrast to the conventionalist point of view, then, is that these qualitative
lawful relationships are supposed to exist independently of the measurement
situation itself. From the perspective of, say, Mach this would be nothing
but a superfluous metaphysical assumption. In short, both points of view are
opposed as to the question of “ontological commitment.”

11To be sure, for Mach, certain relative invariances in the phenomena are
precisely what afford cognitive economy. However, the contrast is a substantial
one: a realist (empiricist) like Kaila thinks science aims to discover any and
all invariances that exist among the phenomena; whereas a conventionalist
(positivist) like Mach thinks science aims to discover only those invariances
that afford us some cognitive economy. It is for this reason that Kaila points

This is not the place to go into the details of Kaila’s metrolog-
ical conception.12 However, it is nonetheless important to elabo-
rate on what exactly Kaila means by “empiricism” (as opposed
to “conventionalism” and equated with “realism”), and how
Helmholtz fits into the resulting programmatic picture. The first
thing to realize in this connection is that Kaila heavily relies on
Helmholtz’s 1887 paper, when he analyzes the notion of magni-
tude. A magnitude, according to Kaila, is a denominate number,
usually a fraction, associated with a certain physical property
(Kaila 1941, 185–86). Furthermore, Kaila sharply distinguishes
between “topological” and “metrical” determinations. Whereas
topological determinations merely determine at what point two
properties are attributed equal or different numerical values,
metrical determinations determine the point at which the dif-
ference between two properties is equal to or different from two
other (tokens of the same type of) properties. The fact that the
temperature of boiling water is higher than that of freezing wa-
ter, for example, is a topological determination, whereas the fact
that the rise of temperature by, say, 1° at different places on a
scale means the same temperature increase is a metrical deter-
mination. Thus the Helmholtzian principle of congruence plays an
essential role in the latter case: by way of metrical determina-
tions it becomes possible to specify that “this here is to be equal
to that there.” Consequently, the subdivision of the respective
scale is all-decisive. It allows for the further specification of “how
the different positive and negative fractions are to be assigned
to the different points on the scale” (1941, 186).

Given these Helmholtzian-inspired considerations, it be-
comes possible to make the point that the sort of empiricism de-

out that “science is not a minimum problem but a maximum problem. It is not a
‘parsimonious economy’ but a bold adventure, not so much an unperturbed
enjoyment of a ‘stable world-picture’ as a fight against perceptual shocks to
which the theoretical mind exposes itself by its generalizations” (Kaila 1941,
154).

12For an extended discussion of Kaila’s theory of measurement, see Neuber
(2012b).
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fended by Kaila is more realistic (and hence less conventionalist)
than the one defended by Schlick. Recall that the conventionalist
“expedient” was the point where Schlick divorced himself from
Helmholtz’s theory of measurement. Kaila, on the other hand,
is eager to shield this theory from “conventionalization.” The
essential step in that direction is marked by his distinguishing
“essential” from “unessential” conventions (Kaila 1941, 196). As
already noted, Kaila rejects the conventionalist account of mea-
surement. This, however, does not mean that he denies that
conventions sometimes play a significant role in science—the
distinction, therefore, between “essential” and “unessential”:
for physics, whether distances are measured in miles or in kilo-
meters is immaterial. Opting for one or the other of these two
systems is, according to Kaila, a mere incidental convention.
Miles can be replaced by kilometers and nothing changes with
respect to the relational invariance of distances. Accordingly, the
respective conventions are equivalent “from the standpoint of
the principle of invariance” (1941, 187). By contrast, there is a
substantial difference as to whether or not spatial relations are
represented in Euclidean or in non-Euclidean coordinates. What
in one coordinate system is invariant may turn out as variant in
the other coordinate system. Hence both systems are based on
essential conventions of measurement. They are, in other words,
different from the standpoint of the principle of invariance.

That being said, Kaila’s realistically motivated metrological
conception may be summed up as follows: its central objection
to the conventionalist is that the latter fails to distinguish both
between metrical and topological determinations and between
essential and unessential conventions. The conventionalist, ac-
cording to Kaila, thus treats metrical determinations as if they
were topological determinations, and consequently fails to ac-
knowledge the pivotal status of the congruence concept with
reference to the actual practice of measurement.13 Moreover—

13It is in this context that Kaila writes: “Indeed one can say that the metric is
a differential topology. A metric is given when not only the initial elements but

and intimately related to this—the conventionalist typically con-
flates essential and unessential conventions, or else allows for
entirely arbitrary stipulations, that is, in Kaila’s understanding,
unessential conventions. Kaila’s response to this, in his estima-
tion, erroneous theory is best summed up by his claiming:

[O]nly such a property can be measured with respect to which there
exist lawful relationships of a definite kind, where then the assign-
ment of numerical values is done in such a way that these lawful
relationships find expression in the relations of the numerical val-
ues. This principle uniquely prescribes all essential measurement
conventions. (Kaila 1941, 192)

Here it must be noted firstly that invariant (lawful) systems of
relations, that is, structures, are accessed by executing measure-
ments insofar as they are made quantitatively expressible by way
of their being assigned numerical values. Conversely, it is such
structures that effectively confine the range of measurable prop-
erties in a lawful and, to this extent, ontologically binding way.
Consequently, measurement is dependent on laws of nature and
not, as the conventionalist would have it, on mere unessential
conventions. Secondly, Kaila would not go so far as to assert that
what he designates essential conventions possess the status of
Kantian synthetic judgments a priori. Following Kant, then, they
would figure as conditions of the possibility of experience. Yet,
according to Kaila, the reverse is the case: essential conventions
are determined empirically by correlating qualitative lawful re-
lations with relations of numerical values. It is this very cor-
relation which “uniquely prescribes all essential measurement
conventions” and which, in the last analysis, necessitates the
quantitative interpretation of theoretically stipulated systems of
descriptions. Hence, the assumption of synthetic judgments a
priori finds no place in Kaila’s metrological conception.14

also the differences of these elements, the differences of the differences, etc.,
can be ordered. Then, but only then one has also attained the full concept of
congruence” (1941, 196).

14Interestingly enough, for Kaila it was Helmholtz who “was perhaps the
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All of this leads to a programmatic outlook that might be la-
beled metrological structural realism. This point of view focuses
essentially on the relationship between measurement, on the
one hand, and invariant systems of relations, that is, structures,
on the other. As for the question of how perception and coinci-
dence connect in this account, the following answer can now be
given. Perception, as Kaila would have it, is the essential start-
ing point for quantitatively establishing invariant structures. It
is these invariant structures that determine all measurement
procedures. Yet in order to grasp the full empirical content of
concrete measurement outcomes, a method for fixing the mea-
sured quantities is needed. And this is where the concept of
coincidence comes in. For it is congruent coincidences by which
we proceed from the initial perceptual situation to a physically
objective ordering. Since congruent coincidences themselves are,
according to Kaila, in the first place metrical relations and these
metrical relations range over both the immediate perceptual and
the non-perceptual realm, the resulting ontological framework
would be a structural realist one.

Up to this point, Schlick—who, as it were, invented the
“method” of coincidences—would agree with Kaila. However,
the difference becomes pronounced as the concept of rigid body
is taken into account. According to Schlick, rigidity is based on
what Kaila would call an unessential convention. Kaila himself,
on the other hand, sees—like Helmholtz—a more intimate re-
lation between rigidity and (other) physical facts. In his view,
“physico-scientific space . . . is obtained . . . through exact metri-
cal determinations and . . . , therefore, by definition has a definite
metric” (Kaila 1941, 212). Consequently, Hans Reichenbach’s
(1928/1958, 16) speculative talk of “universal forces” is explic-
itly rejected by Kaila. “From our point of view,” he writes . . .

first to realize that the Kantian a priori philosophy . . . is devoid of content”
(1941, 231).

. . . the results of measurements by means of rigid bodies determine
the geometry of physico-scientific space just as uniquely and pre-
cisely as physical measurements characterize any other structure.
Should a physical circle with a physical diameter be moved about
in space and should it turn out in the process that the diameter is
sometimes too short, sometimes too long, then this is an unequiv-
ocal indication that the Gaussian curvature of physico-scientific
space is variable—provided of course that no physical forces are
responsible for the distortion, i.e., that this distortion is exhibited
uniformly in all materials. Since the congruence relations used in
spatial measurement would not be disturbed by a distortion of this
kind, we cannot introduce any unmeasurable ‘universal forces’.
(Kaila 1941, 212)

Helmholtz would surely have agreed: the scope of the conven-
tional is significantly restricted by Kaila’s principle of invariance,
and the problem of rigid bodies finds its solution within the
framework of a definite geometry.15

Coming eventually back to the essential point of Kaila’s whole
account, the question should be readdressed of how exactly,
on Kaila’s view, measurement depends on lawful systems of
relations. What Joel Michell, in an influential article from 1993,
called the “representational theory” of measurement might be
quite helpful here. According to this theory:

The objects measured, their properties and the relationships be-
tween them are described as qualitative, to distinguish them from
numbers and numerical relationships, which are described as quan-
titative . . . . Such qualitative structures, however, may be similar (i.e.
isomorphic or homomorphic) to quantitative (numerical) struc-
tures. It is in virtue of this structural similarity that numerical
systems may be used to represent qualitative empirical systems.
(Michell 1993, 189)

Exactly the same is implied by Kaila’s point of view: when ar-
guing for what he calls “empiricism,” the decisive aspect in

15For reasons of space the relation between Helmholtz and the program of
a definite geometry cannot be discussed here. But see Carrier (1994).
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his argumentation is that a principle of correlation must be at
work. Accordingly, numerical systems are employed in order
to quantitatively express (“pre-metrologically” existing) quali-
tative structures. Numerical systems, in other words, fulfill a
representational function. However, the effectiveness of this rep-
resentational function is by no means a matter of chance. It
rather presupposes qualitative structures of a lawful kind. For
otherwise it would remain entirely unclear why measurements
are repeatable and, when successful, entailed by constant out-
comes.

That being said, the contrast to the conventionalist point of
view can be made plain again. For example, Mach in his Prin-
cipien der Wärmelehre (1896) claimed that temperature is “noth-
ing but a characterization, designation, of the thermal state by a
number. This temperature number has solely the property of an
inventory number by virtue of which one can recognize the same
thermal state” (Mach 1896/1986, 196). Kaila opposes this claim
by arguing that by ascribing certain numerals to certain proper-
ties these properties are by no means measured. Drawing on an
analogy introduced by Campbell (1928, 1), Kaila points out that
“[w]hen telephones are assigned certain numbers they are not
measured, any more than a street is measured by the fact that the
houses are assigned numbers. The difference between such as-
signments and measurements is that the former are completely
arbitrary” (Kaila 1941, 187). In order to restrict this kind of ar-
bitrariness, the properties in question must, according to Kaila,
“satisfy lawful conditions of a specific kind” (1941, 187). Only
if this criterion is fulfilled, Kaila goes on, is it then appropri-
ate to speak of the “true measure of temperature.” Accordingly,
he is convinced that “the development of the theory of tem-
perature was in fact based on the presupposition preceding all
measurement that a certain thermal quality is constant” and that
“the development of the concepts of thermometric measures be-
comes intelligible only in view of this principle of invariance”

(1941, 159). In short, invariance and lawfulness go hand in hand
in Kaila’s metrological conception.16

7. Conclusion

In this paper, I have argued that the prevailing conventional-
ist and neo-Kantian reinterpretations of Helmholtz’s theory of
measurement can be challenged by a more realistic reading. On
this more realistic reading, the relation of perception and coinci-
dence is reconstructed in a setting of invariance and structure. It
is only within this setting that the empirical content of concrete
measurement outcomes can be fully accounted for. Moreover,
it has been shown that Kaila’s appropriation and elaboration of
Helmholtz’s theory of measurement allows one to see in Helm-
holtz an important forerunner of what I discussed under the la-
bel “metrological structural realism.” The spirit of Helmholtz’s
theory is significantly closer to this particular point of view than
to both neo-Kantianism and conventionalism. To be sure, there
are indeed some neo-Kantian elements in Helmholtz’s theory.
But these neo-Kantian elements are, in the last analysis, neg-
ligible. A structural realist interpretation appears as the more
natural one.

Admittedly, the further development of the suggested metro-
logical structural realism is a challenge of its own. But I dare say
it is worth the effort.17

16In a very similar vein, Eugene Wigner, in his oft-quoted Symmetries and
Reflections, declares: “To be touchstones for the laws of nature is probably the
most important function of invariance principles” (Wigner 1967, 47).

17For the outlines of a more diachronic (systematic) exposition of what is
implied by “metrological structural realism,” see Neuber (2017).
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