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Abstract 

A cognitive architecture specifies a computational 
infrastructure that defines the various regions/functions 
working as a whole to produce human-like intelligence [1]. 
It also defines the main connectivity and information flow 
between various regions/functions. These functions and the 
connectivity between them in turn facilitate and provide 
implementation specifications for a variety of algorithms. 
Drawing inspirations from Computational Science, 
Neuroscience and Psychology, a top-level cognitive 
architecture which models the information processing in 
human brain is developed. Three key design principles [2] 
inspired by the brain – Hierarchical Structure, Distributed 
Memory and Parallelism – are incorporated into the 
architecture. A prototype cognitive system is developed and 
it is able to bring to bear different types of knowledge to 
solve a problem. It has been applied to object recognition in 
images. The cognitive system is able to exploit bottom up 
perceptual information, top down contextual knowledge and 
visual feedback in a way similar to how human utilizes 
different knowledge to recognize objects in images. 

Introduction  

A cognitive architecture specifies a computational 
infrastructure that defines the various regions/functions 
working as a whole to produce human-like intelligence. It 
also defines the main connectivity and information flow 
between various regions/functions. These functions and the 
connectivity between them in turn facilitate and provide 
implementation specifications for a variety of algorithms. 
There exist a number of excellent cognitive architectures 
but many have overlooked the importance of biological 
validity. 
 Many artificial intelligence (AI) techniques and 
computational theories have been developed over the last 
few decades. However, the vast majority of them focus on 
modeling only specific aspects of human intelligence. 
Hallmarks of human intelligence, such as robustness and 
adaptability, are usually “programmed” into systems and 
not as outcomes. To achieve human-like intelligence, we 
need to look into the seat of human intelligence – the 
human brain. We need to understand the different parts of 
the human brain, how they are connected, what kind of 
information they process and how they process it. 
Advances in medical science, especially Neuroscience, 
over the years have allowed us to answer some of these 
questions. With the help of more sophisticated measuring 

devices such as functional Magnetic Resonance Imaging 
(fMRI), Neuroscience has provided some insights into this 
area. Although current understanding of the biological 
aspects of human brain is still quite limited, we can draw 
inspirations from what can be observed about it. In other 
words, we can try to model the behaviors of Man, and to a 
certain extent, the human brain. It is in this aspect that 
psychology plays a part. 
 Drawing inspirations from the fields of Computational 
Science, Neuroscience and Psychology, a top-level 
cognitive architecture is developed. Various key parts of 
the human brain and their functions are identified and 
included in the design. Some of the desired behaviors are 
set as design principles. The cognitive architecture also 
models information processing in the human brain. The 
human brain is able to process information in parallel and 
is able to bring to bear different types of knowledge, 
distributed throughout the brain, to solve a problem.   
 The top-level cognitive architecture design and the 
design principles will be presented here, together with a 
description of a prototype cognitive system developed 
based on this design.  This is followed by a discussion on 
how the cognitive system has been applied to object 
recognition in images, using contextual knowledge and 
visual feedback, in a way similar to how a human 
recognizes objects in images. 
 

Top-level Cognitive Architecture 

Figure 1: Top-level Cognitive Architecture Design 



Core Modules 

Five core regions in the human brain, namely, Frontal 
Cortex, Perception, Limbic System, Association Cortex 
and Motor Cortex, are identified and shown in Figure 1. 
Each of these five regions represents a class of functions or 
processes in the brain. The corresponding classes of 
functions are Executive Functions, Perception, Affective 
Functions, Integrative Functions and Motor Control, 
respectively. 
 
Pre-Frontal Cortex (Executive Functions). The 
prefrontal cortex (PFC) is the anterior part of the frontal 
lobes of the brain. It has been implicated in planning 
complex cognitive behaviors, personality expression, and 
moderating correct social behavior. It is important when 
“top-down” processing is needed; that is, when behavior is 
guided by internal states or intentions [3]. The basic 
activity of this brain region is considered to be 
orchestration of thoughts and actions in accordance with 
internal goals. Executive function relates to abilities to 
differentiate among conflicting thoughts, determine good 
and bad, better and best, same and different, future 
consequences of current activities, working towards a 
defined goal, prediction of outcomes, expectation based on 
actions, and social “control”. 
 
Perception. Perception is the process of acquiring, 
interpreting, selecting, and organizing sensory information. 
 
Limbic System (Affective Functions). The limbic system 
[4] is a term for a set of brain structures including the 
hippocampus and amygdala that support a variety of 
functions including emotion, behavior and formation of 
long term memory. 
 
Association Cortex (Integrative Functions). John 
Hughlings Jackson first proposed in the 1870s that the 
cortex is organized hierarchically and that some cortical 
areas serve higher-order integrative functions that are 
neither purely sensory nor purely motor but associative [5]. 
These higher-order cortices are what we call today the 
association areas, associating sensory inputs to motor 
outputs and performing mental task mediating between 
sensory inputs and motor outputs. Although the association 
areas are located at various parts of the brain, we have 
grouped them together as a functional region.  
 
Motor Cortex (Motor Control). It is a term that describes 
regions of the cerebral cortex involved in the planning, 
control, and execution of voluntary motor functions. 

Key Design Principles 

Three main characteristics, Hierarchical Structure, 
Distributed Memory and Parallelism, of how the human 
brain works are identified and these characteristics serve as 
the key design principles for the cognitive architecture. We 
believe that modeling the different parts of the human 

brain and applying these principles will give rise to the 
robustness, speed, adaptability and other features we have 
come to associate with human intelligence. 
 
Hierarchical Structure. The neurologist Paul MacLean 
has proposed that our skull holds not one brain but three 
[3], each representing a distinct evolutionary stratum that 
has formed upon the older layer before it, like an 
archaeological site. He calls it the “triune brain”. He refers 
to these three brains as the neocortex or neo-mammalian 
brain, the limbic or paleo-mammalian system, and the 
reptilian brain that includes the brainstem and cerebellum. 
Each of the three brains is connected by nerves to the other 
two, but each seems to operate as its own brain system 
with distinct capacities.  
 The archipallium or primitive (reptilian) brain, or “Basal 
Brain”, called by MacLean the “R-complex” and which 
includes the brain stem and the cerebellum, is the oldest 
brain. It consists of the structures of the brain stem - 
medulla, pons, cerebellum, mesencephalon, and the oldest 
basal nuclei - the globus pallidus and the olfactory bulbs. 
In animals such as reptiles, the brain stem and cerebellum 
dominate. For this reason it is commonly referred to as the 
“reptilian brain”. It keeps repeating the same behaviors 
over and over again, never learning from past mistakes. 
This part of the brain is active, even in deep sleep.  
 In 1952, MacLean first coined the name “limbic system” 
for the middle part of the brain. It can also be termed the 
paleopallium or intermediate (old mammalian) brain. It 
corresponds to the brain of most mammals, especially the 
earlier ones. The old mammalian brain residing in the 
limbic system is concerned with emotions and instincts, 
feeding, fighting, fleeing, and sexual behavior. To this 
brain, survival depends on avoidance of pain and repetition 
of pleasure. Physiologically, it includes the hypothalamus, 
hippocampus, and amygdala. It has vast interconnections 
with the neocortex, so that brain functions are neither 
purely limbic nor purely cortical but a mixture of both. As 
MacLean understands it, this lowly mammalian brain of 
the limbic system tends to be the seat of our value 
judgments, instead of the more advanced neocortex. It 
decides whether our higher brain has a “good” idea or not, 
whether it feels true and right.  
 The Neocortex, alternatively known as the cerebrum, the 
neopallium, or the superior or rational (neomammalian) 
brain, comprises almost the whole of the hemispheres 
(made up of a more recent type of cortex) and some 
subcortical neuronal groups. It corresponds to the brain of 
primates and, consequently, the human species. The higher 
cognitive functions which distinguish Man from the 
animals are in the cortex. MacLean refers to the cortex as 
“the mother of invention and father of abstract thought”. In 
Man, the neocortex takes up two thirds of the total brain 
mass. Although all other animals also have a neocortex, it 
is usually relatively small, with few or no folds (indicating 
the surface area, which is a measure of complexity and 
development).  
 



Figure 2: Three levels of Hierarchy in the Human Brain 
 
 These three brains form a hierarchy of three brains in 
one. The cognitive architecture adopts this hierarchical 
structure in its design to be used as a guide to where 
various types of knowledge are stored and how information 
should flow. The various modules in each level of the 
hierarchy are shown in Figure 2. 
 
Distributed Memory. There are three main types of 
memory. Semantic Memory consists of facts of the world, 
disassociated from the place and time when you learned 
them. Procedural Memory is knowledge about how to do 
things in the world – it includes your knowledge about how 
to ride a bicycle, how to type, how to read and understand 
language, and in general, how to make decisions in 
selecting actions to achieve goals. Episodic Memory 
consists of historical episodes or snapshots of specific 
experiences that are situated in space and time. Studies 
have shown that memory is not located in any one area in 
the human brain [6, 7]. Instead, it is distributed throughout 
the brain. Based on this concept, the cognitive architecture 
does not have a single module where all the memory or 
knowledge resides. Each module may have its own 
memory which it can use to perform its functions or send 
to other modules when necessary. This will add robustness 
to the system as it can still function even when some of the 
functions are down or when knowledge is not complete. 
 
Parallelism. The third key design principle is Parallelism. 
The human brain does not work in a sequential manner but 
rather, all the different parts of the brain are constantly 
running in parallel. This enables the human brain to handle 
multiple tasks and threads of thoughts at one time. This 
implies that the brain is able to process different 
information at the same time. Following this key design 
principle, the different modules in the cognitive 
architecture will also be running in parallel. Each module 
will be developed as an individual running program. The 
ideal case is to have each of the modules running in one 
computer in a network. This will allow for true parallelism 
and hence efficient multi-tasking.  

Prototype Cognitive System 

A prototype cognitive system (Figure 3) is developed 
based on the top level design. Some functions from each of 
the five core regions are developed as modules which form 
the basic building blocks.  
 A module is the smallest functional unit of the 
computational architecture and provides a certain 
capability. A module is fully encapsulated, with its own 
knowledge base (distributed long term memory), internal 
representation schemes and inference methods. Thus a 
module can be treated like a black box. Other modules in 
the system do not have to know how it works internally. 
Each module communicates with other modules either 
directly or through the Relay (Thalamus) module. Since 
different modules may have different internal 
representation schemes, a potential communication 
problem among the modules may arise in the 
computational architecture. This problem can be solved by 
adopting a common representation scheme for all the 
outputs of the modules.  
 Modules that perform similar functions are grouped 
together into classes. For instance, the Perception class 
comprises of all modules that perform perceptual 
functions. The reason for grouping similar modules into 
classes is because different algorithms may be used to find 
the solution for different problem spaces. By having the 
concept of classes, each module in the same class can 
implement just one specific algorithm. This makes the 
code of each module smaller and easier to maintain. The 
modules in a class can have complementary, competitive 
or cooperative relationships. A meta-module for each class 
may be required to manage the outputs from the different 
modules within the class. 
 The prototype system implements each module as an 
individual executable program. This is in concordance with 
the parallelism principle of the cognitive architecture. 

Description 

Perception class: Modules belonging to the Perception 
class act as receivers to the external world. They take in 
raw inputs from the external world and process them into 
useful information. The processed information is then sent 
to the Relay module for distribution to the rest of the 
modules in the agent. The current implementation involves 
a biologically inspired pattern recognition algorithm, 
Hierarchical Temporal Memory (HTM) [8]. It has an edge 
over other approaches as it is able to do generalization by 
exploiting the role of time in vision. In the human eyes, 
there are short and swift movements called saccades and 
stops called fixation. We actually make use of these 
saccades and fixations to visualize and learn the objects we 
see. This temporal aspect of learning has not been taken 
into account by many approaches but it is one of the 
fundamental aspects of HTM that makes it capable of 
imagery classification. 
 Motor class: Modules in the Motor class are used to alter 
both the external environment and the internal state of the 



agent. These modules receive instructions from modules 
such as Selector and apply the necessary actions to the 
external environment or internal state of the agent.
 Association class: Association modules retrieve a list of 
plausible actions or states when presented with a situation 
picture. This list of actions or states is associated with the 
current decision or situation picture. The list is then sent 
back to the Relay module for further processing by other 
modules. The current implementation contains a module 
which builds upon a rule-based engine.  
 Reasoner class: Reasoner modules analyze situations 
and proposed actions. They are responsible for higher-level 
reasoning. The current implementation contains a Dynamic 
Reasoner module which uses D’Brain [9] for its internal 
algorithm. D'Brain employs the idea of knowledge 
fragments and Bayesian reasoning to perform its analysis. 
The Dynamic Reasoner can be used to fuse different 
knowledge fragments together. 
 Selector class: The role of Selector modules is to select 
an action or a decision from a list of proposed actions or 
decisions so as to reach the current goals or sub-goals. 
Currently, the selection process takes into account the 
probability values provided by the Reasoner modules if 
they are available. The current implementation contains a 
FALCON module [10] which enables reinforcement 
learning in the cognitive system. Reinforcement learning is 
learning what to do – how to map situations to actions – so 
as to maximize a numerical reward signal. The learner is 
not told which actions to take, as in most forms of machine 
learning, but instead must discover which actions yield the 
most reward by trying them. Reinforcement learning 
methods typically have both inductive and deductive 
aspects: they inductively improve their credibility space on 
a stage-by stage basis; they deductively select an 
appropriate response to incoming stimuli using their 
credibility space. This will enable the Selector module to 
make better selections over time. 
 Relay module: The Relay module distributes 
information to the relevant modules and maintains the 
current situation picture, in a form of working memory, for 
all the modules in the system. It functions like the 
Thalamus in the Limbic System. The current Relay module 
is able to combine information from different modules and 
distribute the information to the relevant modules. 
 Goals Monitoring module: The purpose of the Goals 
Monitoring module is to produce appropriate sub-goals 
from the top level goals and then monitor the current 
situation to check for status of these goals. The status of 
the goals can be used to update the other modules which 
may affect their processing of information.  

Object Classification in Images 

This section will describe how the cognitive system has 
been applied to object classification in images. Although 
there has been much research in imagery classification, 
most algorithms consider each potential target 
independently and are based solely on measurements of 

that target. Due to the nature of the images, the 
performance of these classification methods generally 
cannot meet all the operational requirements for accurate 
classification/recognition. 
 Human interpreters do not rely solely on the images to 
do their classification. In reality, they also consider 
contextual information and inputs from other sources. 
Hence, regardless of how well the classifier can perform, 
as long as it does not take into account other information, 
especially contextual information, users may not have the 
confidence to use the results of the classification. This is 
not unlike how we, humans, “classify” objects. We also 
consider different inputs and contextual information when 
we are trying to identify objects.  

Figure 3: Prototype Cognitive System 
 
Using the Cognitive System  
As described previously, the cognitive system is developed 
based on three key design principles – Parallelism, 
Hierarchical Structure and Distributed Memory. This leads 
to certain design features, one of which is the ability to 
process different kinds of knowledge. This is similar to 
how Man uses different types of knowledge to solve 
problems. As mentioned above, there is a need to consider 
contextual information in the classification process to 
make it more useful for actual operations. The cognitive 
system, with its ability to fuse together different types of 
knowledge, can be used to achieve this. 
  We, as humans, typically use top-down and bottom-up 
information to solve problems in a kind of signal-symbol 
fusion. Contextual knowledge captured in the form of 
long-term memory is a form of top-down symbolic input 
while the actual image provides the bottom-up signal 
information. Contextual knowledge can be seen as a form 
of prior knowledge which may be learned or gathered 
through experience. Another top-down information process 
is feedback to Perception. Previous research has shown 
that our visual pathways are not unidirectional [11]; in 
other words, there are also feedback signals to our visual 
cortex. The system models this by storing templates (the 
same templates that the Perception module is trained on) in 
the Association module and retrieving associated templates 
to send to the Perception module as a visual feedback. 



 The arrows in Figure 3 show how the perceptual inputs 
from the image are sent to the different parts of the 
cognitive system via the Relay module. Certain contextual 
information may be present in the image itself, for 
example, a particular formation of objects or other objects 
in the same image which can help to identify the object of 
interest. This can be extracted and sent together with the 
classification results and other contextual information that 
is outside the image to the other parts of the cognitive 
system. These form the bottom-up information. 

Figure 4: Contextual Information 
  
Contextual knowledge is stored in the Executive Function 
as shown in Figure 4. The current implementation uses 
D’Brain as the reasoning engine and the contextual 
knowledge is captured in the form of Bayesian Network 
fragments. The HTM output and the contextual 
information will instantiate some of these fragments which 
will piece together to form a situation specific Bayesian 
network. In this way, the bottom-up perceptual inputs are 
fused with the contextual knowledge. The inference results 
from the Reasoning engine are then sent to the Selector 
module. The Selector module will choose the top few 
classes (classification classes) based on the results and 
send them to the Association module via the Relay module. 
 Next, the Association module will retrieve the 
corresponding templates based on the selected classes. It 
then sends them to the Perception module, via the Relay 
module, as feedback to the Perception module. At the 
Perception module, each template will be “blended” with 
the original target chip. The blending mechanism is 
modeled after the human visual recognition process 
whereby perceived images are adjusted with respect to 
preconceived templates. Humans model objects and derive 
the preconceived templates by key features as well as the 
stabilities of these features. Thus, when we are blending a 
perceptual input with a potential template, we take into 
account the features stabilities - features which are more 
stable are less adjusted. The blended image is then sent to 
the HTM for classification. This feedback forms part of the 
top-down information. It is similar to how we retrieve 
images of objects we have seen before from our long term 
memory, when we “feel” that the object we are seeing may 
be one of them. It is important to note here that more than 
one template is retrieved from the Association module. 

When the correct template is used, the feedback should 
help to boost the confidence that the object belongs to the 
same class as the template. However, when a template of 
the wrong class is used, the confidence that the object 
belongs to this wrong class should be lowered. This can 
help to prevent the system from being biased to a particular 
class or self-reinforcing wrongly. 

Figure 5: Feedback to the Perception 

An Example 

An example is used to illustrate how the cognitive system 
works. The image used for the example is shown in Figure 
6. The objective is to identify certain targets in the image. 
At the start, the user is allowed to enter any contextual 
information about the image which he may have gathered 
from other sources. In this example, the user inputs the 
information that the image is taken near a certain area. The 
image is passed into the Perception module which carries 
out a target detection process to find the location of the 
targets. This is indicated by the square boxes. Next, the 
Perception module tries to extract whatever contextual 
information that might exist in the image. The extraction 
process relies on the contextual knowledge to tell it what to 
look out for. As formation is one of the contextual 
knowledge stored, the Perception module tries to see if the 
targets are deployed in any of known formations. For this 
case, the targets are found to be deployed in a line 
formation, as shown by the straight line. Finally, the first 
target chip on the left is fed into the HTM framework.  

Figure 6: Image 



The image processing done to extract the target chip is 
without the removal of clutter or other image pre-
processing. Pre-processing is usually done to “clean up” 
the image in order to achieve better performance. 
However, we want to demonstrate how the system can 
work even when the image quality is far from ideal. As a 
result, HTM gives a low confidence level of 6% for the 
correct target class.  

  
Figure 7: Contextual Knowledge 

 
 This result is sent to the Reasoner module which fuses it 
with the contextual information by instantiating the 
corresponding contextual knowledge fragments given in 
Figure 7. As mentioned, two pieces of contextual 
information were exploited – there is a formation of five 
targets deployed in a straight line and secondly, this image 
was taken near a particular area known to contain a certain 
type of target. One can treat these two pieces of contextual 
information as belief inputs on the target class from two 
experts that are conditioned on the information outside the 
image. The fusion is based on a series of multiplication 
operations and renormalization [9]. As a result of 
considering the contextual information, the reasoning 
engine is able to increase the confidence level for the 
correct target class to 46%.  
 This result is then sent to the Selector module which 
selects the classes of templates to retrieve from the 
Association module. The selected templates are then sent 
to the Perception module where it is blended with the 
original target chip. The blended image is fed into the same 
HTM framework. Through blending, the template of the 
correct class is able to fill up some of the missing gaps in 
the original image as well remove some of the noise. This 
helps to push the confidence level for the correct target 
class up to 67%. Finally, the Reasoner fuses this new 
output from the Perception module with the contextual 
information to give a high confidence level of 97%. The 
system stops here as the top-level goal of achieving at least 
80% confidence has been met. 

Conclusions 

A cognitive architecture that models after the human brain 
information processing is presented here. It identifies core 
regions of the human brain and functions that exist in each 
region. Key design principles inspired by the human brain 
are discussed and used in the cognitive architecture. It is 
believed that the hallmarks of human intelligence is an 
outcome of the way the human brain is designed and the 
cognitive architecture attempts to reproduce these.  

 A prototype cognitive system has been developed and 
described here. Various modules from the cognitive 
architecture are implemented using existing algorithms and 
programs. One key feature of the cognitive system is its 
ability to bring to bear different types of knowledge to 
solve problems and this is demonstrated with an imagery 
classification example. 
 Results show that incorporating contextual information 
and visual feedback in a human-like approach helps to 
improve the performance of imagery classification. In the 
example, the confidence of correct classification increases 
from 6%, when only the target chip is considered, to 97%, 
when all information are considered. 
 Like the human brain, the cognitive system is developed 
to be a generic intelligent system which has many potential 
applications. It can be used to perform different tasks by 
feeding the relevant knowledge to the system. Current 
work includes applying the cognitive system to Computer 
Generate Forces and Unmanned Ground Vehicle 
navigation.  
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