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It is widely accepted that the violation of Bell inequalities excludes local
theories of the quantum realm. In this paper I present a stronger Bell
argument which even forbids certain non-local theories. The remaining
non-local theories, which can violate Bell inequalities, are characterised by
the fact that at least one of the outcomes in some sense probabilistically
depends both on its distant as well as on its local parameter. While this is
not to say that parameter dependence in the usual sense necessarily holds,
it shows that the received analysis of quantum non-locality as “outcome
dependence or parameter dependence” is deeply misleading about what
the violation of Bell inequalities implies.

Contents

1 Introduction 2

2 Two concepts of quantum non-locality 4
2.1 EPR/B experiments and correlations . . . . . . . . . . . . . . . . 4
2.2 The standard Bell argument for quantum non-locality . . . . . . 5
2.3 Classes of probability distributions . . . . . . . . . . . . . . . . . 8
2.4 Bell inequalities from local and non-local distributions . . . . . . 10
2.5 A stronger Bell argument for quantum non-locality . . . . . . . . 17
2.6 Discussion I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Analysing quantum non-locality 21
3.1 Jarrett’s analysis of quantum non-locality . . . . . . . . . . . . . 22
3.2 Pairwise independencies . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Analysing the classes . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Quantum non-locality as double parameter dependence . . . . . 26
3.5 Discussion II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1

mailto:paul.naeger@uni-bremen.de


1 Introduction

4 Conclusion 32

1 Introduction

Quantum non-locality is the fact that some features of certain microscopic ob-
jects fundamentally depend on another although they are space-like separated.
The dependence in question can be understood in a probabilistic or in a meta-
physical sense. The received view of quantum non-locality involves both senses
and is established in a four-step argument:

(i) The basis of the reasoning is the Bell argument (Bell, 1964, 1971, 1975),
which is a mathematical no-go theorem. It proves that the results of experi-
ments with entangled quantum objects (EPR/B correlations) violate Bell in-
equalities and that this violation excludes all local theories of the quantum
realm. In its most general version the Bell argument is completely formulated
in probabilistic terms and its result is that the total probability distribution
of the experiments does not factorise into local terms. So whatever the exact
dynamics and state description of a theory might be: as long as it implies a
local probability distribution it cannot be the true physical theory of our world.
In this sense all local theories are excluded. So the quantum non-locality which
directly follows from the violation of Bell inequalities, the failure of local fac-
torisation, is first of all a probabilistic fact.

(ii) In a second step, Jarrett (1984) tries to make explicit what the proba-
bilistic notion of quantum non-locality amounts to, still on a probabilistic level.
He analysed the failure of local factorisation as the disjunction of two pairwise
probabilistic dependencies, “outcome dependence or parameter dependence”.
This result is assumed to state the probabilistic nature of quantum non-locality:
there must be either a dependence between the outcomes or between at least
one of the outcomes and its distant parameter (or both). Note that so far
in the argument purely mathematical consequences have been drawn from the
violation of Bell inequalities.

(iii) Many philosophers of science continue to argue that it is outcome de-
pendence and not parameter dependence which holds because parameter depen-
dence is incompatible with relativity, while outcome dependence is not (Jarrett,
1984; Shimony, 1984, 1990; Arntzenius, 1994). The true theory about the quan-
tum world, they maintain, very likely is “outcome dependent and parameter
independent”, just as quantum theory is. This step invokes a physical assump-
tion, namely the compatibility with relativity.

(iv) Finally, the probabilistic dependencies are given a metaphysically inter-
pretation. While parameter dependence is mostly seen as constituting a causal
relation, outcome dependence is interpreted as a non-causal influence (“passion
at-a-distance”: Shimony, 1984; Redhead, 1986, 1987, 1989) or a kind of non-
separability / physical holism (Howard, 1985, 1989; Teller, 1986, 1989; Jarrett,
1989, 2009; Healey, 1991, 1994; Fogel, 2007). This establishes a metaphysical
notion of quantum non-locality. (Note that some authors swap the last two
steps: they first give the metaphysical interpretation, (iv), and then argue for
outcome dependence and parameter independence, (iii), because relativity is
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1 Introduction

assumed to be incompatible with space-like causal relations.)
Steps (iii) and (iv) are not uncontroversial. They have been criticized mainly

for the fact that regardless of whether parameter dependence or outcome depen-
dence holds, there must be a causal relation between the two wings (Butterfield,
1992; Jones and Clifton, 1993; Maudlin, 2011; Berkovitz, 1998a,b). However,
we shall not engage in this discussion here. In this paper we shall focus on
the so far widely uncontroversial mathematical consequences of the violations
of Bell inequalities, i.e. the probabilistic concept of quantum non-locality (i)
and its analysis (ii). My main claim is not that steps (i) and (ii) are false but
that the conclusions are weaker than they could be. This might be important
because the total argument from (i) to (iv) shows that the mathematical con-
sequences, which follow from the violation of Bell inequalities, are the basis for
discussing the metaphysical implications; they are the material which is inter-
preted in order to reach metaphysical conclusions. So if we want to get the
philosophical conclusions right, we first have to infer appropriate mathematical
results—and the latter is what we shall attempt in this paper. We investi-
gate what exactly the violation of Bell inequalities implies on the probabilistic
level: which variables have to depend probabilistically on another given the re-
sults of experiments with entangled quantum objects? From now on, when I use
the term “quantum non-locality” I always mean—if not otherwise stated—the
probabilistic consequences of the violation of Bell inequalities.

The present paper is divided into two parts. First, I shall show how the
usual Bell argument for quantum non-locality can be made stronger to give
a new, tightly fitting concept of quantum non-locality (section 2). The basic
idea is that the violation of Bell inequalities excludes even more than just the
local theories, for certain kinds of non-local theories turn out to be too weak
to violate Bell inequalities as well. Accordingly, the new result requires to re-
define the probabilistic notion quantum non-locality from the failure of locality
to the failure of locality and of those weak forms of non-locality, which is a
considerably more informative concept.

In a second part, I analyse this new concept in terms of pairwise indepen-
dencies, in a similar manner as Jarrett analysed the failure of local factorisation
(section 3). The result of the analysis will be that, regardless of whether the
outcomes depend on another or not, there must be a certain dependence be-
tween at least one of the outcomes and both its local and its distant parameter.

This will bring out that, though being logically correct, the received analysis
of quantum non-locality as “outcome dependence or parameter dependence”
paints a fatally deceptive picture of the probabilistic dependencies which are
implied by the violation of Bell inequalities. For in this catchy short form
it is liable to be misunderstood to say that one can avoid any probabilistic
dependence of an outcome on its distant parameter if one accepts that outcomes
depend on each other. (Moreover, step (iii) in the above argument seems to
say that this is in fact the case.) In this wrong reading there is a contradiction
to my analysis of the new stronger concept, which says that in some sense at
least one of the outcomes must depend on its distant parameter. The tension
resolves if one realises that the standard analysis only says that you can avoid a
certain dependence of the outcome on the distant parameter, namely parameter
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2 Two concepts of quantum non-locality

dependence, if you accept a certain dependence between the outcomes. But
there are other kinds of probabilistic dependencies between an outcome and its
distant parameter, which differ from parameter dependence by the conditional
variables! So accepting the new analysis is not to say that one has to accept
parameter dependence in the usual sense of the word. This will become clearer
in the course of this paper, when we have clearly defined the corresponding
mathematical expressions. In any case, it is important to note that quantum
mechanics is not ruled out by my new analysis.

As the procedure suggests, my new analysis strongly relies on the standard
analysis but attempts to improve it towards a stronger result. As usual in
the Bell-Jarrett approach, the characterizations of probability distributions are
qualitative: we shall mainly be concerned with the question whether two vari-
ables are independent or not, and not how strong a possible correlation would
have to be. The only quantitative fact which will be used are the empirically
measured EPR/B correlations.

2 Two concepts of quantum non-locality

2.1 EPR/B experiments and correlations

Many arguments for a quantum non-locality consider an EPR/B setup with
polarisation measurements of photons (fig. 1; Einstein, Podolsky, and Rosen
1935; Bohm 1951; Clauser and Horne 1974). One run of the experiment goes as
follows: a suitable source C (e.g. a calcium atom) is excited and emits a pair of
photons whose quantum mechanical polarisation state ψ is entangled. Possible
hidden variables of this state are called λ, so that the complete state of the
particle at the source is (ψ,λ). Since the preparation procedure is usually the
same in all runs, the quantum mechanical state ψ is the same in all runs and will
not explicitly be noted in the following. (One may think of any probability being
conditional on one fixed state ψ = ψ0.) After the emission, the photons move
in opposite direction towards two polarisation measurement devices A and B,
whose measurement directions a and b are randomly chosen among two of
three possible settings (a = 1, 2; b = 2, 3) while the photons are on their flight.
A photon either passes the polariser (and is detected) or is absorbed by it
(and is not detected), so that at each measuring device there are two possible
measurement outcomes α = ± and β = ±.

C
A B

a

b

+–+–

Fig. 1: EPR/B setup
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2 Two concepts of quantum non-locality

On a probabilistic level, the experiment is described by the joint probabil-
ity distribution P (αβabλ) := P (α = α,β = β,a = a, b = b,λ = λ) of the
five random variables just defined.1 We shall consistently use bold symbols
(α,β,a, . . . ) for random variables and normal font symbols (α, β, a, . . . ) for
the corresponding values of these variables. We use indices to refer to specific
values of variables, e.g. α− = − or a1 = 1, which provides useful shorthands,
e.g. P (α−β+a1b2λ) := P (α = −,β = +,a = 1, b = 2,λ = λ). Expressions in-
cluding probabilities with non-specific values of variables, e.g. P (α|a) = P (α),
are meant to hold for all values of these variables (if not otherwise stated).

Containing the hidden states λ, which are by definition not measurable,
the total distribution is empirically not accessible (“hidden level”), i.e. purely
theoretical. Only the marginal distribution which does not involve λ, P (αβab),
is empirically accessible and determined by the results of actual measurements
in EPR/B experiments (“observable level”).2

Although the EPR/B setup is constructed in order to weaken and minimize
correlations between the involved variables,3 a statistical evaluation of a series of
many runs with similar preparation procedures yields that there are observable
correlations: the outcomes are correlated given the parameters,4

P (αβ|ab) = P (α|βab)P (β) =

{
cos2 φab · 1

2 if α = β

sin2 φab · 1
2 if α 6= β

(Corr)

(where φab is the angle between the measurement directions a and b). These fa-
mous EPR/B correlations between space-like separated measurement outcomes
have first been measured by Aspect et al. (1982) and are correctly predicted by
quantum mechanics.

2.2 The standard Bell argument for quantum non-locality

Since according to (Corr), one outcome depends on both the other space-like
separated outcome as well as on the distant (and local) parameter, the ob-
servable part of the probability distribution is clearly non-local. Bell (1964)
could show that EPR/B correlations are so extraordinary that even if one al-
lows for hidden states λ one cannot restore locality: given EPR/B correlations

1While the outcomes and settings are discrete variables, the hidden state may be continuous
or discrete. In the following I assume λ to be discrete, but all considerations can be
generalized to the continuous case.

2The (theoretical) transition from the total probability distribution to the observable
marginal distribution is given by a marginalisation over λ, P (αβab) =

∑
λ P (αβabλ).

In order to be empirically adequate, any theoretical distribution must in this way yield the
distribution which describes the statistics of EPR/B measurements.

3First, the settings are random and statistically independent. Second, the parameters are set
after the emission, so that the setting may not influence the state of the particles at the
emission. And, finally, but most importantly, the wings of the experiment are space-like
separated, so that according to the First Signal Principle of relativity there cannot be any
influence from one outcome to the other or from one setting to the outcome on the other
wing.

4A correlation of the outcomes means that the joint probability P (αβ|ab) is in general not
equal to the product P (α|ab)P (β|ab) = 1

2
· 1
2

= 1
4
.
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2 Two concepts of quantum non-locality

the theoretical probability distribution (including possible hidden states) must
be non-local as well. Hence, any possible probability distribution which might
correctly describe the experiment must be non-local.

This “Bell argument for quantum non-locality”, as I shall call it, runs as
follows. Bell realized the mathematical fact that EPR/B correlations have the
remarkable feature to violate Bell inequalities. Since Bell then did not know
that suitable measurements indeed yield the correlations, the violation was
merely hypothetical, but today the violation of Bell inequalities is an empirically
confirmed fact. It follows that at least one of the assumptions in the derivation
of the inequalities must be false. Indeterministic generalizations (Bell, 1971;
Clauser and Horne, 1974; Bell, 1975) of Bell’s original deterministic derivation
(1964) employ two probabilistic assumptions, “local factorisation”5

P (αβ|abλ) = P (α|aλ)P (β|bλ) (`F)

and “autonomy”
P (λ|ab) = P (λ). (A)

Another type of derivation (Wigner, 1970; van Fraassen, 1989; Graßhoff et al.,
2005) additionally requires the empirical fact that there are perfect correlations
(PCorr) between the outcomes if the measurement settings are equal. For
both types of derivation we have the dilemma that any empirically correct
probability distribution of the quantum realm must either violate autonomy or
local factorisation (or both). Since giving up autonomy seems to be ad hoc
and implausible (“cosmic conspiracy”), most philosophers conclude that the
empirical violation of Bell inequalities implies that local factorisation fails. And
since local factorisation states the factorisation of the hidden joint probability
distribution into local terms, the failure of local factorisation indicates a certain
kind of non-locality, which is specific to the quantum realm—hence “quantum
non-locality”.

In order to make the logical structure clear let me note the Bell argument
in an explicit logical form (where (I1), (I2), . . . indicate intermediate conclu-
sions). Here and in the following I shall use the Wigner-type derivation of Bell
inequalities because, as we will see, it is the most powerful one allowing to
derive Bell inequalities from the widest range of probability distributions:

(P1) There are EPR/B correlations: (Corr)

(P2) EPR/B correlations violate Bell inequalities: (Corr)→ ¬(BI)

(I1) Bell inequalities are violated: ¬(BI) (from P1 & P2, MP)

(P3) EPR/B correlations include perfect correlations: (Corr) Õ (PCorr)

5“Local factorisation” is my term. Bell calls (`F) “local causality”, some call it “Bell-
locality”, but most often it is simply called “factorisation” or “factorisability”. Bell’s
terminology already suggests a metaphysical interpretation, which I would like to avoid
in this paper, and the latter two names are too general since, as I shall show, there are
other forms of the hidden joint probability which can be said to factorise; hence “local
factorisation”.
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2 Two concepts of quantum non-locality

(I2) There are perfect correlations: (PCorr) (from P1 & P3, MP)

(P4) Bell inequalities can be derived from autonomy, perfect correlations
and local factorisation: (A) ∧ (PCorr) ∧ (`F)→ (BI)

(I3) Autonomy or local factorisation has to fail: ¬(A) ∨ ¬(`F)
(from I1 & I2 & P4, MT)

(P5) Autonomy holds: (A)

(C1) Local factorisation fails: ¬(`F) (from I3 & P5)

(P6) Quantum non-locality is the failure of local factorisation:
(QNL) :↔ ¬(`F) (definition)

It is obvious that the argument from (P1)–(P5) to (C1) is valid. It shows that
if autonomy holds, EPR/B correlations mathematically imply a non-locality
which is called quantum non-locality (P6). (P6) is not a premise of the Bell
argument but labels its result with an appropriate name; it determines what
quantum non-locality according to the standard view amounts to an a proba-
bilistic level. It is clear that if the Bell argument could be modified to have a
stronger conclusion, the definition (P6) would have to be adapted. What we
call “quantum non-locality” depends on the result of the Bell argument. In this
sense the analysis of quantum non-locality, in which (P6) functions as a premise
(it determines the analysandum, see section 3), is based on the Bell argument.
Note that defining quantum non-locality as the conclusion of the Bell argument,
the logical structure of the argument is such that quantum non-locality only
provides necessary conditions for EPR/B correlations, i.e. for being empirically
adequate. So we have to keep in mind that the analysis of quantum non-locality
is not an analysis of EPR/B correlations but of a necessary condition for them.

The core idea of my critique concerning the standard view of quantum non-
locality is that the result of the Bell argument is weaker as it could be. I do
not say that the argument is invalid nor do I say that one of its premises is
not sound, I just say that the argument can be made considerably stronger and
that the stronger conclusion will allow us to define a tighter, more informative
concept of quantum non-locality: one can be much more precise about what
EPR/B correlations imply (if we assume that autonomy holds) than just saying
that local factorisation has to fail. I shall show that besides the local classes
EPR/B correlations also exclude certain non-local classes. Given this new re-
sult, the standard definition of quantum non-locality (P6) will turn out to be
inappropriately weak, because it includes those non-local classes which can be
shown to be forbidden.

Specifically, I shall show that it is premise (P4) which can be made stronger
(while leaving the other premises basically at work). Being an implication from
autonomy, perfect correlations and local factorisation to Bell inequalities, it
is clear that we can make (P4) the stronger the weaker we can formulate the
antecedens, i.e. the assumptions to derive the inequalities. This idea is not
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2 Two concepts of quantum non-locality

essentially a new one. Since Bell’s original proof (1964) considerable efforts
have been made to find derivations with weaker and weaker assumptions. For
example, one of the milestones was to show that one can derive Bell inequali-
ties without the original assumption of determinism. Currently, autonomy and
local factorisation seem to constitute the weakest set of probabilistic assump-
tions which allow a derivation. What will be new about my approach is to try
to find alternatives to local factorisation, which (given autonomy and perfect
correlations) also imply that Bell inequalities hold. Since local factorization is
the weakest possible form of local distributions, it is clear that such alternatives
have to involve a kind of non-locality, i.e. what I am trying to show in the fol-
lowing is that we can derive Bell inequalities from certain non-local probability
distributions.

2.3 Classes of probability distributions

We can find potential alternatives to local factorisation if we consider what it
is: a particular feature of the hidden joint probability, as I shall call P (αβ|abλ).
According to the product rule of probability theory, for any of the possible
hidden probability distributions the joint probability of the outcomes (given
the other variables) can be written as a product,

P (αβ|abλ) = P (α|βbaλ)P (β|abλ) (1)

= P (β|αabλ)P (α|baλ). (2)

Since there are two product forms, one whose first factor is a conditional prob-
ability of α and one whose first factor is a conditional probability of β, for the
time being, let us restrict our considerations to the product form (1), until at
the end of this section I shall generalize the results to the other form (2).

The product form (1) of the hidden joint probability holds in general, i.e.
for all probability distributions. According to probability distributions with
appropriate independencies, however, the factors on the right-hand side of the
equation reduce in that certain variables in the conditionals can be left out. If,
for instance, outcome independence holds, β can disappear from the first fac-
tor, and the joint probability is said to “factorise”. Local factorisation further
requires that the distant parameters in both factors disappear, i.e. that param-
eter independence holds. Prima facie, any combination of variables in the two
conditionals in (1) seems to constitute a distinct product form of the hidden
joint probability. Restricting ourselves to irreducibly hidden joint probabilities,
i.e. requiring λ to appear in both factors, there are 25 = 32 combinatorially
possible forms (for any of the three variables in the first conditional and any
of the two variables in the second conditional besides λ can or cannot appear).
Table 1 shows these conceivable forms which I label by (Hα

1 ) to (Hα
32) (the

superscript α is due to the fact that we have used (1) instead of (2)).
The specific product form of the hidden joint probability is the essential fea-

ture of the probability distributions of EPR/B experiments. For, as we shall see,
it not only determines whether a probability distribution can violate Bell in-
equalites but also carries unambiguous information about which variables of the
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2 Two concepts of quantum non-locality

Table 1: Classes of probability distributions

I II III IV V VI VII VIII IX

(Hα
i ): P (αβ|abλ) = . . .

i P (α| β b a λ) · P (β| a b λ) �(BI) Group Notes

st
ro

n
g

n
o
n

-l
o
ca

li
ty

1 1 1 1 1 1 0 iv

2 1 1 1 1 0 0 iv

3 1 1 1 0 1 0 iv

4 1 1 0 1 1 0 iv

5 1 0 1 1 1 0 iv

6 0 1 1 1 1 0 iv Bohm

7 1 1 1 0 0 0 iv QM

8 0 1 1 1 0 0 iv

9 0 1 1 0 1 0 iv

10 1 0 0 1 1 0 iv

11 0 1 0 1 1 0 iv

12 0 0 1 1 1 0 iv

13 0 1 1 0 0 0 iv

14 0 0 0 1 1 0 iv

w
ea

k
n

on
-l

o
ca

li
ty

15 1 1 0 1 0 1 iii

16 1 0 1 0 1 1 iii

17 1 0 1 1 0 1 i

18 1 1 0 0 1 1 i

19 1 1 0 0 0 1 i

20 1 0 1 0 0 1 i

21 1 0 0 1 0 1 i

22 0 1 0 1 0 1 ii

23 0 0 1 1 0 1 i

24 1 0 0 0 1 1 i

25 0 1 0 0 1 1 i

26 1 0 0 0 0 1 i

27 0 1 0 0 0 1 i

28 0 0 0 1 0 1 i

lo
ca

li
ty

29 0 0 1 0 1 1 ii local fact.

30 0 0 1 0 0 1 i

31 0 0 0 0 1 1 i

32 0 0 0 0 0 1 i

Analysis: ¬(OI1) ¬(PIα1 ) ¬(`PIα1 ) ¬(PIβ2 ) ¬(`PIβ2 )
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2 Two concepts of quantum non-locality

experiment are probabilistically independent of another. Virtually any interest-
ing philosophical question involving probabilistic facts of EPR/B experiments
depends on the specific product form of the hidden joint probability. Hence,
it is natural to use the product form of the hidden joint probability in order
to classify the probability distributions. We can say that each product form of
the hidden joint probability constitutes a class of probability distributions in the
sense that probability distributions with the same form (but different numerical
weights of the factors) belong to the same class. In order to make the assign-
ment of probability distributions to classes unambiguous let us require that
each probability distribution belongs only to that class which corresponds to
its simplest product form, i.e. to the form with the minimal number of variables
appearing in the conditionals (according to the distribution in question).

This scheme of classes is comprehensive: Any probability distribution of the
EPR/B experiment must belong to one of these 32 classes. In this systematic
overview, the class constituted by local factorisation is (Hα

29) (see table 1, col-
umn IX), and if we allow that there might be no hidden states λ, we can assign
the quantum mechanical distribution to class (Hα

7 ). The de-Broglie-Bohm the-
ory falls under class (Hα

6 ), and similarly any other theory of the quantum realm
has its unique place in one of the classes. The advantage of this classification is
that it simplifies matters insofar we can now derive features of classes of prob-
ability distributions and can be sure that these features hold for all members of
the class, i.e. for all theories whose probability distributions fall under the class
in question. The feature that we are most interested in is, of course, which of
these classes (given autonomy) make Bell inequalities hold.

2.4 Bell inequalities from local and non-local distributions

In order to discern those classes which imply Bell inequalities (if autonomy and
perfect correlations hold) from those which do not, it will provide useful to
partition the classes into four groups depending on which variables appear in
their constituting product forms (see table 1, column VIII):

(i) At least one of the parameters does not appear at all: (Hα
17)–(Hα

21), (Hα
23)–

(Hα
28), (Hα

30)–(Hα
32)

(ii) Both parameters appear separately, one in each factor: (Hα
22), (Hα

29)

(iii) As (ii) but the first factor additionally involves the outcome β: (Hα
15),

(Hα
16)

(iv) Both parameters appear together in at least one of the factors: (Hα
1 )–(Hα

14)

The claim that I shall attempt to prove in this section is that, given autonomy
and perfect (anti-)correlations, the classes belonging to groups (i), (ii) and (iii)
imply Bell inequalities while those in (iv) do not. In other words, probability
distributions in classes belonging to group (iv) can violate Bell inequalities while
classes in groups (i), (ii) and (iii) have to obey them.
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2 Two concepts of quantum non-locality

2.4.1 Group (i)

Consider one version of the Wigner-Bell inequality (Wigner, 1970; van Fraassen,
1989),

P (α−β+|a1b3) ≤ P (α−β+|a1b2) + P (α−β+|a2b3). (3)

We can write the probabilities in terms of the hidden probability distribution
if we sum over λ,

P (α−β+|ab) =
∑
λ

P (α−β+|abλ)P (λ|ab), (4)

and assuming autonomy (A), we can further rewrite it as

P (α−β+|ab) =
∑
λ

P (α−β+|abλ)P (λ). (5)

It is obvious that in this form the empirical joint probability P (α−β+|ab) de-
pends on the parameters only via the hidden joint probability P (α−β+|abλ).
Hence, if a certain parameter does not appear in a specific product form of the
hidden joint probability (group (i)), the empirical joint probability becomes
independent of this parameter. Consider, for instance, how class (Hα

17), the
product form of which does not involve the parameter b,

P (αβ|abλ) = P (α|βaλ)P (β|aλ), (6)

makes the empirical joint probability independent of b:

P (α−β+|ab) =
∑
λ

P (α−|β+aλ)P (β+|aλ)P (λ) = P (α−β+|a). (7)

Inserting this empirical joint probability, which does not depend on b, into the
Bell-Wigner inequality, reveals that in this case the inequality holds trivially,
just because it has lost its functional dependence on b:6

P (α−β+|a1) ≤ P (α−β+|a1) + P (α−β+|a2) (8)

(Hα
17) implying that Bell inequalities hold is surprising because its consti-

tuting product form is both non-local and non-factorising : β depends on the
distant parameter a in the second factor, P (β|aλ), and α depends on β in
the first, P (α|βaλ), i.e. λ and a do not screen-off the outcomes from another.
However, very similarly, we can show that all other classes in group (i) meet
the requirements of Bell inequalities: no matter what kind of non-localities they
involve, if at least one of the parameters does not appear in the product form,
Bell inequalities hold trivially. Hence, we can conclude that if autonomy holds
(which we have used to simplify the expectation value in (5)) distributions in

6Note that (7) even directly contradicts the empirical distribution (not only indirectly by
making Bell inequalities true), because it states that the empirical joint probability does
not depend on one of the parameters, which is wrong.

11



2 Two concepts of quantum non-locality

group (i) imply that Bell inequalities hold:7[
(A) ∧

( ∨
i=17−21

23−28
30−32

(Hα
i )
)]
→ (BI) (9)

2.4.2 Group (ii)

Let us now turn to distributions in group (ii). Since according to this group
both parameters appear in the product form (one in each factor), it is clear
that, contrary to group (i), here Bell inequalities do not hold just because of
the functional dependencies. However, local factorisation (Hα

29) belongs to this
group and we know how we can derive Bell inequalities with this product form
of the hidden joint probability. Since the derivation from the other class in
this group, (Hα

22), is very similar, let me first sketch a derivation with local
factorisation, which is based on the ideas of Wigner (1970) and van Fraassen
(1989).

We proceed from the empirical fact that there are perfect correlations be-
tween the measurement outcomes if the settings equal another:

P (α±β∓|aibi) = 0 (10)

Similarly to (5), using autonomy and local factorisation we can rewrite the
empirical joint probability in terms of the hidden joint probability,

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|aiλ)P (β∓|biλ). (11)

Since probabilities are non-negative (and we assume P (λ) > 0 for all λ), at
least one of the two remaining factors in each summand must be zero, i.e. for
all values of i and λ we must have:[

P (α+|aiλ) = 0 ∨ P (β−|biλ) = 0
]

(12)

∧
[
P (α−|aiλ) = 0 ∨ P (β+|biλ) = 0

]
(13)

There are two cases. Suppose first that P (α+|aiλ) = 0. From there all other
probabilities follow as either 0 or 1:

(CE)⇒ P (α−|aiλ) = 1
(13)⇒ P (β+|biλ) = 0

(CE)⇒ P (β−|biλ) = 1

Here, “(CE)” stands for “complementary event” and refers to a theorem of
probability theory that the sum of the probability of an event A and of its
complementary event A is 1, e.g. P (α+|aiλ) + P (α−|aiλ) = 1.

Assume, second, that P (β−|bi, λ) = 0. Again all other probabilities are

7The sign “
∨

” denotes a multiple disjunction, e.g.
∨
i=1..n(Hα

i ) := (Hα
1 )∨ (Hα

2 )∨ . . .∨ (Hα
n).

12



2 Two concepts of quantum non-locality

determined to be either 0 or 1:

(CE)⇒ P (β+|biλ) = 1
(13)⇒ P (α−|aiλ) = 0

(CE)⇒ P (α+|aiλ) = 1

In order to avoid contradiction the two cases have to be disjunct. So given a
certain measurement direction i, the two cases define a partition of the values
of λ: all values of λ for which P (α+|aiλ) = 0 belong to the set Λ(i), while all
other values, for which P (α−|aiλ) = 0, belong to Λ(i). Note that each value of
i defines a different partition.

We can use the fact that the λ-partitions depend on just one parameter i to
calculate the hidden joint probability P (αβ|abλ) for any choice of measurement
directions aibj by forming intersections of partitions for different parameters
(see table 2). Since all values are either 0 or 1 we have shown that determinism
holds on the hidden level.

Table 2: Values of the hidden joint probability

λ ∈

Λ(i) ∩ Λ(j) Λ(i) ∩ Λ(j) Λ(i) ∩ Λ(j) Λ(i) ∩ Λ(j)

P (α+β+|aibjλ) = 0 0 0 1

P (α+β−|aibjλ) = 0 0 1 0

P (α−β+|aibjλ) = 0 1 0 0

P (α−β−|aibjλ) = 1 0 0 0

Given table 2, i.e. determinism and the composability of the λ-partitions
(each of which depends on just one parameter), it is easy to show that Wigner-
Bell inequalities must hold. Consider the inequality

P (X ∩ Z) ≤ P (X ∩ Y ) + P (Y ∩ Z), (14)

which in general holds for any events X,Y, Z of a measurable space (the validity
of the inequality is obvious if one draws a Venn diagram, see (Neapolitan and
Jiang, 2006)). Assuming X = Λ(1), Y = Λ(2) and Z = Λ(3) gives the inequality

P (Λ(1) ∩ Λ(3)) ≤ P (Λ(1) ∩ Λ(2)) + P (Λ(2) ∩ Λ(3)). (15)

We can now express the probabilities in the inequality by the empirical proba-

13



2 Two concepts of quantum non-locality

bility distribution if we use the hidden joint probability from table 2, e.g.:

P (Λ(1) ∩ Λ(2))
(σ-additivity)

=
∑

λ∈Λ(1)∩Λ(2)

P (λ) =

(table 2)
=

∑
λ

P (λ)P (α−β+|a1b2λ) =

(A)
= P (α−β+|a1b2) (16)

The resulting inequality is the Wigner-Bell inequality (3).
This derivation reminds us how local factorisation together with autonomy

and perfect correlations implies Bell inequalities. The other class in group
(ii), (Hα

22), differs from local factorisation in that the parameters are swapped:
instead of a dependence of each outcome on the local parameters it involves a
dependence on the distant ones. Regardless of the implicit non-locality it can
be used to derive a Bell inequality in a very similar way: given (Hα

22), instead
of (11) we have

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|biλ)P (β∓|aiλ). (17)

and by very similar arguments we arrive at a similar partition of the values
of λ: Λ(i) denotes all values of lambda for which P (α+|biλ) = 0, while the
complementary set Λ(i) is defined by P (α−|biλ) = 0. If we then calculate the
values of the hidden joint probability we arrive at the very same result as in
table 2—and the rest of the derivation runs identically up to the Bell-Wigner
inequality (3). Hereby we have found another non-local hidden joint probability
which implies Bell inequalities and the result for group (ii) reads[

(A) ∧ (PCorr) ∧
( ∨
i=22,29

(Hα
i )
)]
→ (BI). (18)

2.4.3 Group (iii)

Up to this point you might have been surprised about how easy one can derive
Bell inequalities from product forms other than local factorisation, but that one
can do it even from classes in group (iii) is my strongest claim. These classes
include both parameters, one in each factor, so they do not trivially imply
Bell inequalities as classes in group (i). Neither, it seems, can they imply Bell
inequalities in the same way as classes in group (ii) because they additionally
involve β in the first factor. However, they do imply Bell inequalities, and they
do it in a very similar (however slightly more complicated) way than classes in
group (ii), if besides perfect correlations for equal settings (10) we also assume
perfect anti-correlations (PACorr) for perpendicular settings (aibi⊥):

P (α±, β±|ai, bi⊥) = 0 (19)

Let me sketch the proof for class (Hα
16) which follows along the lines of that

14
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for local factorisation. By autonomy and the product form of (Hα
16) we rewrite

(10) and (19) as

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|β∓aiλ)P (β∓|biλ) (20)

P (α±β±|aibi⊥) = 0 =
∑
λ

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ), (21)

and again, at least one of the factors in each summand must vanish, i.e. for all
values of i and λ (assuming P (λ) > 0) we must have:[

P (α+|β−aiλ) = 0 ∨ P (β−|biλ) = 0
]

(22)

∧
[
P (α−|β+aiλ) = 0 ∨ P (β+|biλ) = 0

]
(23)

∧
[
P (α+|β+aiλ) = 0 ∨ P (β+|bi⊥λ) = 0

]
(24)

∧
[
P (α−|β−aiλ) = 0 ∨ P (β−|bi⊥λ) = 0

]
(25)

As above, from these conditions we can infer that all involved probabilities
must be 0 or 1, depending on which of the following two cases holds.

If P (α+|β−aiλ) = 0:

(CE)⇒ P (α−|β−aiλ) = 1
(25)⇒ P (β−|bi⊥λ) = 0

(CE)⇒ P (β+|bi⊥λ) = 1
(24)⇒ P (α+|β+aiλ) = 0

(CE)⇒ P (α−|β+aiλ) = 1
(23)⇒ P (β+|biλ) = 0

(CE)⇒ P (β−|biλ) = 1

If P (β−|biλ) = 0:

(CE)⇒ P (β+|biλ) = 1
(23)⇒ P (α−|β+aiλ) = 0

(CE)⇒ P (α+|β+aiλ) = 1
(24)⇒ P (β+|bi⊥λ) = 0

(CE)⇒ P (β−|bi⊥λ) = 1
(25)⇒ P (α−|β−aiλ) = 0

(CE)⇒ P (α+|β−aiλ) = 1

The cases are disjunct and, hence, define a partition for the values of λ
for each measurement direction i: Λ(i) includes all values of λ for which
P (β+|biλ) = 0, while Λ(i) includes the complementary values, which make
P (β−|biλ) = 0. Calculating the hidden joint probability P (αβ|abλ) for an ar-
bitrary choice of measurement directions aibj gives us the very same result as
in table 2—and again a Wigner Bell inequality follows.

Since the derivation for class (H15) runs mutatis mutandis, we have shown:[
(A) ∧ (PCorr) ∧ (PACorr) ∧

( ∨
i=15,16

(Hα
i )
)]
→ (BI) (26)
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2.4.4 Group (iv)

Finally, classes of group (iv) do not imply Bell inequalities. Involving both
parameters in at least one of the factors, they neither fulfill Bell inequalities by
their functional dependencies nor do they admit of deriving a Bell inequality
in the manner of classes in group (ii) or (iii). In order to rule out that there
are other kinds of derivations one has to find explicit examples of probability
distributions for each class in the group which violate Bell inequalities. Requir-
ing just any example we can assume a toy model with only two possible hidden
states (λ = 1, 2). Then the probability distribution P (αβabλ) is determined
by assigning a value to each of the 25 = 32 probabilities which conform to the
laws of probability theory (each value lies in the interval [0, 1] and all values
sum to 1). Furthermore, the values have to be chosen such that autonomy and
the specific product form of the class in question hold and that Bell inequalities
are violated. I have found appropriate distributions for each class (Hα

1 )–(Hα
14)

by solving numerically a corresponding set of equations. This fact, that some
probability distributions of these classes violate Bell inequalities, means that
none of these classes implies Bell inequalities in general, i.e. by its constituting
product form. Of course, this does not mean that all probability distributions
in these classes violate Bell inequalities: in fact one can as well find examples of
probability distributions in each class (Hα

1 )–(Hα
14) which fulfill Bell inequalities.

This means that for these classes the product form alone does not determine
whether Bell inequalities hold or fail; whether they do depends on the numerical
values of the specific distribution. On the general level of the classes we can
only say that classes in group (iv) neither imply Bell inequalities nor do they
imply their failure. They can violate Bell inequalities.

2.4.5 Result of the derivations

Reflecting on this result, that probability distributions in group (i), (ii) and
(iii) entail that Bell inequalities hold, while distributions in group (iv) do not,
it now becomes clear what features a product form of the hidden joint proba-
bility must have in order to imply Bell inequalities. Each of the two factors of
the hidden joint probability may at most involve one parameter. If both involve
no parameter or the same, Bell inequalities hold just because of the functional
independencies (group (i)), and if each involves exactly one parameter, one
can explicitly derive Bell inequalities (group (ii) and (iii)). It does not mat-
ter whether the parameters are local or non-local, and neither does it matter
whether there is a dependence on the outcome β or not. (In discerning product
forms which allow and which do not allow deriving Bell inequalities, we have
not had to make reference to the outcome β at all.) But as soon as there is
a dependence on both parameters in at least one of the factors of the product
form, one cannot derive Bell inequalities and, on the contrary, can easily find
examples of distributions which violate them (group (iv)).

So as opposed to what the standard discussion suggests, it is not true that
local factorisation is the only product form which allows deriving Bell inequali-
ties. Rather, we have found that 18 (!) of the 32 classes imply Bell inequalities
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if autonomy (and perfect (anti-)correlations) hold (see column VII of table 1;
“�(BI)” means necessarily, Bell inequalities hold), among them 14 non-local
classes. In order to separate these non-local classes from those which do not
imply Bell inequalities, I introduce the following names:

localα classes: (Hα
29)–(Hα

32) (imply Bell inequalities)

weakly non-localα classes: (Hα
15)–(Hα

28) (imply Bell inequalities)

strongly non-localα classes: (Hα
1 )–(Hα

14) (do not imply Bell inequalities)

Note the superscript α, which indicates that we refer to classes deriving from (1)
(instead of from (2)). Note further that the set of localα and weakly non-localα

classes is just the union of the classes in group (i), (ii) and (iii) while strongly
non-localα classes correspond to group (iv). With the new terminology, we
can formulate our result that, given autonomy and perfect (anti-)correlations,
localα or weakly non-localα classes imply Bell inequalities, while strongly non-
localα classes do not.

2.5 A stronger Bell argument for quantum non-locality

This result, that one can derive Bell inequalities from non-local product forms
enables us to strengthen premise (P4) in the Bell argument. We can now write:

(P4’) Bell inequalities can be derived from autonomy, perfect correlations,
perfect anti-correlations and any localα or weakly non-localα class
of probability distributions:[

(A) ∧ (PCorr) ∧ (PACorr) ∧
( 32∨
i=15

(Hα
i )
)]
→ (BI)

Compared to (P4), we have made two changes. First, we have replaced local
factorisation in the antecedent by the disjunction of the localα and weakly non-
localα classes (including local factorisation (Hα

29)). This makes the antecedent of
(P4’) weaker than that in (P4) and, hence, the argument stronger. Second, we
have added the condition that there are perfect anti-correlations (PACorr), since
classes in group (iii) require them for the derivation. This additional assumption
however does not weaken the argument since the perfect anti-correlations follow
from the EPR/B correlations (as the perfect correlations do). We just have to
modify premise (P3) to

(P3’) EPR/B correlations include perfect correlations and perfect anti-
correlations:

(Corr) Õ (PCorr) ∧ (PACorr)

Changing these two premises has a considerable effect on the Bell argument.
Instead of the standard conclusion (C1), that the violation implies the failure
of local factorisation, by the modified argument from (P1), (P2), (P3’), (P4’)
and (P5), we arrive at the essentially stronger conclusion:
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(C1’) Both localα and weakly non-localα classes fail:

( 32∧
i=15

¬(Hα
i )
)

While the original result, the failure of local factorisation, implied that all
localα classes fail (because the other local classes are specializations of local
factorisation), the new result additionally excludes all weakly non-localα classes.

Our considerations leading to this new result of the Bell argument rest on
the fact that we have found alternatives to local factorisation from writing
the hidden joint probability according to the product rule (1) and conceiving
different possible product forms (table 1). However, we can as well write the
hidden joint probability according to the second product rule (2), and similar

arguments as above lead us to a similar table as table 1, whose classes, (Hβ
1 )–

(Hβ
32), differ to those in table 1 in that the outcomes and the parameters are

swapped. For instance, class (Hβ
16) is defined by the product form P (αβ|abλ) =

P (β|αbλ)P (α|aλ) in contrast to (Hα
16), which is constituted by P (αβ|abλ) =

P (α|βaλ)P (β|bλ). Note that this new classification is a different partition of
the possible probability distributions. Any probability distribution must fall in
exactly one of the classes (Hα

1 )–(Hα
32) and in exactly one of the classes (Hβ

1 )–

(Hβ
32). Following along the lines of section 2.4 we find for the new partition that

the localβ and weakly non-localβ classes imply Bell inequalities as well, so that
we can reformulate (P4’) as:

(P4”) Bell inequalities can be derived from autonomy, perfect correlations,
perfect anti-correlations and any localα, weakly non-localα, localβ

or weakly non-localβ class of probability distributions:[
(A) ∧ (PCorr) ∧ (PACorr) ∧

( 32∨
i=15

(Hα
i ) ∨

32∨
i=15

(Hβ
i )
)]
→ (BI)

Then we can formulate an even stronger Bell argument from (P1), (P2), (P3’),
(P4”) and (P5) to

(C1”) All localα, weakly non-localα, localβ and weakly non-localβ classes
fail: ( 32∧

i=15

¬(Hα
i ) ∧

32∧
i=15

¬(Hβ
i )
)

Since in section 2.2 we have seen that the result of the original Bell argument
defines what we call quantum non-locality, it is clear that given this new result
we have to adapt the definition appropriately. It simply becomes implausible
to stick to the old, looser definition including weakly non-local classes, given
that we now know that we have to exclude them. With the new result of the
Bell argument we can be much more precise about what quantum non-locality
amounts to on a probabilistic level and re-define it as:
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(P6’) Quantum non-locality is the failure of the disjunction of all localα,
weakly non-localα, localβ and weakly non-localβ classes (i.e. it is
not the case that both factors in each product form involve at most
one parameter):

(QNL’) :↔

(
32∧
i=15

¬(Hα
i ) ∧

32∧
i=15

¬(Hβ
i )

)
(definition)

This is the first main result of my investigation. (P6’) takes the notion of
quantum non-locality from any kind of non-locality (the mere failure of local
factorisation) to a more specific one (namely exclusive the weakly non-localα

and weakly non-localβ classes). Since our scheme of logically possible classes is
comprehensive, the failure of all localα and weakly non-localα classes is equiv-
alent to the fact that one of the strongly non-localα classes, (Hα

1 )–(Hα
14), has

to hold (and mutatis mutandis for the classes (Hβ
i ), see (P6”)). Therefore,

equivalently to (P6’) we can say:

(P6”) Quantum non-locality is strong non-localityα and strong non-localityβ

(i.e. at least one of the factors in each product form must involve
both parameters):

(QNL’)↔

(
14∨
i=1

(Hα
i ) ∧

14∨
i=1

(Hβ
i )

)

2.6 Discussion I

According to the logic of the Bell argument, we have noted in section 2.2, quan-
tum non-locality is a necessary condition for EPR/B correlations and their
violation of Bell inequalities. This still holds for the new result and defini-
tion (since the logical structure of the argument has not essentially changed).
However, we now know that the new concept of quantum non-locality is not
sufficient for EPR/B correlations because we have seen that there are strongly
non-local distributions which do not violate Bell inequalities. On the other
hand, since we have also found that all strongly non-local classes include dis-
tributions which violate Bell inequalities and reproduce EPR/B correlations,
we can say that on a qualitative level, which only considers the product forms
of the hidden joint probability, i.e. probabilistic dependencies and independen-
cies, we cannot improve the argument any more. It is impossible to reach a
stronger conclusion than (C1”) by showing that we can derive Bell inequalities
from still further classes. For if my argument and counterexamples are correct,
there are no classes left which in general may imply Bell inequalities. Any
future characterization of quantum non-locality which is more detailed must
involve reference to numerical features of the strongly non-local classes. In this
sense, my new definition of quantum non-locality, although not being sufficient
for EPR/B correlations, captures their strongest possible consequences on a
qualitative probabilistic level.
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Why has this stronger consequence of the Bell argument, that we have de-
rived, been overlooked so far? Obviously, it has wrongly been assumed that local
factorisation is the only basis to derive Bell inequalities, and the main reason
for neglecting other product forms of hidden joint probabilities might have been
the fact that, originally, Bell inequalities were derived to capture consequences
of a local worldview. The main result of former considerations was that locality
has consequences which are in conflict with the quantum mechanical distribu-
tion. Given this historical background, the idea to derive Bell inequalities from
non-local assumptions maybe was beyond interest because the conflict with lo-
cality was considered to be the crucial point; or maybe it was neglected because
Bell inequalities were so tightly associated with locality that a derivation from
non-locality sounded totally implausible. Systematically, however, since it is
now clear that the quantum mechanical distribution is empirically correct and
Bell inequalities are violated, it is desirable to draw as strong consequences
as possible, which requires to check without prejudice whether some non-local
classes allow a derivation of Bell inequalities as well—and this is what we have
done here.

Before we go on with the argument let me shortly digress on how my argu-
ment dissolves two common misunderstandings in the debate about quantum
non-locality. First, in the discussion Bell inequalities are so closely linked to
locality that one could have the impression that Bell inequalities are locality
conditions in the sense that, if a probability distribution obeys a Bell inequality,
it must be local. Of course, Bell’s argument never really justified that view,
for the logic of the standard Bell argument is that local factorisation (given
autonomy and perfect (anti-)correlations) is merely sufficient (and not neces-
sary) for Bell inequalities. Maybe the association between Bell inequalities and
locality might have arisen from the the fact that up to now local factorisation
has been the only product form which was shown to imply Bell inequalities.
Given only this information, it was at least possible (though unproven) that
the holding of Bell inequalities implies locality. However, since we have shown
that weakly non-local classes in general imply Bell inequalities and since the
simulations show that even some strongly non-local distributions can conform
to Bell inequalities, it has become explicit that this is not true. If a probability
distribution obeys a Bell inequality it does not have to be local because not all
probability distributions obeying Bell inequalities are local.

Second, sometimes it has been said that the violation of Bell inequalities
by EPR/B correlations implies that there cannot be a screener-off for the
correlations (e.g. van Fraassen, 1989). Table 1 shows that this is not true
either. Among the strongly non-local classes there are classes according to
which α is screened-off from β (namely all classes with the value 0 in col-
umn II). Consider for example class (Hα

6 ) for which the product form reads
P (αβ|abλ) = P (α|abλ)P (β|abλ). Here we have it that the conjunction of a,
b and λ screens the correlation off. Including the distant parameter for both
outcomes, this is of course not a local screener-off. But that there can be a
screener-off for the correlations, although non-local, shows that it is not true
saying that EPR/B correlations disprove Reichenbachs common cause principle.
This claim would only be true if you exclude non-local screener-offs by adding
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the premise of locality, which, however, would be odd, because the violation of
Bell inequalities shows that we cannot avoid a non-locality anyway. Of course,
the true theory of the quantum realm might in fact have a distribution which
does not screen-off, but to argue for that one needs further assumptions; this
claim is not in general implied by the violation of Bell inequalities.

Finally, and maybe most importantly, my argument points out that the
discussion so far has been based on an inappropriate concept of quantum non-
locality. Capturing all non-local classes the standard concept of quantum non-
locality (the failure of local factorisation (P6)) includes classes which we have
found to be compatible with Bell inequalities (weakly non-local classes). In this
sense the standard concept is inappropriately weak, i.e. weaker as it should be.
Therefore, if we analyse this concept, as Jarrett did, and take it as informing us
about the consequences of EPR/B correlations violating Bell inequalities, we
must expect to be misled, either in that some of the options we arrive at are
not really available or that the analysantia do not at all cut the problem at its
natural joints (in section 3.5 we will see that the latter is the case). This is the
core of my critique concerning the standard view.

Excluding local and weakly non-local classes, my new concept (P6’) picks
out a proper subset of the classes which are included in the standard concept,
and comprises only those classes that do not imply Bell inequalities (strongly
non-local classes): it is considerably stronger and much more informative than
the standard concept. Moreover, I have just argued that it cannot be made
stronger on a qualitative probabilistic level, because it comprehensively de-
scribes the qualitative probabilistic consequences of EPR/B correlations violat-
ing Bell inequalities. In this sense, my new concept is an appropriate basis for
an analysis (while the standard concept is not). Analysing the new stronger
concept will be the subject of the following section, and it will turn out that
the result of this analysis differs significantly from Jarrett’s.

3 Analysing quantum non-locality

The aim of this section is to provide an analysis of the new concept of quantum
non-locality (P6’), which was the result of the modified Bell argument in the
last section. Jarrett proved that the standard concept of quantum non-locality
(P6) is equivalent to the disjunction of outcome dependence and parameter de-
pendence. The idea of Jarrett’s analysis is that a specific product form of the
hidden joint probability (such as local factorisation), which is a complex inde-
pendence condition, can be analysed by pairwise independencies (such as out-
come independence or parameter independence). Our new concept of quantum
non-locality (P6’) is a conjunction of two disjunctions of several product forms
and, hence, itself a complex independence condition. So we can apply Jarrett’s
idea to our new case and understand “analysis” as providing an expression in
terms of pairwise probabilistic independencies which is equivalent to the new
concept. I first recall shortly Jarrett’s analysis and introduce an appropriate set
of independencies, which will serve as analysantia. Then I develop an analysis
for each of the classes (Hα

i ) and subsequently of the disjunction
∨32
i=15(Hα

i ) (the
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first part of the disjunction of classes which imply Bell inequalities). Finally,

we can transfer our results from the first to the second part
∨32
i=15(Hβ

i ), and the
negation of the disjunction of the two parts will yield the analysis of quantum
non-locality (P6’).

3.1 Jarrett’s analysis of quantum non-locality

Jarrett (1984) had the idea that one can be more explicit about the probabilistic
nature of quantum non-locality (P6) by analysing the probabilistic statement
local factorisation (`F) in terms of pairwise conditional probabilistic indepen-
dencies. By a “pairwise conditional probabilistic independence” I mean the fact
that a random variable x is independent of another y given a conjunction of
further variables z. This is said to be true iff for all values of the variables the
joint probability over the variables makes the following equation true:

P (x|yz) = P (x|z) (27)

The independence is noted as I(x,y|z). If, however, there is at least one set of
values for which (27) does not hold, the variables x and y are called dependent
given z, and this probabilistic dependence is noted as ¬I(x,y|z).

Jarrett uses three pairwise independencies: “outcome independence” is de-
fined as I(α,β|abλ) and “parameter independence” as a conjunction of two
independencies, I(α, b|aλ) ∧ I(β,a|bλ). (Originally, Jarrett denotes these in-
dependencies as “completeness” and “locality” respectively, but we shall use
the now established names.) Jarrett proved mathematically that

(P7) Local factorisation is equivalent to the conjunction of outcome in-
dependence and parameter independence:

(`F)↔ I(α,β|abλ) ∧ I(α, b|aλ) ∧ I(β,a|bλ) (28)

From (P6) and (P7) he concluded that

(C2) Quantum non-locality is equivalent to the disjunction of outcome
dependence or parameter dependence:

(QNL)↔ ¬I(α,β|abλ) ∨ ¬I(α, b|aλ) ∨ ¬I(β,a|bλ) (29)

which is the probabilistic analysis of quantum non-locality according to the stan-
dard view (“Jarrett’s analysis”). The analysis is correct, but since (as we have
seen) the analysandum (P6) is inappropriately weak, its result is not as in-
formative as it could be and, as we will see, in fact misleading about the na-
ture of quantum non-locality. Therefore, what we aim to do is to analyse the
new stronger concept of quantum non-locality (P6’) in terms of pairwise con-
ditional independencies, which will give us a clearer picture of what quantum
non-locality amounts to.
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3.2 Pairwise independencies

The first step towards an analysis is to get an overview which concepts can
play the role of the analysantia. In table 3 I introduce those nine pairwise inde-
pendencies which will be relevant. Among the relevant independencies we find
the normal outcome independence, I(α,β|abλ), as well as I(α, b|aλ), one in-
dependence of the disjunction which is usually called parameter independence.
Here we see a first problem with the standard names: how shall we call the lat-
ter if its disjunction with I(β,a|bλ) is called parameter independence? I have
tried to stay as close to the standard names as possible, but obviously further
qualifications are needed. My suggestion is to continue to use the name “param-
eter independence” for all independencies between an outcome and its distant
parameter, but to add the outcome in question, namely “α-parameter inde-
pendence” or “β-parameter independence” respectively. Further differentiation
in the nomenclature is required by the fact that there is another α-parameter
independence in the table, I(α, b|βaλ), which differs from the one already
mentioned in the conditional variables (it additionally includes the outcome
β). Such independencies of the same type but with different conditional vari-
ables are different independencies and are in general logically independent of
another: one can hold or not irrespective of whether the other does or does not.
(One can show that only if one involves more than two independencies logical
restrictions appear.) I discern them by indices, e.g. the former is called “α-
parameter independence2”, the latter “α-parameter independence1”. Of course,
there are further α-parameter independencies (namely those conditional on βλ
and λ) which, however, do not play any role for the analysis.

Similarly to the parameter independencies I define local parameter indepen-
dencies (see table 3), which instead of the independence of an outcome on its
distant parameter (α, b) claim the independence of an outcome on its local pa-
rameter (α,a). Besides these new names I have also introduced short labels for
each independence, which we will mainly use in the following.

Given these new concepts we are now in a position to see one of the sources
of confusion in the standard discussion. “Outcome dependence or parameter
dependence” does not necessarily mean that if you accept outcome dependence
you can avoid parameter dependence in the sense of any kind of dependence of
an outcome on its distant parameter (conditional on whatever variables). The
slogan just says that in this case you can avoid parameter dependence in the
usual sense of ¬(PIα2 ) ∨ ¬(PIβ2 ), while other kinds of parameter dependencies
like ¬(PIα1 ) might still hold! And indeed the analysis of the new concept will

yield that at least one of the two parameter dependencies ¬(PIα1 ) and ¬(PIβ2 )
must hold. Parameter dependence in this broader sense cannot be avoided but
will turn out to be a necessary condition for quantum non-locality.

3.3 Analysing the classes

With these pairwise independencies we can now attempt to analyse each class
of probability distributions. For the analysis of the classes (Hα

i ) in table 1 we
shall need the first five independencies in table 3 (the other four independencies
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Table 3: Definition of conditional independencies

independence standard name new name label

I(α,β|abλ) outcome independence outcome independence1 (OI1)

I(α, b|βaλ) – α-parameter independence1 (PIα1 )

I(α, b|aλ) [part of] parameter ind. α-parameter independence2 (PIα2 )

I(β,a|αbλ) – β-parameter independence1 (PIβ1 )

I(β,a|bλ) [part of] parameter ind. β-parameter independence2 (PIβ2 )

I(α,a|βbλ) – α-local parameter independence1 (`PIα1 )

I(α,a|bλ) – α-local parameter independence2 (`PIα2 )

I(β, b|αaλ) – β-local parameter independence1 (`PIβ1 )

I(β, b|aλ) – β-local parameter independence2 (`PIβ2 )

plus outcome independence1 are only used for the analysis of the classes (Hβ
1 );

see below). The result of the analysis will be that each class in table 1 is
equivalent to the conjunction of the specific pattern of independencies indicated
in columns II–VI (0’s indicate independencies, see the bottom line!), i.e. each
pattern corresponds to exactly one of the classes, e.g.

(Hα
7 )↔ (PIα2 ) ∧ (`PIα2 ). (30)

One can see from the table that each of the five independencies corresponds
to exactly one of the five variables in the conditionals of the factors: if a cer-
tain independence holds, the corresponding variable does not appear (and vice
versa), and if a certain independence fails, the corresponding variable does ap-
pear (and vice versa). Specifically, if (OI1) holds, the first factor of the hidden
joint probability does not involve the other outcome β (and vice versa), and if
it does not, the first factor includes it (and vice versa). Similarly, (PIα1 ) and
(`PIα1 ) correspond to the distant and the local parameter in the first factor
respectively, while (PIα2 ) and (`PIα2 ) are linked to the distant and the local pa-
rameter in the second factor respectively. So the holding or failure of each of the
five independencies has a very well defined impact on the product form of the
hidden joint probability (and vice versa), and the conjunction of all indepen-
dencies which hold according to a certain probability distribution determines
its product form, i.e. its class (and vice versa).

The proof of the equivalences of product forms and conjunctions of inde-
pendencies involves only some basic laws of probability theory. Providing an
analysis for each product form of the hidden joint probability, this claim is an
extension of Jarrett’s analysis of local factorisation (P7). One can demonstrate
the equivalence for each hidden joint probability separately (analogous to how
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Jarrett derived (P7)), but the following constructive method is more elegant:
in the case that the hidden joint probability factorises according to the product
rule, (Hα

1 ), none of the relevant independencies holds (and vice versa). Then
we consider the five cases in which exactly one independence holds (Hα

2 )–(Hα
6 ).

Here is the proof of (Hα
2 )↔ (`PIβ2 ):

← P (αβ|abλ) = P (α|βbaλ)P (β|abλ)
(`PIβ2 )

= P (α|βbaλ)P (β|aλ) (31)

→ P (β|abλ) =
∑
α

P (αβ|abλ)
(Hα2 )
= P (β|aλ)

∑
α

P (α|βbaλ) = P (β|aλ) (32)

The equivalence (Hα
3 ) ↔ (PIβ2 ) can be shown mutatis mutandis (just swap the

local with the distant parameter). (Hα
4 )↔ (`PIα1 ) can be derived as follows:

← P (αβ|abλ) = P (α|βbaλ)P (β|abλ)
(`PIα1 )

= P (α|bβλ)P (β|abλ) (33)

→ P (α|βbaλ) =
P (αβ|abλ)

P (β|abλ)

(Hα4 )
=

P (α|βbλ)�����P (β|abλ)

�����P (β|abλ)
= P (α|βbλ) (34)

The equivalences (Hα
5 ) ↔ (PIα1 ) and (H6) ↔ (OI1) are proved similarly. Then,

by pairs of these five equivalences involving one independence, we prove equiv-
alences with two independencies, and subsequently, equivalences with three in-
dependencies, and so on. Here is an example how to derive an equivalence with
two independencies, (Hα

7 ) ↔ (PIβ2 ) ∧ (`PIβ2 ), on the basis of the corresponding
equivalences with one independence respectively:

← (PIβ2 ) ∧ (`PIβ2 )
(31), (32)←→ (PIβ2 ) ∧ (Hα

2 )
(35)→ (Hα

7 )

P (αβ|abλ)
(Hα2 )
= P (α|βbaλ)P (β|ab′λ)

(PIβ2 )
= P (α|βbaλ)P (β|a′b′λ) (35)

→ (Hα
7 )

(∗)→ (Hα
3 )↔ (PIβ2 ); (Hα

7 )
(∗)→ (Hα

2 )↔ (`PIβ2 )

(∗): (Hα
7 ) is a common special case of (Hα

2 ) and (Hα
3 ); if (Hα

7 ) holds,
then a forteriori (Hα

2 ) and (Hα
3 ):

∀a, a′, b, b′ : P (αβ|abλ) = P (α|βbaλ)P (β|a′b′λ) (Hα
7 )

∀a = a′, b, b′ : P (αβ|abλ) = P (α|βbaλ)P (β|a′b′λ) (Hα
2 )

∀a, a′, b = b′ : P (αβ|abλ) = P (α|βbaλ)P (β|a′b′λ) (Hα
3 )

As one can see by this constructive method the proofs remain basic and short,
even for the more complex equivalences. Similarly, with some patience, we can
derive step by step the other equivalences between product forms and indepen-
dencies in table 1.
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Note that according to table 1 local factorisation is analysed as (Hα
29) ↔

(OI1) ∧ (PIα1 ) ∧ (PIβ2 ), while according to Jarrett it is (Hα
29)↔ (OI1) ∧ (PIα2 ) ∧

(PIβ2 ), i.e. in Jarrett’s claim (PIα1 ) is replaced by (PIα2 ). Given that (OI1)
holds, the replacement is correct, because one can show that (OI1) ∧ (PIα1 ) ↔
(OI1) ∧ (PIα2 ).

3.4 Quantum non-locality as double parameter dependence

Finally, with the analysis of the single classes we shall now formulate the second
main result of this paper, the analysis of the new, stronger concept of quantum
non-locality (P6’). We had found that quantum non-locality is the failure of all
localα, weakly non-localα, localβ and weakly non-localβ classes and that these
classes are characterized by the fact that their constituting product forms in-
volve at most one parameter in each of its factors. Let us first give an analysis
of the localα and weakly non-localα classes. Our analysis of the single classes
(Hα

1 )–(Hα
32) has revealed that each variable in the conditionals of the factors

corresponds to exactly one of the five independencies in table 1. The distant
parameter in the first factor corresponds to α-parameter independence1, (PIα1 ),
and the local parameter to α-local parameter independence1, (`PIα1 ). So the
first factor involves at most one parameter if and only if at least one of these
independencies holds, (PIα1 ) ∨ (`PIα1 ). Similarly, at most one parameter ap-
pears in the second factor iff β-parameter independence2 or β-local parameter
indepence2 hold, (PIβ) ∨ (`PIβ). So we have found the following equivalence:

(P7’a) The disjunction of localα and weakly non-localα classes is equivalent
to the fact that α is independent1 of at least one parameter and β
is independent2 of at least one parameter:

( 32∨
i=15

(Hα
i )
)
↔
[(

(PIα1 ) ∨ (`PIα1 )
)
∧
(

(PIβ2 ) ∨ (`PIβ2 )
)]

In a very similar way as we have proceeded for the classes (Hα
1 )–(Hα

32) one

can find an analysis for the classes (Hβ
1 )–(Hβ

32) (remember the table which is
symmetric to table 1 in swapping the outcomes and the parameters and apply
all considerations mutatis mutandis):

(P7’b) The disjunction of localβ and weakly non-localβ classes is equivalent
to the fact that β is independent1 of at least one parameter and α
is independent2 of at least one parameter:( 32∨
i=15

(Hβ
i )
)
↔
[(

(PIβ1 ) ∨ (`PIβ1 )
)
∧
(

(PIα2 ) ∨ (`PIα2 )
)]

Since (P6’) defined quantum non-locality as the failure of the disjunction of
all localα, weakly non-localα, localβ and weakly non-localβ classes, the negation
of the disjunction of (P7’a) and (P7’b) finally yields the analysis of quantum
non-locality:
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(C2’) Quantum non-locality is equivalent to the fact that α depends1 on
both parameters or β depends2 on both parameters and β depends1

on both parameters or α depends2 on both parameters:

(QNL’) ↔

{[(
¬(PIα1 ) ∧ ¬(`PIα1 )

)
∨
(
¬(PIβ2 ) ∧ ¬(`PIβ2 )

)]
∧

∧
[(
¬(PIβ1 ) ∧ ¬(`PIβ1 )

)
∨
(
¬(PIα2 ) ∧ ¬(`PIα2 )

)]}

While the definition of quantum non-locality in (P6’) was in terms of classes
of probability distributions, here we have the equivalent expression, the analysis,
in terms of pairwise independencies. It is a rather complex logical expression
whose meaning and implications are not at all easy to grasp. A first under-
standing might be attained by making explicit how this analysis of quantum
non-locality is also an analysis of the conjunction of strongly non-localα and
strongly non-localβ classes (which is necessarily so, see (P6”)). These classes
were characterized by the fact that at least one of the factors in each prod-
uct form must involve both parameters and this is exactly what (C2’) says:
The first term in the first disjunction, ¬(PIα1 ) ∧ ¬(`PIα1 ) (“α-double parame-
ter dependence1”), guarantees a dependence on both parameters in the first
factor of the product forms (Hα

i ), the second term in the first disjunction,

¬(PIβ2 ) ∧ ¬(`PIβ2 ) (“β-double parameter dependence2”), implies a similar fact
for the second factor of these forms, and analogously, the second disjunction
entails dependence on both parameters in at least one of the factors of the
product forms (Hβ

i ) (and vice versa).
So the analysis involves double parameter dependencies for each outcome in

two different forms, either conditional on all other variables (double parameter
dependence1) or conditional on all other variables excluding the other outcome
(double parameter dependence2). The logic of the expression has it that these
can hold in different combinations, but whichever combination does, there is
one thing that necessarily follows if (C2’) is true:

(C3) Double parameter dependence: at least one of the outcomes de-
pends probabilistically on both parameters (in at least one of the
forms double parameter dependence1 or double parameter depen-
dence2).

For one can avoid that one of the outcomes is double parameter dependent1

and double parameter dependent2, but then it follows that the respective other
outcome must be double parameter dependent1 as well as double parameter
dependent2. Of course, you can also have mixed cases in which both outcomes
are double parameter dependent (in one or both of the two forms), but in any
case you have double parameter dependence of at least one of the outcomes.

So we have found two results: the precise probabilistic analysis of quantum
non-locality (C2’) and a general feature of and deriving from that analysis (C3),
that at least one of the outcomes must be double parameter dependent. Since
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quantum non-locality is a necessary condition for EPR/B correlations (if auton-
omy holds) double parameter dependence of at least one of the outcomes, which
is implied by quantum non-locality, is a necessary condition for EPR/B correla-
tions as well: whenever we find that EPR/B correlations hold double parameter
dependence (C3) must hold as well. So given that measurement results in our
world yield EPR/B correlations (and assuming autonomy), we can be sure that
at least one of the outcomes depends both on the local as well as on the distant
parameter. Note, however, that we have not shown that quantum non-locality,
and hence neither its analysis (C2’) nor double parameter dependence (C3), is
sufficient for the violation of Bell inequalities. If an outcome depends on both
parameters in the sense of (C2’) the correlations between the two wings might
be sophisticated enough to violate Bell inequalities—but they need not be. We
have noted above that the product form and, hence, the dependencies alone
cannot guarantee a violation because, additionally, the probability distribution
has to fulfill certain numerical conditions.

3.5 Discussion II

We shall now compare our new results (C2’) and (C3) with that of Jarrett’s
analysis (C2). Here is a summary of the two different arguments and their
results:

(A)∧
(Corr)

standard
Bell
argument⇒ ¬

(
32∨
i=29

(Hα
i ) ∨

32∨
i=29

(Hβ
i )

)
Jarrett’s
analysis⇔ ¬(OI1) ∨ ¬(PIα2 ) ∨ ¬(PIβ2 ) (C2)

(A)∧
(Corr)

new Bell
argument⇒ ¬

(
32∨
i=15

(Hα
i ) ∨

32∨
i=15

(Hβ
i )

)

new
analysis⇔

{[(
¬(PIα1 )∧¬(`PIα1 )

)
∨
(
¬(PIβ2 )∧¬(`PIβ2 )

)]
∧

∧
[(
¬(PIβ1 )∧¬(`PIβ1 )

)
∨
(
¬(PIα2 )∧¬(`PIα2 )

)]} (C2’)

⇒ At least one of the outcomes depends on both
parameters.

(C3)

(1) At the end of the first part of this paper I have made precise in what sense
the standard concept of quantum non-locality, the result of the Bell argument, is
too weak (it picks out both weakly and strongly non-local classes instead of just
the latter), and it is clear that the analysis of the new concept is superior just
because its analysandum is much more informative. This is the fundamental
difference between the two analyses. But what exactly changes from the one to
the other? In what sense does the result of Jarrett’s analysis paint a different
picture of the probabilistic dependencies in EPR/B experiments?
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(2) The main message of my result is that given EPR/B correlations and
autonomy one cannot avoid some kind of dependence between at least one of the
outcomes and both parameters (C3) (either double parameter dependence1 or
double parameter dependence2). This is the unambiguous probabilistic require-
ment of quantum non-locality according to the new analysis. Jarrett’s analysis,
however, does not bring out this necessary condition: from his result “outcome
dependence or parameter dependence” one just cannot see that, necessarily,
there must be some kind of double parameter dependence.

(3) Actually, Jarrett’s result is liable to be misunderstood to the contrary
meaning, for it might be interpreted to say that if we opt for outcome dependent1

theories we could avoid any dependence of an outcome on its distant parameter—
which is wrong in two respects. First this understanding of the analysis is wrong
because this is not what it says (it only says that you can avoid parameter
dependence2). Second, my analysis shows that it is in fact wrong that we can
avoid any kind of parameter dependence. My result reveals that there is no
choice to make between whether an outcome depends on the other outcome or
on its distant parameter, for we have found that any theory correctly reproduc-
ing the EPR/B correlations must have some kind of dependence between each
outcome and both its local and distant parameter.

But is quantum mechanics not a counterexample to my result? Is it not a
theory which violates Bell inequalities although there is no dependence on the
distant parameter? It is true, quantum mechanics is well known to be “outcome
dependent and parameter independent”, but again this is not to be understood
that according to quantum mechanics there is no probabilistic dependence of an
outcome on the distant parameter at all. In fact, it is easy to check, which inde-
pendencies hold according to quantum mechanics: one can calculate all relevant
conditional probabilities from the quantum mechanical probability distribution
for the EPR/B experiment (Corr). A simple comparison of these probabilities
then shows which of the independencies hold and which do not, and it turns
out that quantum mechanics is parameter dependent1, ¬(PIα1 ) and ¬(PIβ1 ), so
according to quantum mechanics each outcome does depend on its distant pa-
rameter! This parameter dependence in quantum mechanics is not as surprising
as it may seem since, according to the formalism, the measurement direction at
A determines the possible collapsed states at B and the actual outcome at A
only determines in which of the (two) possible states the photon state at B col-
lapses. So contrary to what the standard talk suggests, quantum mechanics is
parameter dependent, and it is important to see that it is as well local parame-
ter dependent1, ¬(`PIα1 ) and ¬(`PIβ1 ) (while it is local parameter independent2,

(`PIα2 ) and (`PIβ2 )), because then, the quantum mechanical distribution fulfills
the requirement of a quantum non-locality by rendering the first terms of the
two disjunctions in (C2’) true. If my argument in this paper is true, it cannot
be otherwise. For if quantum mechanics were not parameter dependent in this
double sense, it could not (as it does) violate Bell inequalities.

(4) How then do Jarrets’s analysantia outcome dependence1, α-parameter
dependence2 and β-parameter dependence2 relate to the new concept of quan-
tum non-locality? Here is, first, how they do not relate: Jarrett’s analysis of
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the weaker concept is a disjunction of these three dependencies and it could
have been that the analysis of the stronger concept just cancels one or two of
the elements in the disjunction, revealing them as options which are not re-
ally available. For instance it might have been that the new analysis yields
just ¬(PIα2 ) ∨ ¬(PIβ2 ), canceling ¬(OI1). However, it turns out that this is not
the case. The logical structure of the new analysis is not just a simplifica-
tion of the former, but, in fact, is much more complicated involving new con-
cepts (parameter dependence1, local parameter dependence1 and local param-
eter dependence2) and not involving others (outcome dependence1). This sug-
gests that Jarrett’s categories outcome dependence1 and parameter dependence2

cannot capture the new concept of quantum non-locality.

Table 4: Jarrett’s classes of possible probability distributions

Label ¬(OI1) ¬(PIα2 ) ∨¬(PIβ2 ) Notes

(J1) 1 1
quantum
non-locality

(J2) 0 1 Bohm

(J3) 1 0 QM

(J4) 0 0 locality

To make this explicit, consider the partition of the probability distributions
according to the dependencies in Jarrett’s analysis (table 4). There are four
classes, which I call “Jarrett’s classes” and label as (J1)–(J4). Any of the
32 possible classes from table 1 must fall into one of Jarrett’s coarse-grained
classes. While the local classes belong to (J4), any of the classes (J1)–(J3)
includes both weakly and strongly non-local classes. So Jarrett’s non-local
classes, which are assumed to be able to violate Bell inequalities, mix probability
distributions which can with such which cannot (see fig. 2). They do not cut
the probability distributions at their natural joints! This means that neither
outcome dependence1 nor parameter dependence2 are necessary or (contrary
to Jarrett’s analysis) sufficient for the new concept of quantum non-locality.
Providing, for instance, the information that a certain probability distribution
is outcome dependent1 does not tell you whether it can violate Bell inequalities
or not. The crucial fact is whether double parameter dependence of a certain
kind holds, and α-parameter dependence2 and β-parameter dependence2 at
least play a certain role in this complex condition. Outcome dependence1,
however, does not play any essential role for the general concept of quantum
non-locality. Not being able to capture the new concept, we conclude that the
partition according to Jarrett’s categories outcome dependence1 and parameter
dependence2 is inappropriate or unnatural for the analysis of quantum non-
locality.

So it seems that a significant amount of the debate after Jarrett’s paper
which has focused on the question of the formal, physical and metaphysical
differences between outcome dependence1 and parameter dependence2, in order
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non-locality
weak

strong

locality

Fig. 2: Outcome dependence1 and parameter dependence2 vs. weak and strong
non-locality. “Strong non-locality” means strongα and strongβ non-
locality (i.e. those distributions which can violate Bell inequalities),
while “weak non-locality” means weakα or weakβ non-locality (i.e. those
non-local distributions which imply Bell inequalities).

to decide which of the two does hold, is misguided. “Outcome dependence
or parameter dependence?” is just the wrong question if you want to explore
deeper into the nature of quantum non-locality, for each of the two options
subsumes probability distributions which can and such which cannot violate
Bell inequalities. Making this question a guide to quantum non-locality is like
asking whether those humans which can get pregnant have dark or fair hair.
Rather, the natural question, the new analysis shows, is which of the outcomes
is double parameter dependent and whether it is double parameter dependent1

or double parameter dependent2.
(5) Finally, it might be noted that there is one particularly outstanding

investigation of quantum non-locality which does not agree with the received
view but rather seems to be in accordance with my new analysis: instead of
analysing local factorisation in probabilistic terms, Maudlin (2011, ch. 6) de-
velops an information theoretic account of how the EPR/B correlations come
about. He shows that quantum non-locality necessarily involves a transmission
of information about the parameter on one side to the measurement outcome
on the other side:

Bell’s inequality can reliably be violated only when the re-
sponse of one of the particles depends (at least sometimes)
on the question asked its partner. [. . . ] [D]ependence on
the distant polariser setting is crucial. Jarrett’s division of
theories into those that violate outcome independence and
those that violate parameter independence is again seen to
be misleading: any successful theory must postulate some
influence of a distant “parameter” (i.e. the polariser angle)
on the response of a local photon. Without such dependence
the quantum statistics cannot be recovered. (p. 167)
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Assuming that the outcome (“response”) on one side depends on its local
parameter, Maudlin’s claim that one cannot avoid a certain dependence on the
distant parameter amounts to saying that there must be a dependence on both
parameters! This sounds very similar to my result (C3) that one cannot avoid
double parameter dependence for at least one of the outcomes. However, while
Maudlin’s investigation is in terms of information about the parameters which
is needed to reproduce the EPR/B correlations, my analysis is in terms of prob-
abilistic dependencies, so the two accounts are not easy to compare. To assess
how they agree and in what they differ would require to have a probabilistic
account of information flow—a question which is left open for future work. But
if information flow between variables in an EPR/B experiment can roughly
be associated with probabilistic dependence of these variables (which might be
false in general), then there was a tension between Jarrett’s probabilistic anal-
ysis and Maudlin’s information theoretic one, and I have shown exactly where
Jarrett’s argument fails and provided a new probabilistic account, which very
much seems to be in accordance with Maudlin’s. Moreover, the similarity of the
results is striking, especially because they stem from very different approaches:
EPR/B correlations imply that at least one of the outcomes depends on both
parameters, both probabilistically and information theoretically.

4 Conclusion

In this paper we have investigated what EPR/B correlations, which violate Bell
inequalities, imply on a qualitative probabilistic level. We started our consider-
ations by giving a comprehensive overview of the possible types of probability
distributions, which can describe EPR/B experiments (table 1). The overview
has revealed that one can derive Bell inequalities not only from local theories
but also from a large range of non-local ones, which we have called weakly
non-local. This has enabled us to formulate a stronger Bell argument than
usual to exclude local and weakly non-local theories of the quantum world.
Since the result of the Bell argument defines what we appropriately call quan-
tum non-locality, this new result yielded a tighter, more informative concept of
quantum non-locality, which describes more precisely what the violation of Bell
inequalities implies on a probabilistic level. In fact, my new concept of quantum
non-locality, although not being sufficient for EPR/B correlations, captures the
strongest possible consequences of EPR/B correlations on a qualitative proba-
bilistic level. In this sense, my new concept is appropriate, while the standard
concept is too weak. Furthermore, the argument shows that Bell inequalities
are not locality conditions (because weakly non-local theories obey them) and
that their violation does not necessarily imply that there is no screener-off for
the correlations.

In a second part, we have given an analysis of the new concept of quantum
non-locality, similar to how Jarrett analysed the failure of local factorisation.
We have provided an exact logical expression in terms of pairwise independen-
cies, which is equivalent to the new concept. (It includes two types of parameter
dependencies with respect to each outcome, namely parameter dependence2,
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which is the usual parameter dependence, and parameter dependence1, which
differs from the usual parameter dependence in that the conditional variables
include the other outcome respectively.) A general feature of the result is that
at least one of the outcomes must depend on both parameters, either including
parameter dependence1 or parameter dependence2 (while outcome dependence
is neither necessary nor sufficient for the new concept quantum non-locality).
Jarrett’s analysis, however, does not bring out this necessary requirement of
EPR/B correlations. Rather, it is liable to be misunderstood to the contrary
meaning that one can avoid any dependence between the outcomes and their
distant parameters if one accepts a dependence between the outcomes. (This
understanding, however, is not what it says.) A closer examination revealed
that the result of Jarrett’s analysis, “outcome dependence or parameter de-
pendence”, does not cut the probability distributions at their natural joints (it
mixes theories which can violate Bell inequalities with such which cannot). So it
turns out that asking whether outcome dependence or parameter dependence
holds is a deeply misleading question if one aspires to understand quantum
non-locality.

These deficiencies of Jarrett’s analysis require that the debate based on
the inappropriate disjunction “outcome dependence or parameter dependence”
needs a fundamental revision. There are two main issues. First, regarding
the question whether EPR/B correlations are compatible with relativity, many
have argued that parameter dependent2 theories are forbidden by relativity,
while outcome dependent (and parameter independent2) theories might peace-
fully coexist with relativity. However, we now know that theories in this latter
class which correctly describe the EPR/B correlations, e.g. quantum mechanics,
must be parameter dependent1. As we cannot avoid parameter dependence in
some sense, we have to check the alleged inconsistency of parameter dependence
and relativity again. Is the so far widely neglected parameter dependence1 as
problematic for relativity as parameter dependence2 has been said to be? Do
the arguments which have been adduced against parameter dependence2 apply
to parameter dependence1 as well? Either at least one of them can live in har-
mony with Lorentz invariance or no theory correctly reproducing the EPR/B
correlations by a quantum non-locality can be compatible with relativity on a
fundamental level.

Second, concerning the metaphysical implications of quantum non-locality
it has been argued that while parameter dependence2 requires a causal relation
(action at-a-distance), outcome dependence is best understood as a non-causal
connection (non-separability / holism). Since one cannot take refuge in outcome
dependence any more: does that mean that we necessarily have to accept action
at-a-distance? If yes, between which variables? Or can the idea of a non-
separability be made intelligible even for parameter dependent theories? These
and similar questions have to be addressed. Some old arguments might be
transferred to the new situation, some might not. In any case, the debate
will need a fresh look. It seems that we are far from being finished with our
enquiries into the nature of quantum non-locality, since it has just received new
probabilistic foundations.
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