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It is widely accepted that the violation of Bell inequalities excludes local theories
of the quantum realm. This paper presents a stronger Bell argument which even
forbids certain non-local theories. The remaining non-local theories, which can
violate Bell inequalities, are characterised by the fact that at least one of the
outcomes in some sense probabilistically depends both on its distant as well as on
its local parameter. While this is not to say that parameter dependence in the usual
sense necessarily holds, it shows that the received analysis of quantum non-locality
as ‘outcome dependence or parameter dependence’ is deeply misleading about what
the violation of Bell inequalities implies.
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1. Introduction

Bell’s argument (1964; 1971; 1975) establishes a mathematical no-go theorem for theories
of the micro-world. In its standard form, it derives that theories which are local (and fulfil
certain auxiliary assumptions) cannot have correlations of arbitrary strength between
events which are space-like separated. An upper bound for the correlations is given by
the famous Bell inequalities. Since certain experiments with entangled quantum objects
have results which violate these inequalities (EPR/B correlations), it concludes that
the quantum realm cannot be described by a local theory. Any correct theory of the
quantum realm must involve some kind of non-locality, a ‘quantum non-locality’. In
some sense, entangled quantum objects fundamentally depend on another, even when
they are space-like separated.

While this general result is widely accepted, there is a large debate about what kind
of non-locality exactly follows from the violation of Bell inequalities. There are at least
four levels of discussion:

(1) Probabilistic level: Which probabilistic dependences (between space-like separated
variables) follow from the violation of Bell inequalities?

(2) Causal level: Which (space-like separated) variables influence another?

(3) Space-time level: Is quantum non-locality (as characterised in (1) and (2)) com-
patible with a relativistic space-time structure?

(4) Metaphysical level: What kind of metaphysical relation is quantum non-locality?

There are extensive debates on any of these levels. In this paper we shall be concerned
exclusively with the probabilistic level. Epistemically, it is the most fundamental one:
drawing logical consequences from the empirical violation of Bell inequalities, it is the
level closest to the empirical data; the discussions on the other levels are based on its
results. The main question on this level is what the correct probabilistic characterisation
of quantum non-locality is: which variables of the experiments have to depend probab-
ilistically on another given that Bell inequalities are violated? There is an apparent
conflict between the two main answers to this question. We shall now shortly present
these answers, before we say how we are going to resolve the conflict in this paper.

Since in its most general form, Bell’s theorem is formulated in probabilistic language,
the standard answer comes in terms of probabilistic dependences. In its probabilistic
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1. Introduction

version, the conclusion of Bell’s argument is that the total probability distribution of
the experiments does not factorise into local terms. This failure of ‘local factorisation’,
as we shall call it (often denoted ‘local causality’ or just ‘factorisation’) is the probab-
ilistic characterisation of quantum non-locality according to the standard view. It was
Jarrett’s idea (1984) to make this characterisation more explicit: he analysed the fail-
ure of local factorisation as the disjunction of two pairwise probabilistic dependences,
‘outcome dependence or parameter dependence’.1 This result provides a more detailed
insight into the probabilistic nature of quantum non-locality: there must be either a spe-
cific dependence between the measurement outcomes or a specific dependence between
at least one of the measurement outcomes and the distant measurement setting (‘para-
meter’), or both. We should note that Jarrett’s distinction has had an enormous impact
on the discussion of quantum non-locality on the other levels.2

There is a second answer which does not agree with Jarrett’s. Instead of analysing
the failure of local factorisation in terms of probabilistic dependences, Maudlin (1994,
ch. 6) develops an information theoretic account of how the EPR/B correlations come
about. He shows that quantum non-locality necessarily requires that one of the outcomes
depends on information about the distant setting:

Bell’s inequality can reliably be violated only when the response of one of the particles
depends (at least sometimes) on the question asked its partner. [. . . ] [D]ependence
on the distant polariser setting is crucial. Jarrett’s division of theories into those
that violate outcome independence and those that violate parameter independence
is again seen to be misleading: any successful theory must postulate some influence
of a distant ‘parameter’ (i.e. the polariser angle) on the response of a local photon.
Without such dependence the quantum statistics cannot be recovered. (p. 167)

In a recent paper by Pawlowski et al. (2010) this point is strengthened to the fact that
one of the outcomes must also depend on information about the other outcome:

...it is impossible to model a violation [of the Bell inequalities] without having
information in one laboratory about both the setting and the outcome at the distant

1Jarrett’s original names for the probabilistic conditions are ‘completeness’ (for what today is usu-
ally called ‘outcome independence’) and ‘locality’ (for ‘parameter independence’). Here we use the
names which are common in the debate, not least because Jarrett’s names have been criticised to be
misleading (Shimony, 1984; Norsen, 2009).

2On the space-time level, many philosophers of science have argued that it is outcome dependence and
not parameter dependence which holds because parameter dependence is incompatible with relativity,
while outcome dependence is not (Jarrett, 1984; Shimony, 1984, 1990; Arntzenius, 1994). The true
theory about the quantum world, they maintain, very likely is ‘outcome dependent and parameter
independent’, just as quantum theory is. Furthermore, Jarrett’s probabilistic dependences have been
given a metaphysical interpretation. While parameter dependence is mostly seen as constituting a
causal relation, outcome dependence is interpreted as a non-causal influence (‘passion at-a-distance’:
Shimony, 1984; Redhead, 1986, 1987, 1989) or a kind of non-separability / physical holism (Howard,
1985, 1989; Teller, 1986, 1989; Jarrett, 1989, 2009; Healey, 1991, 1994; Fogel, 2007). It should also be
noted that these arguments which rely on the distinction between outcome dependence and parameter
dependence are not uncontroversial. They have been criticized mainly for the fact that regardless of
whether parameter dependence or outcome dependence holds, there must be a causal relation between
the two wings (Butterfield, 1992; Jones and Clifton, 1993; Maudlin, 2011; Berkovitz, 1998a,b).
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one. While it is possible that outcome information can be revealed from shared
hidden variables, [. . . ] the setting information must be non-locally transferred.

Abstracting from the causal talk that is implicit in both quotations (‘influence’, ‘trans-
ferred’), we can sum up that the information theoretic approach suggests a different
picture than Jarrett’s probabilistic analysis. While Jarrett’s argument seems to say that
either there is a probabilistic dependence on the distant outcome or on the distant set-
ting, the informational approach makes clear that one of the outcomes must depend on
information of both the distant outcome and the distant setting.

It might be hoped that the tension between the two approaches can be explained away
by pointing to the fact that they use different concepts of dependence, viz. probabilistic
dependence as opposed to informational dependence. This, however, is not the case:
the concept of (Shannon mutual) information between two variables x and y, which,
basically, is at the core of both Maudlin’s and Pawlowski’s argument, is just a measure
for the strength of the correlation between x and y. Hence, informational dependence
implies probabilistic dependence, i.e. Maudlin’s result implies that there must be a
probabilistic dependence between an outcome and its distant setting. The result of
Pawlowski et al. adds that in principle also a dependence between the outcomes is
required, which however might be screened-off by shared hidden variables. Since it
is common to allow for such hidden variables, Pawlowski’s analysis does not add a
necessary requirement in terms of probabilistic dependences. Maudlin’s condition that
there must be a probabilistic dependence on the distant setting is the crucial insight of
the information theoretic approach. This result seems to contradict Jarrett’s analysis
which suggests that one can avoid a dependence between an outcome and its distant
setting if one accepts a dependence between the outcomes. So the information theoretic
result is clearly stronger than the probabilistic one and if it is correct, Jarrett’s standard
analysis feigns an option that is not really available.

Which of the analyses is correct? Surprisingly, there is no clear answer available. Both
analyses seem to be established by good and valid arguments and both coexist in the
discussion. There exists no convincing explanation how the two analyses both of which
seem to be correct can have seemingly different results. In this paper we shall present
an analysis which fills this gap: we shall improve on the Bell-Jarrett argument such
that it becomes explicit which probabilistic dependences exactly follow from the violation
of Bell inequalities. The result will approve Maudlin’s analysis in probabilistic terms:
the violation of Bell inequalities implies that there must be a dependence between an
outcome and its distant parameter of some kind.

The phrase ‘of some kind’ will turn out to be crucial. Our result will not mean
that parameter dependence in the usual sense necessarily holds. Particularly, quantum
mechanics is not ruled out by our new analysis. Parameter dependence in the normal
sense is just one kind of a probabilistic dependence between an outcome and its distant
parameter, which is characterised by a very specific set of conditional variables. But
there are other kinds of parameter dependences (conditional on other variables) which
will turn out to be important. Thus, our argument will also make precise what Maudlin’s
result leaves open, namely which kind of parameter dependence exactly is required.
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Distinguishing different kinds of parameter dependences will furthermore have the
consequence that Jarrett’s result, ‘outcome dependence or parameter dependence’, is not
wrong. Understood in a literal sense, it is perfectly correct. It is ‘just’ highly misleading,
especially in this catchy short form, because it suggests and has been (falsely!) read to
mean that one can avoid any probabilistic dependence of an outcome on its distant
parameter if one accepts that the outcomes depend on each other. In its correct literal
sense, however, it only says that one can avoid a certain dependence of an outcome on its
distant parameter, namely parameter dependence, if one accepts a certain dependence
between the outcomes. The latter statement does not logically contradict the fact that
one must have some kind of parameter dependence. This will become clearer in the
course of this paper, when we will have explicitly defined the corresponding mathematical
expressions.

Our argument follows the Bell-Jarrett approach to quantum non-locality and shows
how it can be improved towards a stronger result, which recovers the information the-
oretic implications. The procedure involves two steps. First, the conclusion of the Bell
argument provides the probabilistic characterisation of quantum non-locality, which,
second, is analysed in terms of pairwise probabilistic dependences. Accordingly, in a
first part, we shall be concerned with strengthening the Bell argument such that it gives
a stronger conclusion than the failure of local factorisation (section 2). The basic idea
will be that the violation of Bell inequalities excludes even more than just the local the-
ories, because certain kinds of non-local theories turn out to imply Bell inequalities as
well. This makes explicit that the violation of Bell inequalities has considerably stronger
and more informative consequences on a probabilistic level than believed so far. Jar-
rett’s analysandum—the failure of local factorisation, which follows from the standard
Bell argument—is weaker than it could and should be.

In a second part, we analyse the new conclusion in terms of pairwise independences,
in a similar manner as Jarrett analysed the failure of local factorisation (section 3). The
result of this analysis will be that, regardless of whether the outcomes depend on another
or not, there must be some kind of dependence between at least one of the outcomes
and both its local and its distant parameter.

A final note before we start. When we talk about probabilistic dependences in the
following, for instance about a dependence between an outcome and its distant para-
meter, one should resist the temptation to interpret them causally. If two variables x
and y are dependent conditional on another variable z, there might be a causal relation
from x to y, but there does not have to. Alternatively, there might be a causal relation
in the reverse direction or there might be a common cause or z might just be a common
effect of x and y. Correlation is not causation. The inference from probabilistic facts to
causal facts is subtle and here we shall not be concerned with this question. We are just
trying to get the probabilistic facts right. Causal inferences are left for future work, but
we believe that a clear probabilistic account is a suitable basis for doing that inference.
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2. Two concepts of quantum non-locality

2. Two concepts of quantum non-locality

2.1. EPR/B experiments and correlations

Many arguments for a quantum non-locality consider an EPR/B setup with polarisa-
tion measurements of photons (fig. 1; Einstein, Podolsky, and Rosen 1935; Bohm 1951;
Clauser and Horne 1974). One run of the experiment goes as follows: a suitable source C
(e.g. a calcium atom) is excited and emits a pair of photons whose quantum mechanical
polarisation state ψ is entangled. Possible hidden variables of this state are called λ, so
that the complete state of the particle at the source is (ψ,λ). Since the preparation pro-
cedure is usually the same in all runs, the quantum mechanical state ψ is the same in all
runs and will not explicitly be noted in the following. (One may think of any probability
being conditional on one fixed state ψ = ψ0.) After the emission, the photons move in
opposite direction towards two polarisation measurement devices A and B, whose meas-
urement directions a and b are randomly chosen among two of three possible settings
(a = 1, 2; b = 2, 3) while the photons are on their flight. A photon either passes the
polariser (and is detected) or is absorbed by it (and is not detected), so that at each
measuring device there are two possible measurement outcomes α = ± and β = ±.

C
A B

a

b

+–+–

Fig. 1: EPR/B setup

On a probabilistic level, the experiment is described by the joint probability distribu-
tion P (αβabλ) := P (α = α,β = β,a = a, b = b,λ = λ) of the five random variables just
defined.3 We shall consistently use bold symbols (α,β,a, . . . ) for random variables and
normal font symbols (α, β, a, . . . ) for the corresponding values of these variables. We use
indices to refer to specific values of variables, e.g. α− = − or a1 = 1, which provides use-
ful shorthands, e.g. P (α−β+a1b2λ) := P (α = −,β = +,a = 1, b = 2,λ = λ). Expres-
sions including probabilities with non-specific values of variables, e.g. P (α|a) = P (α),
are meant to hold for all values of these variables (if not otherwise stated).

Containing the hidden states λ, which are by definition not measurable, the total
distribution is empirically not accessible (‘hidden level’), i.e. purely theoretical. Only the
marginal distribution which does not involve λ, P (αβab), is empirically accessible and

3While the outcomes and settings are discrete variables, the hidden state may be continuous or discrete.
In the following I assume λ to be discrete, but all considerations can be generalized to the continuous
case.
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2. Two concepts of quantum non-locality

is determined by the results of actual measurements in EPR/B experiments (‘observable
level’).4

Although the EPR/B setup is constructed in order to weaken and minimize correl-
ations between the involved variables,5 a statistical evaluation of a series of many runs
with similar preparation procedures yields that there are observable correlations: the
outcomes are correlated given the parameters,6

P (αβ|ab) = P (α|βab)P (β) =

{
cos2 φab · 1

2 if α = β

sin2 φab · 1
2 if α 6= β

(Corr)

(where φab is the angle between the measurement directions a and b). These famous
EPR/B correlations between space-like separated measurement outcomes have first been
measured by Aspect et al. (1982) and are correctly predicted by quantum mechanics.

2.2. The standard Bell argument for quantum non-locality

Since according to (Corr), one outcome depends on both the other space-like separated
outcome as well as on the distant (and local) parameter, the observable part of the prob-
ability distribution is clearly non-local. Bell (1964) could show that EPR/B correlations
are so extraordinary that even if one allows for hidden states λ one cannot restore local-
ity: given EPR/B correlations the theoretical probability distribution (including possible
hidden states) must be non-local as well. Hence, any possible probability distribution
which might correctly describe the experiment must be non-local.

This ‘Bell argument for quantum non-locality’, as I shall call it, runs as follows. Bell
realised that EPR/B correlations have the remarkable feature to violate Bell inequalities.
Since Bell then did not know that suitable measurements indeed yield the correlations,
the violation was merely hypothetical, but today the violation of Bell inequalities is
an empirically confirmed fact. It follows that at least one of the assumptions in the
derivation of the inequalities must be false. Indeterministic generalizations (Bell, 1971;
Clauser and Horne, 1974; Bell, 1975) of Bell’s original deterministic derivation (1964)

4The (theoretical) transition from the total probability distribution to the observable marginal distri-
bution is given by a marginalisation over λ, P (αβab) =

∑
λ P (αβabλ). In order to be empirically

adequate, any theoretical distribution must in this way yield the distribution which describes the
statistics of EPR/B measurements.

5First, the settings are random and statistically independent. Second, the parameters are set after the
emission, so that the setting may not influence the state of the particles at the emission. And, finally,
but most importantly, the wings of the experiment are space-like separated, so that according to the
First Signal Principle of relativity there cannot be any influence from one outcome to the other or
from one setting to the outcome on the other wing.

6A correlation of the outcomes means that the joint probability P (αβ|ab) is in general not equal to the
product P (α|ab)P (β|ab) = 1

2
· 1
2

= 1
4
.
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2. Two concepts of quantum non-locality

employ two probabilistic assumptions, ‘local factorisation’7

P (αβ|abλ) = P (α|aλ)P (β|bλ) (`F)

and ‘autonomy’
P (λ|ab) = P (λ). (A)

Another type of derivation (Wigner, 1970; van Fraassen, 1989; Graßhoff et al., 2005) ad-
ditionally requires the empirical fact that there are perfect correlations (PCorr) between
the outcomes if the measurement settings are equal. For both types of derivation we
have the dilemma that any empirically correct probability distribution of the quantum
realm must either violate autonomy or local factorisation (or both). Since giving up
autonomy seems to be ad hoc and implausible (‘cosmic conspiracy’), most philosophers
conclude that the empirical violation of Bell inequalities implies that local factorisation
fails.8 And since local factorisation states the factorisation of the hidden joint probabil-
ity distribution into local terms, the failure of local factorisation indicates a certain kind
of non-locality, which is specific to the quantum realm—hence ‘quantum non-locality’.

In order to make the logical structure clear let me note the Bell argument in an
explicit logical form (where (I1), (I2), . . . indicate intermediate conclusions). Here and
in the following I shall use the Wigner-type derivation of Bell inequalities because, as we
will see, it is the most powerful one allowing to derive Bell inequalities from the widest
range of probability distributions:

(P1) There are EPR/B correlations: (Corr)

(P2) EPR/B correlations violate Bell inequalities: (Corr)→ ¬(BI)

(I1) Bell inequalities are violated: ¬(BI) (from P1 & P2, MP)

(P3) EPR/B correlations include perfect correlations: (Corr) Õ (PCorr)

(I2) There are perfect correlations: (PCorr) (from P1 & P3, MP)

(P4) Bell inequalities can be derived from autonomy, perfect correlations and local
factorisation: (A) ∧ (PCorr) ∧ (`F)→ (BI)

(I3) Autonomy or local factorisation has to fail: ¬(A) ∨ ¬(`F)
(from I1 & I2 & P4, MT)

7‘Local factorisation’ is my term. Bell calls (`F) ‘local causality’, some call it ‘Bell-locality’, but most
often it is simply called ‘factorisation’ or ‘factorisability’. Bell’s terminology already suggests a
metaphysical interpretation, which I would like to avoid in this paper, and the latter two names are
too general since, as I shall show, there are other forms of the hidden joint probability which can be
said to factorise; hence ‘local factorisation’.

8We should note that, though not a majority view, there are suggestions to explain the violation of Bell
inequalities by a violation of autonomy (e.g. Costa de Beauregard, 1979; Sutherland, 1983; Price,
1994; Szabó, 2000). Our analysis in this paper does not apply to these cases. We shall consistently
assume that autonomy holds.
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2. Two concepts of quantum non-locality

(P5) Autonomy holds: (A)

(C1) Local factorisation fails: ¬(`F) (from I3 & P5)

(P6) Quantum non-locality is the failure of local factorisation:
(QNL) :↔ ¬(`F) (definition)

It is obvious that the argument from (P1)–(P5) to (C1) is valid. It shows that
if autonomy holds, EPR/B correlations mathematically imply a non-locality which is
called quantum non-locality, (P6). (P6) is not a premise of the Bell argument but
labels its result with an appropriate name; it determines what quantum non-locality
according to the standard view amounts to an a probabilistic level.9 It is clear that
if the Bell argument could be modified to have a stronger conclusion, the definition
(P6) would have to be adapted. What we call ‘quantum non-locality’ depends on the
result of the Bell argument. In this sense the analysis of quantum non-locality, in which
(P6) functions as a premise (it determines the analysandum, see section 3), is based on
the Bell argument. Note that defining quantum non-locality as the conclusion of the
Bell argument, the logical structure of the argument is such that quantum non-locality
only provides necessary conditions for EPR/B correlations, i.e. for being empirically
adequate. So we have to keep in mind that the analysis of quantum non-locality is not
an analysis of EPR/B correlations but of a necessary condition for them.

The core idea of my critique concerning the standard view of quantum non-locality
is that the result of the Bell argument is weaker as it could be. I do not say that the
argument is invalid nor do I say that one of its premises is not sound, I just say that the
argument can be made considerably stronger and that the stronger conclusion will allow
us to define a tighter, more informative concept of quantum non-locality: one can be
much more precise about what EPR/B correlations imply (if we assume that autonomy
holds) than just saying that local factorisation has to fail. I shall show that besides
the local classes EPR/B correlations also exclude certain non-local classes. Given this
new result, the standard definition of quantum non-locality (P6) will turn out to be
inappropriately weak, because it includes those non-local classes which can be shown to
be forbidden.

Specifically, I shall show that it is premise (P4) which can be made stronger (while
leaving the other premises basically at work). Being an implication from autonomy, per-
fect correlations and local factorisation to Bell inequalities, it is clear that we can make
(P4) the stronger the weaker we can formulate the antecedens, i.e. the assumptions to
derive the inequalities. This idea is not essentially a new one. Since Bell’s original proof

9We should note that the term ‘quantum non-locality’ is not unambiguous. According to the definition
we use here, (P6), it refers to probabilistic facts—not to causal or metaphysical ones. Moreover,
we do not mean the specific non-locality inherent in quantum mechanics (or the true theory of the
quantum world, whatever it may be). It is clear that one could be more precise about this latter
non-locality than saying that it violates local factorisation. Rather, by ‘quantum non-locality’ here
and in the following we denote the general probabilistic fact, which follows from the violation of Bell
inequalities and which characterises any viable theory of the quantum realm. Given the standard
Bell argument this is just the failure of local factorisation.
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(1964) considerable efforts have been made to find derivations with weaker and weaker
assumptions. For example, one of the milestones was to show that one can derive Bell
inequalities without the original assumption of determinism. Currently, autonomy and
local factorisation seem to constitute the weakest set of probabilistic assumptions which
allow a derivation. What will be new about my approach is to try to find alternatives to
local factorisation, which (given autonomy and perfect correlations) also imply that Bell
inequalities hold. Since local factorization is the weakest possible form of local distribu-
tions, it is clear that such alternatives have to involve a kind of non-locality, i.e. what
I am trying to show in the following is that we can derive Bell inequalities from certain
non-local probability distributions.

2.3. Classes of probability distributions

We can find potential alternatives to local factorisation if we consider what it is: a
particular feature of the hidden joint probability, as I shall call P (αβ|abλ). According
to the product rule of probability theory, for any of the possible hidden probability
distributions the joint probability of the outcomes (given the other variables) can be
written as a product,

P (αβ|abλ) = P (α|βbaλ)P (β|abλ) (1)

= P (β|αabλ)P (α|baλ). (2)

Since there are two product forms, one whose first factor is a conditional probability of
α and one whose first factor is a conditional probability of β, for the time being, let us
restrict our considerations to the product form (1), until at the end of this section I shall
generalize the results to the other form (2).

The product form (1) of the hidden joint probability holds in general, i.e. for all
probability distributions. According to probability distributions with appropriate inde-
pendences, however, the factors on the right-hand side of the equation reduce in that
certain variables in the conditionals can be left out. If, for instance, outcome inde-
pendence holds, β can disappear from the first factor, and the joint probability is said
to ‘factorise’. Local factorisation further requires that the distant parameters in both
factors disappear, i.e. that parameter independence holds. Prima facie, any combination
of variables in the two conditionals in (1) seems to constitute a distinct product form
of the hidden joint probability. Restricting ourselves to irreducibly hidden joint prob-
abilities, i.e. requiring λ to appear in both factors, there are 25 = 32 combinatorially
possible forms (for any of the three variables in the first conditional and any of the two
variables in the second conditional besides λ can or cannot appear). Table 1 shows these
conceivable forms which I label by (Hα

1 ) to (Hα
32) (the superscript α is due to the fact

that we have used (1) instead of (2)).
The specific product form of the hidden joint probability is the essential feature of

the probability distributions of EPR/B experiments. For, as we shall see, it not only
determines whether a probability distribution can violate Bell inequalites but also carries
unambiguous information about which variables of the experiment are probabilistically

10



2. Two concepts of quantum non-locality

Table 1: Classes of probability distributions

I II III IV V VI VII VIII IX

(Hα
i ): P (αβ|abλ) = . . .

i P (α| β b a λ) · P (β| a b λ) �(BI) [Group] Notes

st
ro

n
g

n
on

-l
o
ca

li
ty
α

1 1 1 1 1 1 0 iv

2 1 1 1 1 0 0 iv

3 1 1 1 0 1 0 iv QMPE

4 1 1 0 1 1 0 iv

5 1 0 1 1 1 0 iv

6 0 1 1 1 1 0 iv Bohm

7 1 1 1 0 0 0 iv QMME

8 0 1 1 1 0 0 iv

9 0 1 1 0 1 0 iv

10 1 0 0 1 1 0 iv

11 0 1 0 1 1 0 iv

12 0 0 1 1 1 0 iv

13 0 1 1 0 0 0 iv

14 0 0 0 1 1 0 iv

w
ea

k
n

on
-l

o
ca

li
ty
α

15 1 1 0 1 0 1 iii

16 1 0 1 0 1 1 iii

17 1 0 1 1 0 1 i

18 1 1 0 0 1 1 i

19 1 1 0 0 0 1 i

20 1 0 1 0 0 1 i

21 1 0 0 1 0 1 i

22 0 1 0 1 0 1 ii

23 0 0 1 1 0 1 i

24 1 0 0 0 1 1 i

25 0 1 0 0 1 1 i

26 1 0 0 0 0 1 i

27 0 1 0 0 0 1 i

28 0 0 0 1 0 1 i

lo
ca

li
ty
α

29 0 0 1 0 1 1 ii local fact.

30 0 0 1 0 0 1 i

31 0 0 0 0 1 1 i

32 0 0 0 0 0 1 i

Analysis: ¬(OI1) ¬(PIα1 ) ¬(`PIα1 ) ¬(PIβ2 ) ¬(`PIβ2 )
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2. Two concepts of quantum non-locality

independent of another. Virtually any interesting philosophical question involving prob-
abilistic facts of EPR/B experiments depends on the specific product form of the hidden
joint probability. Hence, it is natural to use the product form of the hidden joint prob-
ability in order to classify the probability distributions. We can say that each product
form of the hidden joint probability constitutes a class of probability distributions in the
sense that probability distributions with the same form (but different numerical weights
of the factors) belong to the same class. In order to make the assignment of probability
distributions to classes unambiguous let us require that each probability distribution
belongs only to that class which corresponds to its simplest product form, i.e. to the
form with the minimal number of variables appearing in the conditionals (according to
the distribution in question).

This scheme of classes is comprehensive: Any probability distribution of the EPR/B
experiment must belong to one of these 32 classes. In this systematic overview, the class
constituted by local factorisation is (Hα

29) (see table 1, column IX), and if we allow that
there might be no hidden states λ, we can assign the quantum mechanical distribution
to class (Hα

7 ).10 The de-Broglie-Bohm theory falls under class (Hα
6 ), and similarly any

other theory of the quantum realm has its unique place in one of the classes. The
advantage of this classification is that it simplifies matters insofar we can now derive
features of classes of probability distributions and can be sure that these features hold
for all members of a class, i.e. for all theories whose probability distributions fall under
the class in question.

The feature that we are most interested in is, of course, which of these classes (given
autonomy) imply that Bell inequalities hold. We provide the answer by the following
theorem:

Theorem 1: Given autonomy, perfect correlations and perfect anti-correlations,
a hidden joint probability implies Bell inequalities if each of the two factors
in its product form involves at most one parameter.

Before we shall comment on the theorem, let us say that its proof can be found in the
mathematical appendix. Although the proof is the core of our argument in this paper,
nothing in what follows depends on understanding its details. We should remark that
the perfect (anti-)correlations are required for letting a maximum of product forms imply
Bell inequalities.

The result of theorem 1 is remarkable. So far it has been believed that local product
forms imply Bell inequalities, but the theorem does not refer to this characteristic at
all. It just requires that an outcome may not depend on both parameters. What does
this mean? Which classes imply Bell inequalities according to the theorem? In order

10The quantum mechanical distribution belongs to this class if the quantum state is maximally entangled,
which is the typical case in EPR/B experiments (e.g. |ψ〉 =

√
p|+〉|+〉+

√
1− p|−〉|−〉 with p = 1

2
).

The slightest deviation from maximal entanglement (p 6= 1
2
), however, breaks the symmetry of the

state. The probability distribution of such partially entangled states shows a dependence on the local
setting in the second factor; they fall in class (Hα

3 ). We denote the quantum mechanical distribution
for maximally entangled states by QMME and that for partially entangled ones by QMPE.

12



2. Two concepts of quantum non-locality

to make this clear let us partition the classes into three groups, depending on which
variables appear in their constituting product forms:11

Localα classes: (Hα
29)–(Hα

32) (imply Bell inequalities)

each factor only contains time-like (or light-like) separated variables

Weakly non-localα classes: (Hα
15)–(Hα

28) (imply Bell inequalities)

at least one of the factors involves space-like separated variables, but none
of the factors involves both parameters

Strongly non-localα classes: (Hα
1 )–(Hα

14) (do not imply Bell inequalities)

at least one of the factors involves both parameters

(Note the superscript α, which indicates that we refer to classes deriving from (1) instead
of from (2)).

Local classes involve only time-like (or light-like) separated variables in the factors
of their hidden joint probability. When a product form is local, none of the outcomes
depends on its distant parameter, so none of the outcomes depends on both parameters—
hence, according to theorem 1, Bell inequalities follow. This is a well-known fact.

The surprising consequence of theorem 1 is that even certain non-local classes imply
Bell inequalities. We have called those non-local classes, which imply Bell inequalities,
‘weakly non-localα’ (in contrast to strongly non-localα ones, which do not). According to
weakly non-localα classes, at least one of the factors in the product form involves space-
like separated variables, but none of the factors involves both parameters. So weakly
non-localα classes do fulfil the criterion of theorem 1, which means that they imply Bell
inequalities, although they involve non-local dependences. For instance, the outcomes
may depend on their distant parameters if they do not depend on their local one,

P (αβ|abλ) = P (α|bλ)P (β|aλ). (Hα
22)

Or an outcome may depend on the other outcome,

P (αβ|abλ) = P (α|βaλ)P (β|bλ), (Hα
16)

or both of these non-localities may occur,

P (αβ|abλ) = P (α|βbλ)P (β|aλ). (Hα
15)

Our proof of theorem 1 shows that all these product forms imply Bell inequalities, be-
cause none of its factors involves both parameters. From the perspective of the standard
view this result is surprising because here we have cases where (as we shall show in the
second part) parameter dependence or outcome dependence or both hold, and still Bell
inequalities are implied. We emphasise that the proof of theorem 1, which shows that

11Column VIII in table 1 introduces an even finer partition of the classes, which, however, is only relevant
for the proof of theorem 1. We shall not comment on it in the main text.
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2. Two concepts of quantum non-locality

besides local theories also weakly non-localα ones imply Bell inequalities, is the source
of all new consequences we shall derive in this paper.

As soon as there is a dependence on both parameters in at least one of the factors of
the product form, which is how we have defined strongly non-localα classes, one cannot
derive Bell inequalities from the product form any more. For each of these product
forms one can easily find examples of probability distributions which do violate Bell
inequalities. Thus, strongly non-localα classes do not imply Bell inequalities, because
some distributions in each of the classes violate them. This is, however, not to say
that probability distributions in those classes necessarily violate Bell inequalities. On
the contrary, one can as well find probability distributions of that form, which obey
Bell inequalities. So depending on both parameters in one of the factors is only a
necessary condition for violating Bell inequalities; it is not a sufficient one. Sufficient
criteria to violate Bell inequalities would have to involve conditions for the strength of
the correlations. As we have said in the introduction, mutual information between two
variables is a measure for how strong the correlation between them is, so the information
theoretic works which derive numerical values for how much mutual information has to
be given in order to violate Bell inequalities, provide an answer to that question (see
Maudlin 1994, ch. 6 and Pawlowski et al. 2010).

To sum it up: as opposed to what the standard discussion suggests, it is not true
that local factorisation (and the other local product forms) are the only product forms
which allow deriving Bell inequalities. Rather, we have found that 18 of the 32 logically
possible classes imply Bell inequalities if autonomy (and perfect (anti-)correlations) hold,
among them 14 non-local classes. Column VII of table 1 indicates which classes imply
Bell inequalities and which do not (‘�(BI)’ means necessarily, Bell inequalities hold).

2.4. A stronger Bell argument for quantum non-locality

This consequence from theorem 1, that one can derive Bell inequalities also from certain
non-local product forms, enables us to strengthen premise (P4) in the Bell argument.
We can now write:

(P4′) Bell inequalities can be derived from autonomy, perfect correlations, perfect
anti-correlations and any localα or weakly non-localα class of probability
distributions:[

(A) ∧ (PCorr) ∧ (PACorr) ∧
( 32∨
i=15

(Hα
i )
)]
→ (BI)

Compared to (P4), we have made two changes. First, we have replaced local factorisa-
tion in the antecedent by the disjunction of the localα and weakly non-localα classes
(including local factorisation (Hα

29)). This makes the antecedent of (P4′) weaker than
that in (P4) and, hence, the argument stronger. Second, we have added the condition
that there are perfect anti-correlations (PACorr), since certain weakly non-localα classes
require them for the derivation. This additional assumption however does not weaken
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2. Two concepts of quantum non-locality

the argument since the perfect anti-correlations follow from the EPR/B correlations (as
the perfect correlations do). We just have to modify premise (P3) to

(P3′) EPR/B correlations include perfect correlations and perfect anti-correlations:

(Corr) Õ (PCorr) ∧ (PACorr)

Changing these two premises has a considerable effect on the Bell argument. Instead
of the standard conclusion (C1), that the violation implies the failure of local factorisa-
tion, by the modified argument from (P1), (P2), (P3′), (P4′) and (P5), we arrive at the
essentially stronger conclusion:

(C1′) Both localα and weakly non-localα classes fail:

( 32∧
i=15

¬(Hα
i )
)

While the original result, the failure of local factorisation, implied that all localα classes
fail (because the other local classes are specializations of local factorisation), the new
result additionally excludes all weakly non-localα classes.

Our considerations leading to this new result of the Bell argument rest on the fact
that we have found alternatives to local factorisation from writing the hidden joint
probability according to the product rule (1) and conceiving different possible product
forms (table 1). However, we can as well write the hidden joint probability according
to the second product rule (2), and similar arguments as above lead us to a similar

table as table 1, whose classes, (Hβ
1 )–(Hβ

32), differ to those in table 1 in that the out-

comes and the parameters are swapped. For instance, class (Hβ
16) is defined by the

product form P (αβ|abλ) = P (β|αbλ)P (α|aλ) in contrast to (Hα
16), which is constituted

by P (αβ|abλ) = P (α|βaλ)P (β|bλ). Note that this new classification is a different par-
tition of the possible probability distributions. Any probability distribution must fall
in exactly one of the classes (Hα

1 )–(Hα
32) and in exactly one of the classes (Hβ

1 )–(Hβ
32).

Analogously to theorem 1 one can proof for the new partition that the localβ and weakly
non-localβ classes imply Bell inequalities as well, so that we can reformulate (P4′) as:

(P4′′) Bell inequalities can be derived from autonomy, perfect correlations, perfect
anti-correlations and any localα, weakly non-localα, localβ or weakly non-
localβ class of probability distributions:[

(A) ∧ (PCorr) ∧ (PACorr) ∧
( 32∨
i=15

(Hα
i ) ∨

32∨
i=15

(Hβ
i )
)]
→ (BI)

Then we can formulate an even stronger Bell argument from (P1), (P2), (P3′), (P4′′)
and (P5) to

(C1′′) All localα, weakly non-localα, localβ and weakly non-localβ classes fail:
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2. Two concepts of quantum non-locality

( 32∧
i=15

¬(Hα
i ) ∧

32∧
i=15

¬(Hβ
i )
)

Since in section 2.2 we have seen that the result of the original Bell argument defines
what we call quantum non-locality, it is clear that given this new result we have to adapt
the definition appropriately. It simply becomes implausible to stick to the old, looser
definition including weakly non-local classes, given that we now know that we have to
exclude them. With the new result of the Bell argument we can be much more precise
about what quantum non-locality amounts to on a probabilistic level and re-define it as:

(P6′) Quantum non-locality is the failure of the disjunction of all localα, weakly
non-localα, localβ and weakly non-localβ classes (i.e. it is not the case that
both factors in each product form involve at most one parameter):

(QNL’) :↔

(
32∧
i=15

¬(Hα
i ) ∧

32∧
i=15

¬(Hβ
i )

)
(definition)

This is the first main result of my investigation. (P6′) takes the notion of quantum non-
locality from any kind of non-locality (the mere failure of local factorisation) to a more
specific one (namely exclusive the weakly non-localα and weakly non-localβ classes).
Since our scheme of logically possible classes is comprehensive, the failure of all localα

and weakly non-localα classes is equivalent to the fact that one of the strongly non-
localα classes, (Hα

1 )–(Hα
14), holds. Analogously, if a probability distribution is neither

localβ nor weakly non-localβ it must be strongly non-localβ, i.e. belong to one of the
classes (Hβ

1 )–(Hβ
14). Therefore, equivalently to (P6′) we can say:

(P6′′) Quantum non-locality is strong non-localityα and strong non-localityβ (i.e.
at least one of the factors in each product form must involve both paramet-
ers):

(QNL’)↔

(
14∨
i=1

(Hα
i ) ∧

14∨
i=1

(Hβ
i )

)

2.5. Discussion I

According to the logic of the Bell argument, we have noted in section 2.2, quantum
non-locality is a necessary condition for EPR/B correlations and their violation of Bell
inequalities. This still holds for the new result and definition (since the logical structure
of the argument has not essentially changed). However, we now know that the new
concept of quantum non-locality is not sufficient for EPR/B correlations because we have
seen that there are strongly non-local distributions which do not violate Bell inequalities.
On the other hand, since we have also found that all strongly non-local classes include
distributions which violate Bell inequalities and reproduce EPR/B correlations, we can
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2. Two concepts of quantum non-locality

say that on a qualitative level, which only considers the product forms of the hidden
joint probability, i.e. probabilistic dependences and independences, we cannot improve
the argument any more. It is impossible to reach a stronger conclusion than (C1′′) by
showing that we can derive Bell inequalities from still further classes. For if my argument
and counterexamples are correct, there are no classes left which in general may imply
Bell inequalities. Any future characterisation of quantum non-locality which is more
detailed must involve reference to the strengths of the correlations in the strongly non-
local classes. In this sense, my new definition of quantum non-locality, although not
being sufficient for EPR/B correlations, captures their strongest possible consequences
on a qualitative probabilistic level.

Why has this stronger consequence of the Bell argument, that we have derived, been
overlooked so far? Obviously, it has wrongly been assumed that local factorisation
is the only basis to derive Bell inequalities, and the main reason for neglecting other
product forms of hidden joint probabilities might have been the fact that, originally,
Bell inequalities were derived to capture consequences of a local worldview. The main
result of former considerations was that locality has consequences which are in conflict
with the quantum mechanical distribution. Given this historical background, the idea to
derive Bell inequalities from non-local assumptions maybe was beyond interest because
the conflict with locality was considered to be the crucial point; or maybe it was neglected
because Bell inequalities were so tightly associated with locality that a derivation from
non-locality sounded totally implausible. Systematically, however, since it is now clear
that the quantum mechanical distribution is empirically correct and Bell inequalities
are violated, it is desirable to draw as strong consequences as possible, which requires
to check without prejudice whether some non-local classes allow a derivation of Bell
inequalities as well—and this is what we have done here.

Before we go on with the argument let me shortly digress on how my argument re-
solves two common misunderstandings in the debate about quantum non-locality. First,
in the discussion Bell inequalities are so closely linked to locality that one could have
the impression that Bell inequalities are locality conditions in the sense that, if a prob-
ability distribution obeys a Bell inequality, it must be local. Of course, Bell’s argument
never really justified that view, for the logic of the standard Bell argument is that local
factorisation (given autonomy and perfect (anti-)correlations) is merely sufficient (and
not necessary) for Bell inequalities. Maybe the association between Bell inequalities
and locality might have arisen from the the fact that up to now local factorisation has
been the only product form which was shown to imply Bell inequalities. Given only
this information, it was at least possible (though unproven) that the holding of Bell
inequalities implies locality. However, since we have shown that weakly non-local classes
in general imply Bell inequalities and since the simulations show that even some strongly
non-local distributions can conform to Bell inequalities, it has become explicit that this
is not true. Not all probability distributions obeying Bell inequalities are local. So if a
probability distribution obeys a Bell inequality it does not have to be local.

Second, sometimes it has been said that the violation of Bell inequalities by EPR/B
correlations implies that there cannot be a screener-off for the correlations (e.g. van
Fraassen, 1989). Table 1 shows that this is not true either. Among the strongly non-local
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classes there are classes according to which α is screened-off from β (namely all classes
with the value 0 in column II). Consider for example class (Hα

6 ) for which the product
form reads P (αβ|abλ) = P (α|abλ)P (β|abλ). Here we have it that the conjunction
of a, b and λ screens the correlation off. Including the distant parameter for both
outcomes, this is of course not a local screener-off. But that there can be a screener-off
for the correlations, although non-local, shows that it is not true saying that EPR/B
correlations disprove Reichenbachs common cause principle. This claim would only be
true if you exclude non-local screener-offs by adding the premise of locality, which,
however, would be odd, because the violation of Bell inequalities shows that we cannot
avoid a non-locality anyway. Of course, the true theory of the quantum realm might in
fact have a distribution which does not screen-off, but to argue for that one needs further
assumptions; this claim is not in general implied by the violation of Bell inequalities.

Finally, and maybe most importantly, my argument points out that the discussion
so far has been based on an inappropriate concept of quantum non-locality. Capturing
all non-local classes the standard concept of quantum non-locality (the failure of local
factorisation (P6)) includes classes which we have found to be compatible with Bell
inequalities (weakly non-local classes). In this sense the standard concept is inappropri-
ately weak, i.e. weaker as it should be. Therefore, if we analyse this concept, as Jarrett
did, and take it as informing us about the consequences of EPR/B correlations violating
Bell inequalities, we must expect to be misled, either in that some of the options we
arrive at are not really available or that the analysantia do not cut the problem at its
natural joints (in section 3.5 we will see that the latter is the case). This is the core of
my critique concerning the standard view.

Excluding local and weakly non-local classes, my new concept (P6′) picks out a proper
subset of the classes which are included in the standard concept, and comprises only those
classes that do not imply Bell inequalities (strongly non-local classes): it is considerably
stronger and much more informative than the standard concept. Moreover, I have just
argued that it cannot be made stronger on a qualitative probabilistic level, because it
comprehensively describes the qualitative probabilistic consequences of EPR/B correla-
tions violating Bell inequalities. In this sense, my new concept is an appropriate basis
for an analysis (while the standard concept is not). Analysing the new stronger concept
will be the subject of the following section, and it will turn out that the result of this
analysis differs significantly from Jarrett’s.

3. Analysing quantum non-locality

The aim of this section is to provide an analysis of the new concept of quantum non-
locality (P6′), which was the result of the modified Bell argument in the last section.
Jarrett proved that the standard concept of quantum non-locality (P6) is equivalent to
the disjunction of outcome dependence and parameter dependence. The idea of Jarrett’s
analysis is that a specific product form of the hidden joint probability (such as local
factorisation), which is a complex independence condition, can be analysed by pairwise
independences (such as outcome independence or parameter independence). Our new
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concept of quantum non-locality (P6′) is a conjunction of two disjunctions of several
product forms and, hence, a complex independence condition as well. So we can apply
Jarrett’s idea to our new case and understand ‘analysis’ as providing an expression in
terms of pairwise probabilistic independences which is equivalent to the new concept. I
first recall shortly Jarrett’s analysis and introduce an appropriate set of independences,
which will serve as analysantia. Then I shall develop an analysis for each of the classes
(Hα

i ) and subsequently of the disjunction
∨32
i=15(Hα

i ) (the first part of the disjunction of
classes which imply Bell inequalities). Finally, we can transfer our results from the first

to the second part
∨32
i=15(Hβ

i ), and the negation of the disjunction of the two parts will
yield the analysis of quantum non-locality (P6′).

3.1. Jarrett’s analysis of quantum non-locality

Jarrett (1984) had the idea that one can be more explicit about the probabilistic nature
of quantum non-locality (P6) by analysing the probabilistic statement local factorisa-
tion (`F) in terms of pairwise conditional probabilistic independences. By a ‘pairwise
conditional probabilistic independence’ I mean the fact that a random variable x is in-
dependent of another y given a conjunction of further variables z. This is said to be
true iff for all values of the variables the joint probability over the variables makes the
following equation true:

P (x|yz) = P (x|z) (3)

The independence is noted as I(x,y|z). If, however, there is at least one set of values
for which (3) does not hold, the variables x and y are called dependent given z, and
this probabilistic dependence is noted as ¬I(x,y|z).

Jarrett uses three pairwise independences: ‘outcome independence’ is defined as
I(α,β|abλ) and ‘parameter independence’ as a conjunction of two independences, I(α, b|aλ)∧
I(β,a|bλ). (Originally, Jarrett denotes these independences as ‘completeness’ and ‘loc-
ality’ respectively, but we shall use the now established names.) Jarrett proved math-
ematically that

(P7) Local factorisation is equivalent to the conjunction of outcome independence
and parameter independence:

(`F)↔ I(α,β|abλ) ∧ I(α, b|aλ) ∧ I(β,a|bλ) (4)

From (P6) and (P7) he concluded that

(C2) Quantum non-locality is equivalent to the disjunction of outcome dependence
or parameter dependence:

(QNL)↔ ¬I(α,β|abλ) ∨ ¬I(α, b|aλ) ∨ ¬I(β,a|bλ) (5)

which is the probabilistic analysis of quantum non-locality according to the standard
view (‘Jarrett’s analysis’). The analysis is correct, but since (as we have seen) the
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analysandum (P6) is inappropriately weak, its result is not as informative as it could
be and, as we will see, in fact misleading about the nature of quantum non-locality.
Therefore, what we aim to do is to analyse the new stronger concept of quantum non-
locality (P6′) in terms of pairwise conditional independences, which will give us a clearer
picture of what quantum non-locality amounts to.

3.2. Pairwise independences

The first step towards an analysis is to get an overview which concepts can play the role
of the analysantia. In table 2 I introduce those nine pairwise independences which will
be relevant. Among the relevant independences we find the normal outcome independ-
ence, I(α,β|abλ), as well as I(α, b|aλ), one independence of the conjunction which is
usually called ‘parameter independence’. Here we see a first problem with the standard
names: how shall we call the latter if its conjunction with I(β,a|bλ) is called ‘para-
meter independence’? I have tried to stay as close to the standard names as possible,
but obviously further qualifications are needed. My suggestion is to continue to use the
name ‘parameter independence’ for all independences between an outcome and its dis-
tant parameter, but to add the outcome in question, namely ‘α-parameter independence’
or ‘β-parameter independence’ respectively. Further differentiation in the nomenclature
is required by the fact that there is another α-parameter independence in the table,
I(α, b|βaλ), which differs from the one already mentioned in the conditional variables
(it additionally includes the outcome β). Such independences of the same type but with
different conditional variables are different independences and are in general logically
independent of another: one can hold or not irrespective of whether the other does or
does not. (One can show that only if one involves more than two independences logical
restrictions appear.) I discern them by indices, e.g. the former is called ‘α-parameter
independence2’, the latter ‘α-parameter independence1’. Of course, there are further
α-parameter independences (namely those conditional on βλ and λ) which, however, do
not play any role for the analysis here.

Similarly to the parameter independences I define local parameter independences (see
table 2), which instead of the independence of an outcome on its distant parameter (α, b)
claim the independence of an outcome on its local parameter (α,a). Besides these new
names I have also introduced short labels for each independence, which we will mainly
use in the following.

Given these new concepts we are now in a position to clearly see one of the sources of
confusion in the standard discussion. ‘Outcome dependence or parameter dependence’
does not necessarily mean that if you accept outcome dependence you can avoid para-
meter dependence in the sense of any kind of dependence of an outcome on its distant
parameter (conditional on whatever variables). The slogan just says that in this case

you can avoid parameter dependence in the usual sense of ¬(PIα2 ) ∨ ¬(PIβ2 ), while other
kinds of parameter dependences like ¬(PIα1 ) might still hold! And indeed the analysis of
the new concept will yield that at least one of the two parameter dependences ¬(PIα1 )

and ¬(PIβ2 ) must hold. Parameter dependence in this broader sense cannot be avoided
but will turn out to be a necessary condition for violating the Bell inequalities.
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Table 2: Definition of conditional independences

independence standard name new name label

I(α,β|abλ) outcome independence outcome independence1 (OI1)

I(α, b|βaλ) – α-parameter independence1 (PIα1 )

I(α, b|aλ) [part of] parameter ind. α-parameter independence2 (PIα2 )

I(β,a|αbλ) – β-parameter independence1 (PIβ1 )

I(β,a|bλ) [part of] parameter ind. β-parameter independence2 (PIβ2 )

I(α,a|βbλ) – α-local parameter independence1 (`PIα1 )

I(α,a|bλ) – α-local parameter independence2 (`PIα2 )

I(β, b|αaλ) – β-local parameter independence1 (`PIβ1 )

I(β, b|aλ) – β-local parameter independence2 (`PIβ2 )

3.3. Analysing the classes

With these pairwise independences we can now attempt to analyse each class of probabil-
ity distributions. For the analysis of the classes (Hα

i ) in table 1 we shall need the first five
independences in table 2 (the other four independences plus outcome independence1 are

only used for the analysis of the classes (Hβ
1 ); see below). We have noted the correspond-

ing dependences in the bottom line of table 1 such that each dependence is associated
with one of the columns II–VI. The idea is that the dependence holds in a class if the
column of that class contains a ‘1’. Otherwise, i.e. if it contains a ‘0’, the corresponding
independence holds. The result of this analysis is stated by the following theorem:

Theorem 2: Each class in table 1 is equivalent to the conjunction of the
specific pattern of independences (see the bottom line) indicated by 0’s in
columns II–VI.

The proof of theorem 2 can be found in the mathematical appendix.
The theorem means that each pattern of independences corresponds to exactly one

of the classes, e.g.
(Hα

7 )↔ (PIα2 ) ∧ (`PIα2 ). (6)

One can see from the table that each of the five independences corresponds to exactly one
of the five variables in the conditionals of the factors: if a certain independence holds, the
corresponding variable does not appear (and vice versa), and if a certain independence
fails, the corresponding variable does appear (and vice versa). Specifically, if (OI1) holds,
the first factor of the hidden joint probability does not involve the other outcome β (and
vice versa), and if it does not, the first factor includes it (and vice versa). Similarly,
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(PIα1 ) and (`PIα1 ) correspond to the distant and the local parameter in the first factor
respectively, while (PIα2 ) and (`PIα2 ) are linked to the distant and the local parameter in
the second factor respectively. So the holding or failure of each of the five independences
has a very well defined impact on the product form of the hidden joint probability (and
vice versa), and the conjunction of all independences which hold according to a certain
probability distribution determines its product form, i.e. its class (and vice versa).12

3.4. Quantum non-locality as double parameter dependence

Finally, with the analysis of the single classes we shall now formulate the second main res-
ult of this paper, the analysis of the new, stronger concept of quantum non-locality (P6′).
We had found that quantum non-locality is the failure of all localα, weakly non-localα,
localβ and weakly non-localβ classes and that these classes are characterized by the
fact that their constituting product forms involve at most one parameter in each of its
factors. Let us first give an analysis of the localα and weakly non-localα classes. Our
analysis of the single classes (Hα

1 )–(Hα
32) has revealed that each variable in the condi-

tionals of the factors corresponds to exactly one of the five independences in table 1.
The distant parameter in the first factor corresponds to α-parameter independence1,
(PIα1 ), and the local parameter to α-local parameter independence1, (`PIα1 ). So the first
factor involves at most one parameter if and only if at least one of these independences
holds, (PIα1 ) ∨ (`PIα1 ). Similarly, at most one parameter appears in the second factor iff
β-parameter independence2 or β-local parameter indepence2 hold, (PIβ)∨ (`PIβ). So we
have found the following equivalence:

(P7′a) The disjunction of localα and weakly non-localα classes is equivalent to the fact
that α is independent1 of at least one parameter and β is independent2 of at least
one parameter:( 32∨

i=15

(Hα
i )
)
↔
[(

(PIα1 ) ∨ (`PIα1 )
)
∧
(

(PIβ2 ) ∨ (`PIβ2 )
)]

In a very similar way as we have proceeded for the classes (Hα
1 )–(Hα

32) one can find

an analysis for the classes (Hβ
1 )–(Hβ

32) (remember the table which is symmetric to table
1 in swapping the outcomes and the parameters and apply all considerations mutatis
mutandis):

(P7′b) The disjunction of localβ and weakly non-localβ classes is equivalent to the fact
that β is independent1 of at least one parameter and α is independent2 of at least
one parameter:( 32∨

i=15

(Hβ
i )
)
↔
[(

(PIβ1 ) ∨ (`PIβ1 )
)
∧
(

(PIα2 ) ∨ (`PIα2 )
)]

12Note that according to table 1 local factorisation is analysed as (Hα
29)↔ (OI1) ∧ (PIα1 ) ∧ (PIβ2 ), while

according to Jarrett it is (Hα
29) ↔ (OI1) ∧ (PIα2 ) ∧ (PIβ2 ), i.e. in Jarrett’s claim (PIα1 ) is replaced

by (PIα2 ). Given that (OI1) holds, the replacement is logically correct, because one can show that
(OI1) ∧ (PIα1 )↔ (OI1) ∧ (PIα2 ). So the two analyses of (Hα

29) are equivalent.
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3. Analysing quantum non-locality

Since (P6′) defined quantum non-locality as the failure of the disjunction of all localα,
weakly non-localα, localβ and weakly non-localβ classes, the negation of the disjunction
of (P7’a) and (P7’b) finally yields the analysis of quantum non-locality:

(C2)′ Quantum non-locality is equivalent to the fact that α depends1 on both parameters
or β depends2 on both parameters and β depends1 on both parameters or α
depends2 on both parameters:

(QNL′) ↔

{[(
¬(PIα1 ) ∧ ¬(`PIα1 )

)
∨
(
¬(PIβ2 ) ∧ ¬(`PIβ2 )

)]
∧

∧
[(
¬(PIβ1 ) ∧ ¬(`PIβ1 )

)
∨
(
¬(PIα2 ) ∧ ¬(`PIα2 )

)]}

While the definition of quantum non-locality in (P6′) was in terms of product forms,
here we have the equivalent expression, the analysis, in terms of pairwise independences.
It is a rather complex logical expression whose meaning and implications are not at all
easy to grasp. A first understanding might be attained by making explicit how this
analysis of quantum non-locality is also an analysis of the conjunction of strongly non-
localα and strongly non-localβ classes (which is necessarily so, see (P6′′)). These classes
were characterized by the fact that at least one of the factors in each product form
must involve both parameters and this is exactly what (C2′) says: The first term in the
first disjunction, ¬(PIα1 ) ∧ ¬(`PIα1 ) (‘α-double parameter dependence1’), guarantees a
dependence on both parameters in the first factor of the product forms (Hα

i ), the second

term in the first disjunction, ¬(PIβ2 ) ∧ ¬(`PIβ2 ) (‘β-double parameter dependence2’),
implies a similar fact for the second factor of these forms, and analogously, the second
disjunction entails a dependence on both parameters in at least one of the factors of the
product forms (Hβ

i ) (and vice versa).
So the analysis involves double parameter dependences for each outcome in two dif-

ferent forms, either conditional on all other variables (double parameter dependence1)
or conditional on all other variables excluding the other outcome (double parameter
dependence2). The logic of the expression has it that these can hold in different com-
binations, but whichever combination does, there is one thing that necessarily follows if
(C2′) is true:

(C3) Double parameter dependence: at least one of the outcomes depends probabilistic-
ally on both parameters (in at least one of the forms double parameter dependence1

or double parameter dependence2).

For one can avoid that one of the outcomes is double parameter dependent1 and double
parameter dependent2, but then it follows that the respective other outcome must be
double parameter dependent1 as well as double parameter dependent2. Of course, you
can also have mixed cases in which both outcomes are double parameter dependent (in
one or both of the two forms), but in any case you have double parameter dependence
of at least one of the outcomes.
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3. Analysing quantum non-locality

So we have found two results: the precise probabilistic analysis of quantum non-
locality (C2′) and a general feature of and deriving from that analysis (C3), that at
least one of the outcomes must be double parameter dependent. Since quantum non-
locality is a necessary condition for EPR/B correlations (if autonomy holds) double
parameter dependence of at least one of the outcomes, which is implied by quantum
non-locality, is a necessary condition for EPR/B correlations as well: whenever we find
that EPR/B correlations hold, double parameter dependence (C3) must hold as well. So
given that measurement results in our world yield EPR/B correlations (and assuming
autonomy), we can be sure that at least one of the outcomes depends both on the
local as well as on the distant parameter. Note, however, that we have not shown
that quantum non-locality, and hence neither its analysis (C2′) nor double parameter
dependence (C3), is sufficient for the violation of Bell inequalities. If an outcome depends
on both parameters in the sense of (C2′) the correlations between the two wings might
be sophisticated enough to violate Bell inequalities—but they need not be. We have
noted above that the product form and, hence, the dependences alone cannot guarantee
a violation because, additionally, the correlations must have a certain strength.

3.5. Discussion II

We shall now compare our new results (C2′) and (C3) with that of the two existing
analyses, the probabilistic one by Jarrett and the information theoretic one by Maudlin
(and Pawlowski et al.).

(1) The main message of my result is that given EPR/B correlations and autonomy
one cannot avoid some kind of dependence between at least one of the outcomes and
both parameters (C3). This is the unambiguous probabilistic requirement of quantum
non-locality according to my new analysis. It confirms the information theoretic result
in qualitative probabilistic terms. The information theoretic approach has yielded that
at least one of the outcomes must depend on information about the distant (and the
local) parameter. Since information implies correlation,13 the two results agree. This
makes explicit that even by a probabilistic analysis using the Bell-Jarrett methodology
one can recover the strong results of the information theoretic approach.

On the other hand, Jarrett’s analysis does not bring out the essential feature of
quantum non-locality on a probabilistic level (C3): from his result ‘outcome dependence
or parameter dependence’ one just cannot see that, necessarily, there must be some kind
of double parameter dependence. This difference between Jarrett’s and Maudlin’s result
is the tension we have noted in the introduction. Here we see that my new analysis
supports Maudlin’s claim, and there are two good reasons to regard this as definitely
resolving the tension in favour of Maudlin: First, my argument is very much like Jarrett’s
except that it analyses the new stronger notion of quantum non-locality (which, contrary
to Jarrett’s, picks out only strongly non-local classes; cf. P6 and P6′). Thus, my analysis
supersedes Jarrett’s because its analysandum is much more informative. Second, the

13Remember that we noted in the introduction that Shannon mutual information, which is the concept
that Maudlin’s and Pawlowski et al.’s considerations essentially are based on, is a measure for the
strength of a correlation.
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fact that the results from two independent and reliable approaches, my probabilistic
analysis and Maudlin’s information theoretic argument, converge is strong evidence for
their correctness. We conclude that our argument on the probabilistic level resolves the
tension between Maudlin’s and Jarrett’s analysis in favour of the former. Something
must be wrong or at least inappropriate about Jarrett’s result and we shall shortly show
what exactly it is.

(2) Before that we should note that our result is in one sense weaker and in one
sense stronger than the information theoretic one. It is weaker because it is purely
qualitative: it just says which probabilistic dependences are required, but it is tacit
about how strong the correlations have to be in order to violate Bell inequalities. In
section 2.3 I have argued that such qualitative results can only be necessary conditions for
a violation. Having the right dependences for violating Bell inequalities does not mean
that the inequalities are in fact violated. Sufficient criteria must involve conditions on
the strength of the correlations. This is what the information theoretic approach derives
in terms of quantities of bits.

In another sense, however, our result is also stronger than the information theoretic
one. Our detailed result (C2′) makes explicit which probabilistic dependences exactly are
required given that Bell inequalities are violated. Maudlin’s analysis just implies that
we need some dependence of an outcome on its distant parameter. But which precisely?
We have seen that there are different kinds of parameter dependences, which differ in the
conditional variables. For instance, it cannot be an unconditional parameter dependence
because that would contradict the empirical distribution. So which are the ones that
are required? My detailed result (C2′) makes this explicit. Either one of the outcomes
depends on its distant parameter given the local setting and the hidden variables or it
depends on the distant parameter given the local setting, the hidden variables and the
other outcome. (The condition is rather complex and requires certain other dependences
if the one or the other holds, but one cannot avoid that one of the mentioned parameter
dependences holds.) This detailed characterisation cannot be obtained from the present
information theoretic results. It might be important for the discussion of quantum non-
locality on the other levels. Causal inference (cf. Pearl, 2000; Spirtes et al., 2000), for
instance, is very sensitive to the exact kind of dependences and independences of a given
situation.

(3) What is wrong about Jarrett’s analysis? We now know (by C3) that one cannot
avoid a certain dependence of the outcomes on their distant settings. We have also
observed that Jarrett’s result ‘outcome dependence or parameter dependence’ does not
bring out this necessary requirement. Even worse, it stands in a certain tension to this
result because it seems to suggest the contrary: that one can avoid any dependence
of the outcomes on their distant settings if the outcomes depend on another. If this
suggestive interpretation were the correct reading of Jarrett’s result, it would be plainly
wrong. However, this is not what it literally says. ‘Parameter dependence’ here does
not mean any kind of parameter dependence but a very specific kind, namely parameter
dependence2. Saying that one can avoid this specific kind does not mean that there is
no dependence of the outcomes on their distant parameters at all. Our presentation of
different kinds of parameter dependences (see table 2) has made explicit that parameter
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dependence2 is only one among several kinds, all of which might hold if parameter
dependence2 fails. So Jarrett’s result is compatible with our result (C2′) that one can
avoid parameter dependence2 only if parameter dependence1 holds.

This reasoning shows that, though in a literal sense not logically contradicting our
findings, Jarrett’s result is liable to be misunderstood to its non-literal false sense, that
one can avoid any kind of parameter dependence if outcome dependence holds. In this
sense, Jarrett’s result is misleading. In fact, it seems that Jarrett’s result has to a large
extent received this unfortunate interpretation. There is a bunch of literature about
quantum non-locality (on any level, whether causal, spatio-temporal or metaphysical)
which is based on Jarrett’s distinction, and which discusses in detail what outcome
dependence or parameter dependence would amount to, the preferred solution being
outcome dependence without parameter dependence. But in most cases this makes only
sense, if one believes that by neglecting parameter dependence one can avoid any kind of
parameter dependence! If the authors in that debate would have known that one cannot
avoid some kind of parameter dependence anyway, they would surely not have spent
so much time on finding arguments why outcome dependence rather than parameter
dependence holds. Much of the debate based on Jarrett’s analysis seems to adhere to
the wrong non-literal reading of Jarrett’s result.

(4) We are now in a position to discard the typical prejudices about quantum mech-
anics which stem from such a false non-literal reading of Jarrett’s result. Is quantum
mechanics not a counterexample to my result? Is it not a theory which violates Bell in-
equalities although there is no dependence on the distant parameter? It is true, quantum
mechanics is well known to be ‘outcome dependent and parameter independent’, but
again this is not to be understood that according to quantum mechanics there is no
probabilistic dependence of an outcome on the distant parameter at all. In fact, it is
easy to check, which independences hold according to quantum mechanics: one can cal-
culate all relevant conditional probabilities from the quantum mechanical probability
distribution for the EPR/B experiment (Corr). A simple comparison of these prob-
abilities then shows which of the independences hold and which do not, and it turns
out that quantum mechanics is parameter dependent1, ¬(PIα1 ) and ¬(PIβ1 ), so accord-
ing to quantum mechanics each outcome does depend on its distant parameter! This
parameter dependence in quantum mechanics is not as surprising as it may seem since,
according to the formalism, the measurement direction at A determines the possible
collapsed states at B and the actual outcome at A only determines in which of the (two)
possible states the photon state at B collapses. So contrary to what the standard talk
suggests, quantum mechanics is parameter dependent, and it is important to see that it
is as well local parameter dependent1, ¬(`PIα1 ) and ¬(`PIβ1 ) (while it is local parameter

independent2, (`PIα2 ) and (`PIβ2 )), because then, the quantum mechanical distribution
fulfills the requirement of a quantum non-locality by rendering the first terms of the two
disjunctions in (C2′) true. If my argument in this paper is true, it cannot be otherwise.
For if quantum mechanics were not parameter dependent in this double sense, it could
not (as it does) violate Bell inequalities.

(5) Finally, we shall now show that even in a correct literal reading, Jarrett’s result
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is problematic: understood as providing insight about quantum non-locality (on a prob-
abilistic level), it is highly deceptive because it rests on inappropriate categories. This
point becomes clear, if one investigates how Jarrett’s analysantia outcome dependence1,
α-parameter dependence2 and β-parameter dependence2 relate to the new concept of
quantum non-locality. Here is, first, how they do not relate: Jarrett’s analysis of the
weaker concept is a disjunction of these three dependences and it could have been that
the analysis of the stronger concept just cancels one or two of the elements in the dis-
junction, revealing them as options which are not really available. For instance it might
have been that the new analysis yields just ¬(PIα2 ) ∨ ¬(PIβ2 ), cancelling ¬(OI1). How-
ever, it turns out that this is not the case. The logical structure of the new analysis
is not just a simplification of the former, but, in fact, is much more complicated in-
volving new concepts (parameter dependence1, local parameter dependence1 and local
parameter dependence2) and not involving others (outcome dependence1). This sug-
gests that Jarrett’s categories outcome dependence1 and parameter dependence2 cannot
capture the new concept of quantum non-locality.

Table 3: Jarrett’s classes of possible probability distributions

Label ¬(OI1) ¬(PIα2 ) ∨¬(PIβ2 ) Notes

(J1) 1 1
quantum
non-locality

(J2) 0 1 Bohm

(J3) 1 0 QM

(J4) 0 0 locality

To make this explicit, consider the partition of the probability distributions according
to the dependences in Jarrett’s analysis (table 3). There are four classes, which I call
‘Jarrett’s classes’ and label as (J1)–(J4). Any of the 32 possible classes from table 1 must
fall into one of Jarrett’s coarse-grained classes. While the local classes belong to (J4), any
of the classes (J1)–(J3) includes both weakly and strongly non-local classes. So Jarrett’s
non-local classes, which are assumed to be able to violate Bell inequalities, mix probability
distributions which can with such which cannot (see fig. 2). They do not cut the probab-
ility distributions at their natural joints! This means that neither outcome dependence1

nor parameter dependence2 are necessary or (contrary to Jarrett’s analysis) sufficient for
the new concept of quantum non-locality. Providing, for instance, the information that
a certain probability distribution is outcome dependent1 does not tell you whether it can
violate Bell inequalities or not. The crucial fact is whether double parameter dependence
of a certain kind holds, and α-parameter dependence2 and β-parameter dependence2 at
least play a certain role in this complex condition. Outcome dependence1, however,
does not play any essential role for the general concept of quantum non-locality. Not
being able to capture the new concept, we conclude that the partition according to Jar-
rett’s categories outcome dependence1 and parameter dependence2 is inappropriate or
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unnatural for the analysis of quantum non-locality.

non-locality
weak

strong

locality

Fig. 2: Outcome dependence1 and parameter dependence2 vs. weak and strong non-
locality. ‘Strong non-locality’ means strongα and strongβ non-locality (i.e. those
distributions which can violate Bell inequalities), while ‘weak non-locality’ means
weakα or weakβ non-locality (i.e. those non-local distributions which imply Bell
inequalities).

So it seems that a significant amount of the debate after Jarrett’s paper which has
focused on the question of the formal, physical and metaphysical differences between
outcome dependence1 and parameter dependence2, in order to decide which of the two
does hold, is misguided. ‘Outcome dependence or parameter dependence?’ is just the
wrong question if one wants to explore deeper into the nature of quantum non-locality,
because each of the two options subsumes probability distributions which can and such
which cannot violate Bell inequalities. Making this question a guide to quantum non-
locality is like asking whether those humans which can get pregnant have dark or fair
hair. Rather, the natural question, the new analysis shows, is which of the outcomes is
double parameter dependent and whether it is double parameter dependent1 or double
parameter dependent2.

4. Conclusion

In this paper we have investigated what EPR/B correlations, which violate Bell inequal-
ities, imply on a qualitative probabilistic level. We started our considerations by giving
a comprehensive overview of the possible types of probability distributions, which can
describe EPR/B experiments (table 1). The overview has revealed that one can derive
Bell inequalities not only from local theories but also from a large range of non-local
ones, which we have called weakly non-local. This has enabled us to formulate a stronger
Bell argument than usual to exclude local and weakly non-local theories of the quantum
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world. Since the result of the Bell argument defines what we appropriately call quantum
non-locality, this new result yielded a tighter, more informative concept of quantum non-
locality, which describes more precisely what the violation of Bell inequalities implies
on a probabilistic level. In fact, my new concept of quantum non-locality, although not
being sufficient for EPR/B correlations, captures the strongest possible consequences of
EPR/B correlations on a qualitative probabilistic level. In this sense, my new concept is
appropriate, while the standard concept is too weak. Furthermore, the argument shows
that Bell inequalities are not locality conditions (because weakly non-local theories obey
them) and that their violation does not necessarily imply that there is no screener-off
for the correlations.

In a second part, we have given an analysis of the new concept of quantum non-
locality, similar to how Jarrett analysed the failure of local factorisation. We have
provided an exact logical expression in terms of pairwise independences, which is equi-
valent to the new concept. (It includes two types of parameter dependences with respect
to each outcome, namely parameter dependence2, which is the usual parameter depend-
ence, and parameter dependence1, which differs from the usual parameter dependence in
that the conditional variables include the other outcome respectively.) A general feature
of the result is that at least one of the outcomes must depend on both parameters, either
including parameter dependence1 or parameter dependence2 (while outcome dependence
is neither necessary nor sufficient for the new concept quantum non-locality). Confirming
the information theoretic considerations by Maudlin (and Pawlowski et al.) on a prob-
abilistic level, this result resolves the tension between Maudlin’s and Jarrett’s analysis
in favour of the former. Jarrett’s result does not bring out this necessary requirement of
EPR/B correlations. Rather, it is liable to be misunderstood to the contrary meaning
that one can avoid any dependence between the outcomes and their distant parameters
if one accepts a dependence between the outcomes. (This understanding, however, is
not what it literally says.) A closer examination revealed that even in a literal read-
ing the result of Jarrett’s analysis, ‘outcome dependence or parameter dependence’, is
deceptive: it does not cut the probability distributions at their natural joints (it mixes
theories which can violate Bell inequalities with such which cannot). So it turns out
that asking whether outcome dependence or parameter dependence holds is a deeply
misleading question if one aspires to understand quantum non-locality.

These deficiencies of Jarrett’s analysis require that the debate based on the inap-
propriate disjunction ‘outcome dependence or parameter dependence’ needs a funda-
mental revision. There are two main issues. First, regarding the question whether
EPR/B correlations are compatible with relativity, many have argued that parameter
dependent2 theories are forbidden by relativity, while outcome dependent (and para-
meter independent2) theories might peacefully coexist with relativity. However, we now
know that theories in this latter class which correctly describe the EPR/B correlations,
e.g. quantum mechanics, must be parameter dependent1. As we cannot avoid parameter
dependence in some sense, we have to check the alleged inconsistency of parameter de-
pendence and relativity again. Is the so far widely neglected parameter dependence1 as
problematic for relativity as parameter dependence2 has been said to be? Do the ar-
guments which have been adduced against parameter dependence2 apply to parameter
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dependence1 as well? Either at least one of them can live in harmony with Lorentz
invariance or no theory correctly reproducing the EPR/B correlations by a quantum
non-locality can be compatible with relativity on a fundamental level.

Second, concerning the metaphysical implications of quantum non-locality it has
been argued that while parameter dependence2 requires a causal relation (action at-
a-distance), outcome dependence is best understood as a non-causal connection (non-
separability / holism). Since one cannot take refuge in outcome dependence any more:
does that mean that we necessarily have to accept action at-a-distance? If yes, between
which variables? Or can the idea of a non-separability be made intelligible even for
parameter dependent theories? These and similar questions have to be addressed. Some
old arguments might be transferred to the new situation, some might not. In any case,
the debate will need a fresh look. It seems that we are far from being finished with
our enquiries into the nature of quantum non-locality, since it has just received new
probabilistic foundations.
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A. Mathematical Appendix

A.1. Proof of theorem 1

In order to prove theorem 1 it will provide useful to partition the classes into four groups
depending on which variables appear in their constituting product forms (see table 1,
column VIII):

(i) At least one of the parameters does not appear at all: (Hα
17)–(Hα

21), (Hα
23)–(Hα

28),
(Hα

30)–(Hα
32)

(ii) Both parameters appear separately, one in each factor: (Hα
22), (Hα

29)

(iii) As (ii) but the first factor additionally involves the outcome β: (Hα
15), (Hα

16)

(iv) Both parameters appear together in at least one of the factors: (Hα
1 )–(Hα

14)

While group (iv) is identical to the group of strongly non-localα classes, the groups (i)–
(iii) provide a finer partition of the union of the localα and weakly non-localα classes. In
terms of the partition (i)–(iv), confirming theorem 1 means to prove that given autonomy
and perfect (anti-)correlations, the classes belonging to groups (i), (ii) and (iii) imply
Bell inequalities. Additionally, we shall show that classes in group (iv) in general do not
imply Bell inequalities.

A.1.1. Group (i)

Consider one version of the Wigner-Bell inequality (Wigner, 1970; van Fraassen, 1989),

P (α−β+|a1b3) ≤ P (α−β+|a1b2) + P (α−β+|a2b3). (7)

We can write the probabilities in terms of the hidden probability distribution if we sum
over λ,

P (α−β+|ab) =
∑
λ

P (α−β+|abλ)P (λ|ab), (8)

and assuming autonomy (A), we can further rewrite it as

P (α−β+|ab) =
∑
λ

P (α−β+|abλ)P (λ). (9)

It is obvious that in this form the empirical joint probability P (α−β+|ab) depends on the
parameters only via the hidden joint probability P (α−β+|abλ). Hence, if a certain para-
meter does not appear in a specific product form of the hidden joint probability (group
(i)), the empirical joint probability becomes independent of this parameter. Consider,
for instance, how class (Hα

17), the product form of which does not involve the parameter
b,

P (αβ|abλ) = P (α|βaλ)P (β|aλ), (10)
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makes the empirical joint probability independent of b:

P (α−β+|ab) =
∑
λ

P (α−|β+aλ)P (β+|aλ)P (λ) = P (α−β+|a). (11)

Inserting this empirical joint probability, which does not depend on b, into the Bell-
Wigner inequality, reveals that in this case the inequality holds trivially, just because it
has lost its functional dependence on b:14

P (α−β+|a1) ≤ P (α−β+|a1) + P (α−β+|a2) (12)

(Hα
17) implying that Bell inequalities hold is surprising because its constituting product

form is both non-local and non-factorising : β depends on the distant parameter a in
the second factor, P (β|aλ), and α depends on β in the first, P (α|βaλ), i.e. λ and a do
not screen-off the outcomes from another. However, very similarly, we can show that all
other classes in group (i) meet the requirements of Bell inequalities: no matter what kind
of non-localities they involve, if at least one of the parameters does not appear in the
product form, Bell inequalities hold trivially. Hence, we can conclude that if autonomy
holds (which we have used to simplify the expectation value in (9)) distributions in group
(i) imply that Bell inequalities hold:15[

(A) ∧
( ∨
i=17−21

23−28
30−32

(Hα
i )
)]
→ (BI) (13)

A.1.2. Group (ii)

Let us now turn to distributions in group (ii). Since according to this group both para-
meters appear in the product form (one in each factor), it is clear that, contrary to
group (i), here Bell inequalities do not hold just because of the functional dependences.
However, local factorisation (Hα

29) belongs to this group and we know how we can de-
rive Bell inequalities with this product form of the hidden joint probability. Since the
derivation from the other class in this group, (Hα

22), is very similar, let me first sketch
a derivation with local factorisation, which is based on the ideas of Wigner (1970) and
van Fraassen (1989).

We proceed from the empirical fact that there are perfect correlations between the
measurement outcomes if the settings equal another:

P (α±β∓|aibi) = 0 (14)

Similarly to (9), using autonomy and local factorisation we can rewrite the empirical

14Note that (11) even directly contradicts the empirical distribution (not only indirectly by making Bell
inequalities true), because it states that the empirical joint probability does not depend on one of
the parameters, which is wrong.

15The sign ‘
∨

’ denotes a multiple disjunction, e.g.
∨
i=1..n(Hα

i ) := (Hα
1 ) ∨ (Hα

2 ) ∨ . . . ∨ (Hα
n).
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joint probability in terms of the hidden joint probability,

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|aiλ)P (β∓|biλ). (15)

Since probabilities are non-negative (and we assume P (λ) > 0 for all λ), at least one of
the two remaining factors in each summand must be zero, i.e. for all values of i and λ
we must have: [

P (α+|aiλ) = 0 ∨ P (β−|biλ) = 0
]

(16)

∧
[
P (α−|aiλ) = 0 ∨ P (β+|biλ) = 0

]
(17)

There are two cases. Suppose first that P (α+|aiλ) = 0. From there all other probab-
ilities follow as either 0 or 1:

(CE)⇒ P (α−|aiλ) = 1
(17)⇒ P (β+|biλ) = 0

(CE)⇒ P (β−|biλ) = 1

Here, ‘(CE)’ stands for ‘complementary event’ and refers to a theorem of probability
theory that the sum of the probability of an event A and of its complementary event A
is 1, e.g. P (α+|aiλ) + P (α−|aiλ) = 1.

Assume, second, that P (β−|bi, λ) = 0. Again all other probabilities are determined
to be either 0 or 1:

(CE)⇒ P (β+|biλ) = 1
(17)⇒ P (α−|aiλ) = 0

(CE)⇒ P (α+|aiλ) = 1

In order to avoid contradiction the two cases have to be disjunct. So given a certain
measurement direction i, the two cases define a partition of the values of λ: all values
of λ for which P (α+|aiλ) = 0 belong to the set Λ(i), while all other values, for which
P (α−|aiλ) = 0, belong to Λ(i). Note that each value of i defines a different partition.

We can use the fact that the λ-partitions depend on just one parameter i to calculate
the hidden joint probability P (αβ|abλ) for any choice of measurement directions aibj by
forming intersections of partitions for different parameters (see table 4). Since all values
are either 0 or 1 we have shown that determinism holds on the hidden level.

Given table 4, i.e. determinism and the composability of the λ-partitions (each of
which depends on just one parameter), it is easy to show that Wigner-Bell inequalities
must hold. Consider the inequality

P (X ∩ Z) ≤ P (X ∩ Y ) + P (Y ∩ Z), (18)

which in general holds for any events X,Y, Z of a measurable space (the validity of the
inequality is obvious if one draws a Venn diagram, see (Neapolitan and Jiang, 2006)).
Assuming X = Λ(1), Y = Λ(2) and Z = Λ(3) gives the inequality

P (Λ(1) ∩ Λ(3)) ≤ P (Λ(1) ∩ Λ(2)) + P (Λ(2) ∩ Λ(3)). (19)

We can now express the probabilities in the inequality by the empirical probability
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Table 4: Values of the hidden joint probability

λ ∈

Λ(i) ∩ Λ(j) Λ(i) ∩ Λ(j) Λ(i) ∩ Λ(j) Λ(i) ∩ Λ(j)

P (α+β+|aibjλ) = 0 0 0 1

P (α+β−|aibjλ) = 0 0 1 0

P (α−β+|aibjλ) = 0 1 0 0

P (α−β−|aibjλ) = 1 0 0 0

distribution if we use the hidden joint probability from table 4, e.g.:

P (Λ(1) ∩ Λ(2))
(σ-additivity)

=
∑

λ∈Λ(1)∩Λ(2)

P (λ) =

(table 4)
=

∑
λ

P (λ)P (α−β+|a1b2λ) =

(A)
= P (α−β+|a1b2) (20)

The resulting inequality is the Wigner-Bell inequality (7).
This derivation reminds us how local factorisation together with autonomy and perfect

correlations implies Bell inequalities. The other class in group (ii), (Hα
22), differs from

local factorisation in that the parameters are swapped: instead of a dependence of each
outcome on the local parameters it involves a dependence on the distant ones. Regardless
of the implicit non-locality it can be used to derive a Bell inequality in a very similar
way: given (Hα

22), instead of (15) we have

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|biλ)P (β∓|aiλ). (21)

and by very similar arguments we arrive at a similar partition of the values of λ: Λ(i)
denotes all values of lambda for which P (α+|biλ) = 0, while the complementary set
Λ(i) is defined by P (α−|biλ) = 0. If we then calculate the values of the hidden joint
probability we arrive at the very same result as in table 4—and the rest of the derivation
runs identically up to the Bell-Wigner inequality (7). Hereby we have found another non-
local hidden joint probability which implies Bell inequalities and the result for group (ii)
reads [

(A) ∧ (PCorr) ∧
( ∨
i=22,29

(Hα
i )
)]
→ (BI). (22)
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A.1.3. Group (iii)

Up to this point one might have been surprised about how easy one can derive Bell
inequalities from product forms other than local factorisation, but that one can do it even
from classes in group (iii) is my strongest claim. These classes include both parameters,
one in each factor, so they do not trivially imply Bell inequalities as classes in group (i).
Neither, it seems, can they imply Bell inequalities in the same way as classes in group
(ii) because they additionally involve β in the first factor. However, they do imply Bell
inequalities, and they do it in a very similar (yet slightly more complicated) way than
classes in group (ii), if besides perfect correlations for equal settings (14) we also assume
perfect anti-correlations (PACorr) for perpendicular settings (aibi⊥):

P (α±, β±|ai, bi⊥) = 0 (23)

Let me sketch the proof for class (Hα
16) which follows along the lines of that for local

factorisation. By autonomy and the product form of (Hα
16) we rewrite (14) and (23) as

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|β∓aiλ)P (β∓|biλ) (24)

P (α±β±|aibi⊥) = 0 =
∑
λ

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ), (25)

and again, at least one of the factors in each summand must vanish, i.e. for all values
of i and λ (assuming P (λ) > 0) we must have:[

P (α+|β−aiλ) = 0 ∨ P (β−|biλ) = 0
]

(26)

∧
[
P (α−|β+aiλ) = 0 ∨ P (β+|biλ) = 0

]
(27)

∧
[
P (α+|β+aiλ) = 0 ∨ P (β+|bi⊥λ) = 0

]
(28)

∧
[
P (α−|β−aiλ) = 0 ∨ P (β−|bi⊥λ) = 0

]
(29)

As above, from these conditions we can infer that all involved probabilities must be
0 or 1, depending on which of the following two cases holds.

If P (α+|β−aiλ) = 0:

(CE)⇒ P (α−|β−aiλ) = 1
(29)⇒ P (β−|bi⊥λ) = 0

(CE)⇒ P (β+|bi⊥λ) = 1
(28)⇒ P (α+|β+aiλ) = 0

(CE)⇒ P (α−|β+aiλ) = 1
(27)⇒ P (β+|biλ) = 0

(CE)⇒ P (β−|biλ) = 1
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If P (β−|biλ) = 0:

(CE)⇒ P (β+|biλ) = 1
(27)⇒ P (α−|β+aiλ) = 0

(CE)⇒ P (α+|β+aiλ) = 1
(28)⇒ P (β+|bi⊥λ) = 0

(CE)⇒ P (β−|bi⊥λ) = 1
(29)⇒ P (α−|β−aiλ) = 0

(CE)⇒ P (α+|β−aiλ) = 1

The cases are disjunct and, hence, define a partition for the values of λ for each
measurement direction i: Λ(i) includes all values of λ for which P (β+|biλ) = 0, while
Λ(i) includes the complementary values, which make P (β−|biλ) = 0. Calculating the
hidden joint probability P (αβ|abλ) for an arbitrary choice of measurement directions
aibj gives us the very same result as in table 4—and again a Wigner Bell inequality
follows.

Since the derivation for class (H15) runs mutatis mutandis, we have shown:[
(A) ∧ (PCorr) ∧ (PACorr) ∧

( ∨
i=15,16

(Hα
i )
)]
→ (BI) (30)

A.1.4. Group (iv)

Finally, classes of group (iv) do not imply Bell inequalities. Involving both parameters
in at least one of the factors, they neither fulfill Bell inequalities by their functional
dependences nor do they admit of deriving a Bell inequality in the manner of classes in
group (ii) or (iii). In order to rule out that there are other kinds of derivations one has
to find explicit examples of probability distributions for each class in the group which
violate Bell inequalities. Requiring just any example we can assume a toy model with
only two possible hidden states (λ = 1, 2). Then the probability distribution P (αβabλ)
is determined by assigning a value to each of the 25 = 32 probabilities which conform
to the laws of probability theory (each value lies in the interval [0, 1] and all values sum
to 1). Furthermore, the values have to be chosen such that autonomy and the specific
product form of the class in question hold and that Bell inequalities are violated. I
have found appropriate distributions for each class (Hα

1 )–(Hα
14) by solving numerically a

corresponding set of equations. This fact, that some probability distributions of these
classes violate Bell inequalities, means that none of these classes implies Bell inequalities
in general, i.e. by its constituting product form. Of course, this does not mean that
all probability distributions in these classes violate Bell inequalities: in fact one can as
well find examples of probability distributions in each class (Hα

1 )–(Hα
14) which fulfill Bell

inequalities. This means that for these classes the product form alone does not determine
whether Bell inequalities hold or fail; whether they do depends on the numerical values of
the specific distribution. On the general level of the classes we can only say that classes
in group (iv) neither imply Bell inequalities nor do they imply their failure. Probability
distributions in those classes can violate Bell inequalities.
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A.2. Proof of theorem 2

The proof of the equivalences of product forms and conjunctions of independences in-
volves only some basic laws of probability theory. Providing an analysis for each product
form of the hidden joint probability, this claim is an extension of Jarrett’s analysis of
local factorisation (P7). One can demonstrate the equivalence for each hidden joint prob-
ability separately (analogous to how Jarrett derived (P7)), but the following constructive
method is more elegant: in the case that the hidden joint probability factorises according
to the product rule, (Hα

1 ), none of the relevant independences holds (and vice versa).
Then we consider the five cases in which exactly one independence holds (Hα

2 )–(Hα
6 ).

Here is the proof of (Hα
2 )↔ (`PIβ2 ):

← P (αβ|abλ) = P (α|βbaλ)P (β|abλ)
(`PIβ2 )

= P (α|βbaλ)P (β|aλ) (31)

→ P (β|abλ) =
∑
α

P (αβ|abλ)
(Hα2 )
= P (β|aλ)

∑
α

P (α|βbaλ) = P (β|aλ) (32)

The equivalence (Hα
3 )↔ (PIβ2 ) can be shown mutatis mutandis (just swap the local with

the distant parameter). (Hα
4 )↔ (`PIα1 ) can be derived as follows:

← P (αβ|abλ) = P (α|βbaλ)P (β|abλ)
(`PIα1 )

= P (α|bβλ)P (β|abλ) (33)

→ P (α|βbaλ) =
P (αβ|abλ)

P (β|abλ)

(Hα4 )
=

P (α|βbλ)�����P (β|abλ)

�����P (β|abλ)
= P (α|βbλ) (34)

The equivalences (Hα
5 )↔ (PIα1 ) and (H6)↔ (OI1) are proved similarly. Then, by pairs of

these five equivalences involving one independence, we prove equivalences with two inde-
pendences, and subsequently, equivalences with three independences, and so on. Here is
an example how to derive an equivalence with two independences, (Hα

7 )↔ (PIβ2 )∧(`PIβ2 ),
on the basis of the corresponding equivalences with one independence respectively:

← (PIβ2 ) ∧ (`PIβ2 )
(31), (32)←→ (PIβ2 ) ∧ (Hα

2 )
(35)→ (Hα

7 )

P (αβ|abλ)
(Hα2 )
= P (α|βbaλ)P (β|ab′λ)

(PIβ2 )
= P (α|βbaλ)P (β|a′b′λ) (35)

→ (Hα
7 )

(∗)→ (Hα
3 )↔ (PIβ2 ); (Hα

7 )
(∗)→ (Hα

2 )↔ (`PIβ2 )

(∗): (Hα
7 ) is a common special case of (Hα

2 ) and (Hα
3 ); if (Hα

7 ) holds, then a
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forteriori (Hα
2 ) and (Hα

3 ):

∀a, a′, b, b′ : P (αβ|abλ) = P (α|βbaλ)P (β|a′b′λ) (Hα
7 )

∀a = a′, b, b′ : P (αβ|abλ) = P (α|βbaλ)P (β|a′b′λ) (Hα
2 )

∀a, a′, b = b′ : P (αβ|abλ) = P (α|βbaλ)P (β|a′b′λ) (Hα
3 )

As one can see by this constructive method the proofs remain basic and short, even for
the more complex equivalences. Similarly, with some patience, we can derive step by
step the other equivalences between product forms and independences in table 1.
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