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It is widely accepted that the violation of Bell inequalities excludes local theories
of the quantum realm. This paper presents a stronger Bell argument which even
forbids certain non-local theories. The conclusion of the stronger Bell argument
presented here provably is the strongest possible consequence from the violation
of Bell inequalities on a qualitative probabilistic level (given usual background
assumptions). Since among the excluded non-local theories are those whose only
non-local probabilistic connection is a dependence between the space-like separated
measurement outcomes of EPR/B experiments (a subset of outcome dependent
theories), outcome dependence cannot be the crucial dependence for explaining
a violation of Bell inequalities. Rather, the remaining non-local theories, which
can violate Bell inequalities (among them quantum theory), are characterized by
the fact that at least one of the measurement outcomes in some sense (which is
made precise) probabilistically depends both on its local as well as on its distant
measurement setting. While this is not to say that what is usually called parameter
dependence has to hold, some kind of dependence on the distant parameter cannot
be avoided. Against the received view, established by Jarrett and Shimony, that
on a probabilistic level quantum non-locality amounts to outcome dependence, this
result confirms and makes precise Maudlin’s claim that some kind of parameter
dependence is required.
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1 Introduction

Bell’s argument (1964; 1971; 1975) establishes a mathematical no-go theorem for the-
ories of the micro-world. In its standard form, it derives that theories which are local
(and fulfill certain auxiliary assumptions) cannot have correlations of arbitrary strength
between events which are space-like separated. An upper bound for the correlations is
given by the famous Bell inequalities. Since certain experiments with entangled quantum
objects have results which violate these inequalities (EPR/B correlations), it concludes
that the quantum realm cannot be described by a local theory. Any correct theory of the
quantum realm must involve some kind of non-locality, a ‘quantum non-locality’. This
result is one of the central features of the quantum realm. It is the starting point for
extensive debates concerning the nature of quantum objects and their relation to space
and time.

Since Bell’s first proof (1964) the theorem has evolved considerably towards stronger
forms: there has been a sequence of improvements which derive the inequalities from
weaker and weaker assumptions. The main focus has been on getting rid of those
premises which are commonly regarded as auxiliary assumptions: Clauser et al. (1969)
derived the theorem without assuming perfect correlations; Bell (1971) abandoned the
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assumption of determinism; Graßhoff et al. (2005) and Portmann and Wüthrich (2007)
showed that possible latent common causes do not have to be common common causes.1

What is common to all of these different derivations is that they assume one or an-
other form of locality. Locality seems to be the central assumption in deriving the Bell
inequalities—and hence it is the assumption that is assumed to fail when one finds that
the inequalities are violated.

In this paper we are going to present another strengthening of Bell’s theorem, which
relaxes the central assumption: one does not have to assume locality in order to derive
the Bell inequalities. Certain forms of non-locality, which we shall call ‘weakly non-local’
suffice: an outcome may depend on the other outcome or on the distant setting—as long
as it does not depend on both settings, it still implies that the Bell inequalities hold. As
a consequence, the violation of the Bell inequalities also excludes those weakly non-local
theories. So it does not require any kind of non-locality, but a very specific one: at least
one of the outcomes must depend probabilistically on both settings. While previous
strengthenings of Bell’s theorem secured that a certain auxiliary assumption is not the
culprit, our derivation here for the first time strengthens the conclusion of the theorem.
Formulating the stronger argument and deriving the new conclusion will make up a first
part of this paper.

In a second part, we shall probabilistically analyze this new conclusion in a similar
way as Jarrett (1984) famously analyzed the result of the standard Bell argument as
outcome dependence and parameter dependence. The result of the new analysis will
differ considerably from Jarrett’s. Especially it will make explicit that some kind of
parameter dependence cannot be avoided, while outcome dependence is irrelevant for
the question whether Bell inequalities can be violated.

A third part is dedicated to comparing our result with existing positions and to draw-
ing some immediate consequences. It will turn out that while literally correct Jarrett’s
classic analysis is misleading; the received view, holding that quantum non-locality is
outcome dependence (Jarrett 1984; Shimony 1984, 1986), cannot be true; and Maudlin’s
information theoretic result (1994), that there must be some dependence between an out-
come and its distant parameter, is confirmed and made precise in probabilistic terms; this
will also resolve the ongoing tension between Jarrett’s and Maudlin’s opposing positions
in favor of the latter.

Note that in this paper we restrict our investigations exclusively to the probabilistic
level. More specifically, we mainly investigate which probabilistic dependences and in-
dependences there are in EPR/B experiments. Typically, from the formal result that
there are certain non-local probabilistic dependences, far reaching conclusions about the
existence of certain non-local physical or metaphysical connections are drawn, e.g. a
non-separability or non-local causal relations. Since these latter inferences require fur-
ther assumptions and are far from being trivial (especially they cannot reliably be made
en passant), in this paper we shall constrain to establish a strengthening of Bell’s core
argument on the mathematical level and a probabilistic analysis of this result, while leav-

1 The debate about common common causes vs. separate common causes is to some degree still
undecided (cf. Hofer-Szabó 2008).
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2 Bell arguments

ing an appropriate physical and metaphysical interpretation of our findings for future
work.

2 Bell arguments

2.1 EPR/B experiments and the standard Bell argument

We consider a usual EPR/B setup with space-like separated polarization measurements
of an ensemble of photon pairs in an entangled quantum state ψ = ψ0 (Einstein, Podol-
sky, and Rosen 1935; Bohm 1951; Clauser and Horne 1974; see fig. 1). Possible hidden
variables of the photon pairs are called λ, so that the complete state of the particles at
the source is (ψ,λ). Since in this setup the state ψ is the same in all runs, it will not
explicitly be noted in the following (one may think of any probability being conditional
on one fixed state ψ = ψ0). We denote Alice’s and Bob’s measurement setting as a and
b, respectively, and the corresponding (binary) measurement results as α and β. On
a probabilistic level, the experiment is described by the joint probability distribution
P (αβabλ) := P (α = α,β = β,a = a, b = b,λ = λ) of these five random variables.2

We shall consistently use bold symbols (α,β,a, . . . ) for random variables and normal
font symbols (α, β, a, . . . ) for the corresponding values of these variables. We use indices
to refer to specific values of variables, e.g. α− = − or a1 = 1, which provides useful
shorthands, e.g. P (α−β+a1b2λ) := P (α = −,β = +,a = 1, b = 2,λ = λ). Expressions
including probabilities with non-specific values of variables, e.g. P (α|a) = P (α), are
meant to hold for all values of these variables (if not otherwise stated).

–+

a b
α β
– +

ψλ

Figure 1: EPR/B setup

Containing the hidden states λ, which are by definition not measurable, the total
distribution is empirically not accessible (‘hidden level’), i.e. purely theoretical. Only
the marginal distribution which does not involve λ, P (αβab), is empirically access-
ible and is determined by the results of actual measurements in EPR/B experiments
(‘observable level’). A statistical evaluation of a series of many runs with similar pre-

2 While the outcomes are discrete variables and the settings can be considered to be discrete (in typical
EPR/B experiments there are two possible settings on each side), the hidden state may be continuous
or discrete. In the following I assume λ to be discrete, but all considerations can be generalized to
the continuous case.
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paration procedures yields that the outcomes are strongly correlated given the settings
and the quantum state.3 For instance, in case the quantum state is the Bell state
ψ0 = (|+〉|+〉 + |−〉|−〉)/

√
2 (and the settings are chosen with equal probability 1

2) the
correlations read:

P (αβ|ab) = P (α|βab)P (β) =

{
cos2(a− b) · 1

2 if α = β

sin2(a− b) · 1
2 if α 6= β

(Corr)

These famous EPR/B correlations between space-like separated measurement outcomes
have first been measured by Aspect et al. (1982) and have been confirmed under strict
locality conditions (Weihs et al. 1998) as well as over large distances (Ursin et al. 2007).
All these findings are correctly predicted by quantum mechanics: involving only empir-
ically accessible variables, the quantum mechanical probability distribution essentially
agrees with the empirical one.

Since according to (Corr), one outcome depends on both the other space-like separ-
ated outcome as well as on the distant (and local) setting, the observable part of the
probability distribution (or the quantum mechanical distribution, respectively) clearly is
non-local. Bell’s idea (1964) was to show that EPR/B correlations are so extraordinary
that even if one allows for hidden states λ one cannot restore locality: given EPR/B cor-
relations the theoretical probability distribution (including possible hidden states) must
be non-local as well. Hence, any possible probability distribution which might correctly
describe the experiment must be non-local.

This ‘Bell argument for quantum non-locality’, as I shall call it, proceeds by show-
ing that the empirically measured EPR/B correlations violate certain inequalities, the
famous Bell inequalities. It follows that at least one of the assumptions in the deriva-
tion of the inequalities must be false. Indeterministic generalizations (Bell 1971; Clauser
and Horne 1974; Bell 1975) of Bell’s original deterministic derivation (1964) employ two
probabilistic assumptions, ‘local factorisation’4

P (αβ|abλ) = P (α|aλ)P (β|bλ) (`F)

and ‘autonomy’
P (λ|ab) = P (λ). (A)

Another type of derivation (Wigner 1970; van Fraassen 1989; Graßhoff et al. 2005) ad-
ditionally requires the fact that there are perfect correlations (PCorr) between the out-
comes for a certain relative angle of the measurement settings (e.g. for parallel settings
given quantum state ψ0).

3 A correlation of the outcomes given the settings and the quantum state means that the joint probability
P (αβ|ab) is in general not equal to the product P (α|ab)P (β|ab) = 1

2
· 1
2

= 1
4
.

4 ‘Local factorisation’ is my term. Bell calls (`F) ‘local causality’, some call it ‘Bell-locality’, but most
often it is simply called ‘factorisation’ or ‘factorizability’ (introduced by Fine). Bell’s terminology
already suggests a causal interpretation, which I would like to avoid in this paper, and the latter two
names are too general since, as I shall show, there are other forms of the hidden joint probability
which can be said to factorise; hence ‘local factorisation’.
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For both types of derivation we have the dilemma that any empirically correct prob-
ability distribution of the quantum realm must either violate autonomy or local fac-
torisation (or both). While there are suggestions to explain the violation of the Bell
inequalities by a failure of autonomy,5 the main route in the debate has been to as-
sume that it holds; and in order to focus on the factorisation condition (and possible
modifications to it), this will also be one of our basic assumptions throughout this pa-
per. If autonomy holds, the empirical violation of the Bell inequalities implies that local
factorisation fails. And since local factorisation states the factorisation of the hidden
joint probability distribution into local terms, the failure of local factorisation indicates
a certain kind of non-locality, which is specific to the quantum realm—hence ‘quantum
non-locality’.

For my following critique of this standard Bell argument it is important to have a
clear account of its logical structure. Here and in the following I shall presuppose the
Wigner-type derivation of Bell inequalities because, as we will see, it is the most powerful
one allowing to derive Bell inequalities from the widest range of probability distributions:

(P1) There are EPR/B correlations: (Corr)

(P2) EPR/B correlations violate Bell inequalities: (Corr)→ ¬(BI)

(P3) EPR/B correlations include perfect correlations: (Corr) → (PCorr)

(P4) Bell inequalities can be derived from autonomy, perfect correlations and local
factorisation: (A) ∧ (PCorr) ∧ (`F)→ (BI)

(P5) Autonomy holds: (A)

(C1) Local factorisation fails: ¬(`F) (from P1–P5)

The conclusion of the argument is a probabilistic constraint that all theories of the
quantum realm have to obey, and this constraint implies a non-locality, which is usually
called quantum non-locality.

The core idea of my critique concerning this standard Bell argument for quantum
non-locality is that its result is considerably weaker than it could be. I do not say that
the argument is invalid (it is obviously not) nor do I say that one of its premises is
not sound, I just say that the argument can be made considerably stronger and that
the stronger conclusion will provide a tighter, more informative constraint for quantum
non-locality: one can be much more precise about what EPR/B correlations imply (if
we assume that autonomy holds) than just saying that local factorisation has to fail.

Specifically, I shall show that it is premise (P4) which can be made stronger. Stating
that autonomy, perfect correlations and local factorisation imply the Bell inequalities, it

5 A failure of autonomy can be realized by different kinds of models: conspiratorial models, simulation
models (Fine 1982a), models with backwards causation (e.g. Price 1994; Corry 2015) or non-locality
(San Pedro 2012).
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is clear that one can make (P4) the stronger the weaker one can formulate the antecedent,
i.e. the assumptions to derive the inequalities. Former improvements have concentrated
on relaxing assumptions except the locality condition. In contrast, here I shall try to
find weaker alternatives to local factorisation, which also imply that Bell inequalities
hold. Since local factorization is the weakest possible form of local distributions, it is
clear that such alternatives have to involve a kind of non-locality, i.e. what I am trying
to show in the following is that we can derive Bell inequalities from certain non-local
probability distributions. This will make the overall argument stronger for it will allow
for the conclusion that not only local theories but also those non-local ones that imply
the inequalities are ruled out. I shall now first demonstrate this for one central class
of non-local probability distributions, before in the subsequent section I consider the
general case.

2.2 Bell inequalities from purely outcome dependent theories

Local factorisation is a specific product form of the hidden joint probability of the out-
comes, as I shall call P (αβ|abλ).6 A prominent non-local product form of this hidden
joint probability is the following:

P (αβ|abλ) = P (α|βaλ)P (β|bλ) (Hα
16)

(For reasons that will become clear later the product form is tagged (Hα
16).) It differs from

local factorisation in that it involves the distant outcome β in the first factor on the right
hand side, which makes it a non-local product form (at least one of the factors involves at
least one variable that is space-like separated to the respective outcome). Since product
forms characterize probability distributions, which represent a whole class of theories,
(Hα

16) represents a class of non-local theories. In the debate about Bell’s theorem theories
with such a non-local dependence between the outcomes in the product form are usually
called outcome dependent. They represent physical theories according to which the
outcomes are probabilistically or functionally dependent on another. The dependence
between the space-like separated outcomes involved in these theories has emerged as the
received view of what the violation of Bell inequalities amounts to: adequate theories of
the quantum realm are widely believed to be correctly described as outcome dependent
theories (Jarrett 1984; Shimony 1984).

In this section I shall prove that theories having the product form (Hα
16) are not

consistent with the results of EPR/B experiments. In order to avoid misunderstandings,
it is important to stress three central facts already at the outset of the argument. First,
(Hα

16) is only one of several possible outcome dependent classes. So proving that (Hα
16) is

impossible does not rule out all outcome dependent theories, but only very specific ones.
For instance, the quantum mechanical distribution, which is well-known to be outcome

6 ‘Hidden’ because the probability is conditional on the hidden state λ and thus is not empirically
accessible.
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dependent, is not correctly described by (Hα
16), but rather has the product form

P (αβ|ab) = P (α|βab)P (β), (1)

i.e. according to quantum mechanics the outcome α additionally depends on the distant
setting b (and there is no dependence on a hidden variabel λ). In order to distinguish
(Hα

16) from such other outcome dependent classes I denote it as purely outcome depend-
ent. So when in the following we show that purely outcome dependent theories are
not consistent with results of EPR/B experiments, this does not mean that quantum
mechanics is not consistent with these results.

Second, while not ruling out well established theories (there is, in fact, no serious
theory that claims to have the product form (Hα

16) for EPR/B experiments), the result
nevertheless has far reaching implications, because it informs us about the role that
outcome dependence plays in the violation of Bell inequalities. This is because (Hα

16)
contains outcome dependence in an isolated way, i.e. without being mixed with other
non-local dependences. For this reason, the new result that purely outcome dependent
theories imply the Bell inequalities shows that outcome dependence per se cannot ex-
plain the violation of the inequalities. This will be the central negative result of this
paper. Emphatically, this is not to say that outcome dependent theories that are not
purely outcome dependent, like quantum mechanics, cannot violate the Bell inequalities.
Rather, it is to say that, contrary to what the reference to outcome dependent theories
suggests, it is not the dependence between the outcomes that is central for the violation.
Positively, we shall see in later sections that in order to violate the inequalities some kind
of dependence on the distant setting is required (but not necessarily, as the quantum
mechanical example shows, the kind of dependence that usually is called ‘parameter
dependence’). There we shall also explain in more detail, in which precise sense the fact
that (Hα

16) implies Bell inequalities breaks with the received view.
Finally, we emphasize that the claims we shall be arguing for here are exclusively

probabilistic ones: they are about probabilistic dependences (between the variables in
the setup) and not about physical or metaphysical relations. It is important to stress the
difference, because too often correlations are naively interpreted to indicate physical in-
teractions, causal relations or the like. But correlation is not causation, and establishing
the latter by the former involves non-trivial inferences, also invoking further assumptions.
So saying that outcome dependence (which is by definition a probabilistic dependence)
cannot explain the violation of the Bell inequalities is first of all not to say that a phys-
ical connection between the outcomes cannot explain the Bell inequalities. And likewise,
saying that a violation of the inequalities requires probabilistic dependence of one out-
come on both settings does not per se say that a physical connection between a setting
and its distant outcome is implied. Since inferring (meta-)physical relations from prob-
abilistic facts requires careful discussion, in this paper we shall not have the resources
to treat that question as well. Rather we shall concentrate on deriving the probabilistic
consequences of the violation of Bell inequalities, and therefore, if not explicitly stated
otherwise, when I speak of ‘dependence’ in general or ‘outcome dependence’ in particular
in the following I always mean probabilistic dependences (correlations), and not physical
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or metaphysical relations.7

After these preliminary remarks, I now turn to my argument against (Hα
16), which

comes in two steps: I first show that if perfect correlations and perfect anti-correlations
(and autonomy) hold, (Hα

16) is straightforwardly impossible. (‘Straightforward’ here
means that the impossibility is not demonstrated via a Bell inequality, but in a more dir-
ect way.) This immediate inconsistency vanishes, when one relaxes perfect (anti-)correlations
to nearly perfect (anti-)correlations (i.e. (anti-)correlations that show small deviations
from perfectness). In this case, however, I demonstrate, second, that (Hα

16) and autonomy
imply Bell inequalities. This is the genuine strengthening of the Bell argument that I
have announced. Since the inequalities are empirically violated this also establishes an
inconsistency (though a less direct one).

Let me start by putting my first claim in a precise form:

Lemma 1: Autonomy, perfect correlations, perfect anti-correlations and
(Hα

16) are an inconsistent set: (A) ∧ (PCorr) ∧ (PAcorr)→ ¬(Hα
16)

(The proof of this lemma can be found in the appendix.)
Lemma 1 makes the surprising assertion that, given autonomy, purely outcome de-

pendent theories are logically impossible if (for certain measurement settings) perfect
correlations and (for certain other measurement settings) perfect anti-correlations hold.
As can be seen in the proof of the lemma, the conflict does not require to formulate a
Bell inequality: the inconsistency can be established in a much more direct way. Hence,
in this case it does not even make sense to try to derive a Bell inequality, since the
assumptions that would be needed for the derivation are already inconsistent. For this
reason, lemma 1 is not in a literal sense a strengthening of the Bell argument. But
since the aim of Bell’s argument is to exclude certain theories of the micro-realm one
might say that it is an amendment to the argument which strengthens its conclusion.
The strengthening consists in the fact that lemma 1 precludes certain theories, namely
purely outcome dependent ones, that usual Bell arguments do not rule out.

A defender of pure outcome dependence might try to avoid the conflict by asserting
that perfect (anti-)correlations are not empirically confirmed. In fact, real experiments
fail to yield the perfect (anti-)correlations that quantum theory predicts and that ex-
trapolate the measured cos2-behavior (or sin2-behavior, respectively; cf. (Corr)) for
non-parallel and non-perpendicular settings. Rather, the experiments show a certain
deviation from perfect (anti-)correlations, such that perfect (anti-)correlations cannot
be said to be empirically confirmed beyond doubt. Though it might seem reasonable
to assume that they nevertheless do hold (because the experimental deviations from
perfectness might be attributed to measurement errors and non-ideal detectors), it has
become usual in the discussion about Bell’s theorem to avoid the strong assumption
of perfectness: either one does not make any reference to the correlations at parallel
(or perpendicular) settings, or one assumes only nearly perfect correlations (nPCorr)
(e.g. for parallel settings) and nearly perfect anti-correlations (nPACorr) (e.g. for per-
pendicular settings). Here we shall take the latter route and make the widely accepted

7 Elsewhere I have derived what the probabilistic results derived here imply for the causal structure of
the experiments (Näger 2013).
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assumption of nearly perfect (anti-)correlations. Relaxing the perfect (anti-)correlations,
a direct inconsistency similar to the one stated by lemma 1 does not follow any more
(autonomy, nearly perfect correlations, nearly perfect anti-correlations and (Hα

16) are not
an inconsistent set). Instead, in this case one can prove the following claim:

Lemma 2: Given autonomy, nearly perfect correlations and nearly perfect
anti-correlations, (Hα

16) implies Bell inequalities: (A)∧(nPCorr)∧(nPACorr)∧
(Hα

16)→ (BI)

(For the proof of the lemma see the appendix.)
While this claim does not establish a straightforward inconsistency as the one given

strictly perfect (anti-)correlations (cf. lemma 1), it is clear that, via the Bell argument,
lemma 2 can be extended to argue for the inconsistency of (Hα

16) with autonomy, nearly
perfect (anti-)correlations and the empirically confirmed EPR/B correlations. In this
way, lemma 2 allows for a literal strengthening of Bell’s theorem: it allows to modify
premise (P4) of the Bell argument to say that both local as well as purely outcome
dependent theories imply Bell inequalities. As local theories, purely outcome dependent
theories do not produce correlations that are strong enough to violate Bell inequalities.
Accordingly, the conclusion of the argument changes to preclude more theories than has
been believed so far. Besides the local theories it also eliminates those non-local theories
which assume an outcome to be dependent (functionally or probabilistically) not only
on the local variables but also on the other, distant outcome.

There is a discrepancy between the original Bell argument and lemma 2, which hints
to another aspect in which the latter helps to strengthen the former: while the original ar-
gument assumes strictly perfect correlations, lemma 2 only presumes nearly perfect cor-
relations and anti-correlations. In fact, the proof of lemma 2 which shows how to derive
Bell inequalities from outcome dependent theories and nearly perfect (anti-)correlations
(and autonomy), can easily be adjusted to derive Bell inequalities from local theories
and nearly perfect (anti-)correlations (and autonomy). Then, it is clear that one can
relax premise (P3) to say that EPR/B correlations involve nearly perfect correlations as
well as nearly perfect anti-correlations (instead of strictly perfect correlations). So the
proof of lemma 2 also demonstrates the remarkable fact that one can derive a Wigner-
Bell inequality without strictly perfect correlations (which were so far regarded to be a
necessary assumption for deriving that type of Bell inequality).

The Bell inequality that follows by this new kind of prove is a generalized Wigner-Bell
inequality,

P (α−β+|a1b3)− 2ε− ε2 ≤ P (α−β+|a1b2) + P (α−β+|a2b3)

(1− ε2)
, (2)

that differs from a usual Wigner-Bell inequality

P (α−β+|a1b3) ≤ P (α−β+|a1b2) + P (α−β+|a2b3) (3)

by certain correction terms involving a parameter 0 < ε � 1, which is a measure for
the deviation from perfect correlations and perfect anti-correlations. (Precisely, ε3 is the
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maximal fraction of photons deviating from perfect correlations or anti-correlations; see
the proof of lemma 2.) It is easy to see that in the border case ε → 0 the generalized
Wigner-Bell inequality agrees with the usual one. One can further show (see the proof
of lemma 2) that the generalized inequality is violated by the usual statistics of EPR/B
experiments, if at least 99.989% of the runs with parallel settings as well as those with
perpendicular settings turn out to be perfectly correlated and perfectly anti-correlated,
respectively. This defines the above condition of nearly perfect (anti-)correlations more
precisely: only in worlds where the fraction of perfectly (anti-)correlated runs exceeds
the indicated threshold, purely outcome dependent theories are ruled out.

This quantitative limit reveals a final resort for a defender of pure outcome depend-
ence: she might hint to the fact that in actual experiments far less than 99.989% of the
entangled objects show perfect (anti-)correlations. This indeed shows that the question
whether purely outcome dependent theories can hold or not is not yet decided empiric-
ally beyond doubt. Let me stress, however, that the main aim in this paper is not to
decide this empirical and quantitative question, but the conceptual and qualitative one,
namely whether it is possible to amend Bell’s argument for a stronger conclusion, ruling
out even certain non-local theories.

That said, I can add that I think that there are good reasons not to take the men-
tioned empirical discrepancy to undermine the argument against purely outcome de-
pendent theories. First, the derivation of the inequality (2) uses certain rather rough
estimations, which contribute to the fact that the degree of perfectness that is required
for a violation to take place is high. Improved future derivations, which include more
precise (and expectedly more complicated) estimations, might lower that degree consid-
erably. Second, the past has shown that experimental physicists have continuously been
increasing the fraction of measured perfectly (anti-)correlated pairs of entangled objects,
by using more and more sophisticated experimental techniques. So it is to be expected
that the empirically confirmed degree of perfect correlation will increase in the future as
well. Finally, quantum mechanics predicts perfect correlations and at present there is
no further, independent evidence (besides the fact that experiments do not yield strictly
perfect (anti-)correlations) to doubt that quantum mechanics is wrong; for this reason,
it seems reasonable to assume that the deviation from perfectness in experiments is due
to experimental imperfections.

Whether these arguments against the empirical discrepancy are conclusive or not:
if my mathematical proofs are correct, the clear result of this section is that, given
autonomy, purely outcome dependent theories cannot be adequate theories of the quantum
realm if either strictly perfect (anti-)correlations or nearly perfect (anti-)correlations with
a fraction of (dis-)agreement larger than 99.989% hold.

2.3 Generalization: A comprehensive scheme of possible theories

Strengthening an argument it is desirable to make it as strong as possible. We shall now
generalize the stronger Bell argument that we have just presented so as to rule out all
theories that can be ruled out by this type of argument. In order to capture all theories
we shall proceed systematically and list a scheme of all logically possible theories, for
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each of which we check whether it is consistent under the given assumptions, and, if it is,
whether it implies Bell inequalities or not. Note that this list will also contain theories
that do not seem physically plausible. It is important, however, to include these theories
into our investigation because in the end we aim to show that we have provided the
strongest possible argument on a qualitative level (see section 2.6).

As we have said in the last section, local factorization and (Hα
16) are particular product

forms of the hidden joint probability. In general, according to the product rule of prob-
ability theory, any hidden joint probability can equivalently be written as a product,

P (αβ|abλ) = P (α|βbaλ)P (β|abλ) (4)

= P (β|αabλ)P (α|baλ). (5)

Since there are two such general product forms, one whose first factor is a conditional
probability of α and one whose first factor is a conditional probability of β, for the time
being, let us restrict our considerations to the product form (4), until in the next section
we shall transfer the results to the other form (5).

We stress that the product form (4) of the hidden joint probability holds in general,
i.e. for all probability distributions. According to probability distributions with appro-
priate independences, however, the factors on the right-hand side of the equation reduce
in that certain variables in the conditionals can be left out. If, for instance, outcome
independence holds, β can disappear from the first factor, and the joint probability is
said to ‘factorise’. Local factorisation further requires that the distant settings in both
factors disappear, i.e. that so called parameter independence holds. Prima facie, any
combination of variables in the two conditionals in (4) seems to constitute a distinct
product form of the hidden joint probability. Restricting ourselves to irreducibly hidden
joint probabilities, i.e. requiring λ to appear in both factors, there are 25 = 32 combin-
atorially possible forms (for any of the three variables in the first conditional and any
of the two variables in the second conditional besides λ can or cannot appear). Table 1
shows these conceivable forms which I label by (Hα

1 ) to (Hα
32) (the superscript α is due

to the fact that we have used (4) instead of (5)).
The specific product form of the hidden joint probability is an essential feature of

the probability distributions of EPR/B experiments. For, as we shall see, it not only
determines whether a probability distribution can violate Bell inequalities but also carries
unambiguous information about which variables of the experiment are probabilistically
independent of another. Therefore, it is natural to use the product form of the hidden
joint probability in order to classify the probability distributions. We can say that each
product form of the hidden joint probability constitutes a class of probability distributions
in the sense that probability distributions with the same form (but different numerical
weights of the factors) belong to the same class. In order to make the assignment of
probability distributions to classes unambiguous let us require that each probability
distribution belongs only to that class which corresponds to its simplest product form,
i.e. to the form with the minimal number of variables appearing in the conditionals
(according to the distribution in question).

This scheme of classes is comprehensive: Any probability distribution of the EPR/B

12
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Table 1: Classes of probability distributions

I II III IV V VI VII VIII IX

(Hα
i ): P (αβ|abλ) = . . . PCorr nPCorr

i P (α| β b a λ) · P (β| a b λ) �(BI) �(BI) Notes

st
ro

n
g

n
on

-l
o
ca

li
ty
α

1 1 1 1 1 1 0 0

2 1 1 1 1 0 0 0

3 1 1 1 0 1 0 0 QMp

4 1 1 0 1 1 — 0

5 1 0 1 1 1 — 0

6 0 1 1 1 1 0 0 Bohms

7 1 1 1 0 0 0 0 QMm

8 0 1 1 1 0 0 0

9 0 1 1 0 1 0 0 Bohmβ<a

10 1 0 0 1 1 — 0

11 0 1 0 1 1 0 0

12 0 0 1 1 1 0 0 Bohmα<b

13 0 1 1 0 0 0 0

14 0 0 0 1 1 0 0

w
ea

k
n

on
-l

o
ca

li
ty
α

15 1 1 0 1 0 — 1

16 1 0 1 0 1 — 1 pure outc. dep.

17 1 0 1 1 0 — —

18 1 1 0 0 1 — —

19 1 1 0 0 0 — —

20 1 0 1 0 0 — —

21 1 0 0 1 0 — —

22 0 1 0 1 0 1 1

23 0 0 1 1 0 — —

24 1 0 0 0 1 — —

25 0 1 0 0 1 — —

26 1 0 0 0 0 — —

27 0 1 0 0 0 — —

28 0 0 0 1 0 — —

lo
ca

li
ty
α

29 0 0 1 0 1 1 1 local factoriz.

30 0 0 1 0 0 — —

31 0 0 0 0 1 — —

32 0 0 0 0 0 — —

Analysis: ¬(OI1) ¬(PIα1 ) ¬(`PIα1 ) ¬(PIβ2 ) ¬(`PIβ2 )
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experiment must belong to one of these 32 classes. In this systematic overview, the
class constituted by local factorisation is (Hα

29), and it now also becomes clear why the
product form of purely outcome dependent theories has been tagged (Hα

16) in the last
section. Furthermore, if we allow that there might be no hidden states λ, the quantum
mechanical distribution as well as the empirical distribution (which as far as we know
coincide, but see our discussion of perfect (anti-)correlations in the last section) belong
to class (Hα

7 ) (if the photon state ψ is maximally entangled, noted by ‘QMm’) or to
(Hα

3 ), respectively (if ψ is partially entangled, noted by ‘QMp’).8 The de-Broglie-Bohm
theory falls under class (Hα

6 ), when both settings are chosen before the detector at the
respective other side has registered, i.e. t(a) < t(β) and t(b) < t(α);9 we label the
corresponding probability distribution by ‘Bohms’ (the index standing for symmetrical
time ordering). Otherwise, when the β-measurement completes before a has been set
to its final state (labelled by ‘Bohmβ<a’), the theory falls in class (Hα

9 ); and when the
α-measurement is over before b has been chosen (labelled by ‘Bohmα<b’), we have class
(Hα

12). Similarly, any other theory of the quantum realm has its unique place in one of
the classes.

One crucial advantage of such an abstract classification is that it simplifies matters
insofar we can now derive features of classes of probability distributions and can be
sure that these features hold for all members of a class, i.e. for all theories whose
probability distributions fall under the class in question. The feature that we are most
interested in is, of course, which of these classes (given autonomy) are consistent with
the empirical probability distribution of EPR/B experiments. As in the previous section
we discern two cases according to whether strictly perfect (anti-)correlations or nearly
perfect (anti-)correlations hold.

2.3.1 Strictly perfect (anti-)correlations

For the case of strictly perfect (anti-)correlations, the following theorems hold:

Theorem 1.1: Autonomy, perfect correlations, perfect anti-correlations and
a class of probability distributions (Hα

i ) form an inconsistent set if and only
if (i) the product form of (Hα

i ) involves at most one of the settings or (ii) the
product form of (Hα

i ) involves both settings but its first factor involves the
distant outcome and at most one setting.

Corollary 1.1: A class (Hα
i ) is consistent with autonomy, perfect correla-

tions and perfect anti-correlations if and only if (¬i) the product form of

8 The typical case for EPR/B experiments is to prepare a maximally entangled quantum state (e.g.
|ψ〉 =

√
p|+〉|+〉 +

√
1− p|−〉|−〉 with p = 1

2
), because one wants to have a maximal violation of

the Bell inequalities. The slightest deviation from maximal entanglement (p 6= 1
2
), however, breaks

the symmetry of the state. The probability distribution of such partially entangled states shows
an additional probabilistic dependence on the local setting in the second factor; hence, they fall
in class (Hα

3 ). For an overview of the dependences and independences in the quantum mechanical
probability distribution of maximally and partially entangled states see Näger (2015, table 1).

9 Such temporal ordering between space-like separated events is, of course, only possible when there is
a preferred frame of reference, which Bohm’s theory presupposes.
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2 Bell arguments

(Hα
i ) involves both settings and (¬ii) in case the distant outcome appears

in the first factor of (Hα
i )’s product form, also both settings appear in that

factor.

Theorem 1.2: Given autonomy, perfect correlations and perfect anti-correlations
a consistent class (i.e. a class that fulfills (¬i) and (¬ii)) implies Bell inequal-
ities if and only if (iii) each factor of its product form involves at most one
setting.

Corollary 1.2: Given autonomy, perfect correlations and perfect anti-
correlations a consistent class (i.e. a class that fulfills (¬i) and (¬ii)) does not
imply Bell inequalities if and only if (¬iii) at least one factor of its product
form involves both settings.

(The proofs of these theorems can be found in the appendix.)
The consequences of these claims for the status of the different classes are represented

in column VII of table 1. The heading of the column, ‘�(BI)’, means necessarily, Bell
inequalities hold. So the column indicates whether a certain product form implies Bell
inequalities (‘1’) or does not imply them (‘0’) (according to theorem 1.2 or corollary 1.2,
respectively); it further indicates when this question does not make sense (‘—’) because
a product form is inconsistent with the background assumptions autonomy and perfect
(anti-)correlations (according to theorem 1.1). It is understood that classes that are
marked by either ‘0’ or ‘1’ are consistent with the background assumptions (cf. co-
rollary 1.1). Clearly, all classes that are marked either by ‘—’ or ‘1’ are impossible if
autonomy and perfect (anti-)correlations hold: the former yield a direct contradiction
with the background assumptions, while the latter contradict the empirical probability
distribution via the Bell argument.

The inconsistent classes (‘—’) divide into two subgroups, corresponding to which
condition for inconsistency, (i) or (ii) (cf. theorem 1.1), is fulfilled:

Inconsistency due to condition (i): {(Hα
17), ..., (Hα

32)}\{(Hα
22), (Hα

29)}

Inconsistency due to condition (ii): {(Hα
4 ), (Hα

5 ), (Hα
10), (Hα

15), (Hα
16)}

Positively, theorem 1.1 further says that all classes that are not inconsistent according
to these criteria are consistent with the background assumptions: the criterion of con-
sistency, (¬i) and (¬ii), as stated in corollary 1.1, is just the negation of the condition
for inconsistency, (i) or (ii), in theorem 1.1.

We emphasize that the consistency and inconsistency claims of classes with the back-
ground assumptions have asymmetric consequences on the level of single probability
distributions. On the one hand, a class being inconsistent with the background assump-
tions means that every probability distribution of that class forms an inconsistent set
with the assumptions. It is the general product form defining the class which is in
conflict with the assumptions, hence all members of the class are. The same, mutatis
mutandis, however, is not true of the consistent classes. A class being consistent does not
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mean that every probability distribution of that class is consistent with the assumptions.
Rather, by the laws of logic, it just means that at least one probability distribution of
a class is consistent with the assumptions, showing that the general product form of
that class is not per se in conflict with them. This is what consistency of a class means
(when we define inconsistency in the natural way as just stated). This definition of
consistency is perfectly compatible with the fact that there are distributions in a con-
sistent class that are inconsistent with the assumptions due to their specific numerical
values. For instance, one can easily imagine distributions falling under class (Hα

7 ) that,
at parallel settings, involve correlations that are weaker than perfectness. These distri-
butions are obviously not consistent with the background assumptions, although their
general product form is. Hence, we have to keep in mind that being consistent with
the background assumptions on the level of classes, which is the level the present ana-
lysis proceeds on, is just a necessary condition for the distributions in that class to be
consistent.

Turning to theorem 1.2, all classes marked by ‘1’, i.e. (Hα
22) and (Hα

29), can expli-
citly be shown to imply a Bell inequality. That (Hα

29), local factorization, implies the
inequalities is well known, but that

P (αβ|abλ) = P (α|bλ)P (β|aλ), (Hα
22)

a non-local class, does, has not been observed so far. That class is the symmetrical
counterpart to local factorization, compared to which the settings are swapped, such
that each outcome depends on its distant setting. For this reason the derivation of the
Bell inequalities runs very similarly as for local factorization (just swap the settings in
the original proof).

On the other hand, the theorem also says that any consistent class that violates (iii),
can be shown not to imply the Bell inequalities. Here we have a similar asymmetry
between the level of classes and that of distributions as in the case of (in-)consistency.
Since a class implying Bell inequalities (given the background assumptions) means that
every probability distribution having the product form in question obeys the inequalities,
the claim that a class does not imply the inequalities (given the background assumptions)
denotes the fact that there is at least one probability distribution in that class that violates
the inequalities. Therefore, not implying Bell inequalities emphatically does not mean
that every probability distribution in a class violates the inequalities. For this reason,
given just the product form of one of the classes violating (iii) one cannot decide whether
Bell inequalities hold; whether they do in these cases depends on the numerical features
of the probability distribution in question. In this sense, one might reasonably say that
probability distributions of these classes can violate Bell inequalities. So far for the
meaning of implying and not implying the Bell inequalities. Let us now turn to the
criterion which demarcates the two cases.

Condition (iii), that, in order to imply Bell inequalities, a consistent class may not
involve more than one setting in each factor of its product form, is the essential char-
acteristic (in terms of the product form) to tell apart classes marked by ‘1’ from those
marked by ‘0’. This criterion differs considerably from the usual message that local
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theories imply Bell inequalities (and non-local ones do not). In order to understand
its content, let us partition the classes into three groups, depending on which variables
appear in their constituting product forms:

Localα classes: (Hα
29)–(Hα

32)

Each factor only contains time-like (or light-like) separated variables.

Weakly non-localα classes: (Hα
15)–(Hα

28)

At least one of the factors involves space-like separated variables, but none
of the factors involves both settings.

Strongly non-localα classes: (Hα
1 )–(Hα

14)

At least one of the factors involves both settings. (¬iii)

With these new concepts we can summarize theorems 1.1 and 1.2 as saying that given
autonomy, perfect correlations and perfect anti-correlations, every localα and weakly non-
localα class either is inconsistent with autonomy and the perfect (anti-)correlations or
(if it is consistent) obeys Bell inequalities. Certain strongly non-localα classes are incon-
sistent with autonomy and the perfect (anti-)correlations as well; however, all consistent
strongly non-localα classes do not imply, i.e. can violate, the Bell inequalities. (Strongly
non-localα classes are by definition just those classes that fulfill criterion (¬iii) not to
imply the Bell inequalities.)

What does this result mean? On the one hand, it sounds familiar that local classes
are impossible in the given situation. Local classes involve only time-like (or light-like)
separated variables in the factors of their hidden joint probability, and local factoriza-
tion, which is well-known to imply Bell inequalities, is the paradigm of product forms
constituting these classes. Theorem 1.1 just adds the further claim that given autonomy
and perfect (anti-)correlations all other local classes are directly inconsistent.

The surprising consequence of theorems 1.1 and 1.2 rather is that even certain non-
local classes are ruled out. Every class in the group of weakly non-localα classes is
forbidden. Most of the classes in that group are directly inconsistent with the assump-
tions of autonomy and perfect (anti-)correlations, including (as we have shown in the
previous section) the purely outcome dependent class (Hα

16). That purely outcome de-
pendent theories are not even available when perfect (anti-)correlations (and autonomy)
hold, is, as we have already remarked, a central result of this investigation, because it
belongs to the group of classes that has evolved as the received view of what quantum
non-locality amounts to on a probabilistic level. In fact, there is only one weakly non-
localα class, which is consistent with the background assumptions autonomy and perfect
(anti-)correlations, viz. (Hα

22). Whether this class is physically plausible or not: the fact
that it implies the inequalities proves the important insight that Bell inequalities are not
a locality condition (because there is a class obeying Bell inequalities that is non-local).

Instead of locality, the hallmark of theories implying Bell inequalities rather is, as
theorem 1.2 states, that they may not involve more than one setting in each factor of
their product form. The negation of this condition, that at least one factor contains both
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settings, is exactly the defining feature of strongly non-localα classes. That is why the
above partition is so natural. However, this does not mean that all strongly non-localα

classes are allowed in the given situation; for some of them—(Hα
4 ), (Hα

5 ) and (Hα
10)—are

inconsistent with autonomy and perfect (anti-)correlations (‘—’). This demonstrates
that the criteria for being consistent with these background assumptions, (¬i) and (¬ii),
and for not implying Bell inequalities, (¬iii), which is equivalent to being strongly non-
localα, are not disjunct. A theory can be strongly non-localα and still violate (¬ii) (all
strongly non-localα classes marked by ‘—’), e.g. (Hα

4 ); and there are theories fulfilling
(¬i) and (¬ii) but fail to be strongly non-localα, e.g. (Hα

22). A successful theory must
belong to one of the classes that takes both hurdles, and those are the ones marked by ‘0’
in column VII of table 1.

2.3.2 Nearly perfect (anti-)correlations

Let us now relax the assumption of strictly perfect (anti-)correlations to nearly perfect
(anti-)correlations and observe how that changes the situation. In this case, the following
theorems can be proven:

Theorem 2.1: Autonomy, nearly perfect correlations, nearly perfect anti-
correlations, and a class of probability distributions (Hα

i ) form an inconsist-
ent set if and only if (i) the product form of (Hα

i ) involves at most one of
the settings.

Corollary 2.1: A class (Hα
i ) is consistent with autonomy, nearly perfect cor-

relations and nearly perfect anti-correlations if and only if (¬i) the product
form of (Hα

i ) involves both settings.

Theorem 2.2: Given autonomy, nearly perfect correlations and nearly per-
fect anti-correlations each consistent class (i.e. each class that fulfills (¬i))
implies Bell inequalities if and only if (iii) each factor of its product form
involves at most one setting.

Corollary 2.2: Given autonomy, nearly perfect correlations and nearly
perfect anti-correlations each consistent class (i.e. each class that fulfills
(¬i)) does not imply Bell inequalities if and only if (¬iii) at least one factor
of its product form involves both settings.

(The proofs of the theorems can be found in the appendix.)
The consequences of these claims are represented in column VIII of table 1. Since

nearly perfect (anti-)correlations are a considerably weaker requirement than that of
strictly perfect ones, one essential change that occurs in these theorems compared to
the former is that the conditions for consistency with the background assumptions
(autonomy and nearly perfect (anti-)correlations in the new case) are considerably
weaker as well: theorem 2.1 just requires condition (¬i) but not condition (¬ii). As
a consequence, all classes that have been ruled out by condition (¬ii) (in theorem 1.1),
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viz. (Hα
4 ), (Hα

5 ), (Hα
10), (Hα

15) and (Hα
16), are now consistent with the new, less strict

background assumptions.
Especially purely outcome dependent theories defined by

P (αβ|abλ) = P (α|βaλ)P (β|bλ) (Hα
16)

cease to be directly inconsistent with the background assumptions. However, since the
criterion for implying Bell inequalities stays essentially unchanged (requirement (iii)
still holds),10 outcome dependent theories imply Bell inequalities (see our discussion
in section 2.2), so they are still forbidden. It is just that the reason why they are
forbidden changes. Similar facts are true for the symmetrical counterpart to purely
outcome dependent theories,

P (αβ|abλ) = P (α|βbλ)P (β|aλ), (Hα
15)

which differs from (Hα
16) in that the settings are swapped between the factors, such

that each outcome depends on the distant (instead of on the local) setting. In effect,
also in the new situation it is still true that all localα and weakly non-localα classes are
forbidden.

Concerning the strongly non-localα classes, however, the situation changes. Formerly,
certain strongly non-localα classes, (Hα

4 ), (Hα
5 ) and (Hα

10), were forbidden because they
were inconsistent with the background assumptions. Relaxing the background assump-
tions, we have already said that they become consistent. But unlike the weakly non-
localα classes that have become consistent, (Hα

15) and (Hα
16), these strongly non-localα

classes do not imply Bell inequalities, because they clearly do not fulfill condition (iii);
by weakening the background assumptions, these classes cease to be ruled out by the
theorems. As a consequence, all strongly non-localα classes are now consistent with
the background assumptions and do not imply Bell inequalities. The reason for this
new situation is that abandoning criterion (¬ii) for consistency, the remaining criterion,
(¬i), is entailed by the criterion for not implying Bell inequalities, viz. to be strongly
non-localα (so the two criteria are not logical independent any more).

In sum, the result is that given autonomy, nearly perfect correlations and nearly
perfect anti-correlations, every localα and weakly non-localα class either is inconsistent
with autonomy and the perfect (anti-)correlations or (if it is consistent) obeys Bell in-
equalities. In contrast, all strongly non-localα classes are consistent with autonomy and
the perfect (anti-)correlations and do not imply Bell inequalities. Unlike the case with
strictly perfect correlations, there are no forbidden strongly non-localα theories, which
amounts to a slight modification of the set of precluded classes.

The main messages, however, have not changed: as opposed to what the standard
discussion suggests, it is not true that local factorisation (and the other local product
forms) are the only product forms which are forbidden by the empirical statistics of

10 There is just the slight difference that now both nearly perfect correlations and nearly perfect anti-
correlations are required, whereas according to theorem 1.2 the anti-correlations were not needed for
the derivation.
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EPR/B experiments (if autonomy holds). Rather, we have found that 18 (21 in the case
of strictly perfect (anti-)correlations) of the 32 logically possible classes are forbidden,
among them 14 (17 in the case of strictly perfect (anti-)correlations) non-local classes.
Some of these non-local classes are forbidden because they are directly inconsistent with
the assumptions autonomy and (nearly) perfect (anti-)correlations. Others are forbidden
because they imply Bell inequalities. This latter fact has two important consequences.
First, it makes explicit that Bell inequalities are not a locality condition. Neither,
second, is locality a necessary condition for deriving Bell inequalities. The criterion to
imply the inequalities (if autonomy and (nearly) perfect anti-correlations hold) rather is
a different one, which has not to do with the locality/non-locality divide: Bell inequalities
are implied by each probability distribution whose product form involves at most one
setting in each of its factors. So according to a probability distribution the outcomes
might depend on their distant setting as well as on each other, (Hα

15), and still Bell
inequalities follow. As a consequence, if one searches for theories which conform to the
empirical fact that (nearly) perfect correlations hold and Bell inequalities are violated
they can only be among the strongly non-localα ones (which are defined to involve both
settings in at least one factor). Contrary to the view suggested by Bell’s original theorem
it cannot be a weakly non-localα class.

2.4 Strengthening Bell’s argument

It is clear that each set of theorems (1.1 and 1.2 as well as 2.1 and 2.2) can be used to
strengthen Bell’s argument. On the other hand, it is not clear which of these available
new arguments should be considered to be the strongest. (The first set results in an
argument that, compared to the argument resulting from the second set, requires the
stronger assumption of strictly perfect correlations (weakening the argument), but allows
for a stronger conclusion, because it rules out even some of the strongly non-localα

classes). Here we restrict our discussion to the argument resulting from the second
set, because it avoids the controversial assumption of strictly perfect (anti-)correlations.
(The argument from the first set can be formulated mutatis mutandis.)

(P1) There are EPR/B correlations: (Corr)

(P2) EPR/B correlations violate Bell inequalities: (Corr)→ ¬(BI)

(P3′) EPR/B correlations include nearly perfect correlations and nearly perfect
anti-correlations: (Corr) → (nPCorr) ∧ (nPACorr)

(P6) Those localα and weakly non-localα classes that involve at most one set-
ting in their product form are inconsistent with autonomy, nearly perfect
correlations and nearly perfect anti-correlations:

(A) ∧ (nPCorr) ∧ (nPACorr)→
∧

i=17..32
\{22,29}

¬(Hα
i )
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(P4′) Bell inequalities can be derived from autonomy, nearly perfect correlations,
nearly perfect anti-correlations and any localα or weakly non-localα class of
probability distributions that involves both settings in its product form:[

(A) ∧ (nPCorr) ∧ (nPACorr) ∧
( ∨
i=15,16,

22,29

(Hα
i )
)]
→ (BI)

(P5) Autonomy holds: (A)

(C1′) Both localα and weakly non-localα classes fail:

( 32∧
i=15

¬(Hα
i )
)

Compared to the original Bell argument (section 2.1) there are three substantial
changes, which strengthen the argument. A first change concerns the fact that every-
where in the argument we have relaxed controversial strictly perfect correlations to
uncontroversial nearly perfect correlations (in premisses (P3) and (P4) of the original
argument). This is a strengthening in the sense that the argument makes weaker as-
sumptions. At the same places in the argument where nearly perfect correlations occur
we have additionally introduced nearly perfect (anti-)correlations. This might seem as
a weakening of the argument; in fact, however, it is a neutral move, because it is uncon-
troversial that the nearly perfect anti-correlations follow from the EPR/B correlations
(as the nearly perfect correlations do; see premise (P3′)), and these EPR/B correlations
have already been assumed in the original argument (premise (P1)).

A second strengthening of the argument stems from introducing a completely new
premise (P6), which states the content of theorem 2.1, that certain classes are not com-
patible with autonomy, nearly perfect correlations and perfect anti-correlations. Given
that autonomy and perfect (anti-)correlations are assumed anyway (or derive from as-
sumptions), it is clear that these classes will be ruled out by the overall argument. In this
sense, (P6) provides a genuine strengthening of the conclusion of the theorem. Deriving
a direct contradiction between the background assumptions and certain classes without
involving a Bell inequality, premise (P6) has no counterpart in the original argument
and rather has the status of an amendment—however, an amendment that naturally
fits in. Note that assuming the additional premise (P6) does not weaken the argument
because it can be proven mathematically (see the proof of theorem 2.1).

A third modification, indeed the central strengthening, consists in the adaption of
premise (P4) to theorem 2.2, which says that one can derive Bell inequalities not only
from local factorization but from all those localα and weakly non-localα classes that
are consistent given autonomy and perfect (anti-)correlations. Accordingly, we have
replaced local factorisation in the antecedent by the disjunction of these product forms.
This makes the antecedent of (P4′) weaker than that in (P4) and, hence, the argument
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stronger. Since the overall Bell argument is a modus tollens argument to the negation
of that premise, this modification also strengthens the conclusion of the theorem.

Making these changes has a considerable effect on the overall Bell argument. Instead
of the standard conclusion (C1), that the violation implies the failure of local factorisa-
tion, by the modified argument we arrive at the essentially stronger conclusion (C1′).
While the original result, the failure of local factorisation, implied that all localα classes
fail (because the other local classes are specializations of local factorisation), the new
result additionally excludes all weakly non-localα classes.

2.5 Further strengthening by a complementary partition

Our considerations leading to this new result of the Bell argument rest on the fact
that we have found alternatives to local factorisation from writing the hidden joint
probability according to the product rule (4) and conceiving different possible product
forms (table 1). However, we can as well write the hidden joint probability accord-
ing to the second product rule (5), and similar arguments as above lead us to a sim-

ilar table as table 1, whose classes, (Hβ
1 )–(Hβ

32), differ to those in table 1 in that the

outcomes and the settings are swapped. For instance, class (Hβ
16) is defined by the

product form P (αβ|abλ) = P (β|αbλ)P (α|aλ) in contrast to (Hα
16), which is constituted

by P (αβ|abλ) = P (α|βaλ)P (β|bλ). Note that this new classification is a different parti-
tion of the possible probability distributions, which reasonably might be called comple-
mentary partition. Any probability distribution must fall in exactly one of the classes
(Hα

1 )–(Hα
32) and in exactly one of the classes (Hβ

1 )–(Hβ
32). Analogously to theorem 1 one

can prove for the new partition that (given autonomy and nearly perfect (anti-) correla-
tions) also each localβ and weakly non-localβ class either is inconsistent or implies Bell
inequalities, so that we can reformulate (P6) and (P4′) as:

(P6′) Those localα, weakly non-localα, localβ and weakly non-localβ classes that
involve at most one setting in their product form are inconsistent with
autonomy, nearly perfect correlations and nearly perfect anti-correlations:

(A) ∧ (nPCorr) ∧ (nPACorr)→
∧

i=17..32
\{22,29}

¬(Hα
i ) ∧

∧
i=17..32
\{22,29}

¬(Hβ
i )

(P4′′) Bell inequalities can be derived from autonomy, nearly perfect correlations,
nearly perfect anti-correlations and any localα, weakly non-localα, localβ

or weakly non-localβ class of probability distributions that involves both
settings in its product form:[

(A) ∧ (nPCorr) ∧ (nPACorr) ∧
(∨
i=15,16,

22,29

(Hα
i ) ∨

∨
i=15,16,

22,29

(Hβ
i )
)]
→ (BI)
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With these new premises we can formulate an even stronger Bell argument from (P1),
(P2), (P3′), (P6′), (P4′′) and (P5) to

(C1′′) All localα, weakly non-localα, localβ and weakly non-localβ classes fail:(
32∧
i=15

¬(Hα
i ) ∧

32∧
i=15

¬(Hβ
i )

)
This is the conclusion of the new stronger Bell argument. It takes the usual result

from any kind of non-locality (the mere failure of local factorisation) to a more specific
one (namely exclusive the weakly non-localα and weakly non-localβ classes). Stating
which classes are excluded, the result formulated here is a negative one. But it is easy
to turn it into a positive formulation: since our scheme of logically possible classes is
comprehensive, the failure of all localα and weakly non-localα classes is equivalent to
the fact that one of the strongly non-localα classes, (Hα

1 )–(Hα
14), holds. Analogously,

if a probability distribution is neither localβ nor weakly non-localβ it must be strongly
non-localβ, i.e. belong to one of the classes (Hβ

1 )–(Hβ
14). Therefore, equivalently to (C1′′)

we can say:

(C1′′′) One of the strongly non-localα classes and one of the strongly non-localβ

classes has to hold. (
14∨
i=1

(Hα
i ) ∧

14∨
i=1

(Hβ
i )

)

This is the positive conclusion of the stronger Bell argument in terms of classes.
Finally, we can formulate the same result in terms of which features the hidden joint

probability must have. Let us define the following concept:

Probabilistic Bell contextuality (PBC) holds if and only if according
to both product forms of the hidden joint probability P (αβ|abλ) at least one
of the outcomes depends probabilistically on both settings.

Then, equivalently to (C1′′) or (C1′′′), we can say:

(C1′′′′) Probabilistic Bell Contextuality holds.

(C1′′), (C1′′′) and (C1′′′′) are equivalent conclusions of the stronger Bell argument.

2.6 Immediate consequences

(1) On a rather general level, the fact that certain non-local theories imply Bell in-
equalities first of all illustrates that Bell inequalities are not locality conditions in the
sense that, if a probability distribution obeys a Bell inequality, it must be local. In
the discussion, Bell inequalities are so closely linked to locality that one could have this
impression. Of course, Bell’s argument never really justified that view, for the logic
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of the standard Bell argument is that local factorisation (given autonomy and perfect
(anti-)correlations) is merely sufficient (and not necessary) for Bell inequalities. Maybe
the association between Bell inequalities and locality might have arisen from the fact
that up to now local factorisation has been the only product form which has been shown
to imply Bell inequalities. Given only this information, it was at least possible (though
unproven) that the holding of Bell inequalities implies locality. However, since we have
shown that some weakly non-local classes in general imply Bell inequalities and since the
simulations show that even some strongly non-local distributions can conform to Bell
inequalities, it has become explicit that this is not true. Not all probability distributions
obeying Bell inequalities are local.

Note that this result is not in conflict with Fine’s insight (1982b) that an empirical
probability distribution obeying a Bell inequality is equivalent with the existence of a
hidden probability distribution that is local (‘local stochastic hidden variable model’).
My claim is that not every hidden probability distribution which obeys a Bell inequality
is local; Fine’s result, in contrast, implies that for every empirical distribution that is
consistent with Bell inequalities one can find a local hidden distribution.

(2) The conclusions of the new Bell argument, which we have derived, are considerably
stronger than those of previous versions. We have shown that the violation of Bell
inequalities not only excludes local theories but also weakly non-localα and weakly non-
localβ ones. In contrast, the conclusion of the standard Bell argument only forbids local
theories and allows for all non-local ones, including the weakly non-local classes that
we have shown to imply Bell inequalities. In this sense, the usual constraint following
from the standard Bell argument, is inappropriately weak. While this is not to say
that the standard argument is logically incorrect, it does mean that its conclusion is
not as tight as it could be. We should keep in mind that any argument based on this
standard conclusion, especially Jarrett’s analysis, proceeds from a mixture of classes
that can violate Bell inequalities with classes that imply them—and therefore might
yield misleading results.

(3) The same is not true of our new result: all classes that it allows, all strongly non-
local classes, can violate Bell inequalities. For this reason it is impossible to strengthen
Bell’s argument in such a way as to rule out more classes of probability distributions
than we have ruled out here. In this sense, we can say that if our considerations have
been correct and the typical background assumptions hold (autonomy and nearly perfect
(anti-)correlations), by our systematic approach we can be sure that the conclusions from
the new Bell argument are the strongest possible consequences of the violation of Bell
inequalities on a qualitative probabilistic level. Note that this is not to say that further
classes might not be ruled out due to other criteria, maybe due to their incompatibility
with relativity or the like. The label ‘qualitative probabilistic’ indicates that we have only
referred to classes of probability distributions defined by their probabilistic dependences
and independences without referring to quantitative features.

It might be interesting to make explicit how we arrived at this strong conclusion.
Especially, our considerations in this paper have two important features that preclude
future strengthenings of the argument to rule out more classes. First, the central meth-
odological procedure of our argument was to consider all logically possible classes of
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probability distributions. Hence, any probability distribution that conceivably might
describe an EPR/B experiment must fall under one of the classes in our systematic
overview (cf. table 1). For this reason, we can be sure that we have not overlooked any
probability distribution for the EPR/B experiment. There simply are no probability
distributions left that might bring in some surprise; we have captured them all.

A second important feature is that our argument provides sufficient and necessary
conditions for classes to imply Bell inequalities. By stating that local classes imply
Bell inequalities, former arguments typically have only provided sufficient criteria. This
left open the possibility that there are further classes implying the inequalities—and,
indeed, here we have found that many non-local classes, viz. the weakly non-local ones,
do as well. On the other hand, by explicitly showing that the remaining classes, the
strongly non-local classes, can violate the inequalities (see the proofs of theorems 1.2
and 2.2, where we have constructed explicit examples of distributions in those classes
that violate the inequalities), we have precluded that future arguments might show one
of the strongly non-local classes to imply the inequalities as well. And if this argument,
that proceeds on the qualitative probabilistic level of the classes and their product forms,
is correct, and the background assumptions we have presupposed hold, we cannot entail
a stronger claim on that level than that local and weakly non-local classes imply Bell
inequalities while strongly non-local classes can violate them.

(4) The latter claim also reveals a certain limitation of the argument presented here.
It emphatically does not say that strongly non-local classes violate Bell inequalities; it
only says that strongly non-local classes can violate Bell inequalities, meaning that some
of the strongly non-local distributions do violate the inequalities while others do not. In
fact, one can explicitly find examples for probability distributions in each of the strongly
non-localα classes (Hα

1 )–(Hα
14) (as well as in the strongly non-localβ classes (Hβ

1 )–(Hβ
14))

which obey Bell inequalities—and these distributions clearly could be ruled out by more
precise arguments. However, belonging to the same class, discerning strongly non-local
classes which violate the inequalities from those that obey them clearly cannot be made
on a qualitative probabilistic level. Any improvement of the argument must refer to
the specific numerical values of the probability distribution in question, so there is no
general claim that can be made on the basis of the mere product form; the product form
of any strongly non-local class alone does not determine whether Bell inequalities hold
or fail.

It follows that the consequence of my stronger Bell argument, that the quantum world
can only be described correctly by a theory falling under a strongly non-local class, is
only a necessary condition for violating Bell inequalities; it is not a sufficient one. (Note
the difference between conditions for violating Bell inequalities and conditions for not
implying them; we have provided necessary and sufficient conditions for the latter but
only necessary ones for the former.) Sufficient criteria to violate Bell inequalities would
have to involve conditions for the strength of the correlations. A common measure for
how strong a correlation is, is mutual information, so information theoretic works which
derive numerical values for how much mutual information has to be given in order to
violate Bell inequalities, provide an answer to that question (cf. Maudlin 1994, ch. 6
and Pawlowski et al. 2010). These are important works, which can further sharpen the
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constraints for quantum non-locality following from EPR/B experiments. Such quant-
itative improvements, however, do not count against my claim here that the conclusion
of my new stronger Bell argument captures the strongest possible consequences of the
violation of Bell inequalities on a qualitative probabilistic level.

3 Analyzing the conclusions

Having strengthened Bell’s argument to a more informative conclusion, we now have to
make precise what this new, stronger constraint for quantum non-locality amounts to.
Jarrett (1984) proved that the standard probabilistic constraint for quantum non-locality
following from the usual Bell argument, the failure of local factorization, is equivalent to
the disjunction of outcome dependence and parameter dependence. The idea of Jarrett’s
analysis is that a specific product form of the hidden joint probability (such as local
factorisation), which is a complex independence condition, can be analysed by pairwise
independences (such as outcome independence or parameter independence). Our new
constraint for quantum non-locality, probabilistic Bell contextuality, is a conjunction of
two disjunctions of several product forms and, hence, a complex independence condition
as well. So we can apply Jarrett’s idea to our new case and understand ‘analysis’
as providing an expression in terms of pairwise probabilistic independences which is
equivalent to the new constraint.

Providing an analysis of the new stronger constraint will make explicit why the fail-
ure of purely outcome dependent theories to violate Bell inequalities (cf. section 2.2)
rules out that outcome dependence can be responsible for violating Bell inequalities. In
this way it will reveal Jarrett’s distinction between outcome dependent and parameter
dependent theories to be highly misleading. I first recall shortly Jarrett’s analysis and
introduce an appropriate set of independences, which will serve as analysantia. Then
I shall develop an analysis for each of the classes (Hα

i ) and subsequently of the new
probabilistic constraint for quantum non-locality.

3.1 Jarrett’s analysis

Jarrett (1984) had the idea that one can be more explicit about the probabilistic nature
of quantum non-locality by analyzing the probabilistic statement local factorisation (`F)
in terms of pairwise conditional probabilistic independences. By a ‘pairwise conditional
probabilistic independence’ I mean the fact that a random variable x is independent
of another y given a conjunction of further variables z. This is said to be true iff for
all values of the variables the joint probability over the variables makes the following
equation true:

P (x|yz) = P (x|z) (6)

The independence is noted as I(x,y|z). If, however, there is at least one set of values
for which (6) does not hold, the variables x and y are called dependent given z, and
this probabilistic dependence is noted as ¬I(x,y|z).

Jarrett uses three pairwise independences: ‘outcome independence’ is defined as
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I(α,β|abλ) and ‘parameter independence’ as a conjunction of two independences, I(α, b|aλ)∧
I(β,a|bλ). (Originally, Jarrett denotes these independences as ‘completeness’ and ‘loc-
ality’ respectively, but we shall use the now established names.) Jarrett proved math-
ematically that

(P7) Local factorisation is equivalent to the conjunction of outcome independence
and parameter independence:

(`F)↔ I(α,β|abλ) ∧ I(α, b|aλ) ∧ I(β,a|bλ) (7)

From (C1), the conclusion of the standard Bell argument that local factorisation fails,
and (P7) he concluded that

(C2) Outcome dependence or parameter dependence holds:

¬I(α,β|abλ) ∨ ¬I(α, b|aλ) ∨ ¬I(β,a|bλ) (8)

which is the analysis of the probabilistic constraint following from the standard Bell
argument (‘Jarrett’s analysis’). The analysis is correct, but since (as we have seen) the
analysandum, the conclusion of the standard Bell argument, is inappropriately weak, its
result is not as informative as it could be. In fact, we will shortly see by the analysis of
the new stronger result that it is deceptive about the nature of quantum non-locality.

3.2 Pairwise independences

Aiming to analyze the new probabilistic constraint for quantum non-locality we first
have to get an overview which concepts can play the role of the analysantia. In table 2 I
introduce those nine pairwise independences which will be relevant. Among the relevant
independences we find usual outcome independence, I(α,β|abλ), as well as I(α, b|aλ),
one independence of the conjunction which is usually called ‘parameter independence’.
Here we see a first problem with the standard names: how shall we call the latter if
its conjunction with I(β,a|bλ) is called ‘parameter independence’? I have tried to
stay as close to the standard names as possible, but obviously further qualifications
are needed. My suggestion is to continue to use the name ‘parameter independence’
for all independences between an outcome and its distant parameter, but to add the
outcome in question, namely ‘α-parameter independence’ or ‘β-parameter independence’
respectively. Further differentiation in the nomenclature is required by the fact that there
is another α-parameter independence in the table, I(α, b|βaλ), which differs from the
one already mentioned in the conditional variables (it additionally includes the outcome
β). Such independences of the same type but with different conditional variables are
different independences and are in general logically independent of another: one can hold
or not irrespective of whether the other does or does not. (One can show that only if one
involves more than two independences logical restrictions appear.) I discern them by
indices, e.g. the former is called ‘α-parameter independence2’, the latter ‘α-parameter
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independence1’. Of course, there are further α-parameter independences (namely those
conditional on βλ and λ) which, however, do not play any role for the analysis here.

Similarly to the parameter independences I define local parameter independences (see
table 2), which instead of the independence of an outcome on its distant parameter (e.g.
α, b) claim the independence of an outcome on its local parameter (e.g. α,a). Besides
these new names I have also introduced short labels for each independence, which we
will mainly use in the following.

Table 2: Definition of conditional independences

independence standard name new name label

I(α,β|abλ) outcome independence outcome independence1 (OI1)

I(α, b|βaλ) – α-parameter independence1 (PIα1 )

I(α, b|aλ) [part of] parameter ind. α-parameter independence2 (PIα2 )

I(β,a|αbλ) – β-parameter independence1 (PIβ1 )

I(β,a|bλ) [part of] parameter ind. β-parameter independence2 (PIβ2 )

I(α,a|βbλ) – α-local parameter independence1 (`PIα1 )

I(α,a|bλ) – α-local parameter independence2 (`PIα2 )

I(β, b|αaλ) – β-local parameter independence1 (`PIβ1 )

I(β, b|aλ) – β-local parameter independence2 (`PIβ2 )

Having introduced these new concepts we are now in a position to clearly see one of
the sources of confusion in the standard discussion. ‘Outcome dependence or parameter
dependence’ does not necessarily mean that if you accept outcome dependence you can
avoid parameter dependence in the sense of any kind of dependence of an outcome on
its distant parameter (conditional on whatever variables). The slogan just says that in

this case you can avoid parameter dependence in the usual sense of ¬(PIα2 ) ∨ ¬(PIβ2 ),
while other kinds of parameter dependences like ¬(PIα1 ) might still hold! And indeed
the analysis of the new constraint will yield that at least one of the two parameter
dependences ¬(PIα1 ) and ¬(PIβ2 ) must hold. Parameter dependence in this broader sense
cannot be avoided but will turn out to be a necessary condition for violating the Bell
inequalities.

3.3 Analyzing the classes

With these pairwise independences we can now attempt to analyse each class of probab-
ility distributions. For the analysis of the classes (Hα

i ) in table 1 we shall need the first
five independences in table 2 (the other four independences plus outcome independence1

are only used for the analysis of the classes (Hβ
j ); see below). We have noted the corres-

ponding dependences in the bottom line of table 1, i.e. each dependence is associated

28



3 Analyzing the conclusions

with one of the columns II–VI. The idea is that the dependence holds in a class if the
column of that class contains ‘1’. Otherwise, i.e. if it contains ‘0’, the corresponding
independence holds. The result of this analysis is stated by the following theorem:

Theorem 3: Each class in table 1 is equivalent to the conjunction of the
specific pattern of independences (see the bottom line of the table) indicated
by 0’s in columns II–VI.

The proof of theorem 3 can be found in the mathematical appendix.
The theorem means that each pattern of independences corresponds to exactly one

of the classes, e.g.
(Hα

7 )↔ (PIα2 ) ∧ (`PIα2 ). (9)

One can see from the table that each of the five independences corresponds to exactly one
of the five variables in the conditionals of the factors: if a certain independence holds, the
corresponding variable does not appear (and vice versa), and if a certain independence
fails, the corresponding variable does appear (and vice versa). Specifically, if (OI1) holds,
the first factor of the hidden joint probability does not involve the other outcome β (and
vice versa), and if it does not, the first factor includes it (and vice versa). Similarly,
(PIα1 ) and (`PIα1 ) correspond to the distant and the local parameter in the first factor
respectively, while (PIα2 ) and (`PIα2 ) are linked to the distant and the local parameter in
the second factor respectively. So the holding or failure of each of the five independences
has a very well defined impact on the product form of the hidden joint probability (and
vice versa), and the conjunction of all independences which hold according to a certain
probability distribution determines its product form, i.e. its class (and vice versa).11

3.4 Analysis of the stronger conclusion

We can now use the analysis of the single classes to formulate the analysis of the new,
stronger conclusion. This will provide us with sufficient and necessary conditions for a
class being able to violate Bell inequalities. We had found that quantum non-locality is
the failure of all localα, weakly non-localα, localβ and weakly non-localβ classes (C1′′)
and that these classes are characterized by the fact that their constituting product forms
involve at most one setting (parameter) in each of its factors. Let us first give an analysis
of the localα and weakly non-localα classes. Our analysis of the single classes (Hα

1 )–(Hα
32)

has revealed that each variable in the conditionals of the factors corresponds to exactly
one of the five independences in table 1. The distant parameter in the first factor
corresponds to α-parameter independence1, (PIα1 ), and the local parameter to α-local
parameter independence1, (`PIα1 ). So the first factor involves at most one parameter if
and only if at least one of these independences holds, (PIα1 )∨ (`PIα1 ). Similarly, at most
one parameter appears in the second factor iff β-parameter independence2 or β-local
parameter indepence2 hold, (PIβ)∨ (`PIβ). So we have found the following equivalence:

11 Note that according to table 1 local factorisation is analysed as (Hα
29)↔ (OI1)∧ (PIα1 )∧ (PIβ2 ), while

according to Jarrett it is (Hα
29) ↔ (OI1) ∧ (PIα2 ) ∧ (PIβ2 ), i.e. in Jarrett’s claim (PIα1 ) is replaced

by (PIα2 ). Given that (OI1) holds, the replacement is logically correct, because one can show that
(OI1) ∧ (PIα1 )↔ (OI1) ∧ (PIα2 ). So the two analyses of (Hα

29) are equivalent.
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(P7′a) The disjunction of localα and weakly non-localα classes is equivalent to the fact
that α is independent1 of at least one parameter and β is independent2 of at least
one parameter:

( 32∨
i=15

(Hα
i )
)
↔
[(

(PIα1 ) ∨ (`PIα1 )
)
∧
(

(PIβ2 ) ∨ (`PIβ2 )
)]

In a very similar way as we have proceeded for the classes (Hα
1 )–(Hα

32) one can find

an analysis for the classes (Hβ
1 )–(Hβ

32) (remember the table which is symmetric to table
1 in swapping the outcomes and the parameters and apply all considerations mutatis
mutandis):

(P7′b) The disjunction of localβ and weakly non-localβ classes is equivalent to the fact
that β is independent1 of at least one parameter and α is independent2 of at least
one parameter:( 32∨

i=15

(Hβ
i )
)
↔
[(

(PIβ1 ) ∨ (`PIβ1 )
)
∧
(

(PIα2 ) ∨ (`PIα2 )
)]

Since according to the conclusion of the stronger Bell argument (C1′′) the disjunction
of all localα, weakly non-localα, localβ and weakly non-localβ classes fails, the negation
of the disjunction of (P7’a) and (P7’b) finally yields the analysis of (C1′′):

(C2′) α depends1 on both parameters or β depends2 on both parameters and β depends1

on both parameters or α depends2 on both parameters:

[(
¬(PIα1 ) ∧ ¬(`PIα1 )

)
∨
(
¬(PIβ2 ) ∧ ¬(`PIβ2 )

)]
∧
[(
¬(PIβ1 ) ∧ ¬(`PIβ1 )

)
∨
(
¬(PIα2 ) ∧ ¬(`PIα2 )

)]
While the conclusion (C1′′) of the stronger Bell argument was in terms of classes,

here we have the equivalent expression, the analysis, in terms of pairwise independences.
It is a rather complex logical expression whose meaning and implications are not easy to
grasp. A first understanding might be attained by making explicit how this analysis of
the conclusion (C1′′) is also an analysis of the equivalent conclusion (C1′′′), which says
that the conjunction of strongly non-localα and strongly non-localβ classes holds. These
classes were characterized by the fact that at least one of the factors in each product
form must involve both parameters and this is exactly what (C2′) says: The first term in
the first disjunction, ¬(PIα1 )∧¬(`PIα1 ) (‘α-double parameter dependence1’), guarantees a
dependence on both parameters in the first factor of the product forms (Hα

i ), the second

term in the first disjunction, ¬(PIβ2 ) ∧ ¬(`PIβ2 ) (‘β-double parameter dependence2’),
implies a similar fact for the second factor of these forms, and analogously, the second
disjunction entails a dependence on both parameters in at least one of the factors of the
product forms (Hβ

i ) (and vice versa).
So the analysis involves double parameter dependences for each outcome in two dif-

ferent forms, either conditional on all other variables (double parameter dependence1)
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or conditional on all other variables excluding the other outcome (double parameter
dependence2). The logic of the expression has it that these can hold in different com-
binations, but whichever combination does, there is one thing that necessarily follows if
(C2′) is true:

(C3) Double parameter dependence: at least one of the outcomes depends probabilistic-
ally on both parameters (in at least one of the forms double parameter dependence1

or double parameter dependence2).

For one can avoid that one of the outcomes is double parameter dependent1 and double
parameter dependent2, but then it follows that the respective other outcome must be
double parameter dependent1 as well as double parameter dependent2. Of course, you
can also have mixed cases in which both outcomes are double parameter dependent (in
one or both of the two forms), but in any case you have double parameter dependence
of at least one of the outcomes.

So we have found two results: the precise probabilistic analysis of the new stronger
conclusion (C2′) and a general feature of and deriving from that analysis (C3), that
at least one of the outcomes must be double parameter dependent. Since the conclu-
sion is a necessary condition for EPR/B correlations (if autonomy and nearly perfect
(anti-)correlations hold), double parameter dependence of at least one of the outcomes,
which is implied by quantum non-locality, is a necessary condition for EPR/B cor-
relations as well: whenever we find that EPR/B correlations hold, double parameter
dependence (C3) must hold as well. So given that measurement results in our world
yield EPR/B correlations (and assuming autonomy), we can be sure that at least one of
the outcomes depends both on the local as well as on the distant parameter.

On the other hand, since here we have derived an analysis of a conclusion following
from the violation of Bell inequalities, neither the analysis (C2′) nor its consequence
double parameter dependence (C3), is sufficient for the violation of Bell inequalities. If,
according to a certain probability distribution, an outcome depends on both parameters
in the sense of (C2′) the correlations between the two wings might be strong enough to
violate Bell inequalities—but they need not be (see section 2.6). However, we also know
(from that section) that the conclusion of the argument is sufficient for a class to be able
to violate Bell inequalities, in the sense that if a class fulfills the conditions mentioned in
the conclusion, there is at least one probability distribution in that class which violates
the inequalities. Hence, the analysis (C2′) is also a sufficient condition for a class to be
able to violate Bell inequalities (but not its implication C3).

It is obvious that the result of this new analysis differs from Jarrett’s. There are two
main differences: first, while Jarrett’s analysis suggests that either the outcome or an
outcome and its distant parameter depend on another, according to the new analysis it
seems that one cannot avoid some kind of parameter dependence. Second, the concept
of outcome dependence does not appear in the new analysis at all. What do these
discrepancies mean? We now have to compare our result in detail to Jarrett’s and the
received view.
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4 Consequences

4.1 Shortcomings of Jarrett’s analysis

(1) The main message of our new result is that given EPR/B correlations and autonomy
one cannot avoid some kind of dependence between at least one of the outcomes and
both parameters (C3). This is a necessary condition for the violation of Bell inequalities
according to my new analysis. Jarrett’s analysis, in contrast, does not bring out this
essential requirement: from his result ‘outcome dependence or parameter dependence’
one just cannot see that, necessarily, there must be some kind of double parameter
dependence. This is a first shortcoming of Jarrett’s analysis.

(2) A second problematic feature of Jarrett’s result consists in the fact that unlike our
new result it seems to suggest that one can avoid any dependence of the outcomes on
their distant settings if the outcomes depend on another. If this suggestive interpretation
were the correct reading of Jarrett’s result, it would be plainly wrong. However, this
is not what it literally says. ‘Parameter dependence’ here does not mean any kind of
parameter dependence but a very specific kind, namely parameter dependence2. Saying
that one can avoid this specific kind does not mean that there is no dependence of
the outcomes on their distant parameters at all. Our presentation of different kinds of
parameter dependences (see table 2) has made explicit that parameter dependence2 is
only one among several kinds, all of which might hold if parameter dependence2 fails.
So in a careful literal reading Jarrett’s result does not contradict our result (C2′), that
one can avoid parameter dependence2 only if parameter dependence1 holds.

While there is no logical inconsistency between the two analyses, this reasoning shows
that Jarrett’s result is liable to be misunderstood to its non-literal false sense, that one
can avoid any kind of parameter dependence if outcome dependence holds. In this
sense, Jarrett’s result is misleading. In fact, it seems that Jarrett’s result has to a large
extent received this unfortunate interpretation. There is a bunch of literature about
quantum non-locality (on any level, whether causal, spatio-temporal or metaphysical)
which is based on Jarrett’s distinction, and which discusses in detail what outcome
dependence or parameter dependence would amount to, the preferred solution being
outcome dependence without parameter dependence. But in most cases this makes only
sense, if one believes that by neglecting parameter dependence one can avoid any kind of
parameter dependence! If the authors in that debate would have known that one cannot
avoid some kind of parameter dependence anyway, they would surely not have spent
so much time on finding arguments why outcome dependence rather than parameter
dependence holds. Much of the debate based on Jarrett’s analysis seems to adhere to
the wrong non-literal reading of Jarrett’s result.

(3) Thirdly, even in a correct literal reading, Jarrett’s result is problematic: un-
derstood as providing insights about quantum non-locality (on a probabilistic level),
it is highly deceptive because it rests on inappropriate categories. This point becomes
clear, if one investigates how Jarrett’s analysantia outcome dependence1, α-parameter
dependence2 and β-parameter dependence2 relate to the new concept of quantum non-
locality. Here is, first, how they do not relate: Jarrett’s analysis of the weaker concept
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is a disjunction of these three dependences and it could have been that the analysis of
the stronger concept just cancels one or two of the elements in the disjunction, revealing
them as options which are not really available. For instance it might have been that the
new analysis yields just ¬(PIα2 ) ∨ ¬(PIβ2 ), cancelling ¬(OI1). However, it turns out that
this is not the case. The logical structure of the new analysis is not just a simplification
of the former, but, in fact, is much more complicated involving new concepts (parameter
dependence1, local parameter dependence1 and local parameter dependence2) and not
involving others (outcome dependence1). This suggests that Jarrett’s categories outcome
dependence1 and parameter dependence2 cannot capture the conclusion of the stronger
Bell argument.

Table 3: Jarrett’s classes of possible probability distributions

Label ¬(OI1) ¬(PIα2 ) ∨¬(PIβ2 ) Notes

(J1) 1 1
quantum
non-locality

(J2) 0 1 Bohm

(J3) 1 0 QM

(J4) 0 0 locality

To make this explicit, consider the partition of the probability distributions according
to the dependences in Jarrett’s analysis (table 3). There are four classes, which I call
‘Jarrett’s classes’ and label as (J1)–(J4). Any of the 32 possible classes from table 1
must fall into one of Jarrett’s coarse-grained classes. While the local classes belong to
(J4), any of the classes (J1)–(J3) includes both weakly and strongly non-local classes.
So Jarrett’s non-local classes, which are assumed to be able to violate Bell inequalities,
mix probability distributions which can with such which cannot (see fig. 2). They do not
cut the probability distributions at their natural joints!

This means that neither outcome dependence1 nor parameter dependence2 are neces-
sary or (contrary to Jarrett’s analysis) sufficient for characterising quantum non-locality
according to the new conclusion of the Bell argument. Providing, for instance, the in-
formation that a certain probability distribution is outcome dependent1 does not tell you
whether it can violate Bell inequalities or not. The crucial fact is whether double para-
meter dependence of a certain kind holds. α-parameter dependence2 and β-parameter
dependence2 at least play a certain role in this complex condition; outcome dependence1,
however, does not play any role in the formulation of the new conclusion. Not being able
to capture the new conclusion, we conclude that the partition according to Jarrett’s cat-
egories outcome dependence1 and parameter dependence2 is inappropriate or unnatural
for the analysis of quantum non-locality.

So it seems that a significant amount of the debate after Jarrett’s paper which has
focused on the question of the formal, physical and metaphysical differences between
outcome dependence1 and parameter dependence2, in order to decide which of the two
does hold, is misguided. ‘Outcome dependence or parameter dependence?’ is just the
wrong question if one wants to explore deeper into the nature of quantum non-locality,

33



4 Consequences

non-locality
weak

strong

locality

Figure 2: Outcome dependence1 and parameter dependence2 vs. weak and strong non-
locality. ‘Strong non-locality’ means strongα and strongβ non-locality (i.e.
those distributions which can violate Bell inequalities), while ‘weak non-
locality’ means weakα or weakβ non-locality (i.e. those non-local distributions
which imply Bell inequalities).

because each of the two options subsumes probability distributions which can and such
which cannot violate Bell inequalities. Making this question a guide to quantum non-
locality is like asking whether those humans which can get pregnant have dark or fair
hair. Rather, the natural question, the new analysis shows, is which of the outcomes is
double parameter dependent and whether it is double parameter dependent1 or double
parameter dependent2.

In sum, Jarrett’s analysis is not false if one understands it literally; it is however,
strongly liable to be misunderstood (and has widely been misunderstood). Being based
on the standard Bell argument, it is not as informative as one can get with Bell’s theorem.
Moreover, the categories it uses do not cut the problem at its natural joints.

4.2 Failure of the received view: outcome dependence cannot explain the
violation of Bell inequalities

We have seen that Jarrett’s analysis, though liable to be misunderstood, is nevertheless
true in a literal sense. Based on Jarrett’s analysis there has emerged the received view
that quantum non-locality on a probabilistic levels is outcome dependence (and not
parameter dependence). This view, however, is provably wrong. Its failure is not obvious;
given just Jarrett’s analysis it might have been true. But given our stronger result here,
one can show that it cannot be true.

(1) How can it be that the received view, whose central claim, that quantum non-
locality is outcome dependence, is based on a true analysis, turns out to be wrong? The
reason is that this claim is stronger than Jarrett’s analysis licenses. Jarrett’s analysis
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just says that outcome dependence or parameter dependence is a necessary condition for
violating Bell inequalities. But claiming that outcome dependence (and parameter inde-
pendence) holds commits one to the stronger claim that outcome dependence (without
parameter dependence) can explain the violation of the Bell inequalities.

What would it mean that outcome dependence can explain a violation? By our
previous considerations it is clear that it would be too strong to require that every
theory (or probability distribution) which is outcome dependent violates the inequalities.
For we have seen that a dependence in itself never suffices to guarantee a violation;
only if dependences have a certain numerical strength, a violation can be inferred (see
section 2.6). What we should require, however, when someone claims that outcome
dependence can explain the violation of the Bell inequalities, is that if a class of theories
is outcome dependent, there are at least some probability distributions belonging to that
class that violate the inequalities. In the terminology we have used in this paper that
claim is to say:

(i) Outcome dependence is sufficient for a class being able to violate Bell inequalities.

We shall now show that in the light of our new results this claim truns out to be wrong.
It is both wrong in a non-intended literal as well as in a reasonable non-literal reading;
in a very liberal third reading it is true, but the claim ceases to be about outcome
dependence.

Taken literally, (i) would mean that class (Hα
26),

P (αβ|abλ) = P (α|βλ)P (β|λ), (10)

whose only dependence (among the five relevant dependences) is outcome dependence,
is sufficient for being able to violate Bell inequalities. This assertion is obviously wrong
because the class trivially implies Bell inequalities (due to the non-appearance of the
settings in the product form). However, though (as far as I can see) explicit precise
statements are missing, it is also very likely that defenders of the received view never
intended their claim to be read in this way: the class does not seem physically reasonable
due to a lack of dependence on the local settings.

Rather, what proponents of the received view more likely had in mind is the following:

(ii) Outcome dependence is sufficient for a class being able to violate Bell inequalities
if appropriate local parameter dependences hold (¬(`PIα1 ) and ¬(`PIα2 ) in the case
of α-classes).

That would amount to the claim that class (Hα
16), defined by

P (αβ|abλ) = P (α|βaλ)P (β|bλ), (11)

is able to violate Bell inequalities (the class of purely outcome dependent theories). How-
ever, we have shown in section 2.2 that this class (non-trivially) implies Bell inequalities
as well. So if that is what proponents of outcome dependence had in mind, it is not
correct either.
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A proponent of outcome dependence might wish to defend her position by claiming
that the reading we have just given is still too literal. In fact, she might claim, what
proponents of outcome dependence really mean is:

(iii) Outcome dependence is sufficient for being able to violate Bell inequalities if ap-
propriate local parameter dependences hold (¬(`PIα1 ) and ¬(`PIα2 ) in the case of
α-classes) and an appropriate non-local parameter dependence holds (¬(PIα1 ) in the
case of α-classes).

These dependences are realized in class (Hα
3 ),

P (αβ|abλ) = P (α|βabλ)P (β|bλ), (12)

which essentially describes the quantum mechanical distribution (if one neglects the
dependence on the hidden variable), and in class (Hα

1 ). The non-local parameter de-
pendence in the first factor, (PIα1 ), it might be said, is required, because from a physical
perspective the probability distribution has to reflect which measurement has been car-
ried out at the other wing. That dependence is unproblematic because—unlike usual
parameter dependence (PIα2 )—it conditions on the distant outcome and hence is not in
tension with relativity, because it cannot be used to send signals.

In this strongly non-literal reading claim (i), that outcome dependence is sufficient
for a class being able to violate Bell inequalities, finally becomes true: both classes
are among those that can violate the Bell inequalities. However, this reading is highly
problematic. The main reason is not that it makes (i) a highly misleading claim (because
it smuggles in a further non-local dependence via a suppressed background assumption,
hiding the essential point that another non-local dependence is included as well); while
this clearly is a weird way of understanding a claim, it still does not make (i) in reading
(iii) wrong.

Rather, the main problem about this reading concerns a different, stronger point,
which can be seen as follows. In an explicit form, the most promising claim the defender
of outcome dependence can advance is:

(iii′) The conjunction of outcome dependence and parameter dependence1 (¬(PIα1 ) in
the case of α-classes) is sufficient for being able to violate Bell inequalities if ap-
propriate local parameter dependences hold (¬(`PIα1 ) and ¬(`PIα2 ) in the case of
α-classes).

While literally true, the interesting point about this claim is that the condition of out-
come dependence is not needed at all, in order for it to be true. As can be seen from
table 1, outcome dependence can be dropped without making the claim false: (Hα

9 )
which differs from (Hα

3 ) just in that it is outcome independent still is among the classes
that are able to violate Bell inequalities (and the same is true of (Hα

6 ) and (Hα
1 )). In

contrast, parameter dependence1 is not a redundant constraint of the present sufficiency
claim: (Hα

16) which differs from (Hα
3 ) just in that it is α-parameter independent1 is em-

phatically not among the classes that are able to violate Bell inequalities. So the true,
non-redundant, most general version of the present sufficiency claim is:

36



4 Consequences

(iii′′) α-parameter dependence1 is sufficient for being able to violate Bell inequalities if
appropriate local parameter dependences hold (¬(`PIα1 ) and ¬(`PIα2 ) in the case
of α-classes).

In this last formulation, however, outcome dependence has disappeared from the claim
altogether: it has turned out to be a redundant part of the original sufficiency claim (iii′).
This result is problematic for the defender of outcome dependence for two reasons. First,
being redundant, outcome dependence does not play any role for characterizing classes
that are able to violate Bell inequalities, and hence cannot explain the violation of
the inequalities. Second, not involving outcome dependence, the new sufficiency claim
without redundancy (3′′) cannot be viewed as an interpretation of (i) any more (it is
not connected to its original formulation (i) besides that it is logically consistent with
it)—which reduces this attempt of interpretation ad absurdum.

In sum, claim (i) which is at the heart of the received view, is not substantiated
in any reading. It is either plainly false (as in the first two readings) or, if it is true,
involves outcome dependence only in a redundant way. In any case, it turns out that
outcome dependence is not sufficient for a class being able to violate Bell inequalities in
any reasonable sense. Note that this does not mean that outcome dependence in fact
does not hold—it might. But even if it does it cannot be regarded as being the crucial
probabilistic dependence between the wings. Probabilistic quantum non-locality is not
essentially outcome dependence. In this sense, the received view misjudges the role of
outcome dependence for the violation of Bell inequalities. This is another main result of
the present paper.

(2) We might note that claims about usual parameter dependence2 do not lead into
similar difficulties. Of course, a literal reading

(iv) Parameter dependence2 is sufficient for a class being able to violate Bell inequal-
ities.

is not true either (because it would wrongly imply that class (Hα
28) can violate Bell

inequalities). But a plausible interpretation of this claim as

(v) Parameter dependence2 is sufficient for a class being able to violate Bell inequalities
if appropriate local parameter dependences hold (¬(`PIα1 ) and ¬(`PIα2 ) in the case
of α-classes).

is true (because the classes (Hα
1 ), (Hα

5 ), (Hα
6 ) and (Hα

12) can violate Bell inequalities). So
we have found an asymmetry in the possible positions proposed by Jarrett’s analysis:
while it is reasonable to say that parameter dependence2 (given appropriate local para-
meter dependences) is sufficient for a class being able to violate Bell inequalities, the
same is not true for outcome dependence.

(3) Finally, we should explain how quantum mechanics fits into this picture. Ac-
cording to the standard view, quantum mechanics is regarded as the paradigm of an
outcome dependent (and parameter independent) theory violating Bell inequalities. So,
is it not a counterexample to my result that theories necessarily have to depend on the
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distant parameter in order to violate the inequalities? And to the claim that outcome
dependence cannot explain the violation of the inequalities?

It is true, quantum mechanics is well known to be ‘outcome dependent and para-
meter independent’, but again this is not to be understood that according to quantum
mechanics there is no probabilistic dependence of an outcome on the distant parameter
at all. In fact, it is easy to check, which independences hold according to quantum
mechanics: one can calculate all relevant conditional probabilities from the quantum
mechanical probability distribution for the EPR/B experiment(Corr). A simple com-
parison of these probabilities then shows which of the independences hold and which
do not, and it turns out that besides being outcome dependent, quantum mechanics is
parameter dependent1, ¬(PIα1 ) and ¬(PIβ1 ), so according to quantum mechanics each
outcome does depend on its distant parameter!

This parameter dependence in quantum mechanics is not as surprising as it may
seem since, according to the formalism, the measurement direction at A determines the
possible collapsed states at B and the actual outcome at A only determines in which
of the (two) possible states the photon state at B collapses. So contrary to what the
standard talk suggests, quantum mechanics is parameter dependent (in some sense),
and it is important to see that it is as well local parameter dependent1, ¬(`PIα1 ) and

¬(`PIβ1 ) (while it is local parameter independent2, (`PIα2 ) and (`PIβ2 )), because then, the
quantum mechanical distribution fulfills the requirement of the stronger Bell argument
by rendering the first terms of the two disjunctions in (C2′) true. If my argument in
this paper is true, it cannot be otherwise. For if quantum mechanics were not parameter
dependent in this double sense, it could not (as it does) violate Bell inequalities.

The example of quantum mechanics also illustrates that my results do not mean that
all outcome dependent theories imply the inequalities; it just says that a probabilistic
dependence between the outcomes per se does not suffice to explain a violation. In
conjunction with parameter dependence, outcome dependence might even contribute to
a violation of the inequality; but in contrast to the former it cannot per se explain a
violation. Assuming that outcome dependence can do this explanatory job is the main
error of the received view.

4.3 Resolving the Jarrett-Maudlin debate

(1) Opposed to the received view, there is another position concerning quantum non-
locality, whose result seems to agree with ours. Maudlin (1994, ch. 6; cf. also a recent
refinement by Pawlowski et al. 2010) proves that, in order to reproduce the EPR/B cor-
relations, at least one of the outcomes must depend on information about both settings.
Since (Shannon mutual) information implies correlation,12 one can infer that at least
one of the outcomes must depend probabilistically on both settings—and this is exactly
my result (C3).

(2) This convergence is good news, both for Maudlin’s as well as my argument here,
because the two investigations use very different different methods, and two different

12 Shannon mutual information, which is the concept that Maudlin’s and Pawlowski et al.’s considera-
tions essentially are based on, is a measure for the strength of a correlation.

38



4 Consequences

methods yielding the same result are evidence for the stability of a claim. On the one
hand, Maudlin’s approach is an information theoretic investigation proceeding from the
EPR/B correlations without invoking Bell’s theorem. In contrast, my argument in this
paper approaches quantum non-locality via Bell inequalities and probabilistic analysis,
i.e. it stands methodologically in the Bell-Jarrett tradition, which has started and shaped
the debate. In this sense, the two arguments are methodologically quite different, and
it is fair to say that my approach here confirms Maudlin’s result by a different method.

(3) We should note that our result is in one sense weaker and in one sense stronger
than the information theoretic one. It is weaker because it is purely qualitative: it just
says which probabilistic dependences are required, but it is tacit about how strong the
correlations have to be in order to violate Bell inequalities. In section 2.6 I have argued
that such qualitative results can only be necessary conditions for a violation, because
having the right dependences for violating Bell inequalities does not mean that the in-
equalities are in fact violated. In contrast, sufficient criteria must involve conditions on
the strength of the correlations, and the information theoretic approach derives such
criteria by calculating the amount of information (the quantitative strength of the corre-
lations) that is required in order to reproduce EPR/B correlations; these are important
results.

In another sense, however, our result is also stronger than the information theoretic
one. Maudlin’s analysis just implies some kind of dependence of an outcome on its
distant parameter. But which precisely? We have seen that there are different kinds of
parameter dependences, which differ in the conditional variables. Especially it cannot
be an unconditional parameter dependence because that would contradict the empirical
distribution. So which are the ones that are required? My detailed result (C2′) makes
precise which kind of parameter dependences are required. Present information theoretic
results do not provide a similar detailed characterization. However, a complete list of
which dependences exactly hold or fail might be important for the discussion of quantum
non-locality on other levels: causal inference (cf. Spirtes 1993; Pearl 2000), for instance,
is very sensitive to the exact pattern of dependences and independences.

(4) My results also allow to resolve the tension between Maudlin’s approach on the
one hand and Jarrett’s analysis and the received view on the other hand. While Jarrett’s
result seems to suggest that there is a choice to make between outcome dependence or
parameter dependence and the received view holds that it is the dependence between the
outcomes which is realized, Maudlin’s informational approach opposes to these positions
by saying that one of the outcomes must depend on information about the distant setting.
This tension has been stood unresolved for over 20 years now.

During that time the two analyses have coexisted; Maudlin’s critique of Jarrett’s ana-
lysis and the resulting standard position did not succeed in convincing the adherents of
outcome dependence—though Maudlin did have good arguments: he realized that Jar-
rett’s analysis can be misleading because there are different kinds of parameter depend-
ences and outcome dependences, according to which variables appear in the conditional
(Maudlin 1994, ch. 4); he argued that Jarrett’s analysis is also misleading because his in-
formational approach unveiled that some kind of parameter dependence is unavoidable;
and, hence, it is wrong to assume that outcome dependence per se can explain EPR/B
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correlations (Maudlin 1994, ch. 6). To me it is not exactly clear, why Jarrett’s analysis
and the received view based on it could keep on for such a long time, given Maudlin’s
critique. One reason might have been that Maudlin’s arguments do not connect to the
Bell-Jarrett methodology, such that it was hard to compare the two approaches and to
see which in fact is right.

In this paper, however, we have provided that connection. We have strengthened
the Bell-Jarrett approach to our new results and these (i) confirm Maudlin’s claim that
there must be a dependence of at least one outcome on the distant parameter (we have
furthermore derived, which exact combinations of dependences are required, section 3.4),
(ii) show that Jarrett’s analysis is indeed misleading (we have made precise how exactly,
section 4.1) and (iii) prove that the received view is wrong (because outcome dependence
is not sufficient for a class to be able to violate Bell inequalities; section 4.2). This clearly
resolves the Jarrett-Maudlin controversy in favour of the latter.

5 Discussion

In this paper we have presented a stronger version of Bell’s theorem and spelt out its
consequences on a probabilistic level. Here we shall summarize and discuss the main
results.

(1) The strengthening of the Bell argument rests on the insight that the members of a
range of non-local theories, which we have called weakly non-local, either are inconsistent
with autonomy and nearly perfect correlations or imply Bell inequalities (as do local
theories). For instance, it is impossible to violate Bell inequalities even if a dependence
on the distant outcome holds as in the product form

P (αβ|abλ) = P (α|βaλ)P (β|bλ). (Hα
16)

Consequently, the empirical violation of the inequalities does rule out local theories
(which is well known from the original argument) and these weakly non-local ones (which
is one central result of this paper). Showing that the violation of Bell inequalities
excludes more theories than the standard Bell argument suggests, the new argument has
a stronger conclusion than the original one.

The remaining theories, which are compatible with a violation of Bell inequalities,
are called strongly non-local; a list of their product forms can be found in table 1 (Hα

1 –
Hα

14). They are characterized by the fact that at least one of the factors in the product
form involves both settings in its conditionals, i.e. at least one of the outcomes must
depend probabilistically (or functionally, respectively) on both settings (probabilistic Bell
contextuality). Without such a dependence between an outcome and both settings Bell
inequalities cannot be violated.

(2) On a rather general level, the fact that certain non-local probability distributions
imply Bell inequalities, first of all makes explicit that Bell inequalities are not locality
conditions in the sense that, if a probability distribution obeys a Bell inequality, it must
be local. Local theories obey Bell inequalities but not vice versa.

(3) More importantly, the new result reveals that the usual constraint for quantum
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non-locality, which follows from the standard Bell argument, is inappropriately weak.
For the latter states a failure of the local factorisation condition, suggesting that just
any non-local dependence is required. Allowing for all non-local classes, however, this
includes classes which we have found to be compatible with Bell inequalities (weakly non-
local classes). For this reason, the standard constraint, to require just a failure of local
factorisation, mixes classes which can violate Bell inequalities with classes that cannot.
While this is not to say that the standard argument is logically incorrect, it means that
its conclusion is not an appropriate, tight characterization of quantum non-locality. This
explains, why arguments proceeding from this result, like Jarrett’s analysis, can yield
misleading conclusions.

(4) It is a crucial feature of our new argument that its conclusion only contains classes
of theories which can violate Bell inequalities. This, first, qualifies the new constraint as
an appropriate basis for further explorations. Second, it precludes speculations whether
the argument could be made even stronger: the argument we have presented has the
strongest possible conclusion from the violation of Bell inequalities on a qualitative prob-
abilistic level (which only takes into account dependences and independences rather than
numerical strengths of correlations). It has been essential for arriving at this result to
have the complete list of logically possible classes (instead of just the physically plausible
ones, see table 1), because in this way we could be sure not to have neglected possible
classes of theories.

(5) Jarrett has analysed the conclusion of the standard Bell argument, the failure of
local factorization as outcome dependence or parameter dependence. In a similar way
we have analyzed the conclusion of the stronger Bell argument, the failure of local and
weakly non-local classes, and the precise result is:[(

¬I(α, b|β, a, λ) ∧ ¬I(α, a|β, b, λ)
)
∨
(
¬I(β, a|b, λ) ∧ ¬I(β, b|a, λ)

)]
∧ (13)[(

¬I(β, a|α, b, λ) ∧ ¬I(β, b|α, a, λ)
)
∨
(
I(α, b|a, λ) ∧ ¬I(α, a|b, λ)

)]
Since the disjunction of ¬I(α, a|b, λ) and ¬I(β, b|a, λ) is what is usually called parameter
dependence, the result shows that one can avoid usual parameter dependence, but only
if one accepts other kinds of parameter dependences, which additionally condition on the
distant outcome, viz. ¬I(α, a|β, b, λ) and ¬I(β, b|α, a, λ). So in any case there must be
some kind of parameter dependence. More precisely, the essential requirement is that at
least one of the outcomes depends (in one of two senses) on both parameters, the distant
and the local one (double parameter dependence).

Outcome dependence, in contrast, does not play any role in this new analysis: if a
class fulfills the indicated condition, it can violate Bell inequalities, and if it does not,
it cannot; whether additionally outcome dependence holds is irrelevant for the question
whether the class can violate the inequalities.

(6) The result of the new analysis obviously is in tension with Jarrett’s result. While
Jarrett’s result is not wrong, if one understands it in its correct literal sense, it is liable
to be misunderstood (and has been misunderstood) as that there is a choice to make
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between a dependence between the outcomes and a dependence between an outcome
and its distant parameter. In fact, as our result shows there is only a choice to make
between different types of parameter dependences.

We have also argued that Jarrett’s categories (outcome dependence and parameter
dependence) do not cut the classes at their natural joints. Outcome dependent theories as
well as parameter dependent theories both mix classes which can violate Bell inequalities
(strongly non-local classes) and those which cannot (weakly non-local classes). In the
light of our present analysis, this is not surprising, because Jarrett already starts from
a constraint that mixes classes.

(7) The received view about quantum non-locality, which is based on Jarrett’s ana-
lysis, holds that, in fact, the quantum non-locality realized by nature on a probabilistic
level amounts to outcome dependence (and not parameter dependence) (cf. Jarrett
(1984) and Shimony (1984, 1986), who have introduced the view). We have discussed
different readings of this claim but it has turned out that it is either plainly wrong (be-
cause classes which are outcome dependent without being double parameter dependent
are weakly non-local and hence cannot violate Bell inequalities) or the claim reduces
to a claim without outcome dependence (because for classes including a double para-
meter dependence outcome dependence becomes redundant). In sum, whether outcome
dependence holds does not change whether a class can violate Bell inequalities or not.
Adding outcome dependence does not make a class which implies Bell inequalities able
to violate them; and vice versa subtracting outcome dependence from a class which can
violate Bell inequalities does not make that class imply the inequalities. One example for
the former is the fact that adding outcome dependence to a local theory, which means
to have the product form of class (Hα

16) instead of local factorization, does not allow
for a violation, because theories from class (Hα

16), as we have shown, still imply Bell
inequalities. A probabilistic dependence between the outcomes is just too weak to make
the difference for a violation of Bell inequalities. It is for this reason that a dependence
between the outcomes cannot explain the violation of Bell inequalities.

This is emphatically not to say that outcome dependence in fact does not hold—it
might or it might not. But even if it does, it cannot be the only non-local dependence.
Neither is this to say that outcome dependence, if it holds, does not contribute to a
violation of the Bell inequalities; to the contrary: if outcome dependence holds it will
make such a contribution.13 But what this result does deny against the received view is
that outcome dependence can be the crucial dependence, i.e. the dependence that is per
se responsible for the violation of Bell inequalities. And since this is the central claim
of the received view, that position has to be considered wrong.

If outcome dependence is not the correct view on a probabilistic level, this might also
affect the physical and metaphysical claims of the received view. Having focused on the
probabilistic level, these latter levels have not been the subject of the present paper.

13 A dependence on the distant outcome does matter when one considers not only the violation of Bell
inequalities but the exact quantitative reproduction of EPR/B correlations. Pawlowski et al. (2010)
have shown that there must be information about the distant outcome and that information can
either be available by a direct correlation (as in the case of quantum mechanics) or be revealed by a
hidden variable (which, however, is not available in the case of quantum mechanics).
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The standard view concerning these matters so far has been that there is a non-causal
influence between the outcomes, which is metaphysically realized by a non-local con-
nection between the outcomes (a so called non-separability, according to most authors).
However, given that the probabilistic picture has changed considerably, it remains to
be investigated on the basis of the new analysis whether this view can still be main-
tained. Since probabilistic outcome dependence cannot account for a violation of the
inequalities, it might seem tempting to immediately conclude that also the metaphysical
picture must be wrong. But inferring physical or metaphysical relations from probabil-
istic facts requires careful analysis, since the transition is well known to be vulnerable
to fallacies (‘correlation is not causation’). For this reason, establishing the right kind
of (meta-)physical connection would have required a further lengthy analysis—so here
we have to remain tacit on this question. Having said this, it might be interesting to
remark that there seem to be good arguments that the current result, that a probab-
ilistic dependence between the outcomes is too weak to explain a violation of the Bell
inequalities, most plausibly entails that also an influence between the outcomes is not
strong enough to account for a violation (Näger 2013).

(8) What about quantum mechanics in this new picture? Quantum mechanics is well-
known to be outcome dependent and to correctly reproduce the EPR/B correlations—
so how does this fit with the present results? An answer can be seen by realizing
that my result does not mean that all outcome dependent theories (in the probabilistic
sense) imply the inequalities; it just says that a probabilistic dependence between the
outcomes per se does not suffice to explain a violation. It follows that quantum mechanics
cannot only involve a probabilistic dependence between the outcomes, and especially it
cannot belong to class (Hα

16). Rather, the quantum mechanical product form (here: for
maximally entangled states),

P (αβ|ab) = P (α|βab)P (β) = P (β|αab)P (α) (14)

additionally involves a dependence on the distant setting in each first factor—and it is
the dependence on both settings in these factors (rather than the dependence between
the outcomes), which is crucial for violating the Bell inequalities.

(9) We have noted that there is another approach to quantum non-locality whose
result seems to converge with ours. Maudlin (1994, ch. 6; cf. also a recent refinement
by Pawlowski et al. 2010) examines the quantum non-locality not via Bell’s theorem,
but directly investigates the EPR/B correlations by information theoretic methods. He
proves that at least one of the outcomes must depend on information about both settings.
Since (Shannon mutual) information implies correlation, Maudlin’s claim is—at least
roughly—in accordance with our results. On the one hand, this is good news because
two different methods yielding the same results are evidence for the stability of a claim.

On the other hand, I stress that there are at least three non-trivial differences between
Maudlin’s approach and the one we have presented in this paper. First, each proposal
has its own, very different methodology. Maudlin analyses the correlations information
theoretically and does not connect his considerations to Bell’s argument. In contrast, our
approach here is in continuity with Bell’s thoughts, which have started and shaped the
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discussion; it develops and strengthens the method that is most common in the debate,
viz. the access via Bell inequalities. Second, the information theoretic approaches are
stronger in that they indicate the amount of information (the quantitative strength of
the correlations) that is required in order to reproduce EPR/B correlations. This is an
important result providing sufficient criteria for reproducing the correlations. In another
sense, however, third, the information theoretic considerations are also weaker than our
results in this paper. Maudlin only claims a dependence between an outcome and both
settings, whereas we have presented a precise condition of required dependences The
precise result might relevant for further analysis such as causal inference, which is very
sensitive to which (in-)dependences exactly hold.

(10) Finally, we may ask, why these stronger consequences of the Bell argument, that
we have derived in this paper, have been overlooked so far. Obviously, it has wrongly
been assumed that local factorisation is the only basis to derive Bell inequalities, and the
main reason for neglecting other product forms of hidden joint probabilities might have
been the fact that, originally, Bell inequalities were derived to capture consequences of
a local worldview. The question that shaped Bell’s original work clearly was Einstein’s
search for a local hidden variable theory and his main result was that such a theory is
impossible: locality has consequences which are in conflict with the quantum mechan-
ical distribution—one cannot have a local hidden variable theory which yields the same
predictions as quantum mechanics. Given this historical background, the idea to derive
Bell inequalities from non-local assumptions maybe was beyond interest because the
conflict with locality was considered to be the crucial point; or maybe it was neglected
because Bell inequalities were so tightly associated with locality that a derivation from
non-locality sounded totally implausible. Systematically, however, since today it is clear
that the quantum mechanical distribution is empirically correct and Bell inequalities are
violated, it is desirable to draw as strong consequences as possible from the argument,
which requires to check without prejudice whether some non-local classes allow a de-
rivation of Bell inequalities as well. That this is indeed the case is the result of this
paper.
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Graßhoff, G., S. Portmann, and A. Wüthrich (2005). Minimal assumption derivation of
a Bell-type inequality. British Journal for the Philosophy of Science 56 (4), 663–680.
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Appendix

Proof of lemma 1

We proceed by reductio. By autonomy and (Hα
16) we rewrite the conditions for perfect

correlations and for perfect anti-correlations:

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|β∓aiλ)P (β∓|biλ) (15)

P (α±β∓|ai⊥bi⊥) = 0 =
∑
λ

P (λ)P (α±|β∓ai⊥λ)P (β∓|bi⊥λ) (16)

P (α±β±|aibi⊥) = 0 =
∑
λ

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ) (17)

P (α±β±|ai⊥bi) = 0 =
∑
λ

P (λ)P (α±|β±ai⊥λ)P (β±|biλ) (18)

Since probabilities are non-negative (and since without loss of generality we can assume
P (λ) > 0 for all λ), at least one of the two remaining factors in each summand must be
zero, i.e. for all values i and λ we must have:[

P (α+|β−aiλ) = 0 ∨ P (β−|biλ) = 0
]

(19)

∧
[

P (α−|β+aiλ) = 0 ∨ P (β+|biλ) = 0
]

(20)

∧
[

P (α+|β−ai⊥λ) = 0 ∨ P (β−|bi⊥λ) = 0
]

(21)

∧
[

P (α−|β+ai⊥λ) = 0 ∨ P (β+|bi⊥λ) = 0
]

(22)

∧
[

P (α+|β+aiλ) = 0 ∨ P (β+|bi⊥λ) = 0
]

(23)

∧
[

P (α−|β−aiλ) = 0 ∨ P (β−|bi⊥λ) = 0
]

(24)

∧
[

P (α+|β+ai⊥λ) = 0 ∨ P (β+|biλ) = 0
]

(25)

∧
[

P (α−|β−ai⊥λ) = 0 ∨ P (β−|biλ) = 0
]

(26)

From these conditions one can infer that all involved probabilities must be 0 or 1
(determinism). More precisely, for every i and λ one of the following two cases holds:
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Case 1: P (α+|β−aiλ) = 0

(CE)⇒ P (α−|β−aiλ) = 1
(24)⇒ P (β−|bi⊥λ) = 0

(CE)⇒ P (β+|bi⊥λ) = 1
(22)⇒
(23)

P (α−|β+ai⊥λ) = 0

∧ P (α+|β+aiλ) = 0

(CE)⇒ P (α+|β+ai⊥λ) = 1
(25)⇒
(20)

P (β+|biλ) = 0

∧ P (α−|β+aiλ) = 1

(CE)⇒ P (β−|biλ) = 1
(26)⇒ P (α−|β−ai⊥λ) = 0

(CE)⇒ P (α+|β−ai⊥λ) = 1

NB : (CE) stands for the following theorem of probability theory: P (A|B)+P (Ā|B) = 1.

Case 2: P (α+|β−aiλ) > 0

(19)⇒ P (β−|biλ) = 0

(CE)⇒ P (β+|biλ) = 1
(20)⇒
(25)

P (α−|β+aiλ) = 0

∧ P (α+|β+ai⊥λ) = 0

(CE)⇒ P (α+|β+aiλ) = 1
(23)⇒
(22)

P (β+|bi⊥λ) = 0

∧ P (α−|β+ai⊥λ) = 1

(CE)⇒ P (β−|bi⊥λ) = 1
(21)⇒
(24)

P (α+|β−ai⊥λ) = 0

∧ P (α−|β−aiλ) = 0

(CE)⇒ P (α−|β−ai⊥λ) = 1

∧ P (α+|β−aiλ) = 1
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Since in each case we have

P (α+|β+aiλ) = P (α+|β−aiλ) (27)

P (α−|β+aiλ) = P (α−|β−aiλ) (28)

P (α+|β+ai⊥λ) = P (α+|β−ai⊥λ) (29)

P (α−|β+ai⊥λ) = P (α−|β−ai⊥λ) (30)

it is true that

∀α, β, a, λ : P (α|βaλ) = P (α|aλ). (31)

By this statistical independence the product form (Hα
16)

P (αβ|abλ) = P (α|βaλ)P (β|bλ) (32)

loses its dependence on the outcome β in the first factor, i.e. it reads

P (αβ|abλ) = P (α|aλ)P (β|bλ). (33)

This, however, is the well known local product form (local factorization), contradicting
the assumption that we have the non-local product form (Hα

16).
Note that this proof makes essential use of the perfect correlations and perfect antio-

correlations (15–18), i.e. the probabilities P (α±β∓|aibi), P (α±β∓|ai⊥bi⊥), P (α±β±|aibi⊥)
and P (α±β±|ai⊥bi) have to be strictly 0. If these conditions are only slightly relaxed, i.e.
if any of these probabilities takes on a positive value, even if very small, the conclusion
does not follow. q.e.d.

Proof of lemma 2

By autonomy and (Hα
16) we rewrite (some of) the conditions for nearly perfect correla-

tions and for nearly perfect anti-correlations:

P (α±β∓|aibi) = δii =
∑
λ

P (λ)P (α±|β∓aiλ)P (β∓|biλ) (34)

P (α±β±|aibi⊥) = δii⊥ =
∑
λ

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ), (35)

where δii and δii⊥ are positive and small. Since probabilities are non-negative, all sum-
mands are non-negative; so each summand must be less or equal than the total value of
the sum:

P (λ)P (α±|β∓aiλ)P (β∓|biλ) ≤ δii (36)

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ) ≤ δii⊥ (37)
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In order to facilitate the following considerations, let us define

ε := max
i=1,2,3

( 3
√
δii,

3
√
δii⊥) (38)

where i = 1, 2, 3 represent three distinct measurement directions. We can then write:

P (λ)P (α±|β∓aiλ)P (β∓|biλ) ≤ ε3 (39)

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ) ≤ ε3. (40)

Since a product of three non-negative factors is never smaller than the cube root of its
smallest factor, each product must contain (at least) one factor that is less or equal
than ε, i.e. for all values i and λ we must have:[

P (λ) ≤ ε ∨ P (α+|β−aiλ) ≤ ε ∨ P (β−|biλ) ≤ ε
]

(41)

∧
[
P (λ) ≤ ε ∨ P (α−|β+aiλ) ≤ ε ∨ P (β+|biλ) ≤ ε

]
(42)

∧
[
P (λ) ≤ ε ∨ P (α+|β+aiλ) ≤ ε ∨ P (β+|bi⊥λ) ≤ ε

]
(43)

∧
[
P (λ) ≤ ε ∨ P (α−|β−aiλ) ≤ ε ∨ P (β−|bi⊥λ) ≤ ε

]
(44)

There are three cases that solve these conditions:

Case 1: P (λ) > ε ∧ P (α+|β−aiλ) ≤ ε

(CE)⇒ P (α−|β−aiλ) > 1− ε (44)⇒ P (β−|bi⊥λ) ≤ ε
(CE)⇒ P (β+|bi⊥λ) > 1− ε (43)⇒ P (α+|β+aiλ) ≤ ε
(CE)⇒ P (α−|β+aiλ) > 1− ε (42)⇒ P (β+|biλ) ≤ ε
(CE)⇒ P (β−|biλ) > 1− ε

Case 2: P (λ) > ε ∧ P (α+|β−aiλ) > ε

(41)⇒ P (β−|biλ) ≤ ε
(CE)⇒ P (β+|biλ) > 1− ε (42)⇒ P (α−|β+aiλ) ≤ ε
(CE)⇒ P (α+|β+aiλ) > 1− ε (43)⇒ P (β+|bi⊥λ) ≤ ε
(CE)⇒ P (β−|bi⊥λ) > 1− ε (44)⇒ P (α−|β−aiλ) ≤ ε
(CE)⇒ P (α+|β−aiλ) > 1− ε

Case 3: P (λ) ≤ ε

(no particular restrictions for other probabilities)

The three cases are disjunct and define a partition of the values of λ:
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Λ1(i) := {λ|P (λ) > ε ∧ P (α+|β−aiλ) ≤ ε)}

Λ2(i) := {λ|P (λ) > ε ∧ P (α+|β−aiλ) ≥ 1− ε)}

Λ3(i) := {λ|P (λ) ≤ ε} = Λ3

Note that each value i defines a different partition, but that Λ3(i) = Λ3 is independent
of i.

We can use the fact that the λ-partitions depend on just one setting i to estimate
values for the hidden joint probability P (αβ|abλ) for any choice of measurement direc-
tions aibj by forming intersections of partitions for different settings (see table 4). Note
that the table only comprises five of the nine combinatorially possible cases; the ignored
cases are empty sets (Λ1(i)∧Λ3 = ∅ because Λ1(i) requires P (λ) > ε, whereas Λ3 implies
P (λ) ≤ ε; and analogously Λ2(i) ∧ Λ3 = ∅, Λ3 ∧ Λ1(j) = ∅, Λ3 ∧ Λ2(j) = ∅). The last
column is defined as Λ3(i) ∩ Λ3(j) = Λ3, and the label ‘n.r.’ means ‘no restriction’, i.e.
the value of the hidden joint probability is not confined to any specific interval; rather,
in this set it is the case that P (λ) ≤ ε.

Table 4: Values of the hidden joint probability

λ ∈

Λ1(i) ∩ Λ1(j) Λ1(i) ∩ Λ2(j) Λ2(i) ∩ Λ1(j) Λ2(i) ∩ Λ2(j) Λ3

P (α+β+|aibjλ) ≤ ε2 ≤ ε ≤ ε > (1− ε)2 n.r.

P (α+β−|aibjλ) ≤ ε ≤ ε2 > (1− ε)2 ≤ ε n.r.

P (α−β+|aibjλ) ≤ ε > (1− ε)2 ≤ ε2 ≤ ε n.r.

P (α−β−|aibjλ) > (1− ε)2 ≤ ε ≤ ε ≤ ε2 n.r.

Given the estimations for the hidden joint probability in table 4 one can derive a
generalised Wigner-Bell inequality. Consider the inequality

P (X ∩ Z) ≤ P (X ∩ Y ) + P (Y ∩ Z), (45)

which in general holds for any events X,Y, Z of a measurable space, as can easily be
seen by rewriting the involved probabilities:

P (X ∩ Z) = P (X ∩ Y ∩ Z) + P (X ∩ Y ∩ Z) (46)

P (X ∩ Y ) = P (X ∩ Y ∩ Z) + P (X ∩ Y ∩ Z) (47)

P (Y ∩ Z) = P (X ∩ Y ∩ Z) + P (X ∩ Y ∩ Z) (48)

Assuming X = Λ1(1) ∪ Λ3, Y = Λ1(2) ∪ Λ3 and Z = Λ1(3) gives the inequality

P ([Λ1(1)∪Λ3]∩Λ1(3)) ≤ P ([Λ1(1)∪Λ3]∩ [Λ1(2) ∪ Λ3]) +P ([Λ1(2)∪Λ3]∩Λ1(3)). (49)
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We calculate the sets involved in the inequality:

[Λ1(i) ∪ Λ3] ∩ Λ1(j) = [Λ1(i) ∪ Λ3] ∩ [Λ2(j) ∪ Λ3] =

= [Λ1(i) ∩ Λ2(j)] ∪ [Λ1(i) ∩ Λ3︸ ︷︷ ︸
∅

] ∪ [Λ3 ∩ Λ2(j)︸ ︷︷ ︸
∅

] ∪ [Λ3 ∩ Λ3︸ ︷︷ ︸
Λ3

]

= [Λ1(i) ∩ Λ2(j)] ∪ Λ3 (50)

[Λ1(i) ∪ Λ3] ∩ [Λ1(j) ∪ Λ3] = [Λ1(i) ∪ Λ3] ∩ Λ2(j)

= [Λ1(i) ∩ Λ2(j)] ∪ [Λ3 ∩ Λ2(j)︸ ︷︷ ︸
∅

]

= Λ1(i) ∩ Λ2(j) (51)

If we further define the shorthand

Λkl(i, j) := Λk(i) ∩ Λl(j), (52)

we can rewrite inequality (49) as

P (Λ12(1, 3) ∪ Λ3) ≤ P (Λ12(1, 2)) + P (Λ12(2, 3) ∪ Λ3). (53)

This inequality can be transformed to yield a generalized Wigner-Bell inequality. We
have to rewrite the inequality such that it only involves empirically accessible probabil-
ities, i.e. probabilities that do not involve the hidden state λ, and this can be done by
using the estimates for the hidden joint probability from table 4. Especially, we have to
find a lower estimate for the left hand side of the inequality and an upper estimate for
its right hand side. We start by deriving the former:

P (Λ12(1, 3) ∪ Λ3)
(σ-additivity)

=
∑

λ∈Λ12(1,3)∪Λ3

P (λ)

≥
∑

λ∈Λ12(1,3)∪Λ3

P (λ)P (α−β+|a1b3λ)

=
∑
λ∈Λ

P (λ)P (α−β+|a1b3λ)−
∑

λ∈Λ\[Λ12(1,3)∪Λ3]

P (λ)P (α−β+|a1b3λ)

= P (α−β+|a1b3)−
∑

λ∈Λ11(1,3)

P (λ)P (α−β+|a1b3λ)

−
∑

λ∈Λ21(1,3)

P (λ)P (α−β+|a1b3λ)−
∑

λ∈Λ22(1,3)

P (λ)P (α−β+|a1b3λ)

(table 4)

≥ P (α−β+|a1b3)− ε
∑

λ∈Λ11(1,3)

P (λ)− ε2
∑

λ∈Λ21(1,3)

P (λ)− ε
∑

λ∈Λ22(1,3)

P (λ)

≥ P (α−β+|a1b3)− 2ε− ε2 (54)
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An upper estimate for the right hand side of (53) can be calculated as follows:

P (Λ12(1, 2)) + P (Λ12(2, 3) ∪ Λ3) = (55)

(σ-additivity)
=

∑
λ∈Λ12(1,2)

P (λ) +
∑

λ∈Λ12(2,3)∪Λ3

P (λ)

≤
∑

λ∈Λ12(1,2)

P (λ)
P (α−β+|a1b2λ)

(1− ε)2
+

∑
λ∈Λ12(2,3)∪Λ3

P (λ)
P (α−β+|a2b3λ)

(1− ε)2

≤
∑
λ∈Λ

P (λ)
P (α−β+|a1b2λ)

(1− ε)2
+
∑
λ∈Λ

P (λ)
P (α−β+|a2b3λ)

(1− ε)2

=
P (α−β+|a1b2λ) + P (α−β+|a2b3λ)

(1− ε)2
(56)

The resulting inequality

P (α−β+|a1b3)− 2ε− ε2 ≤ P (α−β+|a1b2λ) + P (α−β+|a2b3λ)

(1− ε)2
(57)

is the Wigner-Bell inequality we have been looking for. It generalizes usual Wigner-Bell
inequalities such as

P (α−β+|a1b3) ≤ P (α−β+|a1b2λ) + P (α−β+|a2b3λ) (58)

in that it introduces correction terms with the parameter ε. It is an inequality of fourth
order in ε and one can check numerically that it is violated by the empirical measurement
results

P (α−β+|a1b3) = 0.375, P (α−β+|a1b2) = 0.125, P (α−β+|a2b3) = 0.125, (59)

(which are a maximal violation of the usual Wigner-Bell inequality and occur e.g. for
the measurement settings being chosen as 1 = 0◦, 2 = 30◦, 3 = 60◦ given the quantum
state ψ0), if

0 < ε < 0.048328 (60)

Hence, the maximal deviation of perfect correlations for the generalized Wigner-Bell
inequality still to be violated is

δ = (εmax)3 = 0.0483283 = 1.1280 · 10−4, (61)

i.e. at least 99.989% of the photons must be perfectly correlated and anti-correlated.
q.e.d.

Proof of theorem 1.1

We split the theorem up into three partial claims:
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Claim 1: Autonomy, perfect correlations, perfect anti-correlations and a class of prob-
ability distributions (Hα

i ) form an inconsistent set if (i) the product form of
(Hα

i ) involves at most one of the settings.

Claim 2: Autonomy, perfect correlations, perfect anti-correlations and a class of prob-
ability distributions (Hα

i ) form an inconsistent set if (ii) the product form of
(Hα

i ) involves both settings but its first factor involves the distant outcome
and at most one setting.

Claim 3: A class (Hα
i ) is consistent with autonomy, perfect correlations and perfect

anti-correlations if (¬i) the product form of (Hα
i ) involves both settings and

(¬ii) in case the distant outcome appears in the first factor of (Hα
i )’s product

form, also both settings appear in that factor.

Proof of claim 1

Condition (i), that the product form involves at most one of the settings, is fulfilled
by the classes {(Hα

17), . . . , (Hα
32)}\{(Hα

22), (Hα
29)}. Here we have to show the inconsistency

of these classes with the set of assumptions autonomy, perfect correlations and perfect
anti-correlations.

Consider, for instance,

P (αβ|abλ) = P (α|βaλ)P (β|aλ) = P (αβ|aλ), (Hα
17)

which fails to involve the setting b. It is easy to show that this product form can neither
account for the perfect correlations nor for the perfect anti-correlations. The perfect
correlations read:

P (α±β±|aibi) =
1

2
P (α±β±|aibi⊥) = 0. (62)

Now, the value of these empirical probabilities depends crucially on the value of the
setting b. However, one can demonstrate without much effort that (Hα

17)’s failure to
involve the setting b on a hidden level, extends to the empirical level, if one assumes
autonomy:

P (αβ|ab) =
∑
λ

P (λ|ab)P (αβ|abλ)
(A)
=
∑
λ

P (λ|ab′)P (αβ|abλ) =

(Hα17)
=

∑
λ

P (λ|ab′)P (αβ|ab′λ) = P (αβ|ab′) (63)

This implies that according to (Hα
17) all empirical probabilities P (αβ|ab) that only differ

by their value for the setting b must equal another—which obviously contradicts (62).
For the same reason, (Hα

17) contradicts the perfect anti-correlations

P (α±β∓|aibi⊥) =
1

2
P (α±β∓|aibi) = 0. (64)
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In the same way, all other product forms that do not involve the setting b are in
conflict with the perfect correlations (62) and perfect anti-correlations (64), and, simil-
arly, all product forms that fail to involve the setting a are in conflict with the perfect
correlations

P (α±β±|aibi) =
1

2
P (α±β±|ai⊥bi) = 0. (65)

or the perfect anti-correlations

P (α±β∓|ai⊥bi) =
1

2
P (α±β∓|aibi) = 0. (66)

Proof of claim 2

Condition (ii), that the product form involves both settings but its first factor involves
the distant outcome and at most one setting, is fulfilled by the product forms (Hα

4 ), (Hα
5 ),

(Hα
10), (Hα

15) and (Hα
16). Here we have to show the inconsistency of these classes with

the set of assumptions autonomy, perfect correlations and perfect anti-correlations.
By lemma 1 we have already proven that (Hα

16)

P (αβ|abλ) = P (α|βaλ)P (β|bλ) (67)

forms an inconsistent set with autonomy, perfect correlations and perfect anti-correlations.
Mutatis mutandis, also the classes (Hα

10) and (Hα
15) lead to a similar inconsistency. In

each case the product form looses its dependence on the distant outcome in the first
factor, i.e. (Hα

10) reduces to (Hα
14), whereas (Hα

15) reduces to (Hα
22).

The proofs against the classes (Hα
4 ) and (Hα

5 ) work in a similar way, but require a
little more care due to an additional case differentiation. Let me shortly demonstrate
this for class (Hα

5 ). As for (Hα
16) one starts with expressing the perfect (anti-)correlations

in terms of the product form,

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|β∓aiλ)P (β∓|aibiλ) (68)

P (α±β∓|ai⊥bi⊥) = 0 =
∑
λ

P (λ)P (α±|β∓ai⊥λ)P (β∓|ai⊥bi⊥λ) (69)

P (α±β±|aibi⊥) = 0 =
∑
λ

P (λ)P (α±|β±aiλ)P (β±|aibi⊥λ) (70)

P (α±β±|ai⊥bi) = 0 =
∑
λ

P (λ)P (α±|β±ai⊥λ)P (β±|ai⊥biλ). (71)

In the case of (Hα
16) there were two cases, defined by P (α±|β∓aiλ) = 0 or P (α±|β∓aiλ) >

0, respectively, and all other probabilities followed from each of these defining probab-
ilities. In the present case, however, when, accordingly, we assume P (α±|β∓aiλ) = 0
or P (α±|β∓aiλ) > 0, respectively, only the factors of the hidden joint probabilities on
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the right hand side of equations (68) and (70) are implied, i.e. the probabilities in
(69) and (71) remain undetermined by these assumptions (due to the fact that there
are two settings in the second factor of the product form). The latter probabilities
have to be determined by further assumptions, e.g. by setting P (α±|β∓ai⊥λ) = 0 or
P (α±|β∓ai⊥λ) > 0, respectively. These assumptions introduce two new cases, that are
logically independent of the former two. In total, this makes four cases (instead of two):

P (α±|β∓aiλ) = 0 ∧ P (α±|β∓ai⊥λ) = 0 (72)

P (α±|β∓aiλ) = 0 ∧ P (α±|β∓ai⊥λ) > 0 (73)

P (α±|β∓aiλ) > 0 ∧ P (α±|β∓ai⊥λ) = 0 (74)

P (α±|β∓aiλ) > 0 ∧ P (α±|β∓ai⊥λ) > 0 (75)

While this renders the proof slightly more complex, the crucial fact to mention here is
that in all four cases we have

∀α, β, a, λ : P (α|βaλ) = P (α|aλ), (76)

i.e. (Hα
5 ) reduces to (Hα

12). Similarly, one can show that (Hα
4 ) reduces to (Hα

11).

Proof of claim 3

Condition (¬i) and (¬ii), that the product form involves both settings and in case the
distant outcome appears in the first factor, also both settings appear in that factor, is ful-
filled by the product forms {(Hα

1 ), . . . , (Hα
14)}\{(Hα

4 ), (Hα
5 ), (Hα

10)}, (Hα
22) and (Hα

29). Here
we have to show the consistency of these classes with the set of assumptions autonomy,
perfect correlations and perfect anti-correlations.

Since a class being inconsistent with certain assumptions means that every distribu-
tion of a class contradicts the assumptions, a class being consistent means that there is
at least one probability distribution in that class which is compatible with the assump-
tions. Hence, what we need for each of these classes in order to show their consistency
with the background assumptions, is one example of a probability distribution belonging
to that class that respects the background assumptions. In fact, such examples are easy
to construct. Let me demonstrate the procedure with one of the weakest classes in that
group, (Hα

29), whose product form is local factorization.
Requiring just any example we can presuppose a minimal setup, i.e. the hidden

variable as well as each setting can be assumed to have only two possible values: λ =
λ1, λ2, a = ai, ai⊥ and b = bi, bi⊥ with ai = bi and ai⊥ = bi⊥ . We start by writing down
the perfect correlations and perfect anti-correlations, and express the probabilities on
the empirical level by the probabilities on the hidden level using the product form and
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autonomy:

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|aiλ)P (β∓|biλ) (77)

P (α±β∓|ai⊥bi⊥) = 0 =
∑
λ

P (λ)P (α±|ai⊥λ)P (β∓|bi⊥λ) (78)

P (α±β±|ai⊥bi) = 0 =
∑
λ

P (λ)P (α±|ai⊥λ)P (β±|biλ) (79)

P (α±β±|aibi⊥) = 0 =
∑
λ

P (λ)P (α±|aiλ)P (β±|bi⊥λ). (80)

P (α±β±|aibi) =
1

2
=
∑
λ

P (λ)P (α±|aiλ)P (β±|biλ) (81)

P (α±β±|ai⊥bi⊥) =
1

2
=
∑
λ

P (λ)P (α±|ai⊥λ)P (β±|bi⊥λ) (82)

P (α±β∓|ai⊥bi) =
1

2
=
∑
λ

P (λ)P (α±|ai⊥λ)P (β∓|biλ) (83)

P (α±β∓|aibi⊥) =
1

2
=
∑
λ

P (λ)P (α±|aiλ)P (β∓|bi⊥λ). (84)

Then choose a value for any of the probabilities on the right hand side that does not
lead into inconsistencies, e.g.

P (α+|aiλ1) = 0. (85)

By (77)–(80) this entails the following probabilities:

(CE)⇒ P (α−|aiλ1) = 1
(77)⇒
(80)

P (β+|biλ1) = 0 (86)

∧ P (β−|bi⊥λ1) = 0 (87)

(CE)⇒ P (β−|biλ1) = 1
(79)⇒
(78)

P (α−|ai⊥λ1) = 0 (88)

∧ P (β+|bi⊥λ1) = 1 (89)

(CE)⇒ P (α+|ai⊥λ1) = 1 (90)

Similarly, choose a value for the corresponding probability conditional on λ2, e.g.

P (α+|aiλ2) = 1 (91)
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and draw the appropriate consequences:

(77)⇒
(80)

P (β−|biλ2) = 0 (92)

∧ P (β+|bi⊥λ2) = 0 (93)

(CE)⇒ P (β+|biλ2) = 1
(77),(80)⇒
(78),(79)

P (α−|aiλ2) = 0 (94)

∧ P (β−|bi⊥λ2) = 1 P (α+|ai⊥λ2) = 0 (95)

(CE)⇒ P (α−|ai⊥λ2) = 1 (96)

These probabilities determine the values of the hidden joint probabilities consistent
with equations (77)–(80). Note that we have

∀α, λ : P (α|aiλ) 6= P (α|ai⊥λ) ∀α, a : P (α|aλ1) 6= P (α|aλ2) (97)

∀β, λ : P (β|biλ) 6= P (β|bi⊥λ) ∀β, b : P (β|bλ1) 6= P (β|bλ2), (98)

which means that the product form does not reduce to any other product form (i.e. the
product form is consistent with the assumptions so far).

Inserting the determined values of the hidden joint probability into equations (81)–
(84) yields:

P (λ1) =
1

2
P (λ2) =

1

2
(99)

Finally we can freely choose, say,

P (ai) =
1

2
= P (ai⊥) P (bi) =

1

2
= P (bi⊥) (100)

such that by the formula

P (αβabλ) = P (α|aλ)P (β|bλ)P (λ)P (a)P (b) (101)

we arrive at the following probability distribution:

P (α+β+aibiλ1) = 0 P (α+β−aibiλ1) = 0 P (α−β+aibiλ1) = 0 P (α−β−aibiλ1) = 1
8

P (α+β+aibi⊥λ1) = 0 P (α+β−aibi⊥λ1) = 0 P (α−β+aibi⊥λ1) = 1
8

P (α−β−aibi⊥λ1) = 0

P (α+β+ai⊥biλ1) = 0 P (α+β−ai⊥biλ1) = 1
8

P (α−β+ai⊥biλ1) = 0 P (α−β−ai⊥biλ1) = 0

P (α+β+ai⊥bi⊥λ1) = 1
8

P (α+β−ai⊥bi⊥λ1) = 0 P (α−β+ai⊥bi⊥λ1) = 0 P (α−β−ai⊥bi⊥λ1) = 0

P (α+β+aibiλ2) = 1
8

P (α+β−aibiλ2) = 0 P (α−β+aibiλ2) = 0 P (α−β−aibiλ2) = 0

P (α+β+aibi⊥λ2) = 0 P (α+β−aibi⊥λ2) = 1
8

P (α−β+aibi⊥λ2) = 0 P (α−β−aibi⊥λ2) = 0

P (α+β+ai⊥biλ2) = 0 P (α+β−ai⊥biλ2) = 0 P (α−β+ai⊥biλ2) = 1
8

P (α−β−ai⊥biλ2) = 0

P (α+β+ai⊥bi⊥λ2) = 0 P (α+β−ai⊥bi⊥λ2) = 0 P (α−β+ai⊥bi⊥λ2) = 0 P (α−β−ai⊥bi⊥λ2) = 1
8
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This distribution is in accordance with the axioms of probability theory; by construc-
tion its hidden joint probability has the product form that is characteristic for class
(Hα

29), and it reproduces the perfect correlations and anti-correlations. This explicit
example shows that class (Hα

29) is consistent with the assumptions autonomy, perfect
correlations and perfect (anti-)correlations.

In a similar way one can construct examples of probability distributions for the other
classes fulfilling (¬i) and (¬ii). Since (Hα

22) is symmetric to (Hα
29) under interchanging

the settings, it is clear that the constructed distribution for the latter class can easily be
turned into an example for the former if in each total probability one swaps the values
of the settings. Furthermore, it is straightforward to modify the construction such that
it yields distributions for the classes {(Hα

1 ), . . . , (Hα
14)}\{(Hα

4 ), (Hα
5 ), (Hα

10)}. Note that
in these classes there are more degrees of freedom than in the presented example, so one
might freely choose more values of probabilities. This completes our proof of theorem 1.1.

q.e.d.

Proof of theorem 1.2

We split the theorem up into two partial claims:

Claim 1: Given autonomy, perfect correlations and perfect anti-correlations a consist-
ent class (i.e. a class that fulfills (¬i) and (¬ii)) implies Bell inequalities if
(iii) each factor of its product form involves at most one setting.

Claim 2: Given autonomy, perfect correlations and perfect anti-correlations a con-
sistent class (i.e. a class that fulfills (¬i) and (¬ii)) does not imply Bell
inequalities if (¬iii) at least one factor of its product form involves both
settings.

Proof of claim 1

The set of classes fulfilling (¬i), (¬ii) and (iii) consists of (H22) and (H29). Here we
have to show that, given autonomy, perfect correlations and perfect (anti-)correlations,
each of these classes implies Bell inequalities.

By usual derivations of Wigner-Bell inequalities, it is well-known that local factorisa-
tion (H29) implies Bell inequalities (given autonomy and perfect correlations; cf. premise
(P4) of the Bell argument above). Now, it is easy to see that in a very similar way one
can use (Hα

22) to derive Bell inequalities. For, as we have said, (H22) differs from local
factorisation only in that the settings in the product form are swapped: instead of a
dependence of each outcome on the local settings each factor involves a dependence on
the distant setting. Accordingly, the derivation from (H22) results from the usual one
by interchanging the settings in each expression.

Proof of claim 2
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The classes fulfilling conditions (¬i) and (¬ii) while violating (iii) are (Hα
1 )..(Hα

14)\{(Hα
4 ), (Hα

5 ), (Hα
10)}.

Here we have to show that given the background assumptions autonomy, perfect cor-
relations and perfect anti-correlations, these classes do not imply the Bell inequalities.
Since a class implying the inequalities means that all distributions of a class imply
the inequalities, demonstrating that a class does not imply the inequalities amounts to
showing that there is at least one distribution in that class that violates the inequalities.
In other words, we have to show that there is at least one distribution for each class
that fulfills autonomy, perfect correlations, perfect anti-correlations and violates the Bell
inequalities.

One way to find such examples is to look at existing hidden-variable theories that
successfully explain the statistics of EPR/B experiments. In our overview of the classes
we have seen that the de-Broglie-Bohm theory falls under different classes depending
on which temporal order the experiment has, (Hα

6 ), (Hα
9 ) or (Hα

12). For each of these
classes, the probability distribution of the theory provides an example with the desired
features. Moreover, the example for (Hα

9 ) can be turned into one for (Hα
8 ) by reversing

the dependence on the settings. And similarly, the example for (Hα
12) can be turned

into one for (Hα
11). Since (Hα

1 ), (Hα
2 ), (Hα

3 ) and (Hα
7 ) are stronger product forms (involve

more dependences) than one or several of the classes (Hα
6 ), (Hα

8 ), (Hα
9 ), (Hα

11) or (Hα
12),

by small modifications of the available examples one can construct examples for these
classes as well.

It remains to find examples for classes (Hα
13) and (Hα

14). Since there are no theor-
ies available for these classes, here the construction has to be from scratch. Let me
demonstrate how the construction works for class (Hα

14). We first of all take into account
the perfect correlations and perfect anti-correlations. This goes, mutatis mutandis, very
similar to finding a probability distribution from class (Hα

29) that is compatible with
perfect (anti-)correlations (see proof of claim 3 in the proof of theorem 1.1). By similar
equations to (77)–(80) (exchange the product form of (Hα

29) on the right hand side with
the product form of (Hα

14)), for any i and λ there are two possible cases:

Case I:

P (α+|λ) = 0 P (α−|λ) = 1 (102)

P (β+|aibiλ) = 0 P (β−|aibiλ) = 1 P (β+|ai⊥bi⊥λ) = 0 P (β−|ai⊥bi⊥λ) = 1 (103)

P (β+|aibi⊥λ) = 1 P (β−|aibi⊥λ) = 0 P (β+|ai⊥biλ) = 1 P (β−|ai⊥biλ) = 0 (104)

Case II: (replace all 0’s in case I by 1 and vice versa)

Requiring just any example we can assume a toy model with only two possible hidden
states (λ = 1, 2). Then we might, for instance, choose case I for λ1 and case II for λ2

for all i’s. Then, by equations similar to (81)–(84) it follows

P (λ1) =
1

2
P (λ2) =

1

2
(105)
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In this way we have accounted for the perfect correlations as well as for the perfect
anti-correlations.

Now it remains to reproduce the EPR/B correlations for non-parallel and non-per-
pendicular settings. A minimal set of such probabilities, which can violate the Bell
inequalities (both the usual ones as well as the Wigner-Bell inequalities), can be found
if each of the settings a and b has two possible values, e.g. a1 = 0◦, a2 = 30◦, b1 = 30◦

and b2 = 60◦. Measuring the quantum state ψ0 = (|+ +〉+ | −−〉)/
√

2 at these settings
yields the following observable probabilities:

P (α±β±|a1b1) = 3
8 P (α±β∓|a1b1) = 1

8 P (α±β±|a1b2) = 1
8 P (α±β∓|a1b2) = 3

8 (106)

P (α±β±|a2b1) = 1
2 P (α±β∓|a2b1) = 0 P (α±β±|a2b2) = 3

8 P (α±β∓|a2b2) = 1
8 (107)

These are sixteen equations, and any of the probabilities on their left hand sides can be
expressed by the product form of the hidden joint probability:

P (αβ|ab) =
∑
λ

P (λ)P (α|λ)P (β|abλ) (108)

P (λ) and P (α|λ) are already completely determined by the perfect (anti-)correlations,
P (β|abλ) partly so (namely only for the parallel settings a2 = b1):

P (λ1) = 1
2 P (λ2) = 1

2 (109)

P (α+|λ1) = 0 P (α−|λ1) = 1 P (α+|λ2) = 1 P (α−|λ2) = 0 (110)

P (β+|a2b1λ1) = 0 P (β−|a2b1λ1) = 1 P (β+|a2b1λ2) = 1 P (β−|a2b1λ2) = 0 (111)

Inserting these values in the respective equations yields the following consistent values
for the missing probabilities P (β|abλ):

P (β+|a1b1λ1) = 1
4 P (β−|a1b1λ1) = 3

4 P (β+|a1b1λ2) = 3
4 P (β−|a1b1λ2) = 1

4 (112)

P (β+|a1b2λ1) = 3
4 P (β−|a1b2λ1) = 1

4 P (β+|a1b2λ2) = 1
4 P (β−|a1b1λ2) = 3

4 (113)

P (β+|a2b2λ1) = 1
4 P (β−|a2b2λ1) = 3

4 P (β+|a2b2λ2) = 3
4 P (β−|a2b2λ2) = 1

4 (114)

Finally, choosing, say,

P (ai) =
1

2
P (ai⊥) =

1

2
P (bi) =

1

2
P (bi⊥) =

1

2
(115)

the formula

P (αβabλ) = P (α|λ)P (β|abλ)P (λ)P (a)P (b) (116)
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entails the following total probabilities, which constitute the searched for probability
distribution:

P (α+β+a1b1λ1) = 0 P (α+β−a1b1λ1) = 0 P (α−β+a1b1λ1) = 1
32

P (α−β−a1b1λ1) = 3
32

P (α+β+a1b2λ1) = 0 P (α+β−a1b2λ1) = 0 P (α−β+a1b2λ1) = 3
32

P (α−β−a1b2λ1) = 1
32

P (α+β+a2b1λ1) = 0 P (α+β−a2b1λ1) = 0 P (α−β+a2b1λ1) = 0 P (α−β−a2b1λ1) = 1
8

P (α+β+a2b2λ1) = 0 P (α+β−a2b2λ1) = 0 P (α−β+a2b2λ1) = 1
32

P (α−β−a2b2λ1) = 3
32

P (α+β+a1b1λ2) = 3
32

P (α+β−a1b1λ2) = 1
32

P (α−β+a1b1λ2) = 0 P (α−β−a1b1λ2) = 0

P (α+β+a1b2λ2) = 1
32

P (α+β−a1b2λ2) = 3
32

P (α−β+a1b2λ2) = 0 P (α−β−a1b2λ2) = 0

P (α+β+a2b1λ2) = 1
8

P (α+β−a2b1λ2) = 0 P (α−β+a2b1λ2) = 0 P (α−β−a2b1λ2) = 0

P (α+β+a2b2λ2) = 3
32

P (α+β−a2b2λ2) = 1
32

P (α−β+a2b2λ2) = 0 P (α−β−a2b2λ2) = 0

Note that here we have not explicitly noted the probabilities for parallel or perpendicular
settings, but by constructing the distribution in the indicated way we have implicitly
taken account of the perfect (anti-)correlations at these settings and it is straight forward
to extent the distribution to include these settings as well (the distribution just becomes
much longer, when for each measurement setting at one side one includes a parallel and
a perpendicular setting at the other side).

This completes our construction of a distribution from class (Hα
14) which respects,

autonomy, perfect correlations, perfect anti-correlations and violates the Bell inequalit-
ies. In a similar way, one can construct an example for class (Hα

13), which differs from
(Hα

14) just in that the dependence on both settings is not in the second but in the first
factor of its product form. q.e.d.

Proof of theorem 2.1

We split the theorem up into two partial claims:

Claim 1: Autonomy, nearly perfect correlations, nearly perfect anti-correlations, and
a class of probability distributions (Hα

i ) form an inconsistent set if (i) the
product form of (Hα

i ) involves at most one of the settings.

Claim 2: A class (Hα
i ) is consistent with autonomy, nearly perfect correlations and

nearly perfect anti-correlations if (¬i) the product form of (Hα
i ) involves

both settings.

Proof of claim 1

Condition (i), that the product form involves at most one of the settings, is fulfilled
by the classes {(Hα

17), . . . , (Hα
32)}\{(Hα

22), (Hα
29)}. Here we have to show the inconsistency

of these classes with the set of assumptions autonomy, nearly perfect correlations and
nearly perfect anti-correlations.

The proof runs very similar to our demonstration of claim 1 in the proof of the-
orem 1.1. On the one hand, the nearly perfect correlations and anti-correlations involve
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dependences on each of the settings, e.g. the nearly perfect correlations

P (α±β±|aibi) =
1

2
− δii P (α±β±|aibi⊥) = δii⊥ (117)

reveal a dependence on the setting b, while e.g. the nearly perfect correlations

P (α±β±|aibi) =
1

2
− δii P (α±β±|ai⊥bi) = δi⊥i (118)

show a dependence on the setting a. On the other hand, any hidden joint probability
that does not involve the setting b (i.e. is independent of b), cannot account for changing
values in the empirical joint probability with changing values of b (cf. (63)); so it ne-
cessarily contradicts the set of equations (117). And similarly, hidden joint probabilities
that are independent of a contradict the set of equations (118).

Note that condition (ii) from theorem 1.1 is not a criterion for inconsistency according
to theorem 2.1, because the inconsistency in question essentially relies on strictly perfect
(anti-)correlations, which are not assumed in theorem 2.1.

Proof of claim 2

The classes fulfilling criterion (¬i) to involve both settings in their product forms are
(Hα

1 )...(Hα
16), (Hα

22) and (Hα
29). Here we have to show the consistency of these classes

with the set of assumptions autonomy, nearly perfect correlations and nearly perfect
anti-correlations.

As in the proof of claim 3 in the proof of theorem 1.1 one can demonstrate the present
claim by providing an example of a probability distribution for each class that is consist-
ent with these assumptions. Since nearly perfect correlations are a weaker requirement
than strictly perfect ones, it is clear that for all classes which we have shown to be con-
sistent with the latter—viz. (Hα

1 )..(Hα
14)\{(Hα

4 ), (Hα
5 ), (Hα

10)}—are also consistent with
the former. Therefore, what still needs to be proven here is that autonomy and nearly
perfect (anti-)correlations are consistent with those classes fulfilling criterion (¬i) that
are inconsistent with the strictly perfect ones (because they fulfill (ii)). The classes in
question are (Hα

4 ), (Hα
5 ), (Hα

10), (Hα
15) and (Hα

16).
Again, the best way to find such examples is by constructing them such that the

conditions are fulfilled. Here we show how to construct a distribution for class (Hα
10).

The starting point are the equations for nearly perfect (anti-)correlations:

P (α±β∓|aibi) = δii P (α±β∓|ai⊥bi⊥) = δi⊥i⊥ P (α±β±|ai⊥bi) = δi⊥i P (α±β±|aibi⊥) = δii⊥

P (α±β±|aibi) = 1
2
− δii P (α±β±|ai⊥bi⊥) = 1

2
− δi⊥i⊥ P (α±β∓|ai⊥bi) = 1

2
− δi⊥i P (α±β∓|aibi⊥) = 1

2
− δii⊥
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Replacing the empirical probability on the left hand side of each equation by an equi-
valent expression involving hidden probabilities of the product form,

P (αβ|ab) =
∑
λ

P (λ)P (α|βλ)P (β|abλ), (119)

yields a set of equations, whose solutions determine probability distributions with the
required features.

The δ’s in these equations indicate the deviation from strictly perfect correlations.
One might use realistic empirical values for them but since the task here is a merely
conceptual one, one might as well just stipulate any small, positive values. Due to
the lacking perfectness, the resulting set of equations is more complicated than that in
theorem 1.2, and solutions are best determined by appropriate computer algorithms.
Here, we shall present a solution for the special case

δii = δi⊥i⊥ = δi⊥i = δii⊥ =: δ, (120)

which reads:

P (λ1) = 1
2

P (λ2) = 1
2

(121)

P (α+|β+λ1) = 0 P (α−|β+λ1) = 1 P (α+|β+λ2) = 1− 2δ P (α−|β+λ2) = 2δ
(122)

P (α+|β−λ1) = 2δ P (α−|β−λ1) = 1− 2δ P (α+|β−λ2) = 1 P (α−|β−λ2) = 0
(123)

P (β+|aibiλ1) = 0 P (β−|aibiλ1) = 1 P (β+|aibiλ2) = 1 P (β−|aibiλ2) = 0
(124)

P (β+|aibi⊥λ1) = 4δ−1
2δ−1

P (β−|aibi⊥λ1) = 2δ
1−2δ

P (β+|aibi⊥λ2) = 2δ
1−2δ

P (β−|aibi⊥λ2) = 4δ−1
2δ−1

(125)

P (β+|ai⊥biλ1) = 4δ−1
2δ−1

P (β−|ai⊥biλ1) = 2δ
1−2δ

P (β+|ai⊥biλ2) = 2δ
1−2δ

P (β−|ai⊥bi⊥λ2) = 4δ−1
2δ−1

(126)

P (β+|ai⊥bi⊥λ1) = 0 P (β−|ai⊥bi⊥λ1) = 1 P (β+|ai⊥bi⊥λ2) = 1 P (β−|ai⊥bi⊥λ2) = 0
(127)

Note that according to this solution all dependences of the product form (Hα
10) are

preserved, because, for instance, we have

P (α+|β+λ1) 6= P (α+|β−λ1) P (α+|β+λ1) 6= P (α+|β+λ2) (128)

P (β+|aibiλ1) 6= P (β+|ai⊥biλ1) P (β+|aibiλ1) 6= P (β+|aibi⊥λ1) (129)

P (β+|aibiλ1) 6= P (β+|aibiλ2) (130)

Finally, when we further assume, say,

P (ai) =
1

2
P (ai⊥) =

1

2
P (bi) =

1

2
P (bi⊥) =

1

2
(131)
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by the equation

P (αβabλ) = P (α|βλ)P (β|abλ)P (λ)P (a)P (b) (132)

the results so far determine the values of the total probability distribution:

P (α+β+aibiλ1) = 0 P (α−β+aibiλ1) = 0 (133)

P (α+β+aibi⊥λ1) = 0 P (α−β+aibi⊥λ1) = 1−4δ
8(1−2δ)

(134)

P (α+β+ai⊥biλ1) = 0 P (α−β+ai⊥biλ1) = 1−4δ
8(1−2δ)

(135)

P (α+β+ai⊥bi⊥λ1) = 0 P (α−β+ai⊥bi⊥λ1) = 0 (136)

P (α+β−aibiλ1) = δ
4

P (α−β−aibiλ1) = 1
8
(1− 2δ) (137)

P (α+β−aibi⊥λ1) = δ2

2(1−2δ)
P (α−β−aibi⊥λ1) = δ

4
(138)

P (α+β−ai⊥biλ1) = δ2

2(1−2δ)
P (α−β−ai⊥biλ1) = δ

4
(139)

P (α+β−ai⊥bi⊥λ1) = δ
4

P (α−β−ai⊥bi⊥λ1) = 1
8
(1− 2δ) (140)

P (α+β+aibiλ2) = 1
8
(1− 2δ) P (α−β+aibiλ2) = δ

4
(141)

P (α+β+aibi⊥λ2) = δ
4

P (α−β+aibi⊥λ2) = δ2

2(1−2δ)
(142)

P (α+β+ai⊥biλ2) = δ
4

P (α−β+ai⊥biλ2) = δ2

2(1−2δ)
(143)

P (α+β+ai⊥bi⊥λ2) = 1
8
(1− 2δ) P (α−β+ai⊥bi⊥λ2) = δ

4
(144)

P (α+β−aibiλ2) = 0 P (α−β−aibiλ2) = 0 (145)

P (α+β−aibi⊥λ2) = 1−4δ
8(1−2δ)

P (α−β−aibi⊥λ2) = 0 (146)

P (α+β−ai⊥biλ2) = 1−4δ
8(1−2δ)

P (α−β−ai⊥biλ2) = 0 (147)

P (α+β−ai⊥bi⊥λ2) = 0 P (α−β−ai⊥bi⊥λ2) = 0 (148)

By construction this distribution has the product form that is characteristic for class
(Hα

10), and it involves autonomy, nearly perfect correlations for parallel settings and
nearly perfect anti-correlations for perpendicular settings. This explicitly shows class
(Hα

14) to be consistent with these assumptions. In a similar way, one can find examples
for classes (Hα

4 ), (Hα
5 ), (Hα

15) and (Hα
16) consistent with the mentioned assumptions.

q.e.d.

Proof of theorem 2.2

We split the theorem up into two partial claims:

Claim 1: Given autonomy, nearly perfect correlations and nearly perfect anti-correlations
a consistent class (i.e. a class that fulfills (¬i)) implies Bell inequalities if
(iii) each factor of its product form involves at most one setting.

Claim 2: Given autonomy, nearly perfect correlations and nearly perfect anti-correlations
a consistent class (i.e. a class that fulfills (¬i)) does not imply Bell inequal-
ities if (¬iii) at least one factor of its product form involves both settings.
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Proof of claim 1

The set of classes fulfilling (¬i) and (iii) consists of (H15), (H16), (H22) and (H29).
It has to be shown that given autonomy, nearly perfect correlations and nearly perfect
anti-correlations, each of these class implies Bell inequalities.

In lemma 2 we have already demonstrated that under these conditions (Hα
16) implies

Bell inequalities. Since (Hα
15) only differs from (Hα

16) in that the settings are swapped
in the product form, mutatis mutandis also (Hα

15) implies the inequalities. Finally, since
local factorization (Hα

29) is a weaker product form than (Hα
16), and since (Hα

22) is a
weaker form than (Hα

15), it is clear that also these other two product forms imply the
Bell inequalities in the given circumstances.

Note that though it might seem obvious that local factorization implies the inequal-
ities, it is a non-trivial claim that it does imply the Wigner-Bell inequalities with
only nearly perfect (anti-)correlations, because usual derivations so far did have to
assume strictly perfect correlations; however, our derivation with (Hα

16) can easily be
adopted to derive the inequalities from local factorization and just the nearly perfect
(anti-)correlations. q.e.d.

Proof of claim 2

The classes fulfilling condition (¬i) while violating (iii) are (Hα
1 )...(Hα

14). Here we have
to show that given the background assumptions autonomy, nearly perfect correlations
and nearly perfect anti-correlations, these classes do not imply the Bell inequalities. This
amounts to showing that there is at least one distribution for each class that fulfills the
background assumptions and violates the Bell inequalities.

We know already from theorem 1.2 that the classes (Hα
1 )..(Hα

14)\{(Hα
4 ), (Hα

5 ), (Hα
10)}

can violate the inequalities given the assumptions of autonomy and strictly perfect cor-
relations. Since the latter are a stronger condition than nearly perfect correlations, it
is clear that these classes can violate the Bell inequalities also in the present case. It
remains to show that the classes (Hα

4 ), (Hα
5 ), (Hα

10) can violate the inequalities under the
given assumptions. Here we explicitly construct an example for class (Hα

10).
In the proof of claim 2 of theorem 2.1 we have constructed a toy example of a prob-

ability distribution for this class that is compatible with autonomy and nearly perfect
(anti-)correlations. When, for any setting i, we use the resulting probabilities (121)–
(127) we can be sure that the distribution we are about to construct is consistent with
the nearly perfect (anti-)correlations. What remains to be done is to reproduce the
EPR/B correlations for non-parallel and non-perpendicular settings. We again choose
the settings a1 = 0◦, a2 = 30◦, b1 = 30◦ and b2 = 60◦ as well as the quantum state
ψ = (|+ +〉+ | − −〉)/

√
2. Then the observable probabilities read:

P (α±β±|a1b1) = 3
8 P (α±β∓|a1b1) = 1

8 P (α±β±|a1b2) = 1
8 P (α±β∓|a1b2) = 3

8 (149)

P (α±β±|a2b1) = 1
2 − δ P (α±β∓|a2b1) = δ P (α±β±|a2b2) = 3

8 P (α±β∓|a2b2) = 1
8 (150)

(Note the difference to the probabilities with the same settings and quantum state in
(106)–(107), which involve strictly perfect anti-correlations for parallel settings a2 = b1
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(P (α±β±|a2b1) = 1
2 and P (α±β∓|a2b1) = 0) instead of nearly perfect ones (P (α±β±|a2b1) =

1
2 − δ and P (α±β∓|a2b1) = δ).
These are sixteen equations, and any of the probabilities on their left hand sides can be
expressed by the product form of the hidden joint probability:

P (αβ|ab) =
∑
λ

P (λ)P (α|βλ)P (β|abλ) (151)

P (λ) and P (α|βλ) are completely determined by the requirements of the perfect (anti-)cor-
relations (121)–(123), P (β|abλ) partly so (namely only for the parallel settings, (124)).

Inserting these predetermined probabilities into equations (149)–(150) yields the fol-
lowing consistent values for the missing probabilities P (β|abλ):

P (β+|a1b1λ1) = 1−8δ
4(1−2δ) P (β−|a1b1λ1) = 3

4(1−2δ) P (β+|a1b1λ2) = 3
4(1−2δ) P (β−|a1b1λ2) = 1−8δ

4(1−2δ)

(152)

P (β+|a1b2λ1) = 3−8δ
4(1−2δ) P (β−|a1b2λ1) = 1

4(1−2δ) P (β+|a1b2λ2) = 1
4(1−2δ) P (β−|a1b1λ2) = 3−8δ

4(1−2δ)

(153)

P (β+|a2b2λ1) = 1−8δ
4(1−2δ) P (β−|a2b2λ1) = 3

4(1−2δ) P (β+|a2b2λ2) = 3
4(1−2δ) P (β−|a2b2λ2) = 1−8δ

4(1−2δ)

(154)

Finally, choosing, say,

P (ai) =
1

2
P (ai⊥) =

1

2
P (bi) =

1

2
P (bi⊥) =

1

2
(155)

the formula

P (αβabλ) = P (α|λ)P (β|abλ)P (λ)P (a)P (b) (156)

entails the following total probabilities:

P (α+β+a1b1λ1) = 0 P (α+β−a1b1λ1) = 3δ
16(1−2δ)

P (α−β+a1b1λ1) = 1−8δ
32(1−2δ)

P (α−β−a1b1λ1) = 3
32

P (α+β+a1b2λ1) = 0 P (α+β−a1b2λ1) = δ
16(1−2δ)

P (α−β+a1b2λ1) = 3−8δ
32(1−2δ)

P (α−β−a1b2λ1) = 1
32

P (α+β+a2b1λ1) = 0 P (α+β−a2b1λ1) = δ
4

P (α−β+a2b1λ1) = 0 P (α−β−a2b1λ1) = 1−2δ
8

P (α+β+a2b2λ1) = 0 P (α+β−a2b2λ1) = 3δ
16(1−2δ)

P (α−β+a2b2λ1) = 1−8δ
32(1−2δ)

P (α−β−a2b2λ1) = 3
32

P (α+β+a1b1λ2) = 3
32

P (α+β−a1b1λ2) = 1−8δ
32(1−2δ)

P (α−β+a1b1λ2) = 3δ
16(1−2δ)

P (α−β−a1b1λ2) = 0

P (α+β+a1b2λ2) = 1
32

P (α+β−a1b2λ2) = 3−8δ
32(1−2δ)

P (α−β+a1b2λ2) = δ
16(1−2δ)

P (α−β−a1b2λ2) = 0

P (α+β+a2b1λ2) = 1−2δ
8

P (α+β−a2b1λ2) = 0 P (α−β+a2b1λ2) = δ
4

P (α−β−a2b1λ2) = 0

P (α+β+a2b2λ2) = 3
32

P (α+β−a2b2λ2) = 1−8δ
32(1−2δ)

P (α−β+a2b2λ2) = 3δ
16(1−2δ)

P (α−β−a2b2λ2) = 0

This completes our construction of a distribution from class (Hα
10) which respects, autonomy,

nearly perfect correlations, nearly perfect anti-correlations and violates the Bell inequal-
ities. Similarly, one can construct examples of distributions for class (Hα

4 ) and (Hα
5 ).

q.e.d.
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Proof of theorem 3

One can demonstrate the equivalence between product forms and conjunctions of inde-
pendences for each hidden joint probability separately (analogous to how Jarrett derived
(P7)), but the following constructive method is more elegant: in the case that the hid-
den joint probability factorises according to the product rule, (Hα

1 ), none of the relevant
independences holds (and vice versa). Then we consider the five cases in which exactly

one independence holds (Hα
2 )–(Hα

6 ). Here is the proof of (Hα
2 )↔ (`PIβ2 ):

← P (αβ|abλ) = P (α|βbaλ)P (β|abλ)
(`PIβ2 )

= P (α|βbaλ)P (β|aλ) (157)

→ P (β|abλ) =
∑
α

P (αβ|abλ)
(Hα2 )
= P (β|aλ)

∑
α

P (α|βbaλ) = P (β|aλ) (158)

The equivalence (Hα
3 )↔ (PIβ2 ) can be shown mutatis mutandis (just swap the local with

the distant parameter). (Hα
4 )↔ (`PIα1 ) can be derived as follows:

← P (αβ|abλ) = P (α|βbaλ)P (β|abλ)
(`PIα1 )

= P (α|bβλ)P (β|abλ) (159)

→ P (α|βbaλ) =
P (αβ|abλ)

P (β|abλ)

(Hα4 )
=

P (α|βbλ)�����P (β|abλ)

�����P (β|abλ)
= P (α|βbλ) (160)

The equivalences (Hα
5 )↔ (PIα1 ) and (H6)↔ (OI1) are proved similarly. Then, by pairs of

these five equivalences involving one independence, we prove equivalences with two inde-
pendences, and subsequently, equivalences with three independences, and so on. Here is
an example how to derive an equivalence with two independences, (Hα

7 )↔ (PIβ2 )∧(`PIβ2 ),
on the basis of the corresponding equivalences with one independence respectively:

← (PIβ2 ) ∧ (`PIβ2 )
(157), (158)←→ (PIβ2 ) ∧ (Hα

2 )
(161)→ (Hα

7 )

P (αβ|abλ)
(Hα2 )
= P (α|βbaλ)P (β|ab′λ)

(PIβ2 )
= P (α|βbaλ)P (β|a′b′λ) (161)

→ (Hα
7 )

(∗)→ (Hα
3 )↔ (PIβ2 ); (Hα

7 )
(∗)→ (Hα

2 )↔ (`PIβ2 )

(∗): (Hα
7 ) is a common special case of (Hα

2 ) and (Hα
3 ); if (Hα

7 ) holds, then a
forteriori (Hα

2 ) and (Hα
3 ):

∀a, a′, b, b′ : P (αβ|abλ) = P (α|βbaλ)P (β|a′b′λ) (Hα
7 )

∀a = a′, b, b′ : P (αβ|abλ) = P (α|βbaλ)P (β|a′b′λ) (Hα
2 )

∀a, a′, b = b′ : P (αβ|abλ) = P (α|βbaλ)P (β|a′b′λ) (Hα
3 )
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Similarly, one can derive step by step the other equivalences between product forms and
independences in table 1.
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