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The emerging field of quantum mereology considers part-whole relations in quantum systems. 
Entangled quantum systems pose a peculiar problem in the field, since their total states are not 
reducible to that of their parts. While there exist several established proposals for modelling 
entangled systems, like monistic holism or relational holism, there is considerable unclarity, which 
further positions are available. Using the lambda operator and plural logic as formal tools, we 
review and develop conceivable models and evaluate their consistency and distinctness. The main 
result is an exhaustive taxonomy of six distinct and precise models that both provide information 
about the mereological features as well as about the entangled property. The taxonomy is well-
suited to serve as the basis for future systematic investigations. 

1. Introduction 
Quantum mereology concerns the question how the quantum realm is structured into parts and 
wholes. The fact that quantum systems can be entangled (Einstein, Podolsky & Rosen 1935, 
Schrödinger 1935), and most of them are, seems to make the quantum realm peculiar also1 concerning 
the part-whole relation because micro-reductionism fails in entangled systems (Maudlin 2006 / 1998, 
Hüttemann 2005): Entangled states do not supervene on intrinsic states of the parts, and consequently 
the entangled property of a two-particle system (“macro property”) does not reduce to properties of 
the one-particle systems (“micro properties”).2 Typically, entanglement has been understood to imply 
some kind of “quantum holism”, which has been spelt out in different ways.3  

However, most of this discussion relies on a rather intuitive and imprecise notion of “part” and 
“whole”. As a consequence, it often remains an open question whether certain positions have 
substantial disagreement (or in fact are equivalent), and even whether certain positions would be 
consistent given a clear meaning of the notions.  

Only in recent years, philosophers have started to apply the resources of the more developed debate 
about the mereology of ordinary objects to the quantum realm (e.g. Calosi, Fano & Tarozzi 2011; Calosi 

 
1 It is well-known that quantum entanglement poses a spatio-temporal problem (Bell 1964, Maudlin 
2011/1994), a problem for individuation (Redhead & Teller 1992; Saunders 2006) and a causal problem 
(Näger 2016).  
2 As usual in the philosophical debate here and in the following the attributes “micro” and “macro” do not denote 
the microscopic or macroscopic scale, respectively, in the physical sense, but rather discern between the level of 
parts and the level of the composite quantum system, which both belong to the microscopic scale in the physical 
sense. 
3 Authors have assumed that there are fundamental entanglement relations (“relational holism”, Teller 1986), 
irreducible / non-separable wholes (Howard 1989, Esfeld 2001) or undivided wholes (Bohm 1993). 
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& Tarozzi 2014). It proceeds from a precise formal theory of parts and wholes, called “classical 
extensional mereology” (CEM).4 We agree with the pioneering authors in the field of quantum 
mereology that using the precise resources from the classical debate is an appropriate way to better 
understand the mereological peculiarities of the quantum realm.  

An important step in an emerging field is to get an overview of the available options. On the one hand 
there are models in quantum mereology that have been (at least in their rough forms) established for 
decades: It is well-known that entangled quantum states can be regarded to describe the irreducible 
intrinsic property of a (possibly undivided) whole (“monistic holism”); or they can be regarded to 
describe an irreducible relational property between entangled micro objects (Teller 1986; “relational 
holism”). On the other hand, the debate has recently become a new twist by additional proposals that 
regard the entangled property to describe a plural property that is collectively carried by the micro 
objects (Bohn 2012; Brenner 2018). If these latter models are admissible, they would extend the space 
of available options. But are they? Are these options reliable, distinct models? And: Are there other 
conceivable models that one needs to take into account?  

This paper aims at making clear which models are in fact available for the quantum mereologist in 
entangled system. It considers both the suggested models as well as alternative, prima facie sensible 
ones, carefully analyses the models and tries to clarify their relations. It will turn out that some models 
are in fact equivalent while others are even inconsistent. The main result of this paper will be a 
detailed, exhaustive taxonomy of six distinct and precise models for the relation between parts and 
wholes in entangled systems.  

On the way to our result we make use of formal methods that are not common in the debate yet. In 
order to characterize complex predicates we shall apply the so called “lambda operator”; the emerging 
formalism of plural logic will help us to characterize certain suggestions more clearly; and occasionally, 
we shall even combine the two. Note that this paper is not about quantum logic: Though using 
somewhat advanced tools of logic, the basic underlying assumption is classical first-order predicate 
logic.  

The paper is organised in three main sections. In a first part (I) we introduce possible mereological 
models that describe the part-whole relations in entangled systems. A second part (II) examines how 
the irreducible entangled quantum state can be modelled in terms of properties or relations. Finally, 
we discuss which combinations of the models are viable and discuss immediate results (III). 

I. Objects and mereology 

2. Formal mereological models and quantum theory 
Classical extensional mereology (CEM; Tarski 1929, Leonard & Goodman 1940, Simons 1987) is about 
objects being parts of objects. There are two questions, which a mereological model must be 
informative about:  

(i) Which objects are there? 
(ii) Which objects stand in the is-part-of relation? 

 
4 “Classical” in “classical extensional mereology” does not contrast with “quantum”. It does not matter here what 
it contrasts with. As to the name, we follow Hovda (2009). 
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We call the conjunction of (i) and (ii) the “basic mereological question”. An answer to them is called a 
“mereological model”.  

CEM is general enough to be compatible with many different interpretations of quantum theory and 
does not commit one to a specific reading of the theory. Nevertheless we restrict our considerations 
in the following to realistic readings of quantum states, i.e. interpretations which assume that 
irreducible quantum states describe real properties;5 for interpretations of the theory that imply that 
entangled quantum states describe real, irreducible properties are the most debated and the most 
interesting ones from a mereological perspective. This is the main assumption we need to make 
concerning the interpretation of quantum theory, so the models we shall develop here are compatible 
with a wide range of interpretations such as a standard textbook interpretation, a GRW mass density 
theory (Ghirardi, Grassi & Benatti 1995), a propensity interpretation (Popper 1957) etc.6 We shall now 
sketch CEM’s fundamental notions and thereby explain, why the theory is rather general and thus well-
suited for describing the quantum realm. 

First, the notion of an object required by CEM is rather thin. As CEM is an extension of classical first 
order predicate logic, the minimal requirements for an object are determined by that theory. There 
are three aspects. First, CEM’s standard semantics requires that an answer to question (i) indicates a 
nonempty domain of well-distinguished objects, i.e. objects capable of being elements of some set. 
Second, disregarding their ordering as parts and wholes, the objects are basically all on a par. 
Especially, considerations concerning ontological priority of parts to composites (or vice versa) do not 
play any role in the theory. Third, first order predicate logic assumes that it is intelligible to distinguish 
between objects (e.g. a proton) and the properties that they bear (for instance, having mass 1u). The 
properties are not themselves elements of the domain but are defined extensionally. Thus, the theory 
is not committed to any specific theory of substances. The objects may even be space-time points as 
in a moderate event ontology that assumes events to be instances of properties at space-time points.7 

Being based on first order predicate logic, the semantics of classical mereology involves the usual 
strong concept of identity and discernibility, and especially it assumes that one is able to give names 
to objects.8 It is true that in systems with quantum objects of the same kind the objects are widely 
assumed to not have strong identity (either they are non-individuals or only have weak identity).9 Since 

 
5 By this assumption we preclude anti-realistic readings of the theory such as epistemic interpretations (which 
understand the wave function as a state of knowledge, e.g. Friederich 2011) or a GRW flash interpretation 
(according to which there are only flash events in space-time and quantum states are mere means to predict 
such flashes; see Bell’s ontological elaboration (2004, ch. 22) of Ghirardi, Rimini & Weber’s theory (1986)).  
6 While our arguments in the following are based on non-relativistic quantum mechanics, we should note that 
we expect them to be generalizable to quantum field theory (as the formal structure of entangled quantum 
states there remain unchanged). 
7 CEM is formally even compatible with certain ontologies that deny the existence of property bearers on a 
fundamental level (e.g. event ontologies or certain forms of ontic structural realism). Consider, for instance, a 
radical event ontology that assumes events to be instantiations of properties without bearer: If such events are 
well-individuated by the properties that constitute them, these events can be referred to as the objects of the 
domain. So when in the following we speak of objects bearing properties, one can understand this to include 
such radical ontologies as well (although this might need additional adaptions at certain points). 
8 Individual constants are clearly names, and so are variables, if provisionary ones, as the arguments of a value 
assignment.  
9 Lyre (2018) provides an overview of the debate. On maintaining objects that are weakly discernible cf. Saunders 
(2006). For an approach which models non-individuals by abandoning the usual set-theoretic semantics and 
works with – today not very well-explored – quasi-sets cf. French & Krause (2006). 
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a mereology for non-individuals (or weakly identical objects) is currently not at hand,10 this yields the 
following dilemma for any quantum mereologist: Either one cannot make precise statements about 
parts and wholes in the quantum realm at all (since one misses an appropriate mereology) or one 
makes precise statements from a classical point of view (if one applies classical mereology), which, 
however, might be false. Fortunately, there is an elegant way out of the dilemma that becomes evident 
when one regards the quantum mechanical description of objects of the same kind: Quantum 
mechanics refers to the objects by labels (i.e. names) and then symmetrizes their properties, yielding 
models that can either be interpreted to involve non-individuals or objects with weak identity. The 
same strategy is available for mereological models: We here use names for objects and require 
possible models to symmetrically distribute all properties among the entangled objects. The resulting 
mereological models can then be understood in the one or the other way. Thereby one can separate 
the question about the mereological features of entangled systems from that about their 
individuation, and this paper focusses on the former.  

The second central concept for CEM is the parthood relation, which the theory characterizes 
axiomatically. For convenience of presentation we choose proper parthood (notated by “≪”) as our 
primitive notion.11 Accordingly, in what follows, the default meaning of “part” is “proper part”. Proper 
parthood is characterized as asymmetric (thus irreflexive) and transitive. 

For instance, a simple mereological model (for most part of this paper we shall not transcend the 
complexity of this example) might be that there are three distinct objects, say a, b and c, and that a is 
part of c and b is part of c. Stipulating that the model is complete, implies three facts. First, a and b do 
not overlap: They have no common parts; otherwise these would have to be recognised as objects in 
the model. Second, c has the special status of being the mereological sum of a and b (and thus, clearly, 
is a “composite object” or “whole”). And third, a and b compose c (since a and b are disjunct and c is 
their sum).12  

The concept of a mereological sum (sometimes called “fusion”) is a defined, not a primitive notion. In 
order to state its definition,13 we need the notion of reflexive parthood (notated by “<”), which is 
simply proper parthood or identity. Moreover, we need the notion of overlap: x overlaps y (notation: 
x O y) if and only if there is something, which is both a part of x and of y. CEM allows for using definite 
descriptions of sums.14 We can always speak of the sum over the condition F, and we use “s” in order 
to notate this as !sx Fx". !sx Fx"is defined as an abbreviation for  

! iy ("z (Fz # z < y) Ù "z (z < y # $z$ (Fz$ Ù z$ O y)) " 

The definition says: “The sum over condition F“ means “that object y such that (1) everything that 
fulfills condition F is a reflexive part of y and such that (2) every reflexive part of y overlaps something 

 
10 But see the efforts towards that aim, most notably Krause (2011) who proposes a mereology based on quasi-
set theory. 
11 The theory can be equivalently formulated in a number of ways by choosing other notions as fundamental 
(and appropriately adjusting the axioms). For instance, Leonard & Goodman (1940) take the notion of overlap as 
fundamental. 
12 This agrees with the definition of “composition” in Inwagen (1990), which is standard today. The definition is 
independent of Inwagen’s rejection of mereological universalism. 
13 The concept of a mereological sum which we shall use is type-2-fusion according to Hovda (2009). Other 
definitions differ in nuances; these differences, however, disappear if the chosen framework is CEM.  
14 Not every conceivable mereology does. 
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that fulfills condition F“. As an abbreviation for “sx(x %!x=a!&!x=b)” (“the sum over the condition of 
being identical with a or b”), we shall use “s(a,b)”, which is read as “the sum of a and b”.  

3. Axioms of sum existence and metaphysics 
CEM requires axiomatically that there is a sum over every nonempty condition (“axiom of universal 
sum existence”). A fortiori, any two (or more) objects have a sum, which may be a scattered object. 
Therefore, a model assuming just the existence of two distinct objects a and b is not a model of CEM. 
Sums are not in any way second-rate objects. So CEM is not metaphysically innocent, but encapsulates 
mereological universalism.  

Others have weakened the axiom of sum existence by claiming that only under certain conditions two 
(or more) given objects have a sum (yielding a weaker alternative theory to CEM). In what follows, we 
shall allow for all mereological models that are consistent with theories that have a weaker axiom of 
sum existence. Some of the models we consider are even compatible with the most radical form of 
weakening, which is to claim that there are no composite objects at all (mereological nihilism).  

4. Basic mereological models for an entangled two-particle system  
Entanglement is a special kind of state for composite systems according to quantum theory. The 
simplest case of entanglement is an entangled spin state of a two-particle system, e.g. the spin singlet 
state of a two-electron system:  

|ψ⟩!" = (| ↑⟩!| ↓⟩"– | ↓⟩!| ↑⟩")/√2  (1)  

This entangled state describes the spin property15 of a so called “two-particle system”, which is meant 
to be a neutral name. It is neither meant to say that there exist two classical particles, nor that there 
is an object corresponding to the system as a whole. It is just meant to say that when measuring at the 
system, one finds two localized objects (“particles”) whose measured spin properties are best 
predicted by the noted spin state. We should mention that besides a spin state, a quantum system 
further has a position state as well as state independent properties like mass, charge, total spin.16 

We shall denote the object corresponding to the two-particle system by “c” and the object 
corresponding to the one-particle system by “a” or by “b”, respectively. Whether these objects exist is 
not stated by the quantum mechanical formalism, but is a matter of metaphysical interpretation. There 
are three basic mereological models for an entangled two-particle system: 

Model I: c exists, but a and b do not (i). In this case there is no further object which could be a proper 
part of c, so, trivially, there are no instances of the parthood relation (ii). According to this 
model, c is an undivided whole. While we shall make explicit below that any model of 

 
15 According to the singlet state the total spin is zero. The ket vectors indexed by 1 or 2 indicate the spin states 
of particle 1 or 2, respectively, e.g. “| ↑⟩!” says that particle 1 has spin up. Note that due to the minus sign the 
complete state is in a superposition such that neither particle is in a definite spin state. More formally, the spin 
state spaces of the single particles are two-dimensional complex Hilbert spaces, ℋ! and ℋ", and the state 
space ℋ!" of the two-particle system is the tensor product of these spaces, ℋ!" = ℋ!⨂ℋ", which is complex 
four-dimensional. 
16 While position states can be entangled as well, it has become common in the debate about entanglement to 
focus on the mathematically much simpler cases of spin entanglement; in this paper, we follow this 
convention. 
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entangled quantum systems involves some kind of holism, this position is the most radical 
form of holism since the entangled system does not even have parts.17  

Model II:  a and b exist, but c does not (i). This model neither involves instances of the parthood 
relation nor (non-trivial)18 sums (ii). The model is compatible with mereological nihilism 
which claims that composition does not occur.  

Model III:  a, b and c exist (i). In this case, a is a part of c and b is a part of c (ii). Then, according to the 
definition of a mereological sum, it follows that c is the mereological sum of a and b, c = 
s(a,b).19 Since a and b compose c, the model is compatible with mereological universalism 
as well as moderate compositionalism.  

 

(a) Model I 

 

(b) Model II 

 

(c) Model III 

Figure 1: Basic mereological models. Blobs represent objects, dotted arrows the parthood relation. 

 

Models where only a and c, only b and c, just a or just b exist are implausible because they introduce 
an asymmetry concerning the existence of the one-particle systems – and there is no justification in 
sight for such an assumption. Hence, the three models presented here, exhaust the sensible 
mereological options for a two-particle quantum system.  

II. Properties and reduction 

5. Entanglement and the failure of micro-reduction 
Entanglement is an interesting case for mereology for the very reason that synchronic micro-
reductionism fails in entangled systems (Hüttemann 2005).  

Consider again a two-particle system whose spin property is described by the singlet state (1). The 
state of such a two-particle system is called “entangled” if and only if it cannot be written (according 
to any basis) as a product of states for the one-particle systems, |ψ⟩!" ≠ 	|ψ⟩!	⨂	|ψ⟩" (where “⨂” 
denotes the tensor product). As combining states by the tensor product is the rule of composition for 
quantum systems, an entangled state cannot be regarded as being composed of states of the one-

 
17 As there is evidence that according to quantum theory the universe is an entangled system, this model of 
entanglement might lead to the view that the universe is the only existing object (mereological monism). 
18 Trivially, a and b themselves are sums over the condition of being a and of being b, respectively. 
19 Given that a is a part of c and b is a part of c, and a and b are distinct, c could only fail to be the mereological 
sum of a and b if c extended beyond a and b, i.e. if there were a third object d, which is part of c and distinct 
from a and b. Then, however, we would be confronted with, at least, a three-particle system – in contradiction 
with our assumptions.  

c

a b a b

c
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particle systems. It is one of the very surprising and unique features of the quantum realm that such 
entangled states exist.  

There is disagreement among quantum theorists whether the states of the one-particle systems are 
well-defined and one cannot derive the entangled state from them, or the states of the one-particle 
systems are not well-defined at all, such that there is an additional, trivial reason for supervenience to 
fail. The disagreement concerns the question what exactly counts as quantum state, either it is rays in 
Hilbert space (“ray view”) or statistical operators (“statistical operator view”). In both cases, however, 
if we take quantum theory at face value and interpret it realistically, especially if we assume that 
quantum states correctly describe the properties of quantum systems, we reach the result that 
quantum macro properties do not reduce to quantum micro properties (failure of supervenience / 
micro-reductionism, Maudlin 2006/1998). This is the central and undisputed feature of entangled 
systems that we shall exclusively make use of in the following. Our subsequent considerations are 
therefore compatible with both views of quantum states.  

There is a second irreducibility claim associated with entanglement that is not so often stated. It 
concerns entanglement of three or more particles (“multipartite entanglement”) and says that there 
are entangled states of several objects (n≥3) that cannot be reduced to binary entanglement relations. 
In the strongest case, it is not even possible to reduce an entanglement relation among n objects to 
entanglement relations among any l and m objects (with l+m=n). We shall call this the “relational 
irreducibility claim (of entanglement)”. In this way, there are entanglement relations that are 
irreducibly n-ary relations. This contrasts with other n-ary relations, e.g. “standing in an equilateral 
triangle”, that can be reduced to binary relations.  

6. Modeling irreducible entangled properties  
The failure of micro-reductionism constitutes an important boundary condition for the quantum 
mereologist. In addition to the basic mereological question, which objects there are (i) and which 
objects stand in the parthood relation (ii), any appropriate mereological model must answer two more 
questions.  

In order to formulate these question, we assume that in the models we consider each predicate P 
corresponds to a property P (mind the italics!).20 Analogously to the arity of a predicate (the number 
of its places; also called “adicity” or “valency”) we speak of the arity of properties and relations, too.  

Here are the additional questions:  

(iii) Of which arity is the irreducible entangled property? 
(iv) Which object(s) bear the irreducible entangled property?  

There are four prima facie answers to questions (iii) and (iv) for the case of an entangled two-particle 
system:  

Model A: The entangled property is a binary relation R holding between the one-particle objects a 
and b, such that “Rab” is true. (The two-particle system c might or might not exist.) As 
micro-reduction fails, R is not reducible to unary properties of the one-particle objects 
(unlike being taller which can be reduced to the size of each object); R is a fundamental 

 
20 It is of course not trivial to formulate models such that they fulfill the assumption. 
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relation (Teller 1986). R might, for instance, be the symmetric two-place relation having 
opposite spin to.21  

Model B: The entangled property is a unary property P and is carried by the two-particle object c, 
such that “Pc” is true. The one-particle systems a and b might or might not exist. If a and b 
exist, due to the failure of micro-reduction, P cannot be reduced to unary properties of a 
and b. In order to be distinct from model A, the position furthermore requires that P is not 
reducible to a relation R holding between a and b.  

Model C: The entangled property is a unary property Pcol and is carried by a and b collectively. The 
idea here is unusual in a twofold way: First, several micro objects can carry a macro 
property jointly such that the macro object need not exist as the bearer of the macro 
property (c might or might not exist.). Second, attributing a unary predicate to several 
objects requires plural attribution as in “Huey, Dewey and Louie stand in an equilateral 
triangle”. Due to the failure of micro-reduction, property Pcol is not reducible to unary 
properties carried by each a and b. (Note that we do not rule out that Pcol is reducible to a 
relation R; more on the question how exactly to understand the collectively carried 
property Pcol in Section 12.) 

Model D: When talking about an entangled property, what we really mean is a pair of two unary 
properties PA and PB, such that each a and b bears one of them: PAa and PBb. (c might or 
might not exist.) PA and PB are pretty special: Since micro-reductionism fails, PA and PB must 
involve an essential reference to the respective other object, e.g. PA might be having 
opposite spin to particle b.22 We call such unary properties that essentially refer to other 
objects “extrinsic unary properties”. Being extrinsic does not make them any less unary (as 
they are carried by one object). It is therefore crucial to distinguish between relations and 
extrinsic unary properties. In contrast, unary properties lacking essential reference to other 
objects are called “intrinsic unary properties”.23 The irreducibility claim then amounts to 
the fact that neither PA nor PB can be reduced to intrinsic unary properties of the one-
particle systems. 

Note that models A to D (about the irreducible entanglement property and its bearer(s)) are somewhat 
(but not completely) independent of mereological models I–III, since some of the models A to D leave 
open whether certain objects exist and whether existing objects relate as part and whole. We shall 
only integrate the two classes of models at the end of this paper. Before that we shall now make the 
models A to D precise and make explicit logical dependences between them; in order to do this, we 
first need to introduce a formal tool: the lambda operator.  

7. The lambda operator 
Roughly, the lambda operator is a formal device which allows to define complex predicates in the 
context of some formal language. As this paper applies logic, we permit ourselves to introduce the 

 
21 The binary relation having opposite spin to would be reducible to unary spin properties if there were fixed 
unary spin values. The reason why reduction does not work in the entangled quantum case, however, is that in 
such states it is not true that the spin values are fixed.  
22 Maudlin (1998, 638) calls this view “joint state mode”: “[E]ach particle has a spin state, but one that can only 
be specified by referring to the other particle. […] In this case the spin state of particle [a] simply cannot be 
specified without mentioning particle [b]”. 
23 For a sound definition of intrinsicality see Lewis 1983, p. 197. 
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lambda operator here without going into technical details or varieties.24 As an example, consider the 
complex predicate of being-both-F-and-G, which may be notated as “lx (Fx ' Gx)”. Its extension will 
contain just those objects which satisfy both the condition of being F and the condition of being G. 
Note that “lx (Fx ' Gx)” is just a predicate, not a formula. In contrast, “lx (Fx ' Gx) d” is a formula.25 
As a moment’s reflection on the extension of “lx (Fx ' Gx)” shows, the formula “lx (Fx ' Gx) d” is 
equivalent to “Fd ' Gd”. In fact, this observation may basically26 be generalized to the following rule, 
where x is a meta-variable, d is a meta-constant, !F[x]"indicates that x occurs somewhere in F and 
!F[d]" is the result of replacing every occurrence of x in F[x] by a): 

!lx (F[x]) d" is equivalent to !F[d]".     

A move, which exploits this rule, is called “lambda conversion”. Since an equivalence  holds in both 
directions, both “lx(Fx) d # Fd” and “Fd # lx(Fx) d” are true due to lambda conversion. 

Another transformation involving the lambda operator is called “lambda abstraction”: Take some 
formula with n occurrences of some constant d, replace at least one of them with some variable x and 
bind the result by !lx ", thus creating the new predicate !lx (F[x])". For example, “lx (Fx)” is created 
by lambda abstraction from “Fd”.27   

The feature, which concerns us most, is relating predicates of different arity. For instance, the binary 
predicate “R” may be used to produce the formula “Rde” (“Romeo loves Juliet”). Now, by lambda 
abstraction, we may form the predicate “lx(Rxe)”, which, in the example, expresses the property of 
loving Juliet, and the predicate “ly(Rdy)”, which expresses the property of being loved by Romeo (or 
of being someone whom Romeo loves). Lambda conversion yields: Rde ( lx(Rxe) d. It also yields: 
Rde ( ly(Rdy) e. By propositional logic, we may deduce from this the following slightly redundant 
formula: Rde ( lx(Rxe) d ' ly(Rdy) e. Being told that Romeo loves Juliet provides just the same 
information as being told that Romeo has the property of loving Juliet, or as being told that Juliet has 
the property of being loved by Romeo; and, of course, the same information as – for reasons of 
symmetry – being told both. By using lambda abstraction, we can package information about two 
entities standing in a certain relation as information about each of them having one of two 
corresponding relational properties. Let us call this feature of the lambda operator “separate 
packaging”.    

We may also proceed the other way around, from the corresponding relational properties to the 
holding of the relation. If we know that “lx(Rxe) d” is true, or that “ly(Rdy) e” is true, we know that 
just the appropriate conditions for the truth of “Rde” obtain. 

 
24 For our purpose, we won’t have to go beyond the introduction of the lambda operator in Gamut 1991, vol. II, 
chapter 4. The context, in which it is introduced there, is an extensional theory of types. For our application, it is 
not necessary to explain how this theory works. Let it suffice to say that it is (literally) infinitely more complex 
than first order predicate logic, but that it incorporates first order predicate logic as its basic level, which, on that 
level, may be extended to CEM. So there is no problem of using the lambda operator together with notation for 
mereological sums. 
25 If the lambda operator is in play, formulae tend to have a lot of brackets in order to indicate argument places. 
We drop them for sake of readability (in analogy with “Fd” instead of “F(d)”. Some readers might prefer 
“lx (Fx ! Gx) (d)” to the formula above.   
26 There is a slight complication with the move from right to left in this equivalence if free variables assume the 
rôle of constants (Gamut 1991, vol. II, 109f), which need not worry us here. 
27 Note that lambda abstraction is not quite the right to left move of lambda conversion, since creating a predicate 
is not the same as exploiting a true implication (predicates are neither true nor false). The idea behind both is 
pretty similar, though. 
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A different step we can take is to (so to say) relationalize properties. Let us say that Romeo is happy 
(“H”), and Rosaline (formal name: “f”) is hungry (“G”).28 So the following is true: Hd ' Gf. By lambda 
abstraction we may form the predicate “lx(Hx ' Gf)” (“being happy while Rosaline is hungry”). And, 
indeed, lambda conversion tells us that “lx(Hx ' Gf) d” is true, too: Romeo is happy while Rosaline is 
hungry. We may even, by applying lambda abstraction once more, form the predicate 
“ly lx(Hx ' Gy)”. Sticking to the example, and brackets aside, the result is that the following is true: 
ly lx(Hx ' Gy) d f.29 Romeo and Rosaline stand in just that (admittedly: artificial) relation to each other 
in which any x and any y stand if and only if x is happy, while y is hungry.30   

8. Lurking inconsistency – specifying model A 
We are now able to see that model A in a literal reading is inconsistent and inappropriate and needs 
some specification.  

Recall that model A considers the crucial entanglement property as a relation R between a and b (“Rab” 
being true) and, due to the failure of micro-reduction, forbids that R is reducible to unary properties 
carried by a and b. In order to see the inconsistency, let us define the following unary predicates with 
the help of the lambda operator:  

(D1)   PA (“having opposite spin to b”) := lx(Rxb)  

(D2)   PB (“having opposite spin to a”) := lx(Rax)   

Hence we have defined the unary predicates “PA” and “PB” as (relational) lambda abstracts. By lambda 
conversion, we have:31  

(E1)  (Rab ( lx(Rxb) a) ' (lx(Rxb) a ( PAa)  

(E2)  (Rab ( lx(Rax) b) ' (lx(Rax) b ( PBb) 

(Hence, also “PAa ( PBb” is true.)  

 
28 Readers of Shakespeare’s Romeo and Juliet will recall that Romeo used to be in love with Rosaline (I.2) before 
he met Juliet (I.5), after which she is not mentioned again. 
29 Friends of brackets may prefer „ly lx(Hx ! Gy) (d) (f)“ or even „ly (lx(Hx ! Gy) (d)) (f)“.  
30 Technically speaking, the language being used contains only unary predicates, many of which mimic many-
place-predicates as a result of Currying. But when applying it, we shall simply treat it as if it contained many-
place-predicates. 
31 Proof 1:  
 * 1 Rab   assumption 
 * 2 lx(Rxb) a  1, lambda conversion 
 * 3 ly(Ray) b  1, lambda conversion 
 * 4 lx(Rxb) a ! ly(Ray) b 2, I! 

Proof 2: 
 * 1 lx(Rxb) a ! ly(Ray) b assumption 
 * 2 lx(Rxb) a  1, I! (working with “ly(Ray) b” instead would be fine)
 * 3 Rab   2, lambda conversion 
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These reflections reveal that, for logical reasons, it is always possible to reformulate the holding of a 
binary relation R of a and b in terms of unary properties PA or PB, i.e. there are always unary properties 
PA or PB such that R is reducible to PA or PB. Therefore, the irreducibility requirement in model A, that 
relation R is not reducible to any unary properties, is too strong: For the one, it would make model A 
an inconsistent position. For the other, it would be an inappropriate description of entangled systems 
since the failure of micro-reduction in these systems is consistent with the entangled property being 
an extrinsic unary property such as PA and PB above (which is what model D claims).  

What is required then in order to make model A consistent and appropriate, is to weaken the 
irreducibility claim by adding a qualification to the unary properties to which the relation R is assumed 
to be irreducible: One should only forbid reductions to such unary properties of a and b that do not 
involve an essential reference to another object (what we have called “intrinsic unary properties”). 

For these reasons, we abandon model A and introduce the consistent and more appropriate  

Model A’:  The entangled property is a binary relation R holding between the one-particle objects a 
and b (“Rab” being true), and R is not reducible to intrinsic unary properties of a and b.  

9. Model A’ is equivalent to Model D 
We shall now show that model A’ is equivalent to model D. Recall that according to both models the 
entanglement property is had by a and b. While model A considers the crucial entanglement property 
as a relation R (i.e. having opposite spin to) between a and b, model D claims that the entanglement 
property consists in a pair of unary properties PA and PB that, however, essentially relate to the 
respective other object: e.g. PA might be having opposite spin to b and PB might be having opposite 
spin to a. Such properties seem strange: on the one hand, they are clearly unary; on the other hand, 
involving the other object makes them relational in a certain sense. Isn’t that a contradiction? Not 
necessarily. A consistent, and in fact the best, way to understand such properties, it seems to us, is to 
construct them with the lambda operator as in the definitions (D1) and (D2) above.  

By the immediate logical consequences (E1) and (E2) of these definitions we have already proven that 
the claims about the entangled property and its bearer of both models – “Rab” according to model A’, 
and “PAa ' PBb” according to model D – are equivalent. Then, we still need to show that their 
irreducibility claims are equivalent. As the statements about properties are equivalent, this is 
straightforward: Both models assume that the crucial entangled properties are not reducible to 
intrinsic unary properties of a and b.  

10. Models A’ and B are distinct  
The lambda operator might seem to level the difference between model A’ (which assumes “Rab” to 
be true) and B (assuming “Pc” to be true). There are two strategies: one tries to reduce model B to 
model A’ and the other proceeds vice versa.  

First, a proponent of model A’ might attempt to reduce model B, which says that the entangled 
property is a unary property P’ carried by the two-particle object c, by defining the corresponding 
predicate as follows: 

 P’ := lx(a ≪ x ' b ≪ x ' Rab). 
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According to this definition, if “Rab” is true and a and b are (proper) parts of c, “P’ c” is true as well. 
The idea here is that a unary property P’ of an object c can be reduced to a relation R holding among 
its parts a and b.  

This reduction, however, does not work in the case of the above models for two reasons. First, it is 
clear that the presented reduction is only possible, when a, b and c exists and c is the sum of a and b. 
Model B, however, also applies in cases, in which only c but not a and b exist. Then, the envisaged 
reduction is not possible.  

Second, and more importantly, even in cases where a, b and c exist, the reduction fails. For model B 
requires that the entangled (spin) property is a unary property. According to the reductionist model, 
however, while there is a unary property P’ involving the entangled spin property R (plus mereological 
relations), the entangled spin property is not unary but binary.  

Third, vice versa, a proponent of model B might try to reduce model A’ in a similar way. He might refer 
to a complex binary relation R’ by defining the corresponding binary predicate as follows:  

R’ := lx ly(x ≪ c ' y ≪ c ' Pc). 

Thus, R’ is that relation in which a stands to b exactly if both a and b are proper parts of c, while c has 
the property P. Since c is the sum of a and b, “R’ab” is true in model B, if a and b exist, c is the sum of 
a and b, and c is P. If that is how R’ is defined, we will have:  

R’ab ≡  lx(x ≪ s(a,b) ' P s(a,b)) a   '  lx(x ≪ s(a,b) ' P s(a,b)) b  

(a stands in relation R’ to b if and only if a has the property of being a proper part of the sum of a and 
b, while the sum of a and b is P, and b has the same property.) This alleged reduction of model A’ to 
model B does not work for the very same reasons as the parallel reduction of model B to A’ does not: 
R’ only holds, when a and b exist, but model B does not require this generally; and the entangled spin 
property in this case is P, and P is not binary (as model A’ assumes).   

In sum, it follows that, by the envisaged strategies, neither is model B reducible to model A’ nor vice 
versa. The two models are distinct.  

11. Collective relational properties: irreducible relations 
So far we have assumed that model A’ involves an irreducible, binary relation between a and b (or in 
the general case: an irreducible n-ary relation between the n objects). Such irreducible relations are 
one way of making clear the idea that the micro objects collectively carry a macro property. Then, no 
macro object is needed in order to carry the irreducible macro property.  

Brenner (2018) furthermore proposes that we can think of the irreducible relation as being multigrade, 
i.e. as not having a fixed arity but rather being flexible as to how many objects carry it. According to 
Brenner, the macro property “having spin 0” can be carried by any number of objects. In this way, he 
defends relational properties against an objection by Schaffer (2010) who claims that the fact that 
intrinsic macro properties can be carried by a macro object consisting of any number of parts makes 
that model superior to collectively carried relational properties.  

In sum, we note that model A’ comes in two variants: either as assuming n-ary relations or as assuming 
multigrade relations.  



Näger, P.M. & Strobach, N. (2021). A taxonomy for the mereology of entangled quantum systems. Preprint. https://philarchive.org/rec/NGEATF 13 

12. What are unary collective properties? Five readings of model C 
There is a certain prima facie tension in model C in claiming that a unary property Pcol is carried by 
several objects collectively. What might make sense of this claim? Prima facie, there are four possible 
readings: 

(R1) Pcol is in fact a unary singular property and there is a single composite entity c (distinct from a and 
b) that carries it.  

(R2) Pcol is a complex unary plural property essentially involving a binary relation carried by a and b (in 
the case of n particles: Pcol essentially involves an n-ary relation carried by the n particles); 

(R3) Pcol can be analyzed into a binary relation carried by a and b (in the case of n particles: Pcol can be 
analyzed into several binary relations holding between pairs of the n particles); 

(R4) Pcol is a non-analyzable unary plural property carried by a and b. 

(R5) Pcol is in fact a complex unary singular property and there is a single composite entity c (distinct 
from a and b) that carries it; Pcol essentially involves a unary plural property, Pp, carried by a and b 
collectively.  

We shall now argue that readings (R1), (R2), (R3) and (R5) are inappropriate in the present case. So the 
result will be: If model C is meant to be a further option besides models A’ and B, it must be understood 
by reading (R4).  

Let us start by saying why reading (R1) does not add an option to our taxonomy. Take an everyday 
example of (prima facie) plural predication: “the firefighters saved her from the burning house”. 
Advocates of (R1) would analyze such cases as normal unary singular predication: “the ensemble of 
firefighters rescued her from the burning house”, while the word “ensemble” is understood as 
referring to some single entity. There are different proposals for understanding such composite 
entities: they have been thought of as mereological sums, pluralities or the like.32 According to the 
assumptions in this paper we restrict our considerations to sums.33 Accordingly, to say that model C 
involves hidden reference to a single entity would be to assume that, in fact, it is the mereological 
sum c of a and b which carries the unary entangled property Pcol: Pcolc. Then, however, model C reduces 
to model B. If model C is meant to be an option distinct from model B, we cannot interpret it in the 
sense of (R1).  

Note that the other readings, in contrast, share the advantage of not being committed to the existence 
of a single entity as a bearer of the property in question. Plural predication according to (R2), (R3) and 
(R4) minimizes ontological commitments concerning objects and is even compatible with mereological 
nihilism. Analyzing these options requires plural logic, which is an emerging field recently explored in 
some depth (Oliver & Smiley 2016/2013). As we shall furthermore need to apply the lambda operator 
we are entering somewhat uncharted territory. To our knowledge, the lambda operator34 has not been 
applied to plural terms yet, though it seems as if the application were straightforward (at least in the 
simple cases we shall consider). Therefore, in the following sections, we pretend having a resource at 
hand, whose availability the future must show. If the exploration in this paper is of any interest, it 
might motivate more basic research on this point. 

 
32 In other cases like “the even numbers are infinite”, the single entity in question might be a set, “the set of even 
numbers is infinite”.  
33 Our results might, mutatis mutandis, be transferred to models about pluralities etc. as well. 
34 To be distinguished from Boolos’ lambda notation for plural logic, cf. Oliver & Smiley (2016), 31; 60-65. 
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13. A very short introduction to plural logic 
In order to understand the remaining readings of model C we need to introduce some basic 
terminology of plural logic. We start with plural names: The characteristic feature of plural names 
(according to Oliver & Smiley 2016/2013) like “the Smiths” is that they refer to several objects without 
any reference to a single higher-level entity.35 Note that a list of several names like “Huey, Dewey and 
Louie” counts as one (plural) name. Formally, we can define “d” as denoting Huey (and nobody else), 
“e” standing for Dewey, “f” for Louie and the plural name ”c” (boldface!) for the three of them. Let 
“)” denote the one-many relation is (properly) among, which is emphatically not the same as 
parthood. Finally, let us think of a unary plural predicate “F” (e.g. “jointly writing a paper”, “dancing 
tango”).36 Characterizing a predicate as both unary and plural might sound surprising, but there is a 
clear sense. “Unary” means that adding one name to it will make a formula, which is a syntactical 
requirement. “Plural”, on the other hand, means that adding a singular name (referring to one object, 
in contrast to a plural name) to it will never yield a true formula, which is a semantical condition. How 
might the plural sentence “Huey, Dewey and Louie stand in an equilateral triangle” be expressed then? 
“Fc” or, equivalent to it by lambda conversion, “lx(Fx) c” are good candidates.37  

14. Reading (R2) of model C reduces to model A 
We emphasize that reading (R2) does not say that Pcol is in fact a binary (in the multipartite case: n-ary) 
relation as this would contradict the assumption of model C that Pcol is unary, and, moreover, it would 
make model C straightforwardly coincide with model A. Rather, along the lines of our introduction to 
plural predicates above, the idea here is to understand Pcol as a complex unary plural property 
essentially involving an n-ary relation. What exactly does this mean? 

We start by considering the case of bipartite entanglement. Let us define “c” as a plural term that 
denotes a and b (once more: mind the boldface, also in what follows). Now “Pcolc” should be 
understood to be equivalent to  

(plural)       lx (R’ab ' a ) x ' b ) x ' *y (y )  x # y = a & y = b)) c  

In other words, the cs satisfy the condition of (properly) having a and b, and nothing else, among them 
which stand in relation R’ to each other. 

What, according to this understanding of a collectively carried property, does the irreducibility claim 
of model C amount to? In the prima facie characterization of model C above we said that the 
collectively carried property Pcol is not reducible to unary properties of each a and b. Since now we see 
that the essential part of a collectively carried property is a relational property R’, it is obvious that the 
same problems that arose for the relational model A emerges for model C (see Section 8). In order to 
avoid contradiction we must restrict irreducibility to intrinsic unary properties (let us call this 
model with improved irreducibility condition “model C’ ”).  

 
35 Plural constants in boldface are somewhat against the spirit of plural logic according to Oliver  
& Smiley, but we hope that this modified notation makes things easier to grasp here. 
36 Here we are only interested in what Oliver and Smiley call “collective plural predicates” (as opposed to 
distributive plural predicates).  
37 Note that without further information one cannot tell whether a unary plural predicate can be further 
analyzed. The predicate “standing in an equilateral triangle” obviously can be analyzed by pairwise relations, but 
there might be predicates for which this is not possible. The concept of a collective property is even more general 
than that of an n-ary relation (pace Brenner (2018), who assumes that collective properties are n-ary relations).  
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Given this precise formulation of model C’ in reading (R3) for bipartite entanglement, we are now able 
to demonstrate that the model is equivalent to model A’, that the entanglement property is a 
fundamental relation R carried by a and b. It is rather straightforward to show that (plural), the core 
claim of model C’ in reading (R3), is equivalent to the core claim of model A’, “Rab”. First, it is obvious 
that in (plural), R’ is the only candidate for representing the entangled property, so it is without 
sensible alternative to assume that R’=R. Then, the equivalence between (plural) and the truth of “Rab” 
is proven as follows:  

(1) If anything satisfies any condition while “Rab” is true, then “Rab” is true. So (plural) implies “Rab”.    
(2) “a ) c ' b ) c ' *y (y )  c # y = a & y = b)” is true by definition of “c”. Therefore, if “Rab” is true,  
 
 a ) c ' b ) c ' *y (y )  c # y = a & y = b) ' Rab 
 
is true, and, by lambda conversion, (plural) is true. So “Rab” implies (plural). Finally, we still need to 
note that the irreducibility claims match: According to model A’, R is not reducible to intrinsic unary 
properties of a and b. As R’=R, the irreducibility of R from model A’ transfers to Pcol from model C’. Vice 
versa, according to model C’, Pcol is not reducible to intrinsic unary properties of a and b; since the only 
candidate for reduction in Pcol is R’, the irreducibility claim must hold of R’; and since R’=R, the 
irreducibility of property Pcol from model C transfers to R from model A’. This completes our argument 
for the equivalence of model A’ and model C in the simple case with two-particle entanglement. The 
idea easily generalises to the case of n (instead of just two) particles that are multipartitely entangled.38 
In sum, model C’ in reading (R2) reduces to model A’, and hence does not constitute an additional 
option in our taxonomy.  

15. Excluding reading (R3) of model C 
Model C in reading (R3) roughly amounts to the claim that the entanglement property Pcol is analyzable. 
In this case it is crucial to distinguish the case of bipartite entanglement (n=2) from multipartite 
entanglement (n≥3). We shall argue that in the former case model C in reading (R3) reduces to model 
A’; and in the case of multipartite entanglement it is incompatible with the relational irreducibility 
claim.  

In the case of bipartite entanglement, a proponent of model C in reading (R3) holds that Pcol can be 
analyzed into a binary relation carried by a and b. Accordingly one would have to define “c” as a plural 
term that denotes a and b, and Pcolc should be understood to be equivalent to (plural) (see Sect. 14). 
Again we need to adjust the irreducibility claim, so that, for the bipartite case, reading (R3) of model 
C’ is equivalent to reading (R2) of the model. Hence, by the very same argument as for reading (R2) 
one can reduce model C’ in reading (R3) to model A’.  

That the two readings coincide is, however, an artifact of the bipartite case. The same is not true for 
any number of particles n≥3. In that case, (R3) amounts to the claim that Pcol can be analyzed into 
several binary relations holding between pairs of the n particles. Let us, for the sake of simplicity (but 

 
38 Let us agree that c’ is a plural name for these n particles. For the proof to work in this more general case it is 
important that the arity of the relation R’ matches the number of objects n (as reading (R2) assumes). Then, Pcolc’ 
should be understood to be equivalent with 
 
(pluraln) lx (Rn x1 … xn ! x1 " x ! … ! xn " x) ! #y (y "  x $ y = x1 % … % y = xn))c’,  
 
and the proof runs mutatis mutandis. 
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without loss of generality), consider the case of tripartite entanglement with three entangled objects 
a1, a2, a3, denoted by c’. Reading (R3) then requires to claim that Pcolc’ is equivalent to  

λ𝐱	(R!a!a" 	∧ 	R"a"a# 	∧ 	R#a!a# 	∧ 	a!)𝐱	 ∧ 	a")𝐱	 ∧ 	a#)𝐱)	𝐜′, 

where the Ri are binary entanglement relations.39 

While there might be entangled states that are analyzable in this way, the difficulty with this reading 
is that tripartite entanglement in general is well known not to be analyzable into binary entanglement 
relations (see the relational irreducibility claim). So this suggestion must be discarded because it is in 
conflict with the irreducibility conditions for entanglement.  

16. Reading (R4) of model C 
In contrast to the readings discussed so far, reading (R4) of model C takes the model at face value: It 
assumes that the entangled property is both unary and plural and is not reducible to relational 
properties. While being unary and plural might prima facie sound contradictory, we have explained 
above that according to plural logic, it is perfectly sensible to have unary plural predicates, i.e. 
predicates that require one (as opposed to several) plural (as opposed to singular) name as in “the 
Smiths are dancing tango”. This is also the way in which we understand Bohn’s proposal, who calls 
such properties “plural, collective intrinsic properties” (Bohn 2012, 218; original emphasis). 

It is obvious that there is a conceptual difference between a unary plural predicate (R4) and an n-place 
singular relational predicate (R2) or a unary singular predicate (R1). But is there an ontological 
difference? One might argue that all instances of correctly applied unary plural predicates are made 
true by, say, instantiations of n-place singular relational properties. One reason for this view might be 
that while one can consistently speak of unary plural predicates, it is ontologically mysterious what 
genuine unary plural properties are supposed to be. Unfortunately, we cannot discuss the issue 
satisfyingly here. We can only hint to the fact that the many clear examples that we have of unary 
plural predication would require the critics of the position to spell out what exactly they think to be 
mysterious about it. For the time being, we count it as a viable option in our overview.  

17. Reading (R5) of model C reduces to (R4) 
Reading (R5) is similar to reading (R1) in holding that, in fact, Pcol is a unary singular property carried 
by the mereological sum c of a and b. Since we know that (R1) reduces to model B, it is crucial to 
emphasize that (R5) differs from (R1) in claiming that Pcol is a complex property that essentially involves 
a unary plural property carried by a and b collectively (as (R4) claims). The suggestion here is to 
understand the entangled predicate as  

 Pcol  := lx(a ≪ x ' b ≪ x ' a ) c  ' b ) c ' *y (y )  c # y = a & y = b) ' Ppc) 

and to claim that the assertion 

lx(a ≪ x ' b ≪ x ' a ) c  ' a ) c ' *y (y )  c # y = a & y = b) ' Ppc) c 

is true. This means that c has the property of having a and b as its proper parts, each of which, and 
nothing else, is among the c, and the c collectively carry Pp.    

 
39 To give a classical example, the plural property “standing in an equilateral triangle” can be analyzed in this 
way, if one chooses R1=R2=R3=:D as a binary relation of being some fixed nonzero distance apart.  
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This means that (R5) is based on (R4) similarly to how (R2) is based on model A. We have shown above 
that despite their prima facie distinctness, (R4) and (R2) are equivalent. By a very similar argument one 
can prove in the present case that (R5) is equivalent to (R4) – so (R5) does not really add a new proposal 
to our taxonomy.  

To conclude, the only viable reading of model C is reading (R4).  

III. Synthesis 

18. Combining the models 
The result of our investigation of property models is that there are three basic models to conceptualize 
the irreducible entanglement property and its bearer: either the entanglement property is a 
fundamental relation R carried by the one-particle objects a and b (model A’); or it is a unary singular 
property P carried by the two-particle object c (model B); or the entangled property is a unary plural 
property Pcol carried collectively by a and b (model C). A fourth conceivable model, model D, that the 
entangled property is a unary singular property carried by a or b that essentially refers to the respective 
other object, is equivalent with model A’.  

We shall now combine the basic property models A’, B and C with the three basic mereological models 
(I)–(III). This will provide us with more specific, combined models each of which provides an answer to 
all of the questions (i)–(iv). The possible combinations are restricted by the fact that each property 
model requires the existence of certain objects, which, however, do not exist according to each 
mereological model. There are six possible combined models:  

- (RRH) Radical relational holism (models II & A’): The one-particle-objects a and b exist, but there 
is no two-particle object c (i) and hence no part-whole relations (ii). The entangled property is a 
fundamental binary relation R (iii) holding between a and b (iv).  

- (MRH) Moderate relational holism (models III & A’): a, b and c exist (i), and c is the mereological 
sum of a and b (ii). The entangled property is a fundamental binary relation R (iii) holding between 
a and b (iv). 

- (RMH) Radical monistic holism (models I & B): The two-particle object c exists as a partless / 
undivided whole, i.e. the one-particle objects a and b do not exist (i and ii). c carries the entangled 
property (iv), which is a unary property (iii). The idea here is that when two separate quantum 
objects interact and get entangled, they fuse to yield a macro object and thereby stop existing (cf. 
Brenner 2018, §3.3)40 Since c is spatially scattered, it is an extended simple. 

- (MMH) Moderate monistic holism (models III & B): a, b and c exist (i), and c is the mereological 
sum of a and b (ii). The entangled property is a unary property P (iii) of c (iv). Calosi and Tarozzi 
(2014) seem to support this model of entangled systems. Schaffer (2010) holds an extreme variant 
thereof: the macro level is the whole universe and the parts, though existing, ontologically depend 
on the macro object.41 

- (RPH) Radical pluralistic holism (models II & C in reading (R4)): The one-particle-objects a and b 
exist, but there is no two-particle object c (i) and hence no part-whole relations (ii). The entangled 

 
40 Brenner mentions the position, but makes clear not to endorse it.  
41 Note that mereological models as depicted here do not involve relations of ontological dependence / 
priority. For a critique of Schaffer 2010 see Calosi 2014.  
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property is a fundamental unary plural property P’ (iii) carried collectively by a and b (iv). (maybe 
Brenner 2018, §3.1)42 

- (MPH) Moderate pluralistic holism (models III & C in reading (R4)): a, b and c exist (i), and c is the 
mereological sum of a and b (ii). The entangled property is a fundamental unary plural property P’ 
(iii) carried collectively by a and b (iv). 

 
42 Brenner (2018), who defends nihilism in the quantum realm, sketches a position in his §3.1 that seems to fall 
under model RPH, but the case is not clear since he speaks of an entangled state as a collectively instantiated 
“multigrade relation” (which points to RRH instead). His arguments, however, rather suggest that he means 
RPH.  
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(d) Radical relational holism (RRH) 

 

(e) Moderate relational holism (MRH) 

 

(f) Radical monistic holism (RMH) 

 

(g) Moderate monistic holism (MMH) 

 

(h) Radical pluralistic holism (RPH) 

 

(i) Moderate pluralistic holism (MPH) 

Figure 2: The possible part-property models for a two particle entangled system 

 

If our argument in this paper is correct, these six models exhaust the possible answers to questions 
(i)–(iv). Recalling that a mereological graph does not indicate what is ontologically prior or fundamental 
(especially the arrows indicate only the asymmetry of the is-part-of relation), it is obvious that the 
models can be made more specific and differentiated by amending further features that are not 
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mentioned in the four questions (e.g. ontological dependence/priority, emergence, …). We believe, 
however, that the four questions are basic, and possible answers to them provide a relevant taxonomy 
for mereological models of entangled systems. 

Accounting for an irreducible entangled property, all models are in some sense holistic. The 
ontologically parsimonious positions are labelled “radical”. RRH and RPH assume that only the one-
particle objects (and not the two-particle object) exist. All the property-bearing work is done by the 
one-particle objects: The irreducible entangled state is either accounted for by introducing a new kind 
of fundamental relation holding between the one-particle objects or by a unary plural property. In this 
way, both models circumvent the need for the level of two-particle objects.  

RMH, in contrast, assumes that only the two-particle object (but not the one-particle objects) exists. 
Here, the property-bearing work is done on the macro level. Though the model does not imply this 
view, it is the position that is adequate for the mereological monist, who assumes that there is only 
one object, namely the whole universe.  

19. Discussion 
(1) In this paper we have developed four fundamental questions concerning the mereology of 
entangled quantum systems: (i) which objects do exist, (ii) in which mereological relations do they 
stand, (iii) of which arity is the entangled property and (iv) which object(s) bear(s) the entangled 
property. Questions (i) and (ii) define mereological models while (iii) and (iv) characterize property 
models of entanglement. Taken jointly, the four questions characterize part-property models of 
entanglement.  

We have sharpened the conceivable models and have argued that certain models advanced in the 
debate are equivalent or not consistent with the quantum mechanical description. Our result is that 
there are six distinct part-property models each of which provides a characteristic pattern of answers 
to the four questions.  

The overview of models makes clear that Bohn’s proposal of unary plural properties complements the 
usual options of monistic holism and relational holism by pluralistic holism. Brenner’s multigrade 
relations, in contrast, are a variant of relational holism. Relational holism and pluralistic holism make 
clear that irreducible (or emergent) macro properties do not per se require a macro object bearing the 
irreducible macro property, since one can conceive of irreducible macro properties that are carried 
collectively by the micro objects, and we have explained that one can either think of such collectively 
carried properties as n-place relations, as multigrade relations or as monadic plural properties. 

Our result might prima facie not seem too surprising as our investigation does not yield a new model 
that has been completely unnoticed so far. While monistic holism and relational holism have been 
established positions, pluralistic holism is not very widespread, and largely unnoticed, but it has 
already been formulated by Bohn (2012). On the other hand, our overview is the result of a thorough 
investigation which has three main results that are not so obvious and especially cannot be read off 
from Figure 1: First, using the formal tools of the lambda operator and plural logic we have tried to 
make the possible positions clear and precise. Second, we have ruled out positions that are not distinct 
to others, so the positions presented here are distinct and provide fundamental options for the 
quantum mereologist. A third main result lies in what our overview does not mention: Having 
systematically investigated conceivable, prima facie sensible models we have not found any further 
model. Then, according to our examination, the six models presented exhaust the available models for 
conceiving of entangled quantum systems. One of these models must be the correct answer to the 
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central mereological questions (i)–(iv) in entangled quantum systems. In this way the taxonomy 
developed here provides a suitable basis for systematically examining the question which mereological 
model is the most appropriate one for entangled quantum systems.  

(2) The abstract mereological models are general in several respects and are hence compatible with a 
number of more specific models. First, they do not indicate ontological dependence but only parthood. 
They can be enriched to either let the whole depend ontologically on the parts or vice versa. Second, 
they are not committed to a certain theory concerning the individuation of the micro objects. Agreeing 
with the quantum mechanical description of systems with objects of the same kind, we have taken 
care to symmetrically distribute all properties among the micro objects, which allows for different 
interpretations concerning the identity of the micro objects (non-individuals vs. objects with weak 
identity). Third, the mereological models are also indifferent concerning the specific nature of the 
entangled quantum state. We have just presupposed a realistic reading of the quantum state but not 
a specific interpretation (e.g. textbook quantum theory, GRWm, propensity interpretation, etc.).  

(3) In order to establish our results, we have used the formal tool lambda operator as well as the 
formalism of plural logic. Especially the latter has been developed more sharply only in recent years 
and seems to be indispensable when one tries to treat mereological questions in a precise way. 
Combining both tools has pushed formal considerations beyond what seems to be established at 
present and will require some future work.  

(4) It is clear that the taxonomy developed here provides only a first step towards an appropriate 
mereological understanding of entangled quantum systems: It presents the possible, distinct models, 
which will need to be evaluated for their adequacy. We would like to stress that there does not seem 
to be a fast track to do so, and we shall shortly sketch in the following (5 and 6) why the two 
straightforward ways to tackle the question fail. One can either bring in more mereological 
assumptions, i.e. assume one of the main mereological positions (universalism, nihilism, moderate 
compositionalism), or one can bring in more features of the system under consideration, i.e., in the 
present case, further details of the quantum mechanical formalism. 

(5) To assume one of the main mereological positions first of all requires independent reasons for the 
position assumed; and even when you think that you have good arguments for one of the positions, 
one finds that each of the positions restricts the models to some extent but ultimately leaves it 
underdetermined which of the models is the appropriate one. 

A universalist cannot accept models according to which a and b exist, but not c (RRH and RPH). 
Positively, she can accept all the moderate positions as well as RMH (taking c as a simple). According 
to MRH and MPH, the entanglement property is a relation R carried by a and b, so c does not do any 
ontological job concerning the entangled property. If c does any ontological job at all, it is not specific 
to entanglement. Therefore, MRH and MPH are models that are only interesting for the universalist, 
who does not adhere to Ockhamistic principles like “If, if x existed, then x would not do any conceivable 
job, then x does not exist”, especially not for mereological sums. Interestingly, a universalist might 
choose RMH as well, for instance if (s)he takes c to be an extended simple (see Simons 2004)..  

A nihilist must refrain from assuming any model according to which composition occurs (the three 
moderate models): If she accepts the existence of c, she must deny the existence of a and b, and vice 
versa. So it is only the radical positions that she can accept. If the nihilist holds RRH or RPH, she will 
have to paraphrase away talk about c. The physics of entanglement might make this even harder than 
paraphrasing away talk about tables and chairs (van Inwagen 1990) or even biological organisms 
(Unger 1979).  
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A moderate compositionalist, who is neither a universalist nor a nihilist, claims that composition occurs 
under certain conditions. The positions compatible with moderate compositionalism depend on what 
the conditions for composition are. It might seem natural to think that entanglement is at least among 
the sufficient conditions for composition, and if this is the case moderate compositionalism is 
compatible with exactly those models that are available for the universalist (i.e. the moderate positions 
plus RMH). If, however, entanglement does not trigger composition, the position is compatible with 
those models that are available for the nihilist (i.e. the radical models).  

In sum, each of the main mereological positions is compatible with more than one of the six models. 
Interestingly, RMH is the only model that all three positions are compatible with, which, however, does 
not speak for its truth. In order to determine one of the models one would need further assumptions, 
which might be grounded in the features of the specific system in question. Anyway, there is no 
shortcut to a solution from the main mereological positions.  

(6) A second method to determine which of the models is the correct one is to bring in more features 
of the quantum mechanical formalism. In developing the six models we have only made use of the fact 
that the entangled property is not reducible to its parts (and we have assumed that there must be 
some object(s) that carry it). All other details of the quantum mechanical formalism have not been 
considered and could now possibly be adduced to argue for the one or the other model. We 
emphasize, however, that there is no innocent or straightforward way from such features of the 
formalism to ontological features that constrain mereological models, even when one assumes a 
realistic interpretation of quantum states and even when one has decided whether the ray view or the 
statistical operator view of quantum states is correct (see Section 5).  

Let us shortly make one difficulty explicit. Say, one assumes the ray view which implies that the states 
of one-particle systems are not well-defined in themselves when the two-particle system is in an 
entangled state. One might intuitively think that this implies that the two-particle object exists and the 
one-particle objects do not. In order to make the inference one is committed to something like the 
principle “an object exists if and only if the corresponding quantum mechanical state exists”. 43 
However, such metaphysical principles that relate the well-definiteness of states with the well-
definiteness of objects are far from established or obviously true. In fact, one can easily see that the 
principle in the given formulation is false: According to model RPH we only have the one-particle 
objects, although (according to the ray view) only the entangled quantum state is well-defined and the 
one particle states are not. As a consequence, a reliable inference from the formalism to mereological 
models would need a more thorough investigation.  

What is certain, however, if the argument in this paper is correct, is that the appropriate mereological 
model is among the six models that we have derived for systems with irreducible entangled quantum 
states. In this sense, we have provided a framework for further investigations into the mereology of 
entangled quantum systems.  
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43 Cf. Jaeger’s (2014, 154) quantum principle of individuation. 
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