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Abstract 
 

This paper explores the epistemological challenges in using computer simulations for two distinct goals: 

explanation via hypothesis-testing and prediction. It argues that each goal requires different strategies 

for justifying inferences drawn from simulation results due to different practical and conceptual 

constraints. The paper identifies unique and shared strategies researchers employ to increase 

confidence in their inferences for each goal. For explanation via hypothesis-testing, researchers need to 

address the underdetermination, interpretability, and attribution challenges. In prediction, the emphasis 

is on the model's ability to generalize across multiple domains. Shared strategies researchers employ to 

increase confidence in inferences are empirical corroboration of theoretical assumptions and adequacy 

of computational operationalizations, and this paper argues that these are necessary for explanation via 

hypothesis-testing but not for prediction. This paper emphasizes the need for a nuanced approach to 

the epistemology of computer simulation, given the diverse applications of computer simulation in 

scientific research. Understanding these differences is crucial for both researchers and philosophers of 

science, as it helps develop appropriate methodologies and criteria for assessing the trustworthiness of 

computer simulation. 

Introduction 

  

As computer simulation methods become increasingly common across various fields, concerns about 

their ability to generate trustworthy knowledge also increase. The crucial question is whether the 



inferences from a specific computer simulation are warranted, considering their intended application. 

Simulations can inform us about the expected behavior of real-world systems under certain conditions, 

serving as tools for prediction. For example, if a simulation is employed to predict climate variables, 

does it forecast the temperature or precipitation with sufficient accuracy? Alternatively, simulations can 

help us understand systems and their behaviors. When data about a system's behavior is already 

available, computer simulations can address questions about what could have occurred to produce the 

observations. For example, if a simulation of human working memory is utilized to study potential 

neural mechanisms underlying working memory, how can we trust that the simulated results—that one 

neural mechanism of working memory is more likely than another neural mechanisms? In short, how 

can researchers justify inferences drawn from simulations for their intended purpose? (Winsberg, 2010) 

  

Computer simulations can be used for various purposes, and they can be generally categorized into two 

categories: predicting the behavior of a system (prediction) or generating explanations for the system’s 

behavior by evaluating multiple hypotheses about what could have occurred (explanation via hypothesis 

testing). This paper argues that the distinct goals of computer simulations, namely explanation via 

hypothesis testing and prediction (Breiman, 2001; Chirimuuta, 2021; Shmueli, 2010), require separate 

epistemological approaches to address the specific practical and conceptual constraints unique to each 

goal. Specifically, this paper seeks to characterize how different goals of computer simulations 

necessitate distinct strategies that researchers employ to justify their inferences. 

  

Winsberg (2001) argued that knowledge produced by computer simulations is the result of inferences 

that are downward, motley, and autonomous, and that an account of epistemology of computer 

simulations should consider these features. Downward inference means that the starting point of 

computer simulations are well-established scientific theories, which subsequently justify conclusions 

about real-world systems from simulation results. Similarly, the third strategy to justify inferences from 

simulations identified by Parker (2008) requires that computer simulations are based on well-confirmed 

theory. For Winsberg and Parker, computer simulations must be based on well-confirmed theory. This 

paper argues that well-confirmed theory is in fact a necessary feature of using computer simulations for 

explanation via hypothesis-testing, but it is not a necessary feature of using computer simulations for 

prediction. Moreover, when researchers operationalize (translate) a theoretical assumption into 

computational terms, (Parker, 2010) argued that they need to make sure that these computational 

terms represent target theoretical constructs and processes. This paper argues that while explanation 

via hypothesis-testing requires high representational quality of computational terms, prediction does 

not require that computational terms represent theoretical constructs and processes. 

  

In the sections below, I will first describe the form of inference for two goals and give two scientific 

examples. Then, I will describe shared strategies that researchers use to increase confidence in their 

inferences in both explanation via hypothesis-testing and prediction, and I will argue that these are 

necessary for explanation via hypothesis-testing but not for prediction. Then, I will describe unique 



strategies researchers use to increase their confidence in each context, explanation via hypothesis 

testing and prediction. 

  

Explanation via Hypothesis-testing versus 

Prediction 

  

For explanation via hypothesis-testing, the researchers first propose a set of hypotheses, each posits an 

alternative way about what could have happened to produce the system behavior. The primary goal of 

explanation via hypothesis-testing is to determine which hypothesis, out of two (or more) alternative 

hypotheses, is more likely to be true, thereby giving an explanation about the system behavior. The 

form of inference goes like this: given two opposing hypotheses D1 and D2, if hypothesis D1 is true, 

assuming background theoretical assumptions A and B are true, then a computational model embodying 

A, B, D1 should correspond to experimental observations more than a computational model embodying 

A, B, D2. 

  

In the context of cognitive neuroscience, researchers might be interested in testing two opposing 

hypotheses about the neural mechanisms underlying working memory. Hypothesis D1 posits that 

working memory relies on persistent activity in specific neuronal populations, while Hypothesis D2 

suggests that working memory is maintained through synaptic changes in connectivity patterns. To test 

these hypotheses, researchers could develop two computational models that embody the well-

established principles of neural computation, such as: 

  

Theoretical Assumption A: Neurons communicate through action potentials (spikes) and use principles 

of integration and spiking to process information. This assumption highlights the fundamental role of 

action potentials and the integration of inputs in neuronal communication and information processing. 

  

Theoretical Assumption B: Neural networks exhibit a balance of excitatory and inhibitory activity, which 

plays a crucial role in maintaining network stability and modulating information processing. This 

assumption emphasizes the importance of the interplay between excitatory and inhibitory neurons and 

their role in shaping the overall dynamics of the neural system. 

  



The two models differ in whether working memory is operationalized as sustained neuronal activity, 

hypothesis D1, or short-term synaptic plasticity, hypothesis D2. The researchers then operationalize 

these theoretical assumptions and hypotheses into computational terms. Then, they evaluate how well 

each model corresponds with human decision-making behaviors or neural activity patterns. If one model 

fits existing behavioral and neural data better than another model, the researchers might conclude that 

hypothesis D2 is more likely than hypothesis D1. To explain the mechanism of working memory, the 

researchers then adopt what hypothesis D2 posits: working memory is maintained through synaptic 

changes in connectivity patterns. 

  

For prediction, the researchers want to anticipate how real-world systems would behave under certain 

conditions, particularly when observational data is limited or challenging to obtain. The form of 

inference goes like this: if a computational model embodying theoretical assumptions A, B, C 

corresponds to observable data in a range of scenarios X, Y, Z, the model’s prediction might be what 

would actually happen in scenario U (where we cannot collect data). In the context of predictive 

modeling, there are two primary types of predictions that can be made based on different aspects of 

generalization: 

  

Within-domain extrapolation: Researchers make predictions for scenarios or conditions that extend 

beyond the range of data that was used to build or validate the model. This type of prediction relies on 

the assumption that the underlying patterns or relationships observed in the data continue to hold 

beyond the observed range. For example, to predict temperature, they could develop a climate model 

that embodies theoretical assumptions A, B, and C (e.g., mechanisms underlying atmospheric 

circulation, ocean currents, and greenhouse gas concentrations), based on prior research about these 

physical processes that drive the climate system. The model can then be tested against observable data 

from a range of regions X, Y, or Z (Northwest region, Pacific Region, African region) where temperature 

can be measured. If the model corresponds well to the observable data in these scenarios, researchers 

might use the model to extrapolate and predict the temperature of the Arctic region, assuming that the 

relationships between the variables learned from the available data would continue to apply in the 

unobserved Arctic region (Winsberg, 2010). In this case, X represents the temperature data from the 

northwest and other regions, and U represents the temperature data from the Arctic region. 

  

Cross-domain extrapolation: Researchers make predictions for scenarios or conditions that involve 

different, but related, variables or domains. This type of prediction relies on the assumption that the 

model can capture some underlying climate processes that are applicable to different domains. For 

example, they could develop a climate model that embodies theoretical assumptions A, B, and C (e.g., 

mechanisms underlying atmospheric circulation, ocean currents, and greenhouse gas concentrations), 

based on prior research about these physical processes that drive the climate system. The model can 

then be tested against observable data from a range of domains X, Y, and Z (e.g., temperature, humidity, 

and sea level changes in the Pacific Northwest) where these climate variables can be measured. The 



model could be used to predict precipitation in the Pacific Northwest region. In this case, X represents 

the temperature data from the Pacific Northwest, and U represents the precipitation data from the 

Pacific Northwest. 

  

In each case, explanation via hypothesis-testing or prediction, what can the researchers do to warrant 

their inferences? In the sections below, I argue that for explanation via hypothesis-testing to be 

trustworthy, simulations should meet these criteria: Empirical Corroboration of Theoretical 

Assumptions; Adequacy of Computational Operationalizations; Controlling for Confounds and Varying 

Conditions; Addressing Underdetermination and Model Simplicity. For prediction to be trustworthy, 

simulations should meet these criteria: Within-domain extrapolation; Cross-domain Extrapolation. The 

researchers can increase the trustworthiness of predictions by satisfying other two criteria, even though 

they are not necessary: Empirical Corroboration of Theoretical Assumptions; Adequacy of 

Computational Operationalizations. 

  

Empirical Corroboration of Theoretical 

Assumptions 

  

In the context of explanation via hypothesis-testing, researchers should corroborate theoretical 

assumptions A and B with previous findings (Parker, 2010; E. Winsberg, 2009), demonstrating their 

validity in the current study. For example, researchers can review the literature to find empirical 

evidence supporting the idea that neurons use certain computational principles, such as integration and 

spiking, to process information. By doing so, they can confidently incorporate these assumptions into 

their computational models to test the competing hypotheses D1 and D2. To corroborate Assumption A 

(neurons communicate through action potentials or spikes), researchers can consult studies that have 

measured and recorded the action potentials of individual neurons during information processing. For 

example, they might look into electrophysiological studies that have captured the spiking activity of 

neurons in various brain regions and under different experimental conditions. These studies provide 

direct evidence for the role of action potentials in neuronal communication, lending support to 

Assumption A. 

  

In the context of climate modeling, researchers can apply this strategy by identifying and examining key 

assumptions about the climate system, such as atmospheric circulation, ocean currents, and greenhouse 

gas concentrations. They can then corroborate these assumptions with previous empirical findings and 

observational data to establish their validity in the context of the model. For instance, one theoretical 

assumption with respect to atmospheric circulation could be the Coriolis effect. The Coriolis effect is a 



key theoretical assumption that arises from Earth's rotation and has a significant impact on atmospheric 

circulation. This effect causes moving objects, such as air masses, to be deflected to the right in the 

Northern Hemisphere and to the left in the Southern Hemisphere. This deflection influences the 

development of large-scale wind patterns and the formation of high and low-pressure systems, which 

are essential components of atmospheric circulation. Researchers can review the extensive body of 

literature and observational data that supports the role of Earth's rotation in shaping global wind 

patterns and weather systems. This may include examining historical weather records, satellite data, 

and findings from previous studies investigating the impact of the Coriolis effect on the formation of 

cyclones, anticyclones, and trade winds. By gathering empirical evidence that validates the influence of 

the Coriolis effect on atmospheric circulation, researchers can confidently incorporate this theoretical 

assumption into their computational climate models. 

  

Empirical corroboration of theoretical assumptions can increase the trustworthiness of both explanation 

via hypothesis-testing and prediction. This is related to Winsberg’s notion of downward inference: 

starting from well-established theory. In prediction, theoretical assumptions usually serve as building 

blocks in many predictive models, and the verity of these assumptions can increase confidence in 

model’s predictions. However, though it’s necessary for explanation via hypothesis testing, it’s not 

necessary for prediction. There is a class of modern data-driven predictive models, such as deep neural 

networks, which totally ignore foundational theorical assumptions in the domain that the model is 

intended to predict and perform state of the art level of accuracy. This class of data-driven models 

extracts statistical regularities in the data used to train these models without relying on theoretical 

assumptions (Leonelli, 2020). In data-driven models, such as deep neural networks, the primary focus 

lies in the application of robust statistical and mathematical methods to enable accurate extrapolation, 

rather than relying on well-established theoretical assumptions. Although these theoretical assumptions 

may still play a role in the modeling process, they primarily serve as inductive biases, which aid the 

model in efficiently extracting statistical regularities from the available data. Inductive biases, in the 

context of data-driven models, refer to the inherent assumptions or predispositions that guide the 

learning process of a model. While data-driven models may not rely heavily on well-established 

theoretical assumptions like mechanistic or process-based models, inductive biases offer an alternative 

way to incorporate domain-specific knowledge and improve the model's ability to learn from data. 

These biases can stem from the model's architecture, choice of activation functions, optimization 

methods, or even from the initial parameter settings. By incorporating certain inductive biases, a model 

can be better equipped to identify relevant patterns in the data and generalize more effectively to 

unseen scenarios. For example, convolutional neural networks (Krizhevsky et al., 2012) (CNNs), a type of 

deep learning model commonly used for image recognition tasks, incorporate a specific inductive bias 

inspired by human perception through their architecture. By using convolutional layers and shared 

weights, CNNs assume spatial invariance, which means that the model can recognize features regardless 

of their position in the image. Though this inductive bias helps the CNNs achieve better-than-human 

performance on various image processing tasks, more recent models such as Vision Transformer 

(Dosovitskiy et al., 2021) (ViT) performs better than CNNs on various image processing tasks. This 

highlights the fact that inferences drawn from simulations (prediction in this case) are not necessarily 

downward. 



  

In explanation via hypothesis-testing, researchers aim to determine whether the likelihood of a 

particular hypothesis, D1, being higher compared to another hypothesis, D2, within the context of the 

real world. This determination is made based on simulation results, which indicate that the probability 

of D1 given theoretical assumptions A, B, C, and available data is greater than the probability of D2 given 

the same assumptions and data, represented as P(D1 | A, B, C, Data) > P(D2 | A, B, C, Data). For the 

inference from the conditional probability to real-world mechanisms be justified, that D1 is more likely 

than D2 in real-world, it is essential that the theoretical assumptions A, B, and C are well-established and 

closely aligned with the truth. If these assumptions are not close to the truth, then the researchers could 

at best conclude that D1 is more likely than D2 in a “hypothetical” situation where A, B, C are assumed 

to be the forces driving the system behavior. 

  

  

Adequacy of Computational Operationalizations 

  

In order to warrant an explanation via hypothesis testing, the researchers must ensure that the 

computational operationalizations of theoretical assumptions A and B are adequate. This can be 

achieved by looking at past successful computational operationalizations of these assumptions in similar 

contexts (Parker, 2008, p. 200; Sargent, 2013). For example, to validate the computational 

operationalization of theoretical Assumption B, researchers can refer to research that has successfully 

modeled the balance between excitatory and inhibitory activity in neural networks, such as studies 

investigating the role of this balance in shaping oscillatory activity or stabilizing network dynamics. One 

such example is the study of gamma oscillations, which are rhythmic neural activity patterns in the 

frequency range of 30-80 Hz, thought to play a role in various cognitive processes. The researchers can 

use studies building computational models that have demonstrated that the interplay between 

excitatory and inhibitory neurons can give rise to these oscillations, with the balance of excitation and 

inhibition being crucial for maintaining the oscillatory activity. By examining these studies, researchers 

can validate the computational operationalization of theoretical Assumption B in their models, and gain 

confidence in the ability of their models to capture the essential dynamics of neural systems when 

testing their hypotheses about working memory. 

  

Furthermore, they can consider the similarity between a computational operationalization and a 

theoretical assumption (Oreskes et al., 1994; Parke, 2014; Weisberg, 2013). Let's consider the 

computational operationalization of theoretical assumption A that neurons communicate through action 

potentials (spikes) and use principles of integration and spiking to process information. In a 



computational model, this theoretical assumption can be operationalized using a spiking neuron model, 

such as the leaky integrate-and-fire (LIF). Researchers can establish the similarity between a 

computational operationalization, such as the leaky integrate-and-fire (LIF) model, and a theoretical 

assumption, such as neurons communicating through action potentials via principles of integration and 

spiking, by following these steps. First, they identify the key features of the theoretical assumption, 

which include integration of input action potentials, the generation of action potentials at a threshold, 

and the propagation of these action potentials along neural pathways. Second, they analyze the 

computational operationalization, like the LIF model, which simulates a neuron's membrane potential 

integrating input, leaking voltage over time, and firing a spike upon reaching a threshold. Third, they 

compare the LIF model's 

representation of the basic properties of the theoretical assumption (threshold-based firing, integration, 

and leak), while acknowledging the simplification of certain biophysical mechanisms. 

  

To further validate the computational operationalization, researchers can assess the LIF model's 

behavior in various scenarios to verify if it accurately represents spiking activity observed in real neurons 

(Parker, 2010; Sargent, 2013). If the LIF model generates action potentials in response to input and 

exhibits similar firing patterns to biological neurons, it supports the similarity between the 

operationalization and the assumption. Additionally, they can evaluate the model's robustness and 

sensitivity to changes in parameters (e.g., membrane time constant, threshold, and input strength) to 

ensure that it maintains similarity to the theoretical assumption across various conditions. Finally, they 

can seek external validation by comparing the LIF model's spiking activity with empirical data from 

electrophysiological recordings or other well-established spiking neuron models. Following these steps 

allows researchers to establish the similarity between the computational operationalization (e.g., LIF 

model) and the theoretical assumption (neurons communicate through action potentials) in the context 

of neural computing. 

  

To apply the strategy of assessing the adequacy of computational operationalizations in the context of 

prediction, researchers can use strategies described above: historical successes of the same 

computational operationalization, similarity between the computational operationalization and the 

theoretical assumption, and the correspondence between computational simulation with empirical 

data. 

  

For the climate modeling example, researchers can look at past successful implementations of the 

Coriolis effect in other climate models to validate the adequacy of their computational 

operationalization. They can review the literature to find examples of models that have accurately 

simulated atmospheric circulation, large-scale weather systems, and wind patterns influenced by the 

Coriolis effect. By analyzing these historical successes, researchers can learn from the established 

methods and apply similar techniques to their own climate model. 



  

In order to validate the computational operationalization of the Coriolis effect, researchers should 

ensure that the mathematical representation of the Coriolis force in their model captures the essential 

aspects of the theoretical assumption. They can first identify the key feature of the theoretical 

assumption, which is the deflection of air masses due to Earth's rotation. Then, they can ensure that the 

mathematical representation of the Coriolis force in their climate model captures the essential aspects 

of the theoretical assumption. If the model's equations capture the fundamental relationship between 

Earth's rotation and the deflection of air masses, it supports the similarity between the computational 

operationalization and the theoretical assumption. 

  

To further validate the computational operationalization of the Coriolis effect, researchers can assess 

the model's behavior in various scenarios to verify if it accurately represents the influence of Earth's 

rotation on atmospheric circulation observed in real-world data. They can compare the model’s wind 

patterns output, which is influenced by deflected air masses caused by Earth’s rotation, with 

observational data, such as historical weather records, satellite data, and other measurements of wind 

patterns. If the model can reproduce the observed large-scale wind patterns that are influenced by the 

Coriolis effect, it supports the correspondence between the computational operationalization and the 

theoretical assumption. Additionally, researchers can evaluate the model's robustness and sensitivity to 

changes in parameters related to Earth's rotation, such as the rotation rate and the latitude of the 

simulated region. This helps to ensure that the model's representation of the Coriolis effect is robust 

and behaves as expected under various conditions. 

  

Adequacy of computational operationalizations can increase the trustworthiness of both explanation via 

hypothesis-testing and prediction. However, the standards are different. In the prediction scenario, one 

would operationalize (translate) 3 theoretical assumptions (A, B, C) into computational terms. In the 

explanation via hypothesis-testing scenario, one would operationalize (translate) 5 theoretical 

assumptions (A, B, C, D1, D2) into computational terms. To what degree should these computational 

components in the model represent the theoretical processes? I argue that the computational 

operationalizations should meet the above criteria in explanation via hypothesis-testing, but the 

computational operationalizations do not necessarily need to meet the above criteria in prediction. 

  

In prediction, the reason computational terms representing A, B, C does not need to bear similarity with 

corresponding theoretical assumptions or need to correspond to observational data is that the 

researchers can build an ensemble of models, each operationalizing these theoretical assumptions 

differently, and rely on the average of predictions from these models. This ensemble methods can make 

model’s prediction more robust (Batterman, 2002; Knutti & Sedláček, 2013). Moreover, as discussed 

above, with data-driven models, the emphasis is on statistical and mathematical methods to ensure 

robust extrapolation, and researchers do not need to rely on well-established theoretical assumptions. 



Though, these theoretical assumptions can serve as inductive biases, helping the model to extract 

statistical regularities in data more efficiently. 

  

In explanation via hypothesis testing, researchers are assessing the conditional probability of a model 

representing hypothesis D1 (or D2) given the data and background theoretical assumptions A, B, C: 

whether P(D1 | A, B, C, Data) and P(D2 | A, B, C, Data). Because the scientific conclusion concerns 

whether D1 or D2 is more likely in the real world, the researchers must demonstrate that the 

computational terms standing for D1 and D2 are good representations of hypotheses D1 and D2. 

Otherwise, the inference from conditional probability to real-world mechanisms (D1 or D2 being more 

likely) is not warranted. It is also necessary that the computational operationalizations standing for A, B, 

and C are good representations of theoretical assumptions A, B, C. If these computational 

operationalizations do not represent theoretical assumptions well, then the researchers cannot 

conclude that given theoretical assumptions A, B, C, and the data, D1 is more likely than D2 from the 

conditional probability. 

  

Criteria specific to explanation via hypothesis 

testing 

  

Controlling for Confounds and Varying Conditions 

  

In order to warrant the inference from conditional probability P(D1 | A1, B, C, Data) > P(D2 | A1, B, C, 

Data) to the conclusion that D1 is more likely than D2 in the real-world, researchers need to establish 

that differences between the conditional probabilities are attributable to the differences between D1 

and D2 (Parker, 2008; Platt, 1964; Zuidema et al., 2020). Researchers should ensure that both models 

are built upon the same principles and share the same theoretical assumptions, except for the specific 

components that represent D1 and D2. Moreover, researchers can test if differences in model 

performance consistently arise from the differences between D1 and D2. Models often require 

initializations of parameters, representing initial conditions of a target real-world system. By performing 

model comparisons under various initial conditions, researchers can ensure that the inference holds 

across multiple conditions. In other words, hypothesis D1 is more likely than D2 across multiple 

conditions. For example, researchers might test models of working memory with various types of stimuli 

or levels of difficulty, to ensure that the differences in model performance are not due to factors 

unrelated to the hypotheses being tested. 



  

Addressing Underdetermination and Interpretability: Model 

Simplicity 

  

In some cases, the available empirical evidence may not be sufficient to fully distinguish between 

competing mechanistic hypotheses, such as D1 and D2, and researchers might need to rely on other 

criteria such as model simplicity to select the most favorable model (Huemer, 2009; Kieseppä, 1997). 

This is a well-known problem of underdetermination, tracing back to Duhem and Quine. In some cases, 

researchers might choose the most parsimonious model, which makes the fewest assumptions or has 

the least complexity, to favor one hypothesis over another. For example, when comparing two models 

with similar explanatory power, but one requires fewer parameters or relies on more straightforward 

mechanisms, researchers might prefer the simpler model as it is more likely to generalize to other 

scenarios and is less prone to overfitting. 

  

Moreover, it is crucial to ensure that any differences observed between the models can be attributed to 

the differences between D1 and D2, rather than other factors or assumptions that may have been 

introduced during the modeling process. Model simplicity plays a critical role in this context, as it allows 

for more transparent and interpretable results (Myung & Pitt, 1997). Simple models, with fewer 

parameters and assumptions, are easier to analyze and understand, making it more straightforward to 

attribute any observed differences in performance to the competing hypotheses themselves. When 

models are more complex, they may contain numerous interacting components, making it challenging to 

determine which specific element is responsible for the differences in model performance. In such 

cases, it becomes increasingly difficult to attribute the performance disparity to D1 and D2, and it may 

be unclear whether the observed differences result from the core hypotheses or from extraneous 

factors introduced by the complexity of the models. By maintaining simplicity, researchers can more 

confidently establish a connection between the model's performance and the underlying hypotheses. 

This helps to ensure that the conclusions drawn from comparing the models accurately reflect the 

likelihood of the competing hypotheses. 

  

In prediction scenarios, while simplicity sometimes leads to more accurate or robust models (Geman et 

al., 1992), more complex models with enough data to estimate their parameters often outperform 

simpler models (Breiman, 2001). 

Criteria specific to prediction 



  

Within-domain extrapolation 

  

In the example of using a climate model to predict the temperature of the Arctic region, researchers can 

apply the following strategies to ensure that the model's within-domain extrapolation is trustworthy: 

  

Cross-Validate the model in the range of data: To ensure that the model is well-validated within the 

range of available data, researchers can compare model predictions of temperature in the Northwest, 

Pacific, and African regions to observed temperature data. If the model accurately reproduces the 

known data patterns in these regions, it provides evidence that the model is likely to be reliable when 

extrapolating to the Arctic region. 

  

Identify boundary conditions: Researchers should determine the limits of the model's applicability by 

identifying the boundary conditions, such as the range of latitudes, temperatures, or other climatic 

conditions for which the model is expected to provide accurate predictions. For example, a model may 

be less reliable when simulating extreme climate events or when predicting climate variables at very 

high or low latitudes. This can help researchers avoid extrapolating beyond the limits where the model's 

performance is well-established and ensure that the extrapolation to the Arctic region falls within the 

model's reliable range. 

  

Cross-domain Extrapolation 

  

In the example of using a climate model to predict precipitation in the Pacific Northwest region based on 

temperature, humidity, and sea level changes, researchers can apply the following strategies to ensure 

that the model's cross-domain extrapolation is trustworthy: 

  

Analyze commonalities and differences between domains: Researchers should identify the underlying 

structures, relationships, or processes that are shared across domains (e.g., the role of atmospheric 

circulation in both temperature and precipitation patterns) as well as the unique features that 

differentiate them (e.g., the specific mechanisms driving precipitation versus temperature changes). 

Understanding these similarities and differences can help researchers adapt and refine the model for 

cross-domain generalizability, making it more suitable for predicting precipitation based on temperature 



data. One strategy is to ensure that the climate model is built based on theoretical assumptions and 

principles (e.g., mechanisms underlying atmospheric circulation, ocean currents, and greenhouse gas 

concentrations) that are applicable to multiple domains, such as temperature and precipitation. This 

increases confidence in the model's ability to capture underlying climate processes that are applicable to 

different domains. 

  

Validate the model across multiple domains: To validate the model's performance across different 

domains, researchers can compare model predictions of temperature, humidity, and sea level changes 

in the Pacific Northwest to observed data in these domains. If the model accurately reproduces the 

known patterns across multiple domains, it can provide evidence of the model's ability to generalize 

across domains, and thus increase confidence in its predictions of precipitation in the Pacific Northwest. 

  

  

Conclusion: Contrast the two goals of computer 

simulations 

  

As argued, though empirical corroboration of theoretical assumptions and adequacy of computational 

operationalizations can increase the trustworthiness of predictions drawn from computer simulations, 

they are not necessary. However, these two criteria are necessary to explanation via hypothesis-testing. 

  

Moreover, due to its goal, in the explanation via hypothesis-testing scenario the researchers must take 

measures to make sure that differences between two models embodying D1 or D2 can be attributable 

to the differences between D1 and D2. This criterion prompts researchers to adopt more parsimonious 

models, focusing on the core differences between the hypotheses, and avoiding unnecessary complexity 

that could make interpreting the results more challenging.  Furthermore, explanation via hypothesis-

testing often suffers from the problem of underdetermination in practice. This practical constraint also 

prompts researchers to rely on other criteria such as model complexity in addition to its degree of 

correspondence with empirical data. 

  

Whereas, in the prediction-making scenario, the scientist is essentially making an extrapolation when 

they make predictions, and for us to believe in extrapolations, the model should predict well in a wide 

range of scenarios. For example, the degree to which we can believe in a predicted temperature from a 



climate model depends on how well the model’s temperature predictions have been confirmed in the 

past. If the model is making predictions across multiple domains, researchers need to understand shared 

processes (e.g., atmospheric circulation's impact on temperature and precipitation) and distinct 

mechanisms (e.g., those driving precipitation and temperature changes) to build a model that could 

generalize across domains. 

  

In conclusion, the distinct goals of computer simulations, specifically explanation via hypothesis-testing 

and prediction, necessitate separate epistemological strategies to address the unique practical and 

conceptual constraints inherent to each goal. The paper identifies strategies applied in each context and 

how explanation via hypothesis-testing or prediction requires unique strategies to justify inferences 

drawn from simulation results. Moreover, even with shared strategies (empirical corroboration of 

theoretical assumptions and adequacy of computational operationalizations), standards are different. 

  

Ultimately, this paper emphasizes the importance of a nuanced and goal-sensitive approach to the 

epistemology of computer simulations. The fact that there is not a comprehensive epistemology of 

computer simulations account in the literature might reflect the multiple purposes of computer 

simulations, and each account in the literature implicitly addresses a different goal of computer 

simulations. As computer simulations continue to play an increasingly central role in scientific research 

across various disciplines, it is crucial for researchers to be aware of the distinct epistemological 

challenges and considerations associated with different modeling goals. For researchers, recognizing the 

differences between these two goals is essential for the development and evaluation of computational 

models, as it enables researchers to adopt appropriate methodologies and criteria for assessing the 

trustworthiness and appropriateness of their models for the intended purpose. For philosophers of 

science, recognizing the differences between explanation via hypothesis-testing and prediction is crucial 

to develop a comprehensive account of epistemology of computer simulations. 
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