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This paper presents a novel improved firefly algorithm (IFA) to deal the problem of the optimal operation of thermal generating
units (OOTGU) with the purpose of reducing the total electricity generation fuel cost. The proposed IFA is developed based on
combining three improvements. The first is to be based on the radius between two solutions, the second is updated step size for
each considered solution based on different new equations, and the third is to slightly modify a formula producing new
solutions by using normally distributed random numbers and canceling uniform random numbers of conventional firefly
algorithm (FA). The effect of each proposed improvement on IFA is investigated by executing five benchmark functions and
two different systems. The performance of IFA is investigated on six other study cases consisting of different types of
objective function and complex level of constraints. The objective function considers single fuel with quadratic form and
nonconvex form, and multifuels with the sum of several quadratic and nonconvex functions while a set of constraints taken
into account are power loss, prohibited zone, ramp rate limit, spinning reserve, and all constraints in transmission power
networks. The obtained results indicate the proposed improvements in terms of high optimal solution quality, stabilization of
search ability, and fast convergence compared with FA. In addition, the comparisons with other methods also lead to a
conclusion that the proposed method is a very promising optimization tool for systems with quadratic fuel cost function and
with complicated constraints.

complicated since more and more complicated constraints of
generator are considered such as ramp rate, prohibited zone,

The optimal operation of thermal generating units
(OOTGU) has been widely concerned in the power system
operation field due to its significant important role. In fact,
thermal units are using a huge amount of fossil fuel for gen-
erating electricity while primary fuels are expensive and will
be exhausted in the near future. The objective of the OOTGU
problem is to determine the generated active power of ther-
mal generating units so that the total fuel cost can be reduced
as much as possible; while all the constraints of thermal
generating units and of transmission power networks are
taken into account. The problem becomes more and more

voltage limitations, and generation limits. In addition, con-
straints related to transmission power network are not simple
conditions to be exactly met such as the active power spin-
ning reserve, active and reactive power balance, limitation
of transmission lines, limitations of transformer tap, and
limitation of capacitor bank’s reactive power.

There have been a huge number of studies considering
OOTGU as a main problem. The studies have applied con-
ventional methods such as deterministic algorithms and
new methods. Most deterministic methods are based on gra-
dient, derivative, Lagrange optimization function while the
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new methods are based on metaheuristic algorithms, modi-
fied versions of metaheuristic algorithms, and combination
of two different metaheuristic algorithms. In addition, the
metaheuristic methods integrated to other methods dealing
with constraints of problem are also effectively combined
optimization tools.

Deterministic methods have been applied for the prob-
lem such as Lagrange optimization function-based method
(LM) [1-3], dynamic programming (DP) [1], linear pro-
gramming method (LPM) [4], Hierarchical method (HM)
[5], Hopfield neural networks (HNN) [3, 6], improved Hop-
field neural network method (IHNNM) [7], augmented
Lagrange Hopfield network (ALHN) [8], and enhanced
augmented Lagrange Hopfield network (EALHN) [9, 10].
Among the methods, LM was the first optimization tool for
solving the problem of OOTGU with quadratic fuel cost
functions and the balance constraint of generated power
and required power such as load demand and power losses.
The obtained results from the method were acceptable since
it could deal with the constraint of active power balance con-
straint and maximum error was very small. DP also achieved
results as good as those from LM. However, DP required a
huge number of iterations for search process, especially for
large-scale systems with large number of units. LPM and
HM have applied approximation techniques to simplify the
complex of constraints and nonsmooth fuel cost functions
and then LM was acted as an optimization search algorithm.
Consequently, the applicability of the two methods was
restricted for complicated systems with many nonlinear con-
straints and nonsmooth fuel cost functions. HNN and its
improved versions in [7-9] consisting of IHNNM, ALHN,
and EALHN have become more effective than LM, DP,
LPM, and HM in dealing with large-scale systems with faster
search process and better optimal solutions. The method
group is mainly based on energy function and Hopfield neu-
ral network. However, HNN variants did not use Lagrange
optimization function but they established energy function
at the beginning and then Hopfield neural network was
applied. On the contrary, ALHN variants have constructed
an augmented Lagrange optimization function first and then
the function was converted into energy function with the
present of inverse sigmoid function. The ALHN variants
could overcome several drawbacks of HNN variants such as
high oscillation, high error, and low optimal solutions for
complicated systems. In general, these methods in the deter-
ministic group have the same limitations of application for
systems considering nonconvex fuel cost function and
nondifferentiable functions.

New methods based on metaheuristic algorithms have
been widely and successfully applied for the considered
OOTGU problem even for very complicated systems with
nonconvex fuel cost functions and constraints taking prohib-
ited zones, active power spinning reserve, and ramp rate into
account. Differential evolution variants have been applied
for solving the problem in [11-13] consisting of conventional
differential evolution (DE) [11], hybrid dynamic program-
ming integer-coded (HDP-ICDE) [12], and colonial compet-
itive differential evolution (CCDE) [13]. DE together with GA
and PSO has been implemented for different cases with
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different constraints with the superiority of DE over genetic
algorithm (GA) and particle swarm optimization (PSO) as a
result. HDP-ICDE has used integer-coded differential evolu-
tion (ICDE) as an optimization tool for searching solutions
meanwhile dynamic programming has been used as an evalu-
ation tool for computing fitness function value of found solu-
tions. The method could not overcome drawbacks of ICDE
such as high number of solution evaluation and falling into
local search. CCDE has changed the mutation operation by
using different models based on so-far best solutions and
replacement of worst solutions by more promising solutions
that aim to improve the balance between local search and
global search as well as to retain the best solutions. This
method could show its superiority over DE and other versions
of DE, but the test systems have been used and the result com-
parisons from the tests could not show its better performance
than other methods because its cost and other methods’ cost
were equal. The comparisons of search speed have not been
carried out. The performance of cuckoo search algorithm
(CSA) [14,15] and improved cuckoo search algorithm (ICSA)
[16] have been shown clearly since different types of con-
straints were considered and wide comparisons were imple-
mented. However, the speed comparisons have been made
only via execution time, leading to not good comparison cri-
teria for conclusion. Different test systems considering con-
straints of transmission power network have been used to
test the efficiency of PSO variants in [17-19]. PSO with
pseudo-gradient and constriction factor (PG-CF-PSO) [17]
has determined the best direction for updating velocity by
using pseudo-gradient theory and used constriction factor to
find good search zone. It has been demonstrated to be more
effective than PSO via three IEEE systems with 30, 57, and
118 buses. New adaptive particle swarm optimization
(NAPSO) [18] has integrated both mutation operation and
adaptive PSO for avoiding local optimal solution. The method
has used different fuzzy and self-adaptive techniques for
updating parameter and solutions. Each proposed technique
has been investigated by testing different PSO methods with
each modification such as NAPSO without mutation
(NAPSO1), NAPSO without fuzzy (NAPSO2), and NAPSO
without self-adaptive (NAPSO3). These methods have had
worse results than NAPSO but better results than standard
PSO. Combination of particle swarm optimization and tabu
search algorithm (PSO-TSA) [19] has used the ability of
PSO for local search based on three different phases and
TSA for global search by adjusting obtained solutions of
PSO. The method has been compared to three difference
implemented methods such as GA, PSO, and TSA, and it
can be shown better objective function. In spite of the superi-
ority over the three methods, PSO-TSA has been more com-
plicated, included more control parameters, and used high
number of produced new solutions. Different GA variants
have been proposed for dealing with different set of con-
straints of the considered problem such as real-coded genetic
algorithm (RCGA) [20], RCGA with arithmetic-average-
bound crossover and wavelet (NRCGA) [20], hybrid real-
coded genetic algorithm (HRCGA) [21], improved GA
(IGA) [22], and IGA with updated multiplier (IGAMU)
[22]. These methods have been developed by improving GA,
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using RCGA and other improved crossover operation, and
combining improved version of GA and multiplier updating
technique. Generally, more complicated modifications lead
to more improvement of GA variants. However, there have
been more drawbacks such as higher number of control
parameters, difficult task of selection of such factors, and com-
plicated implementation when combining two or more
methods. The different versions of krill herd algorithm
(KHA) [23] have been used for solving different cases of the
considered problem such as KHA without using genetic oper-
ation (KHA1), KHA using crossover operation (KHA2), KHA
using mutation operation (KHA3), and KHA using crossover
operation and mutation operation (KHA4). Several disadvan-
tages of these KHA methods have been pointed out in [24]
such as low convergence speed and low success rate. Thus,
opposition-based krill herd algorithm (OBKHA) [24] has
been developed by applying learning technique based on
opposition and it has been compared to KHA methods. As
derived from the comparisons, OBKHA could be considered
better than KHA methods about optimal solutions reflected
via less minimum cost and stable search ability reflected via
less average cost, less maximum cost, and less standard devia-
tion; however, the convergence speed and the success rate
have not been investigated since there were no comparisons
of used population and used iterations. Biogeography-based
optimization algorithm (BBOA) has been employed for min-
imizing cost and emission in [25] and for minimizing cost in
[26]. BBOA has some characteristics in common with other
metaheuristic algorithms consisting of mutation and selection
like GA, DE, and evolution programming, but this method
has much more number of control parameters such as the
probability of habitat modification and mutation, the rate of
mutation and immigration, and lower and upper boundaries
of probability. The results reported in [26] could show good
performance of BBOA via comparisons with several existing
methods on four test cases, but the keywords for determining
the best control parameters were missed. Clearly, the
application of BBOA to real power system with complicated
constraints in transmission power network was limited and
studies about BBOA for complicated systems have not been
carried so far. Grey wolf optimization algorithm (GWOA)
[27, 28] has been applied for simple systems without compli-
cated constraints and small number of units. Thus, the
demonstration of the methods’ performance has not been per-
suasive. On the contrary, crisscross optimization algorithm
(CSOA) [29] and exchange market algorithm (EMA) [30]
have had more result comparisons in the implementation of
large-scale systems and complicated constraints. The ant lion
optimization algorithm (ALOA) [31] was also a new method
with few applications, and the method in the study has not
shown its potential search ability persuasively due to simple
test employment. In addition, many new methods have been
developed for solving the problem such as modified symbiotic
organisms search algorithm (MSOSA) [32], mine blast algo-
rithm (MBA) [33], clonal algorithm (CA) [34], mathematical
programming algorithm (MPA) [35], improved quantum-
inspired evolutionary algorithm (IQIEA) [36], cuckoo opti-
mization algorithm (COA) [37], improved colliding bodies
optimization algorithm (ICBOA) [38], flower pollination

algorithm (FPA) [39], natural updated harmony search
(NUHS) [40], lightning flash algorithm (LFA) [41, 42], moth
swarm algorithm (MSA) [43], and orthogonal learning com-
petitive swarm optimization algorithm (OLCSOA) [44].
Among the remaining methods, LFA, MSA, ICBOA, and
OLCSOA were developed in the last two years and they were
considered better than most existing methods for considered
test cases. LFA and OLCSOA have been implemented for sys-
tems with different complex levels of thermal generating units
such as nonsmooth fuel cost functions with valve-point load-
ing effects, multifuel types, and prohibited zone meanwhile
challenges of transmission power network constraints have
not been taken into account. On the contrary, MSA has been
focused on dealing with the constraint complex rather than
the challenges of fuel cost function of thermal generating
units. In general, metaheuristic algorithms have been widely
and successfully applied for different test systems and their
superiorities have been pointed out mainly based on fuel cost
function comparisons. The performance of ICBOA has been
measured by testing on different study cases with different
types of fuel cost function and the consideration of all con-
straints of transmission power networks. ICBOA together
with other methods such as artificial bee colony (ABC),
DE, PSO, BBO, standard colliding bodies optimization algo-
rithm (CBO), and enhanced CBO have been measured by
testing on different study cases with different types of fuel
cost function and the consideration of all constraints of
transmission power networks. ICBO has been pointed out
obtaining better optimal solutions than all methods, but
the further comparisons of convergence speed have not been
carried out and discussed.

The firefly algorithm (FA) is also a population-based
metaheuristic algorithm similar to PSO, DE, CSA, and so
on built by Yang in 2008 for solving optimization problems
[45]. The configuration of FA consists of three procedures of
updating the distance between two considered fireflies,
updating a step size, and updating new solutions. FA has
shown its superiority over other traditional algorithms con-
sisting of GA and PSO [46] by the comparisons of different
benchmark optimization functions. In 2011, Yang and his
coworkers applied the algorithm for solving the considered
OOTGU problem [47] and they have stated that the method
has been efficient for the problem by carrying out result
comparisons via testing on three different systems. However,
the performance of the method has not been demonstrated
for large-scale systems with large number of generators
and highly complicated constraints in transmission net-
works. Thus, there were several improvement versions of
the method for dealing with the problem and the compari-
sons with it were also done for evaluation. An improved fire-
fly algorithm (IFA) has been proposed by Kazemzadeh-Parsi
in [48] by applying three different modifications. The first
modification was to use the better solutions of the previous
iteration for replacing the worst solutions in the current iter-
ation. The second modification was to replace low solutions
by randomly produced solutions, and the third modification
was to move the worse solutions only to one representative
solution instead of all better solutions. The representative
solution is determined by using the average solution of all



better solutions. The memetic firefly algorithm (MFA) in
[49] has focused on the balance of exploration acting as
global search and exploitation acting as local search by using
adaptive attractiveness f3 and adaptive step parameter o with
respect to the change of iteration in formula updating new
solutions for each lower quality solution. Another improved
FA with using adaptive step parameter « (ASPFA) was pro-
posed in [50] by suggesting an adaptive formula for updat-
ing step parameter a based on current iteration and the
maximum number of iterations. The chaotic firefly algo-
rithm (CFA) was developed in [51] for solving the consid-
ered OOTGU problem with different test cases of fuel cost
function and constraints. The method has used chaotic dis-
tribution to produce the values of attractiveness 8 and step
parameter « instead of using random distribution in FA.
Moustafa et al. [52] have implemented conventional FA,
IFA, MFA, and ASPFA on 3-unit system and 6-unit system
for comparison. The result comparisons have indicated that
IFA with three modifications was the best one and FA was
the worst one among four FA variants. However, there was
no comparison between these methods with others. On the
contrary, CFA in [51] has been tested on many tests with
more complicated objective functions considering valve-
point effects and multifuels, and more complicated con-
straints considering POZ, ramp rate, and active power
spinning reserve. CFA has been demonstrated to be more
effective than many methods such as PSO, ABC, DE, and
GA variants. Another modified firefly algorithm (a-MFA)
based on the modification on distance between two fireflies
and the modification on generation of step parameter «
was proposed in [53] for dealing with OOTGU problem
with 3-, 6-, 13-, and 15-unit systems considering valve-
point loading effects, ramp rate constraints, and POZ con-
straints. The five improved versions of FA have been dem-
onstrated to be better than conventional FA and other
methods. However, the superiority of the methods was not
shown clearly since it has not been implemented for compli-
cated systems taking all constraints of transmission power
networks and generators into consideration.

In the paper, we propose three modifications on the
FA in order to tackle several disadvantages of FA such
as premature convergence to local optimum solution and
impossibility of jumping out of the search zone with many
local optimum solutions. In the first modification, we pro-
pose a new formula to update radius between a considered
firefly X; (a solution) to another firefly X, (another solu-
tion) with lower fitness function than the considered solu-
tion. The proposed radius based on Xi and the best
solution X ., become more effective better than that
based on X; and X; used in FA. In the second modifica-
tion, we propose a new algorithm for producing new solu-
tions of an old solution by suggesting two models for the
updated step size. A large or a smaller updated step size
will be used to diversify new solutions and to avoid con-
verging to a local optimum and trapping into search zone
with many local optimums. In the third modification, uni-
form distribution is replaced with normal distribution
aiming at diversifying the search zone. As a result, the
improvement of the new algorithm is highly considerable
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compared to FA. The application of each modification
and three modifications is evaluated by testing on differ-
ence of four systems with other six cases. These test cases
consider thermal generating units using single fuel and
multifuels, convex and nonconvex objective function, and
all constraints in real power systems. The main contribu-
tions of the paper can be summarized as follows:

(i) Carry out three modifications on the new solution
produced phase of conventional FA and point out
the specific impact of each modification on the
obtained results.

(ii) The proposed method has few control parameters,
and the parameters are easily tuned. The proposed
method is more effective than FA, but the imple-
mentation of the proposed method is as simple as
that of FA.

(iii) Thoroughly present the application of the proposed
IFA method for solving different systems with differ-
ent constraints in optimal operation of power sys-
tems. The exact selection of control variables can
help the proposed method satisfy all considered

constraints.

(iv) Develop basic application of the proposed method
for optimization problem and lead to conclusion
that the proposed method is effective for systems
with complicated constraints but it works less effec-
tively for systems considering nonconvex objective
functions.

The rest of the paper is organized as follows. Section 2
describes the problem formulation. Section 3 presents the
firefly algorithms. Section 4 shows the implementation of
IFA for OOTGU problem. Section 5 presents the results of
numerical simulations. Finally, the conclusions and future
works are given in Section 6.

2. Problem Formulation

2.1. Objective Function. In OOTGU with single fuel, the fuel
cost of each generating unit is expressed as a quadratic func-
tion of its power output. The objective of the problem is to
minimize the total fuel cost of N available units and can be
written as follows [1]:

min  F= ) F(P,). (1)

where F{ is the fuel cost function of thermal unit s and it can
be represented in a single quadratic form or piecewise form
depending on the number of fuel cost options that thermal
plants use. If the thermal units use only one fuel, its form is
the second order equation as shown in (2) while the form
of F; when using multiple fuels is a piecewise curve consist-
ing of at least two second order equations. For the case of
multifuel options, F, is shown in (3) [1].

F,(P,)=a,+bP, + P’ (2)

st s
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ag +by P, +c P’ fuel P, . <P <P

smin = s =+ s1,max>

F(P,)={ ag, +bg,P, +c,,P?, fuelm, P, . <P <P

sm,max’>
M+b P+ cyy P2, fuel M, P <P.<P

s, sM;,min = s,max "

(3)

a

FS(PS) =as+ bsps + Cspz + ’ds X sin (es(Ps,min _Ps))|'

In addition, once valve-point loading effects (VPLE) of
thermal units are considered during the process of increase
or decrease of power output, (2) and (3) will become more
complicated models as follows [20].

ag + bslps + CSIP? + |dsl X sin (esl (Ps,min - Ps))" fuel L, Psmm < P < Psl max> (4)
Fi(Pi) = a + b P + Csmpf ‘d X Sln m(Psm,min - Ps)) > sm,min < P Psm,max’

AM, + bsMSPs + CsMsPs + |dsMS X sin (esMS (PsMs,min - Ps)) >

For easy understanding, the case of single fuel option and
the case of multifuel options neglecting and considering
VPLE are depicted in Figures 1 and 2. It is clear that the
curves with VPLE are much more complicated.

2.2. Set of Constraints

2.2.1. Generator Constraints. Active and reactive power
and voltage of generators are restricted by the following
inequality [17].

p <P, <P

smm -

s=1,...,N, (5)

s,max’

Qs min = Q < Qsmax’

\4 <V, <V

Sl’nll'l -

s=1,...,N, (6)

s=1,...,N, (7)

s,max’>

where Q; .;;, and Q, ..., are the lower and upper limitations of
reactive power of generator s, respectively; V. . and V.
are the lower and upper limitations of voltage of generator s,
respectively; and Q, and V are the operating values of reactive
power and voltage of generator s, respectively.

It is noted that the constraint (5) is always taken into
account in the OOTGU problem while the constraints (6)
and (7) are considered only when real transmission power
networks are being considered.

2.2.2. Prohibited Operating Zone (POZ) Constraints. In addi-
tion to the active power limitation constraint in (5), thermal
units are also constrained by prohibited operating zones due
to the security requirement. Thus, power output of each ther-
mal unit should be within its lower limit and upper limit and
outside the POZ. An example with two prohibited operating
zones of thermal units is shown in Figure 3, and a typical
thermal unit with prohibited operating zones is mathemati-
cally modeled as follows [20].

P < P < Plower

s,min =

P e{ PP <P <P p=1,

s s,h+12

Pupper < P < P

$Npozs =7 s = 7 s;max*

<P <Py,

,max*

2.2.3. Spinning Reserve Constraint. In order to avoid lack of
energy in case that the largest power unit shutdowns, total
active power reserve of all thermal units should be required
to be equal to or higher than the largest power unit. The
requirement is as below [20].

N
) PSR, 2 PSR. (9)

s=1

where PSR is the total active power that the power systems
require for spinning reserve and PSR; is the active power
spinning reserve of thermal generating unit s.

2.2.4. Ramp Rate Constraint. During the operation of thermal
units, generation increase and generation decrease are con-
strained by the ramp up and down the rate limit, respectively.
Thus, initial power output of units and the ramp rate limits
will determine the lowest and the highest power output of
unit at the moment. The description can be presented in
the following inequalities [20].

P,— P, <RUR,, if higher generation is required,

P, - P,<RDR,, if lower generation is required.

(10)

2.2.5. Real Power Balance. The total real power output of gen-
erating units satisfies total load demand plus system power
losses [1].

N
ZpsszD+pTL’ (11)

s=1
and the total power loss is calculated using Kron’s (1):

N N
Z s shPh+ ZBOSP5+BOO (12)

s=1

[\/]z

Pp=

Il
—_

§

In addition to (11), real power balance is also presented
by the following equation since real transmission power net-
works are considered [17].
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N,
P, -Pp =V, z V; [Gij cos (61‘ - 61‘) +By; sin (81‘ - 61')}’

=
i= 1, ee ’Nbus’

(13)

where G;; and B;; are the real part and the imaginary part
of admittance of a transmission line connecting buses i
and j.

Similarly, reactive power balance is also modeled as
follows [17]:
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FIGURE 3: Prohibited operating zones of thermal units.

N,

Qi +Qi—Qupi =V, Y V,;[Gysin (8,-8;) - B cos (8,- )],
j=1

i= 1, e ’Nbus’

(14)
where Q; is the generated reactive power of capacitors at bus
i and constrained by the following inequality [17]:

Qci,minSQciSQci,max’ izl""’N > (15)

c

where Q; i, and Q; ... are, respectively, the lowest and the
highest reactive power of the capacitor bank at bus i.

2.2.6. Transformer Tap Constraints. In a real transmission
power network, transformers are usually used to step down
voltage and supply electricity to lower voltage transmission
lines. The voltage of the lower voltage lines can be adjusted
by setting the tap of the transformers, so that the following
rule is always exactly met [17].

Timin <Ti<Timax =1 ..., Ny, (16)
where T, ;. and T .. are the lower limit and the upper limit
of transformer’s tap at bus i.

2.2.7. Stably Working Power Network Constraints. In order to
operate electric power network continuously, load bus volt-
age and apparent power flow of transmission lines must
follow the following limitations [17].

Viimin S Vi< Viimao 1= 105 Nigags

(17)

MVA;<MVA,; .o i=1...,Ny.

where V; . and Vi, . are, respectively, lower voltage and
upper voltage of load at bus i; MVA, . is the apparent

power flow capacity of line i; and MV, is the current appar-
ent power flow of line i.

3. Firefly Algorithms

3.1. The Conventional Firefly Algorithm. Firefly algorithm, a
metaheuristic algorithm, was first built by Yang in 2008 for
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solving optimization problems [45]. The configuration of FA
was developed by the three following ideas:

(i) Each firefly attracts another one by its brightness.

(ii) The fireflies with higher brightness have higher
attractiveness level to other ones.

(iii) The fireflies with lower brightness level move to
other ones with higher brightness level.

The three behaviors of nature fireflies have inspired
Yang in building an optimization algorithm called firefly
algorithm. There is a mutual connection between the behav-
iors of fireflies and the construction of FA. In fact, each fire-
fly corresponding to each optimal solution will own its
brightness corresponding to the fitness function of the opti-
mal solutions. The action that the fireflies with darker
brightness will look for and get to other fireflies producing
higher brightness level is similar to the newly produced solu-
tions based on old solutions with a better fitness function.
Consequently, in FA, each old solution can be newly pro-
duced several times depending on the comparison of its
brightness with other ones. As a result, only one new solu-
tion of each old solution is kept based on the comparison
of fitness function.

Suppose that each solution i (X;) is a position of firefly
i at the current iteration. When the fitness function of
solution i is higher than that of another solution j, the dis-
tance between the firefly i and j is obtained by using the

following model.
=1/ (X - X)) (18)

Then, the updated distance is employed to be substituted
into another (19) to calculate a new attractiveness. Then, the
new position for the ith considered firefly can be determined
corresponding to the generation of a new solution of the ith
solution. The procedure of generating a new solution is
carried out as (20).

B= Boe_yr’2j> (19)

Xijnew =X + B-rand.AX; + rand, (20)

ijnew
where rand is a random number of solution i and f, is
the attractiveness at zero distance and normally set to 1.
X; is a solution having lower fitness function than X
and AX;; is an updated step size calculated by the follow-

ing model.
AX;; = (Xj -X;). (21)

Equations (18), (19), and (20) continues to be determined
for the ith solution until there are no more solutions that
have lower fitness function.

In summary, for each solution i, we can have either one
or higher than one new solution or no new solution depend-
ing on the fitness comparison between solution i and other
solutions among the current population. The statement can
be described according to the following term.

7
Xz” isz' iSXGbest’
Xrew = Cbest> if Xj i8 X Gpest> (22)
X" with FT e otherwise.

For the first term in (22), if the considered solution i is
also the global best solution, there will be no any new solution
generated. For the second case, there will be only one new
solution, X35 is generated if the considered solution is the
second best solution, and X; is the global best solution
X cbest among the population. For other cases, it means X; is
the third best solution or worse than the third best solution
and even it is the worst solution, there will be from two new
solutions to (N, — 1) new solutions X7™. In this regard,
the set of new solutions of solution i will be evaluated by fit-
ness function value comparison and the best one with the
lowest fitness (FT gy ) is retained while others are discarded.

The whole description of FA is shown in detail in
flowchart of Figure 4.

3.2. The Proposed Improved Firefly Algorithm. FA has been
applied for solving different optimization problems such as
OOTGU problem and benchmark optimization functions,
and its results have been better than those from other popular
methods like PSO, GA, and DE. But the method has not met
the demand of dealing with large-scale systems and compli-
cated constraints of OOTGU problem, and many studies
have worked on improving it [49-51, 53]. In fact, FA still suf-
fers from several drawbacks such as premature convergence
to local optimum or convergence to near global optimum
with high number of iterations [54]. In order to solve the dif-
ficulties of using FA, we suggest three improvements of the
attractiveness f3 (namely, that is the radius), updated step size
AX;;, and random number (rand) in (20). The detail of the
three improvements is as follows.

3.2.1. The First Improvement. Instead of using the distance
between the considered solution i and another better solution
to determine the radius, the best solution X, is recom-
mended to be used for calculating the radius as shown in
the expression.

Tibest = (Xz - XGbest)z' (23)

We use Xeq to replace X; in (18) because the change

can produce a more effective scaling factor, which is the
attractiveness 3. The attractiveness 8 is a function with
respect to the radius as seen in (18). The usefulness of the
change is demonstrated in the numerical results where
IFA1 (FA with the first improvement) is better than FA in
terms of optimal solution reflected via the best solution
comparison and the stable solution search ability reflected
via the standard deviation comparison.

3.2.2. The Second Proposed Improvement. In the second
improvement, we propose a new technique to generate
updated step size and obtain lower solution fitness than
those of FA. It is clear that the manner of producing an



Complexity

Select control parameters

v

(i) Initialize a population

(ii) Calculate fitness function

v

(i) Determine the best solution, X pes

(ii) Set the initial iteration counter Iter = 1

v

Consider solution i =1

v

Produce new solutions X .,

for solution i by using (23)

A

¥

Calculate fitness function for solutions X;

ijnew

v

Assign new solution with the lowest fitness to X;

mew

(ii) Determine the best solution

(i) Compare fitness of old and new solutions to keep better ones

No ,—
Iter = Iter + 1

»
»

FiGURE 4: The flowchart of implementing FA for a general optimization problem.

updated step size by using (21) is similar to mutation oper-
ation of differential evolution algorithm (DEA) in which S
acts as mutation factor ranging from 0 to 2. Some studies
before [55, 56] have pointed out the disadvantages of DEA
such as low convergence to global optimum or trapping into
local optimum easily. Consequently, the proposed improve-
ment aims to tackle the constrictions of FA by using the
following expressions.

A‘Xlij = XGbest - Xworst’

(24)
AXyy= (X, =X, + X, - X,,).

It is clear that the first updated step size AX
the second updated step size AX

1 is less than
Thus, the use purpose of

each one is different, in which the former narrows the search
zone nearby old solutions while the latter can expand exploi-
tation to avoid falling into the same solutions. Derived from

2ij*

the difference, a condition of using either AX,;; or AX,,; is
suggested based on the fitness ratios as follows:
AX,;,  ifFR;>FRy ,
AX, = (25)
AXyij otherwise.

FR; and ERy are not fixed at constant values, but they

are not control parameters and their values can be exactly
calculated by

FR _ FTI - FTGbCSt
l FTGbest ’ ( 2 6)
FR _ FTNPOP - FTGbest
Nyap FTGbest

It is clear that there are two possibilities for compari-
son between FR; and FRy . FR; is either less or higher
pop

than FRy . Since the first assumption occurs, it means that
pop
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Set control parameters to values

Set Iter = 0;
While Iter < Ny,,,
Set Iter = Iter + 1;

Fori=1:N,,

For j=1:N,,

If T, > FT,

If FR; > FRypop
AX;=AX
Else
AX;=AX
End

Determine 7,

TiBest =

B=5, e

End % if
End % for

End % for

End % while

Randomly initialize population N
Calculate fitness of the whole population FT;(i=1,...,N,,,)
Determine the best solution X, and the worst solution Xy,

Calculate FTy,,,, FR; and FRy,,,

Determine AX,;; and AX,;;
A)(lij = (XGhest - XWurst)
AXyi= (X, - X, + X, — X))

1ij
2ij

2
(Xi -X GBest)
Determine attractiveness 3 and new solution X;}"”’

X=X+ B.randn.AX;; + randn
Calculate fitness function ofX;;.ew

Compare each old solution and each new solution to keep better one.
Compare these fitness function to choose the best fitness function
Set X with the lowest fitness to X/

Determine the best solution X, and the worst solution Xy,

> 2T pop

ArcoriTHM 1: The pseudo code of the proposed IFA method.

solution i is better than the average solution of the whole pop-
ulation and if the second assumption happens, solution i is
worse than the mentioned average solution. In the case that
solution i is better than the mentioned average solution, solu-
tion i is very close to current good solutions, which are better
than the mentioned average solution. So if we use the first
updated step size AX;;, the change from current solution i is
small and the new solution can be very close to or the same
as the current good solutions. Clearly, the second updated step
size AX,;; is much larger than AX,;; and it can push the

obtained new solution far away from the current good solu-
tions, avoiding jumping to local optimum zone and prema-
ture convergence. On the contrary, since solution i is worse
than the mentioned average solution, it is not close to the
current good solutions and the search around it with a not
large step size AX,;; is better. The impact of the proposed
improvement is significant for obtaining good result of
the proposed method via the observation of comparison
between FA and IFA2 (FA with the second improvement)
in numerical results.

3.2.3. The Third Proposed Improvement. In the third pro-
posed improvement, we suggest using normal distribution
(randn) instead of using uniform distribution (rand) like
the conventional FA. The suggestion aim is to diversify
the search zone as used in Levy flights of Cuckoo search
algorithm [46]. As a result, the equation of producing new
solutions is as follows:

Xi" =X, + B.randn.AX;; + randn. (27)

The effectiveness of the proposed improvement is
demonstrated by comparing IFA3 (FA with the third modifi-
cation) with FA in numerical results.

The implementation of the proposed IFA for a general
optimization problem is similar to the flowchart shown in
Figure 4 of FA; however, the difference between the two con-
sidered algorithms is the way to produce new solutions X7;™

(shown in Step 5). The whole search procedure of the pro-
posed IFA is described in Algorithm 1.
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4. The Implementation of IFA for
OOTGU Problem

4.1. Dealing with Load Demand-Supply Balance and Other
Constraints. In order to deal all constraints, decision variables
and dependent variables are chosen thoroughly. For the case
that constraints of real transmission power network are not
taken into account, power output of the first (N — 1) thermal
units is included in the position of each firefly as shown in

X; =[P pPyp...s Py gy, =1, s Npops (28)
where
Xoin <X; < X oo (29)
Xinin = [Pl,min’ Py mins -+ Py 1 min)> (30)
Kinax = [Prmae Pomax -+ » PN-1max] - (31)

As a result, the load demand-supply balance constraint
can be dealt successfully by using the dependent variable
Py ; obtained by the below model [15].

N-1
PN,iZPLD+PTL_ZPs,i' (32)
s=1

For complicated case with the consideration of all trans-
mission power network constraints, active power output of
all generators excluding at slack bus, voltage of all generators,
tap setting of all transformers, and reactive power output of
all capacitors are chosen as decision variables. Thus, X;,
X.in» and X . are not the same as (28), (30), and (31) and
can be obtained as follows:

X;={Pyy s Py Vi oos Vg Tipo oo Ty o
ch,i’ AR Qch,i}’
Xmin = {Pz,min’ AR PN,min’ Vl,min’ ce VN,min’ (33)
Tl,min’ cer TNt,min’ ch,min’ et Qch,min}’
Xmax = {PZ,max’ cee PN,max’ Vl,max’ e VN,max’
Tl,max’ et TN[,max’ ch,max’ AR Qch,max}'

Note that P, ; is not included in the set of decision vari-
able because it is supposed to be the active power of generator
located at slack bus. Other dependent variables are obtained
by running optimal power flow program, Mathpower.

4.2. Penalizing the Violation of Dependent Variables. There
is a possibility that Py; can violate its limitation, lower
than the lowest generation or higher than the highest gen-
eration. Therefore, the violation must be controlled and
considered in the quality evaluation of solutions. The task
is done by calculating the penalty term as indicated in the
following equation.

Complexity
Py = PNmac if Py; > Py maxs
Penalty;; = ¢ Py min = Pni> if Py; < Py min>
0, if Py min < Py < Py maes
(34)
N 2
Penalty,. = max (o, PSR- ) PSRS> . (35)
s=1

Similarly, when the real transmission power network
constraints are running, the third penalty term calculation
is carried out by the following model.

lim 2 . lim 2
Penalty,; = (PL,- —Pl’,-) + Z (Qs,i -Q; )

s=1
Nigad 2
) (VL].J—VIL‘;“J) (36)
i1
Niine

. 2
+ ) (MVA;, - MVAJTY) )
=1

where the limits related to dependent variables are deter-
mined by

P e if P> P ao
Plli,lzn =< Pimin if Py; <Py pins
P else,
Qumav Qg > Qo
Qg;n = Qs,min’ if Qs,i < Qs,min’
Q. else,
Vimeo 3 Vi > Vijmao
VILT =9 Vijmin Vi <Vijmino
Vi o else
—— { MVA; e i MVA;; > MVA;
M MVA jio otherwise.

(37)

4.3. Fitness Function. The fitness function of all solution
should be determined to arrange the effectiveness of all the
solutions. Consequently, the fitness function considering
objective function and the sum of penalty terms is shown in
the following model.

N
FT; = Z F,(P,) + PF x (penalty,; + penalty,, + penalty,.)?,

s=1

(38)

where PF is penalty factor used to amplify the violation of the
dependent variable [16].
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4.4. The Procedure of IFA for OOTGU Problem. The whole
search process of the proposed method when solving the
considered problem is described in detail as follows.

Step 1. Initialize a population with N, solutions (X, i=1,
-+ » Npop) satistying the condition of (29).

Step 2. Calculate dependent variables for solution i by using
(32) or running Mathpower optimal power flow program.

Step 3. Determine penalty terms by using (34), (35), and (36).

Step 4. Find the fuel cost coeflicients corresponding to power
output of TGU in case of multifuel options.

Step 5. Calculate fitness function FT; by using (38).

Step 6. Assign the solution with lowest fitness into the best
one X . and start the first iteration (Iter = 1).

Step 7. Consider solution i = 1.

new

Step 8. Produce new solutions X for solution i by using

three proposed modifications.

Step 9. Check limits for X;}ew and perform Steps (2)-(4)
above.

Step 10. Calculate fitness function for all new solutions X7
and assign the solution with the lowest fitness into X",

Step 11. Ifi= N, go to the next step. Otherwise, seti =i+ 1
and back to Step 8.

Step 12. Compare each new solution X!V to each old solu-
tion X; to keep better one.

Step 13. Determine the best solution.

Step 14. If Iter is equal to the highest iteration number Ny,
stop the iterative algorithm. Otherwise, set Iter = Iter + 1 and
back to Step 7.

5. Numerical Results

In the paper, the efficiency of proposed IFA method is veri-
fied by testing on six main cases with different characteristics
of fuel cost function, thermal unit constraints, and power
network constraints. The detail of test systems is described
as follows.

Case 1. Six thermal generating unit test system with POZ
constraint and power loss constraints [57].

Case 2. Fifteen thermal generating unit test system with POZ
constraint and without power loss constraints [22].
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TaBLE 1: The selection of population size and the highest iteration
number.

Case Number of units Npop Nier
1 6 10 30
2 15 10 100
3 20 10 300
4 40 10 10,000
10 10 100
5 10 10 100
10 10 300
6 54 20 500

Case 3. Twenty thermal generating unit test system with
power loss constraints [3].

Case 4. Forty thermal generating unit test system with valve-
point loading effects [58].

Case 5. Ten thermal generating units with multifuels.

Subcase 5.1. Neglect valve-point loading effects and
power losses [7].

Subcase 5.2. Consider valve-point loading effects and
neglect power losses [20].

Subcase 5.3. Consider valve-point loading effects and the
constraints of POZ, ramp rate limits, and
active power spinning reserve [20].

Case 6. The IEEE-118 bus system with all constraints of real
transmission power networks [59].

The population size N, and the highest iteration num-

ber Ny, selected for implementation of IFA are reported in
Table 1. For each study case, each method is run one hundred
independent trials by using MATLAB and computer with
4GB of Ram and 2.4 GHz processor.

5.1. Impact Analysis of Each Proposed Improvement. In this
section, the contribution of each proposed modification to
the performance of the proposed method is investigated by
running conventional FA, FA with the first proposed
improvement (IFA1), FA with the second proposed improve-
ment (IFA2), FA with the third proposed improvement
(IFA3), and the proposed IFA method on five benchmark
functions and two power systems. Such benchmark function
is given in Table 2 [17, 60] while the two power systems with
6 units and 15 units considering POZ constraints are taken
from Cases 1 and 2.

5.1.1. Testing on Benchmark Functions. In order to imple-
ment FA, [FA1, IFA2, IFA3, and the proposed method, the
population size and number of iterations are set to 50 and
1000, respectively. In addition, we also employ Wilcoxon
signed-rank test [61] and set the significance improvement
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TaBLE 2: Definition of five applied benchmark functions.

Function Definition Domain
D
1, 2, X, € [-5.12,5.12]
(Sphere) fi= i;x" D=30
D
1, - - X, € [=5.12,5.12]
(Rastrigin) L= ;[10 +x7 — 10 cos (27x;)] D30
D
1, - B B B 1 x, € [~30, 30]
(Ackley) f3=20+e—-20exp | —0.2 exp | 5 ; cos(2mx;) D=30
f, fi=1 +i o f‘)[cosﬁ x; € [~600, 600]
(Griewangk) Y0 L4000 1 i D=30
D
s _ D x; € [-10, 10]
(Schwelfel) Js= Zl bl + 117 D=30
TaBLE 3: Result comparison for five benchmark functions.
Function Method Min. Std. dev. Z value W value P value
FA 47,343 5474.1 -6.154 0 0
IFA1 2381.5 488.8 -6.154 0 0
J(Céphere) IFA2 21.77 8.72 —6.154 0 0
IFA3 154.198 243 —6.154 0 0
IFA 0.6537 0.1865
FA 98.6076 21.2183 —6.154 0 0
IFA1 60.57 125.05 -6.154 0 0
f .. IFA2 6.42 58.08 —6.154 0 0
(Rastrigin)
IFA3 48.58 32.72 —6.154 0 0
IFA 0.17654 11.1474
FA 19.4832 0.2661 -6.154 0 0
IFA1 11.521 1.1903 -6.154 0 0
J(Cjﬁckly) IFA2 2.7034 0.1023 —6.154 0 0
IFA3 5.577 2.1884 —6.154 0 0
IFA 0.69 0.0481
FA 436.1885 55.157 —6.154 0 0
[FA1 16.67 42.97 -6.154 0 0
fa . IFA2 0.009611 0.165 -6.154 0 0
(Griewank)
IFA3 0.33162 5.993 —6.154 0 0
IFA 0.00020344 5.1E - 05
FA 49,347 7517.8 -6.154 0 0
s IFA1 249.4881 76.65 -6.154 0 0
5 _
(Schwelfel) IFA2 16.19 15.59 6.154 0 0
IFA3 36.72 36.12 -6.154 0 0
IFA 4.0252 0.292

level to 0.01 for calculating Z value, W value, and p value for ~ the comparison of the best cost is to reflect the best optimal
better comparison between the proposed method and others. solution and comparison of the standard deviation cost is
As aresult, the obtained results in terms of minimum fitness, ~ to reflect the stabilization of search ability. As pointed in
standard deviation of 50 trial runs, Z value, W value, and  [62], p value can be either equal to or smaller than 0.01 or
p value are reported in Table 3. Among the result numbers,  higher than 0.01. In case that p value of a compared method
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is higher than 0.01, the significance improvement level of the
proposed method over the compared method is not adopted
but the significance level is accepted in case such p value is
less than 0.01 or equal to 0.01 [62]. Table 3 shows that all
minimum values and standard deviation of the proposed
method are smaller those of other ones meanwhile Z value,
W value, and p value are, respectively, equal to —6.154, 0,
and 0. p value = 0 indicates that the proposed method reaches
the significance improvement level over other FA variants
while W value = 0 determines the accuracy of Z value and
p value. For other comparisons among FA, IFA1, IFA2, and
IFA3, the minimum fitness and standard deviation reports
can indicate that IFA2 is the best modification; IFA3 is the
second best modification while IFA1 is only better than con-
ventional FA. The further investigation of performance of
each FA methods can be seen clearly in the following section
since two power systems with 6 units and 15 units consider-
ing POZ constraints are employed for testing.

5.1.2. Testing on Power Systems with POZ Constraints. In this
section, the performance of FA, IFA1, IFA2, IFA3, and the
proposed IFA method is illustrated by running on power sys-
tems of Study Cases 1 and 2. Furthermore, four other popular
methods consisting of particle swarm optimization (PSO)
[63], differential evolution (DE) [64], flower pollination algo-
rithm (FPA) [65], and crow search algorithm (CSA) [66] are
also implemented for solving two test systems. For running
the methods, we set the population and the number of itera-
tion to those values of the proposed method shown in
Table 1. In addition, we also tune other control parameters
of these methods to their predetermined ranges. For the
implementation of PSO, acceleration factors ¢; and ¢, are
set to the range of [0.2, 2.0] with a step size of 0.2. For the
implementation of DE, mutation factor and crossover factor
are, respectively, set to range of [0.2, 1.2] and [0.2, 1.0] with a
step size of 0.2. For the implementation of FPA, probability
of using either local search or global search is set to the range
of [0.1, 1.0] with a step size of 0.1. For the implementation of
CSA, awareness probability and flight length are, respec-
tively, set to the range of [0.2, 1.0] and [0.2, 2.0] with a step
size of 0.2. The obtained results from the proposed method
and these compared methods such as minimum cost and
standard deviation and the results from Wilcoxon signed-
rank test such as Z value, W value, and p value are reported
in Tables 4 and 5 for Study Cases 1 and 2.

For Case 1, the proposed method has obtained the best
results with less best cost than FA, IFAI, IFA2, and IFA3,
respectively, by $2.14, $1.843, $0.001, and $0.182. Similarly,
the standard deviation cost of IFA is, respectively, less than
that of FA, IFAI, IFA2, and IFA3 by $26.765, $18.05,
$1.322, and $17.113. Furthermore, Z value, W value, and
p value also indicate the significance improvement of the
proposed method over FA variants. Comparison among
IFA1, IFA2, and IFA3 can see that such three improved ver-
sions has better performance than FA; meanwhile, IFA2 is
the best improvement and IFA1 is the worst improvement.
Analysis of Case 2 also gives the same evaluation for
FA methods.i

13

TABLE 4: Result comparisons for Case 1.

Method Best cost ($) Std. dev. ($) Z value W value p value

FA 15445.215 26.815 —-6.154 0 0
IFA1 15444918 18.01 —-6.154 0 0
IFA2 15443.076 1.371 —6.154 0 0
IFA3 15443.257 17.163 —6.154 0 0
PSO 15444.447 16.5186 —6.154 0 0
FPA 15443.55 2.9594 —6.154 0 0
DE 15443.5 26.8126 —-6.154 0 0
CSA 15444.75 6.5271 —-6.154 0 0
IFA 15443.075 0.050

TAaBLE 5: Result comparisons for Case 2.

Method Best cost ($) Std. dev. ($) Z value W value p value

FA 32885.8432 104.534 —6.154 0 0
IFA1 32781.003 88.441 —-6.154 0 0
IFA2 32544.9906 8.3011 —6.154 0 0
IFA3 32712.6581 91.8623 —6.154 0 0
PSO 32571.62 94.63377 —6.154 0 0
FPA 32545.1 12.26141  -6.1057 5 0
DE 32635.04 114.94 —6.154 0 0
CSA 32553.03 61.97552 —6.154 0 0
IFA 32544.9704 0.1438

For comparison with PSO, FPA, DE, and CSA, all the
costs yielded by the proposed method are smaller than those
from PSO, FPA, DE, and CSA. In particular, the standard
deviation of the proposed method is approximately zero
while this value of other methods is much higher than zero.
Furthermore, Z value, W value, and p value calculated by set-
ting the significance improvement level to 0.01 also indicate
that the proposed method can improve working performance
significantly when compared to PSO, FPA, DE, and CSA.
Among IFA1, IFA2, and IFA3, only IFA2 outperforms
PSO, FPA, DE, and CSA since the best cost and standard
deviation cost of IFA2 are smaller than those of PSO, FPA,
DE, and CSA. Consequently, it can conclude that the pro-
posed method has high performance for searching optimal
solutions while the second modification has the most impact
on results.

Besides, the more accurate comparison of the best cost
improvement and the standard deviation improvement can
be quantitative by using the following equation.

IFA resultimprovement (%)

result of compared method-result of IFA
= % 100%.

result of compared method
(39)
In (39), result of IFA or result of compared method can

be the best cost, mean cost, worst cost, or standard deviation
cost dependent on decision of evaluation but the two most
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TaBLE 6: Improvement of IFA over FA for Cases 1 and 2.

Case Compared Best cost Std. dev.
method improvement (%) improvement (%)
FA 0.014 99.81
PSO 0.009 99.70
1 FPA 0.003 98.31
DE 0.003 99.81
CSA 0.011 99.23
FA 1.037 99.86
PSO 0.082 99.85
2 FPA 0.000 98.83
DE 0.276 99.87
CSA 0.025 99.77
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F1GURE 5: Fitness-iteration characteristics obtained FA and IFA for
Study Case 1.

important evaluations must be used including the best cost
improvement and the standard deviation improvement. As
result is the best cost, IFA result improvement is the
improvement of optimal solution quality of IFA over the
compared method. In addition, as the result is standard devi-
ation, the IFA result improvement is the improvement of sta-
bilization of IFA over the compared method. As a result, the
improvement of IFA over others in terms of the best optimal
solution quality and the stabilization is reported in Table 6
for Cases 1 and 2. As observed from Table 6, the best cost
improvement of IFA over FA and other methods is not high
but the improvement of standard deviation cost is approxi-
mately 100% for the two cases.

The best cost of fifty independent trials for Cases 1 and 2
obtained by the proposed IFA and FA is, respectively, plotted
in Figures 5 and 6. The figures can evaluate the standout of
IFA over FA clearly once all minimum costs of IFA are nearly

Complexity
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FIGURE 6: Fitness-iteration characteristics obtained by FA and IFA
for Study Case 2.

on a flat line and much lower than those of FA, especially for
Case 2 while fifty cost values of FA have high fluctuations for
the two cases.

5.2. Comparison and Discussion. In order to investigate the
further performance of IFA, we carry out the comparisons
of results obtained by IFA and many optimization algo-
rithms. In addition to the comparison of the best costs,
another comparison criterion is also considered to be the
number of fitness evaluations N g, which is shown in the
following equation.

NFES =wX Npop X NIter’ (40)

where w is the number of generations in each iteration. For
some optimization algorithms possessing two new solution
generations such as CSA [15] and ICSA [16], w is 2 while
for others possessing one new solution generation like PSO
[11] and DE [11], w is only 1. For the proposed IFA, there
is only one new solution generation in each iteration; thus,
w is also equal to 1. As a result, the value of N ¢ is added into
each table for the comparison and the indication is that a
method with lower Nz is considered to be more efficient
if its best cost is also lower or equal.

5.2.1. Comparisons of Test Case 1. Table 7 reports compari-
sons of the best cost, mean cost, worst cost, and Nppg from
IFA and other methods for Case 1, and especially the best
cost improvement of IFA compared to each one is also
reported at the final column. It notes that if the best cost
improvement (BCI) in % has plus sign (+), the result from
IFA is better than the compared method, and if BCI has
minus sign (-), the compared one has better optimal solution
than IFA. Besides, if BCI equals zero, the proposed method
and compared methods have the same best cost and the same
quality of optimal solution. The observation of BCI can lead
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TaBLE 7: Result comparisons for Case 1.
Method Best cost ($) Mean cost ($) Worst cost ($) Nggs BCI (%)
DE [11] 15,449.77 15,449.87 15,449.78 3600 +0.0433
GA [11] 15,459 15,524 15,469 3600 +0.1030
PSO [11] 15,450 15,492 15,454 3600 +0.0448
KHALI [23] 15,450.75 15,452.82 15,455.50 10,000 +0.0497
KHA2 [23] 15,448.21 15,450.83 15,453.40 10,000 +0.0333
KHA3 [23] 15,445.36 15,447.22 15,449.60 10,000 +0.0148
KHAA4 [23] 15,443.08 15,443.19 15,443.30 10,000 0.0000
OBKHA [24] 15,443.08 15,443.92 15,443.33 — 0.0000
BBO [26] 15,443.10 — — 10,000 +0.0002
EMA [30] 15,443.07 15,443.08 — 50,000 0.0000
AIS [34] 15,448 — — 4000 +0.0319
NAPSO (18] 15,443.77 15,443.77 15,443.77 3000 +0.0045
NAPSOL1 (18] 15,449.14 15,451.04 15,452.92 3000 +0.0393
NAPSO 2 [18] 15,444.77 15,446.77 15,449.77 3000 +0.0110
NAPSO 3 [18] 15,449.08 15,450.33 15,452.78 3000 +0.0389
a-MFA [53] 15442.9 — — 1200 —-0.0011
IFA 15,443.075 15,443.12 15,443.52 300
TaBLE 8: Result comparisons for Case 2. TABLE 9: Result comparisons for Case 3.
Method Best cost ($) Mean cost (§) Worst cost (§)  Npgg Method Cost ($) Npgs
CSA [15]  32,544.9704  32,545.006 32,546.6734 8000 Lambda [3] 624656.639 —
ICSA [16] 32,542.5593 32,543.16884  32,546.6574 6000 HM [3] 62456.6341 —
IGA [22] — 32,04.736 — 250,000 CSA [16] 62456.633 10,000
IGAMU . 32.544.990 . 50,000 ICSA [16] 62456.633 10,000
[22] BBOA [26] 62456.7926 20,000
IFA 32544.9704  32,545.2241 32545.54 1000 FA 62458.881 10,000
IFA 62456.634 3000

to an evaluation that the proposed method is slightly better
than most methods (the improvement is from 0.0002% to
+0.1030%). KHA4 [23], OBKHA [24], and EMA [30] have
the same cost as the proposed method, but a-MFA [53] has
slightly lower cost than IFA. However, the recalculated cost
of a-MFA [53] is $15445.46, which is higher than the cost
of the proposed method. The comparison of Ny can indi-
cate that the proposed method is at least 4 times faster than
other ones since N ;¢ of IFA is 300 but that of other ones is
from 1200 (a-MFA [53]) to 50,000 (EMA [30]). In spite of
using lower value of N ¢, the mean cost and the highest cost
of the proposed method are also much less or approximately
equal to those from other ones. As a result, it can result in a
conclusion that the proposed method is much effective than
other methods when solving test Case 1 with quadratic fuel
cost function, POZ constraint, and power loss constraint.

5.2.2. Comparisons of Test Case 2. This section compares the
performance of the proposed method with other ones when
dealing with a larger scale system compared to Case 1. The
obtained results from the proposed method and other com-
pared methods are given in Table 8. It is obviously seen that
ICSA [16] has the best optimal solution; however, the

confirmation of a valid solution is not done for ICSA because
there was no optimal solution reported for the case in [16]. In
comparison with mean cost and maximum cost of other
ones, the proposed method has higher values because we
run the proposed method with Ny of 1000 while others
were run by a very high value. In case that we increase N ppg
of the proposed method to 6000 and higher than 6000, the
result is that the mean cost and the highest cost are approxi-
mately equal to the best cost. The illustration aims to demon-
strate the fast convergence of the proposed method
compared to others, and it is clear that the proposed method
is better than this compared method for Case 2 with 15 units
considering quadratic fuel cost function and POZ constraint.

5.2.3. Comparisons of Test Case 3. In the section, a larger sys-
tem with 20 units considering quadratic fuel cost function
and power loss constraint is employed for comparison. The
information of the best cost and Ny is shown in Table 9
for comparison with deterministic methods and metaheuris-
tic methods. The best can see that the proposed method can
obtain less cost than FA, Lamda, and HM methods in [3] and
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TaBLE 10: Result comparisons for Case 4.
Method Best cost ($) Mean cost ($) Worst cost ($) Nggs BCI (%)
CCDE [13] 121,412.58 121,413.56 121,416.53 70,000 —-0.002
CSA [16] 121,412.54 121,520.41 121810.25 160,000 -0.002
BBO [26] 121,426.95 121,508.03 121,688.66 200,000 +0.010
FPA [39] 121,074.50 121,095.70 121,196.30 2000 -0.281
OLCSO [44] 121,415.82 121,504.05 121,460.78 400,000 +0.001
FA [47] 121,415.05 121,416.57 121,424.56 50,000 +0.000
KHALI [23] 121,460.42 121,468.98 121,477.46 10,000 +0.038
KHA2 [23] 121,448.36 121,453.68 121,461.39 10,000 +0.028
KHA3 [23] 121,423.46 121,428.23 121,433.56 10,000 +0.007
KHA4 [23] 121,412.60 121,413.15 121,415.00 10,000 —-0.002
CFA [51] 121,415.02 121,416.23 121,420.67 336,000 +0.00035
IFA 121,414.6 121,549.038 121,787.5 100,000 0.000
TasLE 11: The comparison of the best cost (in $/h) for Subcase 5.1.

Method 2400 2500 PP 2600 2700 Nies
ALHN [8] 481.723 526.239 574.381 623.809 —
EALHN [9] 481.723 526.239 574.381 623.809 —
DE [11] 481.723 526.239 574.381 623.809 12,000
HDP-ICDE [12] 481.7226 526.2388 574.3808 623.809 8000
HRCGA [21] 481.7226 526.2388 574.3808 623.8092 30,000
AIS [34] 481.723 526.24 574.381 623.8092 4000
CSA [15] — — — 623.8092 6000
CFA [51] — — — 623.8339 156,000
FA 505.2337 580.4417 639.287 679.9525 2000
IFA 481.7226 526.2388 574.3808 623.809 1000

BBOA in [26] but slightly higher than cost of CSA and ICSA
in [16]. The deviation implies that the proposed method is
more effective than lambda, HM, and BBOA, but it is not less
effective than methods in [16]. Besides, the proposed method
has used much less Ny than other ones including FA. As we
use a higher number of Ny equal to 10,000, the best cost
obtained by the proposed method is also as good as that of
methods in [16]. The numerical comparison can show a good
performance of the proposed method when dealing with a
system with 20 units considering quadratic fuel cost function
and power loss constraint.

5.2.4. Comparisons of Test Case 4. Test Case 4 is more com-
plicated than above cases due to the consideration of 40 units
and nonconvex fuel cost functions. The result comparisons
of the case are shown in Table 10. The values of BCI can
see that the proposed method has better cost than methods
with plus sign “+” of BCI such as BBO, OLCSO, KHAI,
KHA2, KHA3, FA [47], and CFA [51]. In comparison with
remaining methods, the proposed method has lower quality
of solution with higher cost excluding FPA, which did not
report optimal solution and had the surprised lowest value.
The comparison of Ny also goes against the proposed

method in the evaluation of performance. In fact, the pro-
posed method uses a higher number of Npp¢ compared to
CCDE, FA, and KHA methods but it uses smaller N ¢ than
the rest of methods including CFA, which is an improved
version of FA. The analysis of best cost and Nygg can point
out that the application of the proposed method is not as
effective as the applications with quadratic fuel cost function
in Cases 1, 2, and 3 above.

5.2.5. Comparisons of Test Case 5. This study case considers
different fuel cost functions with nonsmooth forms such as
the sum of several quadratic functions for Subcase 5.1, the
sum of several nonconvex functions for Subcases 5.2 and
5.3, and different complicated constraints such as POZ,
ramp rate limits, active power spinning reserve, and power
losses for Subcase 5.3. Subcase 5.1 is the simplest among
the three subcases considering four load values, 2400, 2500,
2600, and 2700 MW. Table 11 reports the comparison of
the best cost and the value of Nppg from methods. It can
see that the proposed method can yield optimal solutions
as good as others excluding FA with the worst results and
the proposed method’s N g is also the lowest value exclud-
ing comparison to ALHN and EALHN, which are not
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TaBLE 12: The comparison of costs (in $/h) for Subcase 5.2.
Method Best cost ($) Mean cost ($) Worst cost ($) Nrgs BCI (%)
ICSA [16] 623.8684 623.9495 626.3666 12,000 -0.0013
CCDE [13] 623.8288 623.8574 623.8904 7000 -0.0077
CSA [15] 623.8684 623.9495 626.3666 10,000 -0.0013
DSPSO-TSA [19] 623.8375 623.8625 623.9001 3000 —-0.0063
PSO [19] 624.3045 624.5054 625.9252 3000 0.0685
GA [19] 624.505 624.7419 624.8169 3000 0.1006
TSA [19] 624.3078 635.0623 624.8285 3000 0.0690
KHA1 [23] 611.3276 613.0895 614.8293 10,000 -2.0528
KHA2 [23] 609.0768 610.3271 611.2105 10,000 -2.4299
KHA3 [23] 607.5437 608.1164. 608.5431 10,000 —2.6884
KHA4 [23] 605.7582 605.8043 605.9426 10,000 -2.9911
FA 664.5306 675.5344 679.426 2000 6.1177
IFA 623.8768 625.2704 629.2765 1000
TaBLE 13: The comparison of costs (in $/h) for Subcase 5.3.

Method Best cost ($) Mean cost ($) Worst cost ($) Nirgs BCI (%)
RCGA [20] 624.6605 625.9201 628.9253 3000 0.026
NRCGA [20] 624.355 624.5792 624.7541 3000 -0.022
FA 673.5544 685.2872 699.2855 6000 7.284
IFA 624.49507 625.2647 629.3951 3000

metaheuristic methods and face to the difficulties of applying
for nonconvex fuel cost function. The comparison can imply
that the proposed method is very promising for dealing with
ten-unit system considering multifuel options where non-
convex fuel cost function or valve-point loading effects are
not taken into account.

Comparisons for Subcases 5.2 reported in Table 12 can
see that KHA methods in [23] are the best ones with the sur-
prised lowest BCI compared to the proposed method; how-
ever, the validation confirmation of solutions cannot be
done due to the lack of optimal solution report in [23]. Com-
pared to popular methods such as PSO, GA, TSA (Tabu
search algorithm), and FA, the proposed method is better
in terms of lower cost and lower Ngg. On the contrary, the
proposed method is less effective than remaining methods
in [13, 15, 16, 19]. As we set N g to higher values such as
3000, 7000, and 10,000, the results obtained are also worse
than these methods. Thus, we conclude that the proposed
method is not much effective for the subcase considering
valve-point loading effects.

The same conclusion is also seen for Subcase 5.3 reported
in Table 13 since the proposed method can improve the
results 0.026% compared to RCGA and 7.284% compared
to FA, but the results are 0.022% worse than that of NRCGA.
It is clear that the proposed method cannot be better than
turther improved method like NRCGA. Once again, the pro-
posed method is not effective for system considering VPLE.

5.2.6. Comparisons of Test Case 6. An IEEE-118 bus system is
employed for the test case. The system is similar to a real

system with the presence of nearly all electric components
such as transformers, capacitors, transmission lines with
impedance and admittance, active and reactive power of
generators, voltage of load buses and generator buses, the
transmission capacity of conductors, and tap setting of trans-
formers. The system has 64 load buses, 186 transmission
lines, 54 thermal generating units with quadratic fuel cost
function, 14 capacitors, and 9 transformers. The results of
minimum cost, mean cost, worst cost and N g, and the best
cost improvement of the proposed method compared to
others are reported in Table 14. It can be seen from BCI that
MSA [43] is the best method with the best cost improvement
of 0.93% compared to the proposed method. On the
other hand, the proposed method can improve the best
cost from 1.7% (compared to COA) to 10.08% (compared
to PSO); meanwhile, its Ny is equal to Ny of PSO
and PG-CF-PSO, and much lower than that of all
remaining methods. In summary, the proposed method
is a promising method for the system with 54 units, quadratic
fuel cost function, and all constraints in transmission
power networks.

The optimal solutions obtained by the proposed method
for Cases 1, 2, 4, and 6 and Subcase 5.3 are given in
Tables 15-17.

6. Conclusions and Future Works

In this paper, solutions of OOTGU problem have been
found by using an effective proposed IFA method, which
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TaBLE 14: Result comparisons for Case 6.

Method Best cost ($) Mean cost ($) Worst cost ($) Nggs BCI (%)
PSO [17] 145,520.01 158,596.173 184,686.825 10,000 10.08
PG-CF-PSO [17] 139,604.13 152,204.261 170,022.973 10,000 6.27
COA [39] 133,110.43 153,110.432 138,260.403 — 1.70
ICBOA [38] 135,121.57 — — 450,000 3.16
CBO [38] 135,073.00 — — 450,000 3.13
ECBO [38] 135,172.27 — — 450,000 3.20
DE [38] 142,751.118 — — 225,000 8.34
ABC [38] 135,145.189 — — 450,000 3.18
BBOA [38] 135,272.196 — — 450,000 3.27
MSA [43] 129,640.719 — — — -0.93
FA 136,472.670 139,845.99 146,821.82 10,000 4.12
IFA 130,847.3503 135,391.09 138,816.24 10,000

TaBLE 15: The optimal solution obtained by the proposed method
for Case 1, Case 2, and Subcase 5.3.

TaBLE 16: The optimal solution obtained by the proposed method
for Case 4.

ase 1 2 ubcase 5. . p . p . p . p
Unit ¢ S;S (MW)  Unit Casle)s (MW) Unif ’ aJSPes (13[W) Unit oy VR ooy UM ovwy TR ovw)
1 447.3425 ‘1 450 1 221.3859 1 110.7998 11 168.7998 21 523.2794 31 190
2 173.2211 2 450 2 213.1943 2 110.7998 12 168.7998 22 523.2794 32 190
3 263.4287 3 130 3 285.3037 3 97.3999 13 214.7598 23 523.2794 33 190
4 138.9756 4 130 4 239.1047 4 179.7331 14 394.2794 24 5232794 34 164.7998
5 165.4668 5 335 5 260 5 92.7582 15 394.2794 25 523.2794 35 164.7998
6 87.0112 6 455 6 240.7162 6 140 16 304.5196 26 523.2794 36 164.7998
7 465 7 293.1166 7 259.5997 17 489.2794 27 10 37 110
8 60 8 239.2326 8 284.5997 18 489.2794 28 10 38 110
9 25 9 438.3883 9 284.5997 19 511.2794 29 10 39 110
10 20 10 269.5577 10 130 20 511.2794 30 87.7999 40 511.2794
11 20
12 55
13 25 improvement has the best performance. The combination
14 15 of the three improvements has the highest impact, resulting
15 15 in superiorities of IFA over FA as follows.

is developed based on conventional FA by performing the
three following improvements.

(i) Propose a new radius between two considered
solutions.

(ii) Determine the most appropriate updated step size
for each considered solution.

(iii) Use normal distribution instead of uniform distribu-
tion in the equation of producing new solutions.

Each proposed improvement’s impact on results is inves-
tigated by running on two different systems with different
data and constraints. The results of two tests can indicate
that among the three improvements, the first proposed
improvement has the worst efficiency while the second

(i) The proposed method can find much better optimal
solutions than FA.

(ii) The proposed method’s search ability is always more
stable than FA reflected via a very small standard
deviation.

(iii) The proposed method converges to an optimal solu-
tion much faster than FA because it uses a lower
number of produced new solutions.

On the other hand, the proposed method is also com-
pared to other existing methods such as original methods
and improved methods via testing on six cases with different
types of fuel cost functions and different constraints, espe-
cially the consideration of all constraints in transmission
power networks, which are similar to real power systems.
The result comparisons and discussion indicate that the
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TaBLE 17: Optimal solution obtained by the proposed method for Case 6.
Variable Value Variable Value Variable Value
P, (MW) 0.8976 Pygs (MW) 34.7545 V,, (pu) 1.0133
P, (MW) 1.7628 P,y (MW) 34.628 Vo (pU) 1.0264
P, (MW) 0.1324 Plos (MW) 19.5482 Vs (pu) 1.0033
Py (MW) 12.2424 Py, (MW) 56.655 Ve (pu) 1.0053
P,y (MW) 395.304 P, (MW) 6.0809 Vo (pu) 0.993
Py, (MW) 76.2481 Py, (MW) 29.5586 Vo (pu) 0.9881
Ps (MW) 10.092 Py, (MW) 15.4431 Ve, (pu) 0.9933
Py (MW) 40.2488 Py15 (MW) 0.1302 Vs, (pu) 0.9868
Py (MW) 293122 Pys (MW) 30.0209 Vo (pu) 1.0214
P,, (MW) 0.6953 vV, (pu) 1.0489 V00 (P0) 1.0158
Py (MW) 188.9729 Vv, (pu) 1.0345 V.05 (pu) 1.0278
Py (MW) 269.9192 V, (pu) 1.0035 Vi0s (pU) 1.0094
P,, (MW) 21.4182 Vg (pu) 0.9753 V.05 (pu) 1.0106
Py, (MW) 7.1482 V., (pu) 1.0454 V.4 (pu) 1.0287
Py, (MW) 6.0145 Vi, (pu) 1.0275 Vi1 (pu) 0.996
Py, (MW) 23381 V,s (pu) 1.06 V1, (pu) 1.0191
Py (MW) 0.892 Vs (pu) 1.0618 V., (pu) 0.9841
P,y (MW) 36.72 V.o (pu) 1.0581 V.15 (pu) 1.0346
P,, (MW) 28.3862 V,, (pu) 1.0388 Ve (pu) 1.0382
P, (MW) 20.5522 V,s (pu) 1.0586 Q.s (MVAr) ~143
P,y (MW) 193.6641 V, (pu) 1.0993 Q.34 (MVAT) 9.8
P., (MW) 50.635 V,, (pu) 1.0322 Q.;; (MVAT) ~152
Pay (MW) 66.2727 Vs, (pu) 1.035 Q.4y (MVAT) 39
Ps (MW) 70.6712 Vs, (pu) 1.0407 Q.is (MVAT) 5.5
Py (MW) 131.0352 Vs, (pu) 1.0137 Q.46 (MVAT) 4.7
Py, (MW) 151.3198 Vs (pu) 1.0087 Q.45 (MVAT) 8.5
Py, (MW) 0.9109 V4 (pu) 1.0247 Q.4 (MVAr) 113
Pgs (MW) 341.1965 V,, (pu) 1.0525 Q.o (MVAT) 11.8
Py (MW) 295.7935 Ve (pu) 1.028 Qus, (MVAr) 0
P,y (MW) 223211 Vo (pu) 1.0495 Qug3 (MVAT) 6.3
P, (MW) 0.0596 Ve, (pu) 1.0207 Qu105 (MVAr) 14.8
P, (MW) 0.2632 Vs (pu) 1.0253 Q.17 (MVAr) 53
P., (MW) 22.6539 Ve (pu) 1.0209 Q.10 (MVAT) 2.6
P (MW) 21.9574 Ve (pu) 1.0345 T, (pu) 0.98
P, (MW) 47.6506 Ve, (pu) 1.0311 T, (pu) 0.99
Py, (MW) 389.276 Ve, (pu) 1.0269 T, (pu) 1.03
Py (MW) 0.0008 Vs (pu) 1.0395 T, (pu) 1.1
Py, (MW) 2.0455 Ve (pu) 1.0644 Tos (pu) 0.91
Py (MW) 442.1625 Vo (pu) 1.0447 Tos (pu) 1.06
Py, (MW) 41.6673 V, (pu) 1.0152 T\0, (pu) 0.97
Py, (MW) 17.3391 V., (pu) 1.0264 T\ (pu) 0.9
Py, (MW) 0.0197 Vs (pu) 1.0137 T,y (pu) 1.03
Py (MW) 0.1407 V., (pu) 1.0168 V., (pu) 1.0133
Pygo (MW) 212.6985 Vse (pu) 1.0206

proposed method is an effective method when solving
systems with complicated constraints such as POZ and
other constraints regarding transmission power networks.

However, the proposed method puts up with difficulties
of fuel cost functions taking valve-point loading effects
into account. Finally, it can lead to a conclusion that
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the proposed method outperforms popular methods such as
PSO, GA, DE, RCGA, and TSA, but it works less effectively
than further improved versions of these methods and some
other methods.

In the paper, we have applied the proposed IFA
method for minimizing total electricity generation fuel cost
of all available units in cases of neglecting and considering
constraints of real transmission power networks. However,
the considered optimization problem will be more practi-
cal and useful if other popular electricity sources such
wind farms [67] and distributed generators [68] as well
as maintenance policies of electricity power networks during
operation process [69] are taken into account. Thus, our
future work is to construct and apply the proposed IFA
and other potential algorithms for solving the new prob-
lem of power system optimization operation. The objective
is also to minimize the fuel cost thermal units and distrib-
uted generators while wind energy will be exploited highly
and maintenance policies regarding power networks are
also considered.
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ICBOA: Improved colliding bodies optimization
algorithm

ICSA: Improved cuckoo search algorithm

IFA: Improved firefly algorithm

IGA: Improved genetic algorithm
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NUHS:
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Complexity

Krill herd algorithm

KHA without genetic operation

KHA with crossover operation

KHA with mutation operation

KHA with crossover operation and mutation
operation

Lightning flash algorithm

Lagrange optimization function-based
method

Linear programming method

Mine blast algorithm

Memetic firefly algorithm

Mathematical programming algorithm
Moth swarm algorithm

Modified symbiotic organisms search
algorithm

New adaptive particle swarm optimization
NAPSO without fuzzy

NAPSO without self-adaptive

NAPSO without mutation

RCGA with arithmetic-average-bound cross-
over and wavelet

Natural updated harmony search
Opposition-based krill herd algorithm
Orthogonal learning competitive swarm opti-
mization algorithm

Optimal operation of thermal generating units
PSO with pseudo-gradient and constriction
factor

Prohibited operating zone

Particle swarm optimization

Combination of particle swarm optimization
and tabu search algorithm

Real-coded genetic algorithm

Tabu search algorithm

Valve-point loading effects

Modified firefly algorithm.

Updated step size
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POZ h of unit s

Fuel cost coeflicients of unit s with
single fuel option

Qg D> Coms Ao €4t Fuiel cost coeflicients for fuel type m of
unit s

By, Bys> Byo: B-matrix coeflicients for transmission
power losses

FR;: Fitness ratio of solution i compared to
the best solution
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compared to the best solution

F.: Fuel cost function of thermal unit s
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solution
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h: Index of POZ
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Current iteration

Number of fuel options of thermal
unit s

Number of thermal units
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Maximum number of iterations
Number of transmission lines
Number of load buses
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Number of prohibited zones of unit s
Number of transformer buses

The first violation penalty term
corresponding to slack thermal unit
The second violation penalty term
corresponding to spinning reserve
constraint

The third violation penalty term
corresponding to transmission power
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Active power generated by a generator
at bus i

Active power of load

Active power of load at bus i

Real power output of generator s
Initial power output

The lowest and highest generations of
thermal unit s

The lowest and highest generations of
thermal unit s corresponding to fuel
type m

Total active power that the power
systems require for spinning reserve
Active power spinning reserve of
thermal generating unit s

Total active power losses in all
transmission lines

Reactive power generated by a
generator at bus i

Reactive power of load at bus i
Uniform distribution

Normal distribution

Ramp up and down rate limit of unit s
Current working tap at bus i

The best and the worst solutions
Solution j with better fitness than X;
Lower and upper limits of solutions
Random solutions among the current
population

The attractiveness of the considered
firefly.
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