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Mathematics is not the only language in the book of nature 
 

James Nguyen1 and Roman Frigg2 
 
 
 

How does mathematics apply to something non-mathematical? We 
distinguish between a general application problem and a special application 
problem. A critical examination of the answer that structural mapping 
accounts offer to the former problem leads us to identify a lacuna in these 
accounts: they have to presuppose that target systems are structured and 
yet leave this presupposition unexplained. We propose to fill this gap with 
an account that attributes structures to targets through structure generating 
descriptions. These descriptions are physical descriptions and so there is no 
such thing as a solely mathematical account of a target system.  
 
Key words: Application of mathematics; structure; mapping account; 
representation; isomorphism; physical descriptions. 

 
 
 
1. Introduction 
 
Much of modern science is highly mathematized. Physicists represent quantum 
phenomena with Hilbert spaces; population biologists represent predator-prey 
systems using coupled differential equations; and economists represent the 
beliefs and desires of human agents with real-valued functions. The question 
then is: how does mathematics apply to the physical and social worlds? This 
question has been on the horizon at least since Galileo (1623/1957, p. 238) 
noted that the book of nature was written in the language of mathematics, and it 
acquired notoriety when Wigner declared that the “unreasonable effectiveness 
of mathematics” in science was “something bordering on the mysterious and that 
there is no explanation for it” (1960, p. 2). The question is central to the 
philosophy of science but has implications beyond, for example in the philosophy 
of mathematics where the Quine-Putnam indispensability argument takes the 
successful application of mathematics in science to deliver ontological 
conclusions regarding the status of mathematical entities.  
 
A prominent answer to the question has emerged within the structuralist 
approach to the nature of scientific theories. The basic idea of this account, which 
Pincock (2004) aptly calls the mapping account, is that a theory provides 
mathematical structures and that these structures apply to the physical world in 
virtue of the existence of a structure preserving mapping (henceforth a 
morphism) that relates the mathematical structure with the structure of the 
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physical system(s) to which the theory applies.  The aim of this paper is to 
examine this account of the application of mathematics. Our conclusion will be 
that it offers only a partial answer. For such morphisms to be well-defined, 
physical systems need to exhibit structures and without an account of where 
these structures come from the account remains incomplete. In this paper we 
provide a positive answer, namely that these structures are the result of 
abstracting away the physical aspects of what we call structure generating 
descriptions: descriptions of physical systems that refer to physical objects and 
physical properties and relations. We call this the extensional abstraction 
account. 
 
We proceed as follows. In Section 2 we point out that there is no such thing as 
“the” problem of the application of mathematics and distinguish between 
multiple intertwined problems concerning the use of mathematics in science. In 
Section 3 we introduce the mapping account and present what we take to be the 
strongest formulation of it. In Section 4 we examine existing suggestions of 
where the physical structures needed for the mapping account might be found, 
and argue that they don’t stand up to scrutiny. In Section 5 we present a 
suggestion of how to fill this gap, and in Section 6 we offer concluding remarks 
concerning mathematical explanation, nominalism, and how our account could 
be put to use in the context of philosophies of mathematics other than 
structuralism.  
 
 
2. Defining the Problem 
 
Representations of target systems offered by scientific models and theories 
crucially involve mathematical structures.3 These mathematical structures are 
applied to physical systems in a way that allows scientists to convert reasoning 
about the structures into reasoning about the systems to which they apply. 
Consider the simple example of a population of rabbits. Suppose you want to 
know how fast the population grows and to this end you construct a 
mathematical model of the population. One way to reason about such a 
population is to count the rabbits at a particular time, observe their breeding 
behaviour, and then formulate a rule about how the population grows. A simple 
rule is that the rabbits form discrete generations and that the population doubles 
every time a new generation appears (for instance every six months). Under 
these assumptions the growth of the population is given by the rule  
where  is the size of the population at time t.  It follows from this rule that if 
one has two rabbits now, one will have 32 rabbits in two years time.4  

                                                        
3 For the purpose of this paper it is not necessary to take a stance on whether models or theories 
are the units of scientific representation, nor does it matter whether models should be identified 
with mathematical structures (for a discussion of these issues see our (2017)). Our point of 
departure here is the hopefully uncontroversial observation that whatever does the representing 
often involves mathematics.   
4 We note that our choice of example is inline with much of the recent discussion on the 
applicability of mathematics where examples from biology have occupied centre stage; cf. Baker’s 
cicadas (2005), van Fraassen’s deer counting (2008, Chapter 11), and Lyon and Colyvan’s bees 
(2008). 
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In formulating this model, a mathematical structure, in this case the natural 
numbers with a particular function defined on them, has been applied to a 
physical system, and this made it possible to convert reasoning about the 
structure into reasoning about the physical system itself. This invites the 
question of what is involved in doing this. Steiner (1998, pp. 24-47) points out 
that the question about the application of mathematics actually breaks down into 
two questions that need to be disentangled. We agree with this observation and 
therefore distinguish between what we call the general application problem and 
the special application problem.  
 
The general application problem is this: in virtue of what does a mathematical 
structure apply to a target system? Two qualifications are needed. First, the 
structure referred to in the question could be any mathematical structure. The 
emphasis of question is: how does mathematics hook onto something that (at 
least on the face of) it isn’t mathematical, namely a part of the physical world. 
What general conditions have to fall into place for this to happen? Second, there 
is an ambiguity in whether “apply” is a success term or not. There are numerous 
examples where mathematics can be applied to a physical system, but in such a 
way that the claims that the mathematics can be used to generate about the 
physical system are false.5 The above example is a case in point as the equation 
implies that the population continues to grow indefinitely, but of course the 
population won’t grow indefinitely because limited resources will put a bound 
on its size.6 To regiment usage, we will use “apply” (and its cognates) in a way 
that is neutral with respect to whether or not the application at hand generates 
true or false claims. Where the application generates truths we use the phrase 
“successful application” and where it generates falsehoods the phrase 
“unsuccessful application”. But both types of cases are still instances of 
mathematics being applied to the physical world. 
 
As our first qualification suggests, there is another question one can ask, namely: 
in virtue of what does a specific (type of) mathematical structure apply to a given 
(type of) target system? In this vein one can ask, for instance, in virtue of what 
the natural number structure applies to the rabbit population in the example 
above; in virtue of what manifolds apply to spacetime; in virtue of what Hilbert 
spaces apply to quantum systems; and so on. We call this the special application 
problem. The specific problem is comparative: for a given (type of) target system 
what makes one type of mathematical structure apply to it rather than another? 
Should the rabbit population be embedded into the natural numbers? The 
rational numbers? The real numbers? What sort of function(s) should 
correspond to their physical interbreeding relations? Should they be bounded? 
                                                        
5 Generating a strictly speaking false claim does not imply that the application is completely 
unsuccessful. Falsity comes in degrees, and so does being an unsuccessful application. There is 
clearly a sense in which some applications of mathematics generate claims about systems that 
are only approximately true (e.g. Newton’s use of calculus to describe planetary motions), and 
yet one would not want to dismiss them as a unsuccessful tout court. However, quantifying 
degrees of success (or lack thereof) is tantamount to giving degrees of approximate truth, which 
is a problem we cannot tackle in this paper. For a review see Oddie’s (2016). We would like to 
thank an anonymous referee for drawing our attention to this issue.  
6 Pincock (2012, Chapter 7) provides numerous more realistic examples of failed applications.  
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And so on. There are multiple decisions to be made when determining which 
mathematical structure should be applied to a system in question, and how.  
 
There is a third problem that is often mentioned in connection with the 
applicability of mathematics: in virtue of what, if at all, do facts about 
mathematical structures explain physical facts? We call this the explanation 
problem. This problem is of interest for at least two reasons. Firstly, philosophers 
of science are interested in what scientific explanation is and the question of 
how, if at all, mathematics can function explanatory has implications for this 
broader debate. Second, the recent literature on indispensability arguments for a 
commitment to the existence of mathematical objects has focussed explicitly on 
whether or not mathematics plays an essential explanatory role, rather than 
merely featuring in our “best scientific theories” as per the original Quine-
Putnam formulation (for a clear statement of this see Baker’s (2009, Section 2)). 
 
It is worth noting that the application problem, even if phrased in terms of 
successful application, is conceptually prior to the explanation problem. Before 
asking whether or not a fact about a mathematical structure explains some fact 
about a physical system we need to know whether or not the mathematical 
structure applies to the system in question. The examples in the recent literature 
– e.g. whether or not facts about prime numbers are essential in explaining the 
life cycles of cicadas (Baker 2005); whether or not the Borsuk-Ulam theorem 
explains the fact that there are two antipodal points on the Earth’s surface with 
the same temperature and barometric pressure (Colyvan 2001); or whether or 
not the Honeycomb conjecture explains why bees build hexagonal honeycombs 
(Lyon and Colyvan 2008) – all presuppose that the relevant mathematical 
structures apply, and indeed apply successfully, to the physical system of 
interest. It’s then an additional question as to whether or not the facts about the 
structures explain facts about the systems.   
 
In this paper our focus is on the general applicability problem. We only make a 
few remarks about the specific problem on the way and briefly touch on the 
explanation problem in Section 6 where we indicate how our answer to the 
general application problem impacts on the explanation problem.   
 
 
3. The Mapping Account 
 
The core idea of what has become known as the mapping account is that a 
mathematical structure applies to a target system in virtue of there being a 
proposed structure-preserving mapping from the target system to the 
mathematical structure. The mathematical structure successfully applies to the 
target system if the mapping holds. Phrased in this way it’s important to note 
that the proposal of the mapping answers the application question and whether 
the mapping holds adjudicates whether the application is successful.  
 
The mapping account is phrased in terms of mathematical structures and it’s 



 5 

important to be explicit about the notion of structure this presupposes.7 
Structures are taken to be set-theoretic structures as used in logic and model 
theory. A structure in that sense is a composite entity consisting of a nonempty 
set  of objects called the domain (or universe) of the structure and a nonempty 
indexed set  of relations  on . It is convenient to write the structure as an 
ordered tuple .8 For what follows it is important to be clear on the 
nature of the objects and relations that make up a set-theoretic structure. The 
important point is that it does not matter what the objects are intrinsically. The 
only thing that matters from a structural point of view is that there are so and so 
many of them. All we need are dummies or placeholders. Likewise for relations. 
It is irrelevant what the relation “in itself” is. All that matters from a structural 
point of view is between which objects it holds. For this reason, a relation is 
specified purely extensionally, that is, as class of ordered n-tuples and the 
relation is assumed to be nothing over and above this class. Thus understood, 
relations have no properties other than those that derive from this extensional 
characterization, such as transitivity, reflexivity, and symmetry.  
 
Assume now that we want to apply the structure  to a target system . On 
the mapping account this involves proposing a mapping  such that f 
preserves at least some of the structure of T. We then say that  is the structure 
to be applied and that  is the mapping that anchors the application of . The 
nature of  has been the subject matter of considerable debate with 
isomorphism, isomorphic embedding, partial isomorphism, and homomorphism 
being the most common suggestions.9 We say that  and are morphic if the 
proposed morphism relating them exists.  
 
This account of the applicability of mathematics is arguably implicit in many 
versions of the semantic view of theories, most notably in Suppes’, van 
Fraassen’s, the partial structures approach championed by Da Costa, French, 
Ladyman, and Bueno, and the Munich brand of structuralism due to Sneed, 
Stegmüller, Balzer and Moulines.10 Recent explicit statements and defences of 
the account have been offered by Pincock (2007, 2004, 2012) and Bueno and 
Colyvan (2011). For our current purposes we focus on Bueno and Colyvan’s 
discussion because their statement of the view is particularly helpful for a 
discussion of the issues we are interested in.11  

                                                        
7 Explaining the application of mathematics by appeal to structures looks most natural in the 
context of structuralist philosophy of mathematics such as Shaprio’s (1997) or Resnik’s (1997). 
However, the mapping account does not presuppose this approach to mathematics and could be 
adopted by proponents of other accounts. We briefly return to this issue in Section 6.  
8 The standard notion of a structure is introduced, for instance, in Hodges’ (1997) and Enderton’s 
(1972/2001). We note, however, that in the context of logic a structure is sometimes also taken 
to include a language and an interpretation function, which are absent from the notion of a 
structure as used in the current context.  
9 For a discussion of these see, for instance, Suppes’ (1960), van Fraassen’s (1980, 2008), Da 
Costa and French’s (2003), French and Ladyman’s (1999), Bueno’s (2011), Bartels’ (2006), 
Mundy’s (1986), Pero and Suárez’s (2016). 
10 For a discussion of these approaches see Portides’ (2017). 
11 It’s worth noting here that Bueno and Colyvan call their account an “inferential account” of the 
application of mathematics rather than a “mapping account”. Whilst it’s true that their account is 
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Bueno and Colyvan break down the application of mathematics into three steps 
(ibid., p. 353): 
 

(1) Immersion: “the first step consists in establishing a mapping from the empirical set up to 
a convenient mathematical structure […] several mappings can do the job here, and the 
choice of mapping is a contextual matter, largely dependent on the particular details of 
the application.”  

(2) Derivation: “this step consists in drawing consequences from the mathematical 
formalism, using the mathematical structure obtained in the immersion step […] This is, 
of course, the key point of the application process, where consequences from the 
mathematical formalism are generated.”  

(3) Interpretation: “finally we interpret the mathematical consequences that were obtained 
in the derivation step in terms of the initial empirical set up […] To establish an 
interpretation, a mapping from the mathematical structure to the initial empirical set up 
is needed. This mapping need not be simply the inverse of the mapping used in the 
immersion step—although, in some instances, this may well be the case. But, in some 
contexts, we may have a different mapping from the one that was used in the immersion 
step.” 

 
In separating these three steps, Bueno and Colyvan elaborate on a simple 
mapping account in various important ways. Firstly, they are explicit that the 
choice of a mapping in the immersion step is a contextual matter and therefore 
does not require that the same mapping (let alone isomorphism) be used in 
every instance of applying mathematics. This, combined with the fact that they 
allow for distinct mappings from, and to, the empirical set up allows for 
instances where the mathematical structure contains more structure than the 
empirical one, and visa versa (ibid, p. 356).12 Secondly, they argue that after the 
immsersion step their account is flexible enough to accommodate multiple 
further mappings between the intitial mathematical structure and some further 
structures, and then applying the further two steps (ibid, p. 354). Thirdly, they 
argue that their account can accommodate idealisations via the introduction of 
partial mappings (ibid, pp. 356-363). Forthly, the argue that by allowing for 
pragmatic and contextual considerations to determine which mapping to choose 
on a case by case basis they make room for cases where novel predictions are 
generated by applying mathematics. This happened, for instance, where Dirac 
choose to interpet negative solutions to the dirac equation as physically 
meaningful (ibid, pp. 364–365). (They also claim that their account allows for 
mathematics to play an explanatory role, we return to this in Section 6).  
 
Which of the two application problems introduced in Section 2 does this account 
address? Answers to the special problem are, by their very nature, contextual 
and no general account will, on its own, offer a solution to the question of how a 

                                                                                                                                                               
much richer than the simple version of the mapping account defined above, it does rely crucially 
on mappings to and from target systems and mathematical structures, and in this sense is an 
advanced version of, rather than an alternative to, the mapping account.  
12 A related point is made by Weisberg (2013, Section 3.3) who points out that in cases where 
mathematical structures are used to represent a physical system, an assignment and intended 
scope are needed to specify which parts of the structure are mapped to which parts of the target 
system. Where the structure contains parts that don’t correspond to any purported part of the 
target system (e.g. where irrational numbers satisfy the Lotka-Volterra equations) it should be 
made explicit that this is not supposed to have physical import.  
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particular structure is applied (say, of how partial differential equations are 
applied to diffusion processes). The best a general account can do is offer a 
framework for the analysis of specific applications. Bueno and Colyvan’s account 
does exactly that. As they point out, the inherent flexibility and context 
sensitivity of their framework allows them to account for Diarc’s discovery of the 
positron; why we ignore negative solutions to quadratic equations in cases of 
predicating where a projectile will land; and the introduction of partial 
homomorphisms can, at least to some extent, accommodate cases like Simon’s 
account of bounded rationality where the mathematical structures captures only 
some of the relevant features of the target system.  
 
However, despite offering a framework in which to think about specific 
applications of mathematics, no complete answer to the general problem 
emerges from Bueno and Colyvan’s account. The general problem is addressed in 
the first and the third steps when mappings between the empirical set up and 
convenient mathematical structures are established: every application of 
mathematics involves setting up at least two relevant mappings. But target 
systems are physical objects – atoms, planets, populations of rabbits, economic 
agents, and so on – and not structures. Yet a mapping  is a relation that holds 
between two structures and claiming that a set theoretic structure is morphic to 
a piece of the physical world is prima facie a category mistake. If we are to make 
sense of the claim that the model is morphic to its target we have to assume that 
the target somehow exhibits a certain structure. Hence, formulated properly, 
applying structure requires defining a mapping  (and not 

) where is the structure of the target. But what is the relation 
between  and ? What does it mean for a target system – a part of the 
physical world – to possess a structure? The answer to this question is far from 
obvious and Bueno and Colyvan are aware of this problem: 
 

“Put simply, the world does not come equipped with a set of objects (or nodes or 
positions) and sets of relations on those. These are either constructs of our theories of 
the world or identified by our theories of the world. Even if there is some privileged way 
of carving up the world into objects and relations […], such a carving, it would seem, is 
delivered by our theories, not by the world itself. What we require for the mapping 
account to get started is something like a pre-theoretic structure of the world (or at least 
a pre-modeling structure of the world). This is clearly a problem for the mapping 
account […] the mapping account does require having what we shall call an assumed 
structure in order to get started. There is no avoiding such an assumption” (2011, p. 
347). 

Later in their paper, when discussing what makes their account more attractive 
than a simple mapping account, they argue that their account has the means to 
address this problem: 

“the inferential conception is well placed to help provide the crucial assumed structure. 
Recall that the assumed structure is the structure the modeling exercise assumes to be 
present in the world […] we will need to impose some structure on the world in order to 
begin the modeling exercise. Earlier we suggested that the mapping account might treat 
this initial assumed structure as defeasible and let the resulting mathematical model 
help inform refinements or revisions to the initial assumed structure. The inferential 
account has the resources to make revisions midstream and does not require starting 
from scratch each time a more fruitful assumed structure is conceived. This is achieved 
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by employing the composite mappings to move from the mathematized initial assumed 
structure to another mathematical structure, where the latter may be thought to 
correspond to a new (revised) assumed structure. There is no need to revise formally 
the initial assumed structure because the interpretation step of the process will deliver 
the final structure of the empirical set up—one informed by the modeling exercise and 
one that may well be quite different from the initial assumed structure” (2011, p. 357). 

Bueno and Colyvan are right in pointing out that their account offers increased 
flexibility, but this does not explain how a structure emerges from something 
non-structural in the first place. To revise a structure presupposes that there is a 
structure to begin with, but Bueno and Colyvan have little to say about where the 
“assumed structure” comes from. Likewise, Pincock signals awareness of there 
being “an important difference between talking about a concrete system made 
up of objects and linked together by concrete relations involving quantities and 
properties and a set-theoretic structure” (2012, p.29), but then says little about 
how this gap is to be bridged. Hence, that there is a structure to begin with 
remains an unanalysed posit, and with it the general application problem is left 
unresolved.  
 
 
4. The Curse of Abundance 
 
In order to make sense of the mapping account, an account needs to be given of 
where the structure of a target system comes from. In this section we review 
existing accounts and argue that they are dead ends.  
 
A first suggestion is that data models are the sought-after “assumed structure” of 
the target system. Mathematics is not applied to a mysterious structure of the 
system itself, but to a data model that results from performing measurements on 
the system. The idea that data might provide the required target-end structure 
originated in a different context, namely the issue of representation in the so-
called semantic view of theories. The idea is originally found in Suppes’ 
(1962/1969), but has been most developed by van Fraassen (2008). 13 
Experimental measuring processes gather raw data. These are then cleaned, with 
anomalous data points rejected and measurement error taken into account. Then 
they are often idealized, for instance by replacing discrete points by a continuous 
curve. Where these data points are numeric, the smooth curve is a function that 
can be treated as a relation defined over ℝ, or ℝn, or intervals thereof. These 
data models are set theoretic structures, and therefore they can enter into the 
morphisms as required by the mapping account.   
 
The main problem facing this idea is that if this is the end of the story then it 
turns out that mathematics doesn’t apply to the physical world after all because 
data themselves are mathematical objects – in fact this is what allows them to 
play the required role of the “assumed structure” in the mapping account. So the 
account ends up applying mathematics to mathematics, and hence begs the 
question of how mathematics is applied to the world. In the context of scientific 

                                                        
13  For a critical discussion (that pre-dates van Fraassen’s 2008 development) see Brading and 
Landry’s (2006). 
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representation van Fraassen (2008) responds to this objection by invoking 
pragmatic aspects of the context of using scientific models. In the language of the 
mapping account, the core of van Fraassen’s argument is that there is no 
pragmatic difference between taking a mathematical structure to apply 
accurately to a physical system and accurately apply to data extracted from it. 
Nguyen (2016) provides a critical discussion of van Fraassen’s argument in the 
context of theory of representation and concludes that the argument is 
unsuccessful in deflating the gap between data and physical systems. Nothing in 
Nguyen’s argument depends on whether the problem at hand is representation 
or the applicability of mathematics, and hence the argument carries over mutatis 
mutandis. But in the absence of a successful argument deflating the gap between 
data extracted from a system and the system itself, appealing to data to provide 
the structure of a physical systems delivers an account of the applicability of 
mathematics whereby mathematics applies to other parts of mathematics, rather 
than the physical world proper.  
 
The second suggestion of where to find the “assumed structure” of a physical 
system is more radical. One could simply claim that physical systems themselves 
are structures. Prime facie this seems like a category mistake: structures are sets 
with relations and functions existentially defined upon them, and physical 
systems are not sets. However Tegmark (2008) argues the contrary. His 
argument proceeds from what looks like an innocuous claim: there exists an 
external physical reality completely independent of us humans (what he calls the 
“external reality hypothesis”). He argues that this entails that the world is a 
mathematical structure (his “mathematical universe hypothesis”). His argument 
for this is based on the notion that a so called “theory-of-everything” must be 
expressible in a form that is devoid of human-centric “baggage” (by the external 
reality hypothesis), and the only theories that are devoid of such baggage are 
mathematical, which, strictly speaking, describe mathematical structures. Thus, 
since a complete theory of everything describes an external reality independent 
of humans, and since it describes a mathematical structure, the external reality 
itself is a mathematical structure.  
 
This approach stands or falls on the strengths of its premise that a complete 
theory of everything will be formulated purely mathematically, without any 
human baggage, which in turn relies on a strict reductionist account of scientific 
knowledge. We have doubts about a number of steps in this argument, in 
particular the validity of inference from the proposition that a theory of 
everything describes a mathematical structure to the conclusion that the 
external reality itself is a mathematical structure. However, an in-depth 
assessment of Tegmark’s argument is beyond the scope of this paper. For our 
current purposes is sufficient to note that Tegmark’s discussion is focused on the 
claim that fundamentally the world is a mathematical structure. Even if this is the 
case, the argument fails to illuminate any case where mathematics is applied to a 
target system at the non-fundamental level. Arithmetic can be used to count 
objects on the desk; a biologist might use the Lotka-Volterra equations to 
generate a prediction about a predator-prey system; an economist might use a 
pair of utility and probability functions that map to the real numbers to 
summarise someone’s choice behaviour; and so on. It is undeniable that these 
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are instances of applying mathematics. Yet these target systems are not a 
fundamental part of the world, nor do models of these objects have to make 
reference to their fundamental constituents. When modelling an airplane wing, 
aeronautic engineers don’t first identify the fundamental super-string structure 
of the bits of matter that make up the wing and then construct wing models that 
are isomorphic to such fundamental structures. So even if Tegmark’s account is 
correct about the fundamental level (and there is serious “if” about this), it offers 
no answer to the question about where structures are to be found at the level of 
non-fundamental target systems. 
 
If data don’t provide a suitable proxy for the structure of a target system, and a 
target system shouldn’t be identified with such a structure, then what other 
options are available? We take it that the idea that either implicitly or explicitly 
underlies the mapping account is that target systems instantiate structures, 
where the instantiation relation that holds between a target system and a 
structure is supposed to be the sort of relation that holds between an object and 
a property, or a pair of objects and a relation they enter into. This comes across 
most clearly when structuralists in the philosophy of mathematics discuss the 
relationship between mathematics and the physical world. For example, Shapiro 
argues that: 
 

“[On the structuralist account of mathematics] the problem of the relationship 
between mathematics and reality is a special case of the problem of the 
instantiation of universals. Mathematics is to reality as universal is to 
instantiated particular. As above, the ‘universal’ here refers to a pattern or 
structure; the ‘particular’ refers not to an individual object, but to a system of 
related objects. More specifically, then, mathematics is to reality as pattern is to 
patterned” (1983, p. 538).14 

 
Let us then assume that a structure  defines a universal. The main question 
then is: under what conditions does a target instantiate a certain structure ? 
The details here might depend on which account of universals one adopts, but 
what all answers would seem to have in common is the following. Since a 
structure consists of a set of objects with relations on them, the target 
instantiates structure  iff consists of individuals that make up the domain of 

 and enter into the relations that are specified in .  
 
Natural as this may sound, this definition faces an immediate problem. The 
problem is Newman’s objection to Russell’s structural realism (Newman 1928). 
The essential point of the objection is that for any structure  where the 
cardinality of  is , a target system consisting of  objects instantiates a 
                                                        
14 A similar position is found in Resnik’s (1997, p. 204). Due to the fact that some mathematical 
structures are not instantiated by any physical system, Shapiro further distinguishes between 
whether or not structures as universals should be thought of as ante rem universals, in re 
universals (eliminative structuralism) or in modal terms (Shapiro 1997). These distinctions are 
immaterial to our question. A word of warning about terminology is in order here. Shapiro often 
uses the term “exemplified” to refer to the relationship between a universal and a physical 
system. We prefer “instantiates” given that that “exemplification” is used in a slightly different 
way in the literature of representation following Goodman and Elgin, and has been incorporated 
into the literature on scientific representation in our (forthcoming). 
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structure isomorphic to  in the sense that it is possible to extensionally define 
relations matching the relations in  in terms of n-tuples of the objects in the 
target system.15 So if we think about instantiation in this way, then we are left 
with the fact that a target system instantiates any structure that has the 
cardinality of the target.  
 
We are now faced with an identification problem. Recall Bueno and Colyvan’s 
first step, immersion, which consists in “establishing a mapping from the 
empirical set up to a convenient mathematical structure” (op cit.). To establish a 
mapping it is not enough to show that there exists some structure in the 
target such that there exists some mapping  from to . Applying a certain 
structure requires, as Bueno and Colyvan aptly put it, establishing a mapping. 
This, in turn, involves identifying a particular structure in the target and 
constructing a mapping  from that structure to , the structure that is to be 
applied. Or to put it another way, applying is an agent-based notion – it’s 
something that a scientist does (which ties in with Bueno and Colyvan’s emphasis 
on pragmatic factors). To apply a structure  to a target the scientist has to 
single out a particular target structure and explicitly construct the mapping  by 
matching up elements in the domains of the structures and pairing up relations. 
If there was only one structure in target – if there was such a thing as “the” 
structure of the target – then there was no question about this choice and the 
remaining issue would only be how exactly the scientist gains access to that 
structure. But faced with the Newmanian abundance of structures, the scientist 
wanting to apply maths is faced with serious underdetermination problem: 
which of the many structures should she pick and how?  
 
One might argue that Newman’s objection is just logical trickery and once a few 
sensible assumptions about the system are made the underdetermination is 
resolved. This is in effect the route taken by the standard ways of blocking 
Newman’s objection, which involve appeal to natural kinds in one way or 
other.16 One may have all kind of quibbles about natural kinds, but let us set 
these aside for the sake of argument. It is our contention that even if natural 
kinds are assumed to be unproblematic, an appeal to them is not sufficient to 
resolve the remaining underdetermination issues. Let us illustrate this point 
with an example, the methane molecule.17 The molecule consists of a carbon 
atom and four hydrogen atoms grouped around it, forming a tetrahedron. 
Between each hydrogen atom and the carbon atom there is a covalent bond. 

                                                        
15 For a detailed discussion of the theorem see Ketland’s (2004). However, the basic point is 
straightforward and can shown as follows. Let  be a structure such that . Let 

 be a set consisting of the  objects from the target system. Since  

there is a bijection . Using this bijection, for each , we can construct a set  

consisting of n-tuples of objects from  as follows:  

Collecting these relations together gives a structure,  which is isomorphic to  by 
construction. 
16 For a discussion of the various responses see Ainsworth’s (2009). 
17 What follows is a variation on an example discussed in Frigg’s (2006, pp.57-58). 
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Carbon, hydrogen and covalent bonds are bona fide natural kinds. Describing the 
molecule in these terms does, however, not fix a structure uniquely.  One can 
regard the atoms as objects and the bonds are relations. Denoting the carbon 
atom by a, and the four hydrogen atoms by b, c, d, and e, we obtain a structure ST 
with the domain { , , , , }U a b c d e=  and the relation 

, which can be interpreted as ‘being 
connected by a covalent bond’. Alternatively, however, one could just as well 
choose bonds as objects and consider the relation ‘sharing a node with another 
bond’. Denoting the bonds by ', ', 'a b c and 'd , we obtain a structure  with the 
domain  and the relation 

   
.  Obviously  and  are not isomorphic. So which structure is 

picked out depends on how the system is described. Depending on which parts 
one regards as individuals and what relation one chooses, very different 
structures can emerge. And it takes little ingenuity to come up with further 
descriptions of the methane molecule, which lead to yet other structures.  
 
There is nothing special about the methane molecule, and similar stories can be 
told about any target. Consider again the example of applying mathematics to the 
rabbit population mentioned in Section 2. When faced with the population there 
are any number of ways in which the system considered as a whole could be 
carved up. Regarding the objects in the system the scientist could count 
individual rabbits as above. Or she could take pairs of rabbits as the relevant 
objects. Or she could count rabbit legs (perhaps she is interested in selling them 
as lucky charms). Or she could count rabbit hairs, or rabbit teeth. Or she could 
take individual molecules in the system to form the basic objects and define 
elaborate structures on a massive set containing them. For any target system the 
question of what to take as the objects and the relations is a substantive question 
inviting multiple answers.18  And even once the objects are fixed, there is no 
unique answer as to what relations between them should be considered. The 
scientist could care about the reproduction behaviour of the rabbits, or different 
ways of grouping them according to their fur, or grouping them according to the 
length of their ears, and so on. So the lesson learned generalises: there is no such 
thing as “the” structure of a target system. There are any number of ways of 
picking out a set of objects to form the domain of a structure of the target system. 
And even once this is done, any number of different physical properties and 
relations that might be of interest would deliver a different structure to which 
the mathematical structure would be applied via a proposed morphism. 
 
In their description of the “immersion” step Bueno and Colyvan identify theories 
as the actors that provide a structure. They say that the elements of a structure 
                                                        
18 Weisberg (2013, Section 5.3.1) makes a similar point when he draws a distinction between 
phenomena and target systems. He claims that the former stand in a one-to-many relationship 
with the latter, where a model’s “intended scope” specifies a (proper) subset (target system) of 
the total state of the system (phenomena). Having said that, our point here goes beyond his: even 
once a target system of interest is fixed, there still remains the question concerning its structure 
(cf. the example of the methane molecule which would seem to count as a target system on any 
reasonable reading of the term).  
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are “constructs of our theories”, which deliver “some privileged way of carving 
up the world into objects and relations” (op. cit). This suggestion, however, runs 
into the same difficulties as natural kinds. While theories may play a role in 
identifying a structure, they do not determine a unique structure. Newtonian 
mechanics, for instance, instructs us to identify objects and the forces acting on 
them, but it doesn’t prescribe how exactly this has to be done. Just like a 
population of rabbits, a galaxy of stellar bodies can be carved up into objects and 
relations in many different ways.  
 
So we are still faced with the above identification problem. If the relationship 
between target systems and their structures is not one of brute metaphysical 
fact, and if the same target system has multiple structures, then when someone 
proposes a structure-preserving mapping between a target structure and a 
mathematical structure, how are we to determine which of those target 
structures are being invoked? Without an answer to this question it’s not clear 
either that the invoked structure preserving mapping is well defined, or if it is, 
then whether or not the application of mathematics is successful.  
 
From this we don’t conclude that Bueno and Colyvan’s account is wrong, but that 
it is incomplete. “Immersion” is a metaphor that needs to be unpacked. Their 
presentation seems to suggest that once a theoretical background is assumed a 
relevant structure emerges in a relatively unproblematic manner, and those 
interested in the applicability of mathematics can take this structure for granted 
without probing further into its nature and origins.19  The considerations in this 
section show that there is more to the problem of the attribution of structure 
than meets the eye at first glance. There is a serious issue where the initial 
structure comes from, and the issue is not merely one of philosophical 
housekeeping. Without further explanations, we neither know what is, nor are 
we able to specify the proposed morphism that anchors the application of . 
 
  
5. A Positive Proposal 
 
In this section we introduce what we call the extensional abstraction account of 
generating a target structure. In essence, we propose that for the mapping 
account to get off the ground, a scientist has to describe the target system in 
physical terms, and then by abstracting away to the extension of such a 
description, generate a target structure to anchor an application of mathematics.  
 
The solution to the problem we have been addressing follows from a careful 
analysis of the above cases. Recall the scenario that the scientist is faced with 
when applying mathematics to a population of rabbits. We described different 
ways she might do this, ways that involved selecting different parts of the system 
as objects and identifying different physical properties and relations as relevant 
depending on her purpose at hand. In doing so she provided what we call 
                                                        
19See Bueno and Colyvan’s (2011, p. 347) quoted above. As discussed, Bueno and Colyvan allow 
for revisions of the “assumed structure” downstream. But our concern is prior: where did the 
original structure come from in the first place? 
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different structure generating descriptions of the same system in each instance. In 
general a structure generating description does three things: 
 

(1) It describes certain aspects of the system as the relevant objects. In the 
above example different descriptions described individual rabbits, rabbit 
legs, or molecules that make up the rabbits as the relevant objects of the 
system. 

(2) It describes certain aspects of the system as relevant physical properties 
and relations. In the above examples these were physical relations that 
held between interbreeding rabbits, descriptions of the rabbits’ fur, and 
so on. 

(3) It describes the objects described in (1) as instantiating the physical 
properties and relations described in (2). 

 
In general a structure generating description Ds has the form: “the target system 
T contains objects o1, …, on which either individually, or in collections, instantiate 
physical properties and relations r1, …, rm.” It’s important to note that Ds 
contains terms that describe the system in physical, not set-theoretic terms, and 
we use bold font to indicate that the terms in Ds refer to physical properties and 
relations. The os are terms like “rabbit” and “rabbit leg” and not “elements of a 
set”. Likewise, the rs are terms like “breeding with” or “being larger than” and 
not “being an n-tuple”.  
 
With this in mind it now transpires how a structure generating description earns 
its name and actually generates a structure for a target system for the mapping 
account to get a grip on. Recall from Section 3 that a set-theoretic structure 
consists of featureless dummy-objects that enter into purely extensionally 
defined relations. Ds generates such a structure if we remove the physical nature 
of the objects and relations from Ds. In the case of the os this means that we move 
from describing the system as consisting of rabbits to describing it as consisting 
of objects. If Ds talks of, say, five rabbits (and pinpoints them by picking out a 
particular rabbit as the first rabbit, another one as the second rabbit, etc.), we 
now remove “rabbits” from this description and only keep “objects” (and, 
possibly, a numbering of them as the first object, the second object, etc.). The 
relations get stripped of their physical nature by replacing them with their 
extension. If Ds describes the relation as “breeding with”, we now remove 
“breeding with” and only keep the extension of the relation, which only specifies 
between which objects the relation holds but not what the relation itself is. We 
call the resulting description Ds (now no longer in bold font). While Ds describes 
T as consisting of interbreeding rabbits, Ds describes it as consisting of so-and-so 
many objects that enter into purely extensionally defined relations. Ds is a purely 
structural description, which specifies a structure ST consisting of n dummy-
objects o1, …, on which enter into purely extensionally defined relations r1, …, rm 
(note that symbols are now no longer in bold font). This structure is what enters 
into the mapping relation required by the mapping account. 
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The transition from Ds to Ds can be described as a process of abstraction, hence 
the name “extensional abstraction account”.20 We start with a “thick” description 
Ds of the target and then, by walking up the ladder of abstraction, strip away all 
material properties of the object until we are left with objects that are nothing 
but objects, and relations that are nothing but n-tuples of nothing-but-objects. 
But unlike Wittgensteinian ladders, which can be thrown away once we’ve 
reached the top, abstraction ladders have to remain in place. First, Ds specifies to 
what the structure is applied. The description Ds anchors the application of 
structure ST to the target, and without Ds the application has been lost because if 
we remove Ds from the picture we are left with nothing but an abstract structure. 
Second, Bueno and Colyvan’s third step requires us to “interpret the 
mathematical consequences that were obtained in the derivation step in terms of 
the initial empirical set up” (op. cit). This is impossible without Ds (or at least 
some description of the target system in physical terms). If we throw the ladder 
away, we cannot climb down any more and bring mathematical results back to 
the domain of application. For these reasons a structure ST applies to target T 
always only relative to a structure generating description Ds, and the phrase of 
“applying S to T” should be seen as an ellipse for “applying S to T relative to the 
structure generating description Ds”. Without Ds the claim that a structure S 
applies to T is meaningless. For this reason mathematics is not the only language 
in the book of nature! 
 
One might ask when in the process we have outlined we enter the realm of 
mathematics: is it when we transition from Ds to Ds (and with it to ST ), or is it 
when ST  is connected to SM through a suitable morphism? The answer to this 
question depends on how strictly one characterises “mathematics”, and where 
one puts the emphasis. If one takes any use of set theory to be mathematics, then 
the application happens in the transition from Ds, via Ds,, to ST. This seems to be 
suggested, for example, by Malament (1982, pp. 529-532) in his discussion of 
whether Field (1980) is entitled to use sets of spacetime points in his 
“nominalist” reconstruction of Newtonian gravity. Under a stricter reading of 
“mathematics”, where one asks at what point the sorts of structures studied by 
mathematicians (e.g. those that appear in differential geometry or linear algebra) 
enter the picture, application happens when one proposes to connect ST to SM 
through a suitable morphism. We think that this is the sense of “application” that 
most proponents of the mapping account have in mind. We take it as an attribute 
of our approach that it can distinguish between these subtlety different senses of 
the application of mathematics. Ultimately both senses are legitimate and a 
choice between them depends on one’s interest and other philosophical 
commitments.  
  
So our answer to the general application problem is the following. A 
mathematical structure SM applies to a target T iff a structure generating 
description Ds of T is given which, through a process of abstraction, is turned into 
a purely extensional description Ds that describes a structure ST, which is then 
proposed to be appropriately morphic to SM. With this in place, the details of the 
                                                        
20 Abstraction can be explicated a number of different ways. One way that we find conducive is 
Cartwright’s (1999, Ch. 3), but nothing in what follows depends on what account of abstraction 
one adopts.  
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morphism between SM and ST  (and possibly further mathematical structures) 
can be spelled out on a case-by-case basis by the mapping account’s answer to 
the special applicability problem. As such, once Ds has done its job and generated 
ST, all of the flexibility of, for instance, Bueno and Colyvan’s more nuanced 
mapping account, which takes into account contextual features in specifying the 
appropriate morphism, can be accommodated.21  
 
Our account, even though schooled on a simple population model, is in no way 
limited to this kind of application. An important place where mathematics is 
applied to the physical world is in fundamental measurement, and on closer 
inspection it turns out that representation theorems in the representational 
theory of measurement are a good place to see our approach in action.22 
Consider a simple example where the system in question is a collection of rods. 
The scientist can describe the system in a way that takes the individual rods to 
be the objects in the system, and a length comparison between them to be the 
relevant physical relation. This way of looking at the system provides the 
following structure generating description: 
 
Dl: “The target system consists of n rods o1, …, on. The rods enter into the 
comparative physical relation r = longer or equal in length than. It is the case that 
the rods have been labelled so any two consecutive rods stand in relation r: r(o2, 
o1), r(o3, o2), ..., r(on, on-1). It is also the case that if r(om, om-1), then r(om, ok) for all 
k=1, …, m-1 and for all m=2, …, n.”23 
 
This description is now subjected to the above process of abstraction, which 
yields: 
 
Dl: “There are n object o1, … on which form a set U={o1, …, on} and a relation r on U 
such that r(om, ok) for all k=1, …, m-1 and for all m=2, …n.” 
 
This description specifies a structure ST with the domain U={o1, …, on} and the 
relation set R={r} of relations on U. Thus, Dl generates ST=<U, R> via Dl.  
 
This structure can now be embedded in other more elaborate structures. 
Different structures can be chosen, and different morphisms can be used. For 
instance, let  be the set of the natural numbers with the relation  (greater 
than or equal) defined on them. To apply the structure  to the system of 
rods the scientist has to propose that there is a mapping  such that: 

                                                        
21 In our example of the dynamics of a population this allows for embedding mappings between 
discrete structures like ST  and continuous structures involving , as used, for example, in the 
Lotka-Volterra equations. These discrete-to-continuous mappings are not restricted to biology; 
see Maddy’s (1995, pp. 254-255) for a nice discussion of Feynman’s concerns that time could be 
discrete despite the fact continuous structures are used to represent it. We are grateful to Mark 
Colyvan for bringing this example to our attention. 
22 The classic source is Krantz et. al’s (1971). Brown (1999, Ch. 4) offers an introduction; Diez 
(1997a, 1997b) provides an overview of the development of the theory. 
23 Those who worry that labeling rods with numbers is already an application of mathematics 
and that Dl therefore presupposes what it is supposed to provide can replace the names ok by 
ordinary proper names and name the rods “Jim”, “Mina”, “Emily”, etc.  
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for all . 

 
If this condition is met by f, then we can say that the application of the natural 
numbers to the system of rods is successful and the scientist can use facts about 
the ordering of the natural numbers to derive (simple) hypothesis about the 
ordering of the rods in the system by length.  
 
Much of the theory of fundamental measurement is concerned with the choice of 
the right structures and morphisms, and there are deep and interesting 
questions there. What matters in the present context is that constructing the 
structure  involved choices for the scientist at every step: a choice 
concerning the objects in the system; a choice concerning the relevant physical 
properties and relations; and a choice concerning how the former instantiate the 
latter. We are led astray if we think that  simply drops out of the system 
because it’s somehow “natural”.  may seem natural because there are 
significant choices available to the scientist “upstream” of the application of 
mathematics, choices that the description generating the structure respects. But 
this is an ex post facto judgement and countless alternative descriptions of the 
system are available, including, for instance, the following: 
 
Dt: “The target system contains rods o1, …, on and these enter into the relation rt 
= thicker than.” 
 
Dm: “The target system contains rods o1, …, on and some have property of rm = 
being made out of mahogany and others rb = being made out of out of birch.” 
 
Dc: “The target system contains molecules o1 , …, om, some of which have the 
property of being rw = being water, and others have the property rc = being 
cellulose.” 
 
Each of these descriptions generates a different structure. So, the system doesn’t 
have a unique “natural” structure that the scientist somehow picks up. Rather, 
the scientist’s particular purposes for applying mathematics are such that she 
has to make a decision regarding how to describe the physical system and then 
the description chosen provides a structure for her to work with when applying 
mathematics.  
 
Three observations are in order. First, there is no requirement that the physical 
relations referred to in the structure generating description be operationalized. 
In some cases this may be so, but in others it may not. All that is required is that 
the relations be physical relations.  
 
Second, there is also no expectation that we have access (either by direct 
acquaintance or through other sorts of observation) to the physical objects or 
relations described by Ds. The elements of the structure can be hypothesized. We 
can ascribe a size to the rabbit population hundred years from now, and we can 
specify the distance between two atoms. This is particularly pertinent in cases of 
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the application of mathematics in the more “fundamental” areas of physics. Here, 
there may be cases where the physical objects and relations are so far removed 
from our experience that it is difficult to see how we could have a good grasp of a 
description Ds independent of the mathematics used to represent them.  
 
Here it’s important to emphasise the distinction between an agent being able to 
offer a description Ds, and that agent knowing Ds to be true. Our account requires 
the former but not the latter – it suffices that such a description is given, 
regardless of whether it’s known to be true or false. If Ds also happens to be true, 
then the stage is set for a successful application of mathematics, assuming that 
the structure generated by the description is appropriately morphic with some 
proposed mathematical structure. We take it that many cases in fundamental 
physics take this form. The atoms in a crystal are located at a certain distance 
from each other; molecules are said to have certain size; particles in the standard 
model are described as having physically meaningful properties like mass and 
charge; and the purported fundamental constituents of the world are described 
as having the shape of strings.  
 
Could there be cases where mathematics is “applied”, and yet no physical 
description whatsoever is offered? Such cases could take one of two different 
forms: either such a description is assumed to exist in principle, even if we don’t 
currently have access to it, or such a description is claimed not to exist at all. In 
the former case, if we knew that a physically rich description existed in principle 
then presumably we could in practice offer something like the following: 
 
Dx: “the target system contains some physical objects x1, …, xn and some have 
some physical property r1 = X1, and others the physical property r1 = X2, and so 
on”,  
 
where ‘x’ and ‘X’ are used to indicate that we have no way of describing what the 
physical objects or properties are. 
 
Notice that such a description looks remarkably like a Ramsey-sentence, as 
associated with some versions of epistemic structural realism (for an overview 
see Frigg and Votsis’ (2011)). On this view it’s not simply that we don’t know 
about the “nature” of the objects and relations in the world, but we cannot even 
describe them. In such cases we face a potential application of mathematics, 
which becomes an application proper once the physical descriptions are offered.    
 
In the latter case no physical description is given and it is assumed that none 
exists, even in principle. In such a case it seems inappropriate to us to talk about 
“applying” mathematics to a target. Mathematics is used to generate claims about 
some system, but not in a way in which the mapping account is supposed to 
capture.  
 
Third, we note that our take on the application of mathematics is consonant with 
certain prominent views about models and data. Hartmann (1999) and Morgan 
(2001) emphasise that models come accompanied by stories, and Muller (2011) 
reminds us that “all actual data structures float in sea of stories, that need to be 
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told in order to know which data are relevant for which theory” (ibid., p. 100). 
These observations were not intended as contributions to a discussion of the 
general application problem. However, they are made in contexts where the use 
of mathematical structures in science is discussed and so they can be seen as 
evidence that, at least implicitly, a view very similar to ours is assumed in these 
discussions.  
 
 
6. Concluding Remarks 
 
By way of conclusion we want to make a few observations about how the view 
we developed in the last section relates to other issues in connection with the 
application of mathematics. Let us first return to the explanation problem that 
we introduced in Section 2 and then set aside. Bueno and Colyvan argue that 
simple versions of the mapping account have difficulty accounting for 
mathematical explanations.24 They argue as follows: 
 

“If mathematics is genuinely explanatory, however, this will present a serious 
problem for the mapping account. The problem is simply that it is hard to see 
how a mere representational system can provide explanations and yet that is the 
only role mathematics is allowed to play in the mapping account. [footnote 
omitted] Consider once again our map of a city. Certain facts about the city will 
be more obvious in the street map—indeed, that’s the purpose of a street map—
but it would be very odd to think of the map as providing an explanation of any 
facts about the city” (2011, p.351). 

 
Bueno and Colyvan are right in pointing out that a representation does not ipso 
facto double as an explanation. This, however, does not preclude representations 
from playing a role in explanations. A representation can contain information 
that is explanatorily relevant. The London tube map, for instance, does not 
explain why one cannot get directly from Brixton to Stratford. But it contains 
information that is explanatorily relevant, namely that the two stations are not 
on the same line. In a similar vein, a mathematical structure may contain 
information that is explanatorily relevant even though the structure as such is 
not an explanation. Depending on one’s account of explanation one will 
recognise different pieces of information as explanatorily: counterfactual 
dependence, law-like connections, causal relations, the use of unificatory 
patterns, and so on. Information of this kind can be encoded in a mathematical 
formalism, and by connecting the formalism to the target the mapping account 
makes this information relevant for a target system. In this way the mapping 
account is indeed an important ingredient in any mathematical explanation 
because without a mapping a mathematical formalism would be “free floating” 
and have no bearing on the target in question. Hence, while a structure that’s 
mapped to target is not ipso facto an explanation, the existence of such a 

                                                        
24 Recall that Bueno and Colyvan describe their account as an “inferential” conception of the 
application of mathematics, rather than a mapping account, and they take it that their account 
has the resources to account for mathematics playing an explanatory role. They take it that it is 
the choice of mapping at the interpretation and immersion stages that allows explanations to be 
obtained (2011, p. 366).  
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mapping is a precondition for (at least some kinds of) explanation.  
 
An issue that that arises in connection with the view developed in the last section 
is nominalism. By anchoring structures in physical descriptions, aren’t we 
implicitly committing to nominalism? There are two observations that seem to 
pull into that direction. The first is that by anchoring structures in something 
physical we reduce structures to the physical and hence make them obsolete. 
This is too quick. Firstly, although the structure of a target may be anchored to a 
physical description, our account does not preclude the existence of structures 
not so anchored – the structures proposed to be appropriately morphic to a 
target structure do not in fact need to be anchored. Secondly, our discussion 
attempts to elucidate what it means for a target to have a certain structure, but 
this is metaphysically neutral. Consider the analogy with ordinary objects: that a 
table consists of atoms and that the atoms are arranged in certain way does not 
prove that the table is unreal. Of course some may want to draw this conclusion; 
we’re just pointing out that the conclusion is not forced on us and can indeed be 
resisted (Korman 2016). Likewise, showing that for something to have a certain 
structure requires certain other things to be the case does not by itself prove that 
there are no structures.25  
 
Finally, we adopted a structuralist approach to mathematics and presented the 
mapping account as the invocation of a proposed morphism between the 
structure of the target system and a mathematical structure, and our account of 
structure generating descriptions provided a story for how the former is 
generated. What becomes of our response to the general application problem if 
one changes the philosophy of mathematics and doesn’t subscribe to 
structuralism? Are our structure generating descriptions useful from the 
perspective of other accounts of mathematics? We think so. But because of space 
limitations we can only gesture at some important cases.  
 
For a Platonist, mathematics is the study of mathematical objects: the natural 
numbers are not a structure or pattern, but rather objects that exist 
independently in some isolated Platonic realm. But Platonic objects presumably 
still have a structure (even though they are not identified with structures), and 
hence the mapping account can get a grip on these objects in the same way as it 
does for the mathematical structuralist by prosing a mapping between the 
structure of Platonic objects and the structure of a target system as identified by 
DS.  
 
For the formalist things look different. There is no subject matter of mathematics 
per se: mathematics is the study of systems of syntactic objects and rules for 
manipulating them. Mathematical application from this perspective can be 
thought of as providing a physical interpretation of the terms in the systems, and 

                                                        
25 It’s worth noting here that nothing we say in this paper has any bearing on other arguments for 
or against nominalism, for example appeals to the scientific practice of representing non-actual 
states of systems via phase spaces (Lyon and Colyvan 2008), or whether, once a representation 
theorem has been proven, everything that might be said about the mathematical structure can be 
rephrased in terms of the empirical structure (see Balaguer's (1998, p. 112) and Pincock’s (2007, 
Sec. III) for further discussion). 
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investigating which conclusions are generated by applying the rules to the result. 
If so, our Ds can be thought of as specifying which physical objects and properties 
feature in the interpretations (this is reminiscent of Hilbert’s remark that in a 
proper axiomatisation of geometry “one must always be able to say, instead of 
‘points, straight lines, and planes’, ‘tables, chairs, and beer mugs’”).26 Similar 
considerations apply to what Shapiro (1983, pp. 529-531) calls “postulate 
logicism”, i.e. the study of the logical consequences of uninterpreted sets of 
axioms. Again, Ds provides a way of interpreting the axioms physically, and the 
logical consequences of these axioms are the claims generated by the application 
of mathematics.  
 
For the intuitionist, mathematical statements are about mathematical objects, 
but these are mental constructs. How to think about mathematical application in 
this framework is not straightforward, but one possibility it is to adopt a Kantian 
perspective whereby the human mind plays an active role in perceiving and 
understanding the world (Shapiro 1983, p. 533). Our Ds then don’t describe an 
objective world, but describe a world as perceived and understood by a human 
mind. An intuitionist about mathematics could then try to account for the 
application of mathematics by establishing a relationship between mathematical 
mental constructs and perceptual mental constructs, constructs as provided by 
Ds.  
 
Each of these positions deserves further research. Regardless of the philosophy 
of mathematics adopted, one would hope that applications of mathematics 
would distinguish between applying mathematics to the system under one 
description and under another. By explicating this we hope to have made inroads 
in understanding how mathematics applies to the physical world.  
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