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ABSTRACT. The present theory leads to a set of subjective weights
such that the utility of an uncertain alternative (gamble) is partitioned
into three terms involving those weights—a conventional subjectively
weighted utility function over pure consequences, a subjectively weighted
value function over events, and a subjectively weighted function of the
subjective weights. Under several assumptions, this becomes one of sev-
eral standard utility representations, plus a weighted value function over
events, plus an entropy term of the weights. In the finitely additive
case, the latter is the Shannon entropy; in all other cases it is entropy
of degree not 1. The primary mathematical tool is the theory of inset
entropy.
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Utility theorists have long shunned two issues that were talked
about early on: the utility of gambling and the intrinsic value
of some chance events, e.g., aspects of weather itself or crashes
of vehicles. This is discussed by Luce et al. (in press a), but
the solution they arrived at did not really make explicit any
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partition of the two aspects—the utility of gambling and the
intrinsic value of events—except in the case of risk where only
the utility of gambling term appeared. The goal of this article
is to achieve such a partition. Several unanswered problems are
cited in context and are summarized in Section 6.

1. GENERAL BACKGROUND

1.1. Additive utility over joint receipts of pure consequences

Assume a decision maker, DM, whose empirically known
preference ordering �X is a weak order over the set X of pure
consequences and their joint receipts ⊕. The joint receipt x ⊕
y means having both x and y (Luce, 2000). Pure consequences
are those for which the decision maker believes there is no
uncertainty (which, of course, sometimes turns out to be illu-
sory—a rotten egg, a car that is a “lemon,” etc.).

Suppose that axioms of additive extensive measurement
(see Ch. 3, Krantz et al., 1971) are satisfied that are sufficient
to show the existence of a ratio scale utility function UX over
pure consequences that is additive:1

UX(x ⊕y)=UX(x)+UX(y) (x, y ∈X). (1)

Among the properties used to arrive at (1) are that ⊕ is com-
mutative and associative, both necessary properties.

As is discussed in Luce et al. (in press a), if the pure con-
sequences include money, then (1) implies that the utility of
money is proportional to money. We also pointed out that
the so-called counter example of the St. Petersburg paradox
simply does not realistically rule that out, contrary to what is
often claimed.

1.2. Certainty equivalents, kernel equivalents and elements
of chance

An uncertain alternative (for short, gamble) is of the form

g[n] := (x1,C1;x2,C2; . . . ;xn,Cn), (2)
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where xi ∈ X,x1 �X x2 �X · · · �X xn, and (C1,C2, . . . ,Cn) is a
partition of some “universal” event � into subevents. Such
a gamble g[n] can be viewed as a collection of n branches
(xi,Ci). In constructing a gamble g[n] we assume that all the
subevents Ci belong to a Boolean ring B with ∅ the zero and
B∗ :=B\{∅}. We assume that �=⋃n

i=1 Ci belongs to B∗ and,
usually, that each Ci belongs to B∗.

We assume that a person can have the joint receipt of pure
consequences and gambles, which operation is also denoted
by ⊕ and is an extension of the joint receipt of pure conse-
quences. We assume that no change from the status quo, e, is
a two-sided identity of ⊕.

Let G denote the closure of all gambles and pure conse-
quences under ⊕.

We plan to deal with order extensions of �X to G. A typi-
cal extension is denoted �. As usual, � denotes the converse
of � and ∼ denotes the corresponding indifference relation:
∼:=�∩� and �:=�\∼ .

We assume that for each gamble g[n], the set X is suffi-
ciently rich that it contains an element, denoted CE(g[n]), such
that CE(g[n]) ∼ g. This pure consequence is called a certainty
equivalent (CE) of the gamble.

Because we are considering theories where gambling per se
has utility, we do not assume e-idempotence,

(e,C1; e,C2; . . . ; e,Cn)∼ e. (3)

We speak of (e,C1; e,C2; . . . ; e,Cn) as an element of chance,
and following Luce and Marley (2000), we partition any gam-
ble into its element of chance joint with a pure consequence
KE(g[n]) that solves the following indifference

g[n] ∼KE(g[n])⊕ (e,C1; e,C2; . . . ; e,Cn). (4)

We call KE(g[n]) the kernel equivalent (KE) of the gamble g[n].
In what follows we will be working with many different order-
ings � in which case we will write CE�(g[n]), KE�(g[n]), etc.,
to make explicit their dependence upon �.
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1.3. Separability and the choice property

We assume that DM satisfies the axioms (very slightly
modified but equivalent, as explained in Section 2.1 below) of
the theory of Luce et al. (in press a) for each extension � of
�X. For a given �, their theory gives rise to a single utility
function U� over gambles that agrees with UX, and to a spe-
cial weighting function on � denoted S�,� such that UXS�,�

is a separable representation in the sense that

U�(KE�(x,C; e,�\C))=UX(KE�(x,C; e,�\C))

=UX(x)S�,�(C). (5)

Other axioms were shown to imply that any such S�,� must
satisfy the choice property (Luce, 1959/2005),2 i.e., for C ⊆
D ⊆ �

S�,D(C)= S�,�(C)

S�,�(D)
. (6)

Reflecting on the choice property, Theorem 6 of Luce et al.
(in press a) establishes that there exists an increasing function
µ� on B, positive on B∗ and µ�(∅)=0, such that

S�,�(C)= µ�(C)

µ�(�)
. (7)

Clearly, both separability and the choice property are invari-
ant under power transformations but, of course, for β �=1,U

β

X

is not additive over ⊕.

2. BASIC ASSUMPTIONS ON A FAMILY OF ORDER
EXTENSIONS

Although the order �X and the utility function UX are fixed,
the route we are going to pursue involves considering a family
O of weak preference orders � over pure consequences and
gambles meeting certain axiomatic assumptions. Our goal is
to understand what general class of representations results.
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2.1. Basic assumptions

We assume3 that ⊕ is monotonic in the ordering �:

f �f ′ ⇔f ⊕g �f ′ ⊕g ⇔g ⊕f �g ⊕f ′. (8)

Then, as we show next, each preference order �∈O, where �
agrees with �X over X and their representations also agree,
i.e., U�(x)=UX(x) for all x ∈X, has a representation U� which
is additive over joint receipts of gambles:

U�(f ⊕g)=U�(f )+U�(g). (9)

The proof is: because f ∼CE(f ), g ∼CE(g),

U�(f ⊕g)=U� (CE(f )⊕CE(g)) (2 uses of (8))

=UX (CE(f )⊕CE(g)) (U�(CE(f ))=UX(CE(f )))

=UX (CE(f ))+UX(CE(g)) (1)

=U�(CE(f ))+U�(CE(g))

=U�(f )+U�(g).

Further, we assume that every preference order �∈ O sat-
isfies the conditions of either Theorem 13 or Theorem 16
of Luce et al. (in press a). Because we draw heavily on the
theorems, we summarize each result and its assumptions in
Appendices A and B, respectively. These results differ depend-
ing upon whether we assume a property called segregation,
(12), or duplex decomposition, (31), both below.

Let H� be defined by

H�(C1, . . . ,Cn)=U�(e,C1; . . . ; e,Cn). (10)

We have, by (4) and (9),

U�(x1,C1; . . . ;xn,Cn)=UX(KE�(x1,C1; . . . ;xn,Cn))

+H�(C1, . . . ,Cn), (11)

where various specific forms for UX(KE�) and H� arise
depending on specific assumptions (see Appendices A and B).
In both the segregation and the duplex decomposition cases it
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is shown that the elements of chance term has the following
representation

H�(C1, . . . ,Cn)= 1
µ�(�)

[

h�(�)−
n∑

i=1

h�(Ci)

]

for some function h� with h�(∅)=0.

2.2. Two conceptual interpretations

Two possible interpretations come to mind of the huge fami-
lies, O, of orders that we will require. The first is that we have
a single DM but, lacking any information concerning his or
her ordering over gambles, we, as theorists, must be prepared
to deal with whatever order DM actually exhibits.

Recall that we are assuming that our current knowledge
does not include a specific order � over gambles that extends
�X, but we will assume that it belongs to a family of possi-
ble orders that satisfy a certain set of assumptions. This is a
conceptual assumption that cannot be empirically assessed.

A second interpretation of our formalism is that we can
find distinct DMs each of whom agrees with �X over the pure
consequences, X, and a DM corresponding to each extension
�∈O.

Because both interpretations are entirely hypothetical, there
is no real intellectual distinction between them. In particular,
neither is empirical and they are formally identical.

3. ASSUMPTIONS AND REPRESENTATION UNDER
SEGREGATION

3.1. Definition of segregation

The theory of Luce et al. (in press a) divides into two quite
distinct parts, leading to their Theorems 13 and 16, depending
on whether we assume segregation or duplex decomposition,
both behavioral properties. Here we define the former and the
latter will be defined in Section 5.
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Segregation:

(x,C; e,D)⊕y ∼ (x ⊕y,C ′;y,D′), (12)

where (C ′,D′) is an independent realization of (C,D). Note
that the two sides have the same “bottom line.”

Under segregation, Theorem 13 of Luce et al. (in press a)
establishes that S� satisfies the choice property, (6), and (7),
and that either S� is finitely additive, i.e., for all C,D⊆�, C ∩
D =∅,

S�(C ∪D)=S�(C)+S�(D) (13)

or that S� is (non-trivially) p-additive, i.e., for some constant
� �=0,

S�(C1 ∪C2)=S�(C1)+S�(C2)+�µ(�)S�(C1)S�(C2)

(C1 ∩C2 =∅). (14)

3.2. The representation

We call a probability vector p = (p1, . . . , pn) non-trivial when
pi ∈ ]0,1[ , i = 1, . . . , n, and an ordered event partition C =
(C1,C2, . . . ,Cn) of � = ∪n

i=1Ci non-trivial when Ci �= ∅, i =
1, . . . , n. All references to the pair (p,C) implicitly assume
that both are non-trivial. An event C is maximal if there does
not exist C ′ ∈B∗ such that C ′ ⊇C and C ′ �=C.

DEFINITION 1. Weight solvability holds for a family of
orders, O, if for each non-trivial probability vector p=(p1, . . . ,

pn) and for each non-trivial ordered event partition C =
(C1,C2, . . . ,Cn) of �=∪n

i=1Ci, there exists at least one order-
ing �∈O such that

S�,�(Ci)=pi (i =1, . . . , n). (15)

If O denotes a set of orders meeting the conditions of The-
orem 13 (Appendix A), then we may partition O into (O1,O2)

such that for each �∈ O1 the corresponding S�,� is finitely
additive and for each �∈ O2 the corresponding S�,� is non-
trivially p-additive (cf. (13) and (14)).
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THEOREM 2. Let O be a family of orderings � each satisfy-
ing the assumptions of Theorem 13 of Luce et al.(in press a)
(see Appendix A). Assume:

(i) Weight solvability, Definition 1, is satisfied by O.
(ii) Let (p1, . . . , pn) be a non-trivial probability vector and

let (C1,C2, . . . ,Cn) be a non-trivial ordered event parti-
tion of �. For �,�′∈O, suppose that each gives rise to a
weighting function with

S�,�(Ci)=S�′,�(Ci)=pi (i =1, . . . , n). (16)

Let y ∈X be a certainty equivalent (CE) of an element of
chance under �, i.e.,

y ∼ (e,C1; . . . ; e,Cn). (17)

Then y is also a CE under �′, i.e.,

y ∼ (e,C1; . . . ; e,Cn)⇔y ∼′ (e,C1; . . . ; e,Cn). (18)

(iii) Regularity: For a fixed (e,C1; e,C2), the set of all values
of U�(e,C1; e,C2), over all �∈O1, is bounded.

Then:

(1) Assumption (i) is satisfied by O1, where S�,� is finitely
additive for each �∈O1, and there exist a constant A and
a function V:B→R, with V (∅)=0, such that for all gam-
bles g[n] and for each �∈O1,

U�(g[n])=
n∑

i=1

UX(xi)S�,�(Ci)

+V (�)−
n∑

i=1

V (Ci)S�,�(Ci)

−A

n∑

i=1

S�,�(Ci) log2 S�,�(Ci). (19)

(2) For each �∈ O2, S�,� is non-trivially p-additive and there
exists a constant A� such that for all gambles g[n],
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U�(g[n])=RDU�(g[n])+
{

0, if C(n) is not maximal

A�, if C(n) is maximal
,

(20)

where

RDU�(g[n])=
n∑

i=1

UX(xi)S�,�(Ci)

× [1+��µ�(�)S�,�(C(i −1))
]

and C(j) :=∪j

k=1Ck.

All proofs are found in Appendix D, but for many of those
proofs Appendix C is vital.

Note that (18) is equivalent to

CE�(e,C1; . . . ; e,Cn)∼X CE�′(e,C1; . . . ; e,Cn), (21)

which is the form used in the proof of this Theorem and of
Theorem 12.

The recursion of Appendix C.4, which is used in the proof of
the above theorem, is that of inset entropy (Aczél and Daróczy,
1978; Ebanks et al., 1988). Under our assumptions, it holds for
all non-trivial vectors belonging to �n ×�n and for general n≥2.
Also, it follows from our assumptions that H� is symmetric, i.e.,
invariant with respect to permutations of the pairs (Ci,pi). The
inset entropy representation is derived under very mild additional
regularity assumptions, such as (63).

The roles of Assumptions (i) and (ii) need brief discus-
sion. Basically, the former, weight solvability, postulates that
O is sufficiently rich so as to have an order �∈ O such that
its weighting function S�,� maps C onto p. And Assump-
tion (ii) constrains O to be not too rich so that two orders
with matching weights, (16), end up with the same certainty
equivalent for the elements of chance. Although it would be
desirable to have behavioral conditions—meaning formulated
entirely in terms of the primitives of the structure and that
can be evaluated by experiment—equivalent to these assump-
tions, it is unclear how this would be possible for either of
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the previously mentioned interpretations: A single DM whose
ordering is unknown or multiple DMs exhibiting the possi-
ble orders but who are otherwise alike in V and A. This issue
arises again in testing Definition 10.

Note that the function V is a value function attached to
the events and is independent of the order �∈ O1 whereas
S�,� is attached also to events but it varies with �. The
dependence on S�,� is as the Shannon (1948) entropy of these
subjective probabilities. One may trivially rewrite (19) as

U�(g[n])=
n∑

i=1

[
UX(xi)+V (�)−V (Ci)−A log2 S�,�(Ci)

]

×S�,�(Ci). (22)

In the hypothetical interpretation of one DM whose
ordering over gambles is unknown to the theorist, it seems
plausible that the function V and constant A of Part 1 of
Theorem 2 are independent of the order � DM actually
reveals because they are properties of the single DM in the
same way as is the utility function UX. In the interpretation of
multiple DMs, with at least one corresponding to each exten-
sion, the Theorem establishes that the utility representation
for every DM has the same V and A, much as if they are, in
that respect, all clones of a common DM.

Mark Machina4 pointed out that the representation (22) is
a special case of what economists call “state-dependent SEU
with a non-additive measure” (see, e.g., Karni, 1985). Define

Û�,�(xi,Ci) := UX(xi)

− log2 S�,�(Ci)
+ V (�)−V (Ci)

− log2 S�,�(Ci)
+A,

Ŝ�,�(Ci) :=−S�,�(Ci) log2 S�,�(Ci).

Then, by dividing and multiplying by − log2 S�,�(Ci) in (22)
we have the form

U�,�(g[n])=
n∑

i=1

Û�,�(xi,Ci)Ŝ�,�(Ci),

which is the general form of state-dependent SEU.
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3.3. Mixed uncertainty and risk

The following remarks were stimulated by our reading a draft
manuscript by Mark Machina, followed by Luce’s face-to-face
discussion with him on December 30, 2006 about it.

Various decision situations, such as the Ellsberg paradox,
involve both events that are quite uncertain (often called
ambiguous) and others for which a probability is in some
way known to the decision maker. The question is, how do
we specialize our representations to such cases. Suppose that
Ci and Cj, i �= j, are both uncertain events but that Ci ∪
Cj is known to occur with a fixed, given probability pi,j .
Clearly, the underlying assumption of inset entropy that any
event partition can occur with any non-trivial probability vec-
tor is not consistent with such a constraint. So our axiomatic
approach does not automatically work.

We can take another tack common in the utility literature
of simply choosing that ordering � such that some of the S�,�

values are prescribed and that

max
(
S�,�(Ci), S�,�(Cj )

)≤S�,�(Ci)+S�,�(Cj )

=S�,�(Ci ∪Cj)=pi,j .

This simply means that under segregation the representation
(19) of Theorem 2 some of the S�,� have prescribed values,
whereas the others are subjective.

Consider the special case where all the events have known
probabilities, i.e., the gamble is risky. Then, with g[n] = (x1, p1;
. . . ;xn,pn), where p= (p1, . . . , pn) is a non-trivial probability
vector, if we knew that (22) held with S�,�(Ci)=pi for all i,
then we would have

U�(g[n])=
n∑

i=1

[UX(xi)+V (�)−V (Ci)−A log2 pi ]pi. (23)

In Luce et al. (in press b), we developed a risk specialization
of the general theory for a fixed ordering � that gave the rep-
resentation (23) with V (�)−V (Ci)=0 for all Ci . We now con-
sider how the two results—one with no value of events and
the other with valued events—can be reconciled.
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The representation with a constant V term was developed
under the supposition that the probabilities were all that was
given to the respondent, as in many experiments, and no
events were specified. We assumed that the respondent had
in mind an hypothetical mechanism giving rise to a space of
events and that the representation we had arrived at for such
events was true. Because these events were entirely hypothet-
ical, they were automatically without any value, positive or
negative. By contrast, the present representation begins with
events, some of which have prescribed probabilities and at the
same time may have inherent value. So, the results are not
really incompatible; it is simply that the present case of mixed
risk and uncertainty is more general, albeit currently unaxio-
matized.

3.4. Equivalences to (18) of Theorem 2

Although we do not in fact use the following proposition,
we feel that, to some degree, it illuminates Assumption (ii) of
Theorem 2.

PROPOSITION 3. Suppose that for each ordering �∈O,

U�(KE�(g[n]))=
n∑

i=1

UX(xi)S�,�(Ci), (24)

and that �,�′∈O satisfy (16). Then, the following are equiva-
lent:

1. U�(g[n])=U�′(g[n]) holds.
2. The elements of chance satisfy:

H�(C1, . . . ,Cn):=U�(e,C1; . . . ; e,Cn)

=U�′(e,C1; . . . ; e,Cn)

=H�′(C1, . . . ,Cn). (25)

3. Equivalence (18) of Assumption (ii) is satisfied.
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4. QUALITATIVE CONDITIONS RELEVANT TO FINITE
ADDITIVITY

4.1. Finite additivity of S�,�

4.1.1. The definitions

Because under segregation, and as we shall also see under
duplex decomposition, the case of finitely additive S�,� can
arise, one may want to verify additivity by direct experimenta-
tion. To that end, we formulate two behavioral conditions and
then show that each is equivalent to the weights being finitely
additive. We follow the convention that one or more primes
on an event mean independent realizations of that event. We
invoke this without further comment.

DEFINITION 4. Qualitative event additivity, I: If

x ⊕ (e,C1; e,C2)⊕ (e,C ′
1; e,C ′

2)

∼ (x,C1; e,C2)⊕ (e,C
′
1;x,C ′

2) (26)

holds for every binary event partition, we say that � is
x-qualitative event additive, I. It is qualitative event additive,
I, if it is x-qualitative event additive, I, for all x ∈X.

DEFINITION 5. Qualitative event additivity, II: If

(x,C1 ∪C2; e,�\C1 ∪C2)⊕ (e,C ′
1; e,�\C ′

1)⊕ (e,C ′
2; e,�\C ′

2)

∼ (x,C ′′
1 ; e,�\C ′′

1 )⊕ (x,C ′′
2 ; e,�\C ′′

2 )

⊕(e,C ′′′
1 ∪C ′′′

2 ; e,�\C ′′′
1 ∪C ′′′

2 ) (27)

holds for every trinary event partition, we say that � is
x-qualitative event additive, II. It is qualitative event additive,
II, if it is x-qualitative event additive, II, for all x ∈X.

Note that when the property of certainty, which for pres-
ent purposes can be written in the form (x,�; e,∅)∼x, holds,
qualitative event additivity, II, implies qualitative event addi-
tivity, I, because in the special case �=C1 ∪C2, (27) reduces
to (26).
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When the elements of chance are idempotent, as is typical
of most utility theories, qualitative event additivity, I, reduces
to

x ∼ (x,C1; e,C2)⊕ (e,C ′
1;x,C ′

2),

and qualitative event additivity, II, reduces to

(x,C1 ∪C2; e,�\C1 ∪C2)∼(x,C1; e,�\C1)⊕ (x,C2; e,�\C2).

But in the non-idempotent case, one must be very careful in
formulating appropriate testable properties that take the ele-
ment of chance into account.

Under segregation and the monotonicity of ⊕, qualitative
event additivity, I, is equivalent to

(x,C1;x,C2)⊕ (e,C ′
1; e,C ′

2)∼x ⊕ (e,C1; e,C2)⊕ (e,C ′
1; e,C ′

2)

∼ (x,C ′′
1 ; e,C ′′

2 )⊕ (e,C ′
1;x,C ′

2).

(28)

4.1.2. The result

Making use of the decomposition of a gamble into kernel
equivalents and elements of chance, (4), the additivity of UX

over ⊕, and separability we may prove:

PROPOSITION 6. Let � be a preference order. Suppose that
the following assumptions are satisfied: decomposability into
KEs and elements of chance, (4), U� is additive over joint
receipt ⊕, (1), the kernel equivalents of unitary gambles have a
separable representation U�S�,�. Let x ∈X, x � e.

1. If S�,� has the choice property, then the following are equiv-
alent:

(a) S�,� is finitely additive, (13).
(b) � is qualitative event additive, I, Definition 4.
(c) � is x-qualitative event additive, I, Definition 4.

2. The following are equivalent:

(a) S�,� is finitely additive, (13).
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(b) � is qualitative event additive, II, Definition 5.
(c) � is x-qualitative event additive, II, Definition 5.

4.2. Finite additivity of S
ρ

�,�

In the next Section 5 we make use of a strong assumption,
namely, that for some ρ independent of �,�∈ O, S

ρ

�,�
is

finitely additive. In this section, we formulate behavioral con-
ditions equivalent to this assumption. Toward that end, we
define:

DEFINITION 7. Weak weight complementarity holds if for
all binary partitions (C1,C2) and (D1,D2),

KE�(x,C1; e,C2) �X KE�(x,D1; e,D2)

⇔KE�(x,D2; e,D1) �X KE�(x,C2; e,C1).
(29)

Using this leads us to the first result toward our goal.

THEOREM 8. Assume that the kernel equivalents of unitary
gambles have a separable representation U�S�,� and that S�,�

satisfies the choice property. For given x �∼e, the following state-
ments are equivalent:

(i) Weak weight complementarity is satisfied.
(ii) There exists a constant ρ� > 0 such that S

ρ�
�,�

is finitely
additive.

Note that (ii) follows from (i) holding for some x �∼ e;
whereas (ii) implies that (i) holds for every x ∈X.

PROPOSITION 9. Assume that the kernel equivalents of uni-
tary gambles have a separable representation U�S�,� for an
order � and that x �∼ e. Then, for disjoint C1,C2 ∈B∗, the fol-
lowing statements are equivalent:

(a) (x,C1; e,C2)∼ (x,C2; e,C1).
(b) KE�(x,C1; e,C2)∼X KE�(x,C2; e,C1).
(c) S�,C1∪C2(C1)=S�,C1∪C2(C2).

Such disjoint events (C1,C2) are called a �-subjectively
equal pair.
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The following definition gives a behavioral property that
plays an important role in the following Theorem.

DEFINITION 10. The equal event property holds for a pair
of orders

(
�,�′) provided that for all �-subjectively equal

(C1,C2) and �′-subjectively equal (D1,D2),

KE�(x,C1; e,C2)∼X KE�′(x,D1; e,D2). (30)

In the special case �=�′, we say that the equal event property
holds for �.

THEOREM 11. Assume that the choice property holds and
that the kernel equivalents of unitary gambles have separable
representations U�S�,� and U�′ S�′

,� for a pair of orders (�,�′

). Suppose further that S
ρ�
�,�

and S
ρ�′
�′,� are finitely additive. Then

the following statements are equivalent.

(i) For some �-subjectively equal (C1,C2) and �′-subjectively
equal (D1,D2), (30) holds.

(ii) ρ� =ρ�′ .
(iii) The equal event property holds for (�,�′).

Although the careful reader will realize that Theorem 8
concerns a single ordering � whereas Theorem 11 holds for
any pair of orders, we nonetheless make the following obser-
vation. The two event partitions (C1,C2) and (D1,D2) that
appear in Theorem 8 are restricted only by (29) and so when
we discuss S

ρ�
�,�

(C1 ∪C2) and prove finite additivity there is no
constraint on C1 and C2 beyond C1 ∩C2 =∅. By contrast, the
partitions (C1,C2) and (D1,D2) discussed in Theorem 11 are
constrained to be subjectively equal pairs, which is a tiny sub-
family of all binary partitions. But given Theorem 8 that is
sufficient to prove ρ� =ρ�′ .
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5. REPRESENTATION OF ELEMENTS OF CHANCE UNDER
DUPLEX DECOMPOSITION

5.1. Definition of duplex decomposition

Somewhat parallel to segregation is an alternative, less restric-
tive assumption:

Duplex decomposition:

(x,C;y,D)⊕ (e,C ′; e,D′)∼ (x,C; e,D)⊕ (e,C ′;y,D′), (31)

where (C ′,D′) is an independent realization of (C,D). Note
that the two sides do not have the same bottom line: on the
left either x or y, but not both, arises whereas on the right
there are four possibilities: e= e⊕ e, x =x ⊕ e, y = e⊕ e, x ⊕y.

5.2. The representation

In obtaining the representation, we invoke the inset entropies
of degree κ (see Notes after Theorem 12 and Aczél and Kan-
nappan, 1978; Ebanks et al., 1988) for a general κ. The only
way we have seen so far to do so is to impose a very strong
assumption about the finite additivity of some weights. Com-
ment 4 following the Theorem discusses the testability of this
assumption.

THEOREM 12. Suppose that:

(i) for each � belonging to O, the assumptions of Theorem 16
of Luce et al.(see Appendix B) are satisfied,

(ii) there exists a positive constant ρ such that S
ρ

�,�
is finitely

additive for each � belonging to O,
(iii) with the weights S

ρ

�,�
replacing S�,�, Assumptions (i)–(ii)

of Theorem 2 are satisfied, and when ρ = 1 also assume
(iii), regularity, of Theorem 2.

Then, there exist a constant A and a function V:B→R, with
V (∅)=0, such that for all gambles g[n] = (x1,C1; . . . ;xn,Cn) and
all �∈O,
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U�(g[n]) =
n∑

i=1
[UX(xi)−V (Ci)]S�,�(Ci)+V (�)

−A

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1
S�,�(Ci) log S�,�(Ci), ρ =1

1−
n∑

i=1
S�,�(Ci), ρ �=1

.
(32)

A number of observations are in order.

1. Together, the assumptions of the Theorem allow us to
define a function which, with our other assumptions, leads
to the recursions of the theory of inset entropy (Appendix
C.3) whose solutions are a basis of the above result.

2. Note that, as was true under segregation, e.g., in (19), the
value function V in (32) is attached to the events and is
independent of the order �∈ O, whereas the weight func-
tion S�,� varies with � .

3. Because pi :=S�,�(Ci)
ρ , when ρ �=1 the term A[1−∑n

i=1 S�,�

(Ci)] takes the form A
∑n

i=1(1−pκ
i ), where κ :=1/ρ, which

is called the entropy of degree κ (Havrda and Charvát,
1967) of these subjective probabilities. It has been quoted
lately as “Tsallis entropy” (by Suyari (2002), among many
others), referring to Tsallis (1988) and other works by
Tsallis. It was, however, first introduced by Havrda and
Charvát (1967) and examined in depth by Daróczy (1970).
See also, among others, the monograph by Aczél and
Daróczy (1975).

4. The apparently very strong Assumption (ii) is, by Theo-
rems 8 and 11, equivalent to assuming the following prop-
erties: The weak weight complementary property, (29), of
Theorem 8, and the equal event property of Definition 10.
However, as noted following Theorem 2, it is unclear how
to test behaviorally a property that involves two distinct
orders, such as the equal event property of Definition 10.

5.3. A result about finitely additive S�,�

THEOREM 13. Suppose that any two of the following three
conditions are satisfied by the family O:
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(i) The assumptions of Theorem 2.
(ii) The assumptions of Theorem 12.
(iii) For each ordering �∈ O, qualitative event additivity, I,

holds.
Then all three conditions are satisfied and for each �∈ O,
the representation (19) holds:

U�(g[n])=
n∑

i=1

UX(xi)S�,�(Ci)+V (�)

−
n∑

i=1

V (Ci)S�,�(Ci)−A

n∑

i=1

S�,�(Ci) log2 S�,�(Ci).

The result follows immediately using part 1 of Proposi-
tion 6. Note that (i) and (iii) imply (ii) with ρ =1.

5.4. Condition for constant V

Now we present a condition that allows us to conclude that
the value function V is a constant, i.e., the utility representa-
tion reduces to one with no valuation of events, per se.

PROPOSITION 14. Suppose that the assumptions of Theorem
12 hold. Then, the following are equivalent:

1. For all �,�′∈ O, if C = (C1,C2) and D = (D1,D2) are non-
trivial ordered binary partitions of �=∪2

i=1Ci and

S�,�(Ci)=S�′,�(Di), (i =1,2), (33)

then y ∈ X is a certainty equivalent, CE, of the element
of chance, (e,C1; e,C2), under � iff it is also a CE of
(e,D1; e,D2) under �′, i.e.,

y ∼ (e,C1; e,C2)⇔y ∼′ (e,D1; e,D2). (34)

2. There exist constants a and b such that

V (C)=
{

a, if C is not maximal and not ∅

b, if C is maximal
.
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6. CONCLUSION AND OPEN PROBLEMS

6.1. Conclusion

The major premise of this article is that given a preference
order �X over pure consequences, a theorist must be pre-
pared to face any extension � of �X to gambles (uncer-
tain alternatives). Under that premise, the rational property
of segregation leads naturally to two cases because, under the
assumptions made, the weighting function S�,� is forced to be
either finitely additive or non-trivially p-additive. The former
leads to SEU(g[n]) = ∑n

i=1 U(xi)S�(Ci)plus a weighted value
function V over events plus a utility of gambling term that
takes the form of the Shannon entropy of the weights. The
latter leads to a version of rank-dependent utility plus a con-
stant that must be 0 for non-maximal �.

A second decomposition is by the non-rational property of
duplex decomposition. For that case, so far we have a result
under the strong condition that there is a constant ρ �=1, inde-
pendent of �, such that for all �, S

ρ

�,�
is finitely additive. In

that case, our assumptions lead to a representation as a linear
weighted utility plus a weighted value function V over events
plus an entropy of degree 1/ρ.

We state next some of the problems that remain to be
solved.

6.2. Open problems

6.2.1. Constraints on the function V

The statements of Theorem 2 and later of Theorem 12 assert
the existence of the value function V over events, but they do
not arrive at any of its properties. In particular, they do not
impose constraints on V . As a result, it is of interest to seek
out properties that do constrain it.

To that end, define V ∗(C,�) :=V (�)−V (C). Because � is
held fixed in the following discussion, we simplify V ∗(C,�)

to V ∗(C). Now, for disjoint C,D ⊂�, suppose that C is val-
ued positively, i.e., V ∗(C)> 0 and D is valued no better than
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C, i.e., V ∗(C)≥V ∗(D). Then it seems intuitively plausible that
the value of the better event is diluted by being placed in an
either/or situation with the less good one, i.e., V ∗(C ∪ D) ≤
V ∗(C).

Similarly, if event C is valued negatively, V (C)< 0, and D

is not valued any worse, i.e., V (C)≤V (D), then the negative
value of C is lessened by placing it in an either/or situation
with D, i.e., V ∗(C ∪D)≥V ∗(C). This case is illustrated by air
travel: the event of either a crash or any of the other possible
disjoint events such as a late arrival certainly is more valued
than the crash itself.

What behavioral properties justify these intuitions? And
what other properties can be defended using behavioral prop-
erties that, at least in principal, can be evaluated experimen-
tally?

6.2.2. Axiomatize rank-dependent values

As discussed by Luce et al. (in press b), many of the
anomalies found in the empirical literature are encompassed
by utility representations that include a utility of gambling
expression based on entropy, but some of Michael Birn-
baum’s examples (for a summary, see Marley and Luce, 2005
accommodated by his un-axiomatized TAX representation are
not handled by our current theory. Moreover, adding the V

expressions of the present theory deals with some of the issues
but again not all. It appears from the data that the value of
an event depends not only upon that event but upon whether
it is associated with a better or worse consequence, i.e., on its
relative ranking. For example, an event C has a better value
if it is playing the role of C1 rather than the role of Cn. So
it may be desirable to characterize a representation of the
following form as a replacement for the representation (19):
given x1 �x2 � · · ·�xn,

U(x1,C1;x2,C2; . . . ;xn,Cn)

=
n∑

i=1

[
U(xi)+V0(�)−Vi(Ci)−A log2 S�,�(Ci)

]
S�,�(Ci),



44 C.T. NG ET AL.

i.e., the common function V is replaced by a family of func-
tions Vi , i =1, . . . , n. Nothing so far developed in the entropy
literature seems to lead to the above form.
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APPENDICES

A. Summary of Theorem 13, Luce et al. (in press a)

The following definitions arise in the statement of the theo-
rem:

Let g[n] := (x1,C1;x2,C2; . . . ;xn,Cn).

Upper gamble decomposition:

g[n] ∼ (x1,C1; (x2,C2; . . . ;xn,Cn), �\C1) , (35)

Branching:

g[n] ∼ ((x1,C1;x2,C2),C1 ∪C2;x3,C3; . . . ;xn,Cn). (36)

The statement of the result is virtually verbatim:

THEOREM 13. Suppose that n ≥ 2 and that the following
assumptions are satisfied: decomposability into KEs and ele-
ments of chance, (4), U is additive over joint receipt ⊕, (1), the
kernel equivalents of unitary gambles have a separable repre-
sentation US�, and segregation, (12). Suppose that both upper
gamble decomposition, (35), and branching, (36), are satisfied.
Then there exists an increasing function µ, positive on B∗,
µ(∅)=0, such that

S�(C)=µ(C)/µ(�),

and, for all gambles g[n], either
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1. S�, and thus µ, are finitely additive and there is a function
h:B →R, h(∅)=0 with the dimension of µU , for which

U(g[n])=SEU(g[n])+ 1
µ(�)

[

h(�)−
n∑

i=1

h(Ci)

]

, (37)

where SEU(g[n]) is given by

SEU(g[n]) :=
n∑

i=1

U(xi)S�(Ci),

(
n∑

i=1

S�(Ci)=1

)

(38)

or
2. S� is p-additive (with � �=0) and there is a constant A with

the dimension of U such that

U(g[n])=RDU(g[n])+H, (39)

where RDU(g[n]) is given by

RDU(g[n])=
n∑

i=1

U(xi)S�(Ci) [1+�µ(�)S�(C(i −1))] , (40)

where C(j)=∪j

k=1Ck and H is 0 when � is not maximal and
a constant A when � is maximal.

B. Summary of Theorem 16, Luce et al. (in press a)

THEOREM 16. Suppose that n ≥ 2 and that the following
assumptions are satisfied: decomposability into KEs and ele-
ments of chance, (4), U is additive over joint receipt ⊕, (1),
the kernel equivalents of unitary gambles have a separable rep-
resentation US�, and duplex decomposition, (31). Suppose that
both upper gamble decomposition, (35), and branching, (36),
hold. Then there exist an increasing function µ, positive on B∗,
µ(∅) = 0, and a function h : B → R, h(∅) = 0, and with the
dimension of µU such that

S�(C)=µ(C)/µ(�), (41)
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and

U(g[n])=LWU
(
g[n]
)+ 1

µ(�)

[

h(�)−
n∑

i=1

h(Ci)

]

, (42)

where LWU is given by

LWU
(
g[n]
)=

n∑

i=1

U(xi)S�(Ci). (43)

C. Inset Entropy

This article draws heavily on a topic called inset entropy in the
functional equations literature. We summarize the formulation
of the theory and the major results will be imbedded in the
statements of Theorems 2 and 12 and in the discussion fol-
lowing the latter result.

C.1 The Arrays of Inset Entropy

Let B be a ring of sets which, in the current interpretation,
are events. The basic ingredient of the theory of inset entropy
was initially characterized by Aczél and Daróczy (1978) as
follows (using our notation for events rather than theirs):

“We call
(

C1, C2, . . . , Cn

p1, p2, . . . , pn

)

∈�n ×�n (44)

a randomized system of events. We use events Ci as names
for the elements of B, while the pi are probabilities.” In
addition, it was assumed that each event partition vector
C = (C1,C2, . . . ,Cn),Ci ∈ B, and each probability vector p =
(p1, p2, . . . , pn) can be selected “independently,” i.e., knowing
one does not limit the choice of the other. In that formula-
tion, a nonnegative pi value was allowed to go with any Ci .
A related work is Aczél and Kannappan (1978). Later, the
variables pi were restricted to the open interval ]0,1[ and Ci

were restricted to B∗. The restrictions and the new formula-
tions made many older derivations inappropriate. Subsequent
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works under the new formulation were reported in Ng (1980),
Aczél (1980, 1981) and Ebanks et al. (1988). Luce et al. (in
press a) assumed the conditions of the new formulation. The
“later” works quoted above deal with more general entropies
of degree κ, see Theorem 12 below and the Notes following
it.

As stated in the body of the paper, a probability vector p=
(p1, . . . , pn) is called non-trivial when pi ∈ ]0,1[ , i = 1, . . . , n,
and an ordered event partition C = (C1,C2, . . . ,Cn) of � =
∪n

i=1Ci is called non-trivial when Ci �=∅, i =1, . . . , n. All refer-
ences to the pair (p,C) implicitly assume that both are non-
trivial.

In the work that follows, for each pair (p,C), we will be
working with weights that for some ρ >0 satisfy S

ρ

�,�
(Ci)=pi ,

� belonging to O. We define

Hn

(
C1, C2, . . . , Cn

p1, p2, . . . , pn

)

:=H�(C1, . . . ,Cn) (45)

and we make assumptions in Theorems 2 and 12 sufficient to
insure that the function Hn is well defined.

As we shall see, under segregation the case of ρ = 1 arises
naturally. Whereas, under duplex decomposition, both the
cases ρ = 1 and ρ �= 1 arise, but not nearly so naturally, espe-
cially the latter.

C.2 The Branching Recursion for a Single Order

For a fixed ordering �, two important recursions arose in
Luce et al. (in press a), one of which is branching,

g[n] ∼ ((x1,C1;x2,C2),C1 ∪C2;x3,C3; . . . ;xn,Cn), (46)

which under our assumptions (see Luce et al., in press a)
reduces to the elements of chance satisfying the recursion5

H�(C1, . . . ,Cn)=H�(C1 ∪C2,C3, . . . ,Cn)

+H�(C1,C2)S�,�(C1 ∪C2). (47)
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The other recursion, upper gamble decomposition, which plays
no role in inset entropy, was already given in Appendix A
(35).

C.3 Arrays, Additivity and Conditional Probabilities

In the case that (45) holds with S
ρ

�,�
finitely additive, i.e., for

all C,D ⊆�, C ∩D =∅,

S
ρ

�,�
(C ∪D)=S

ρ

�,�
(C)+S

ρ

�,�
(D), (48)

we further connect the H arrays to sub-partitions and con-
ditional probabilities. Using the choice property, (6), and the
finite additivity of S

ρ

�,�
, we see that

S
ρ

�,�
(C1 ∪C2) = S

ρ

�,�
(C1)+S

ρ

�,�
(C2)=p1 +p2,

S
ρ

�,C1∪C2
(Ci) = S

ρ

�,�
(Ci)

S
ρ

�,�
(C1∪C2)

= pi

p1+p2
(i =1,2).

(49)

By (45) and (49), we get

Hn−1

(
C1 ∪C2, C3, . . . , Cn

p1 +p2, p3, . . . , pn

)

=H�(C1 ∪C2, . . . ,Cn)

(50)

and

H2

(
C1, C2
p1

p1+p2
,

p2
p1+p2

)

=H�(C1,C2). (51)

C.4 The Branching Recursion of Inset Entropy

We continue to assume that S
ρ

�,�
is finitely additive, i.e., (48)

holds. Substituting (45), (50) and (51) into the recursion (47)
and letting κ :=1/ρ we get

Hn

(
C1, C2, . . . , Cn

p1, p2, . . . , pn

)

=Hn−1

(
C1 ∪C2, C3, . . . , Cn

p1 +p2, p3, . . . , pn

)

+H2

(
C1, C2
p1

p1+p2
,

p2
p1+p2

)

(p1+p2)
κ . (52)
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The recursion above is that of inset entropy of degree κ

(Aczél and Kannappan 1978; Ebanks et al. 1988). The case
κ =1 is invoked in Section 3.

D. Proofs

Theorem 2

According to Theorem 13 of Luce et al. (in press a), each
S�,� is either finitely additive or non-trivially p-additive. Let
O1 and O2 denote those orders of O with additive, and,
respectively, non-trivially p-additive, S�,�.

We first show that Assumptions (i) and (ii) are irrelevant
for orders in O2.

A non-trivially p-additive S�,� satisfies

S�(C ∪D)=S�(C)+S�(D)+�µ(�)S�(C)S�(D) (53)

with � �=0. This implies that either

S�(C ∪D)<S�(C)+S�(D) (54)

for all disjoint C,D ∈B∗ contained in �, or that

S�(C ∪D)>S�(C)+S�(D) (55)

for all disjoint C,D∈B∗ contained in �, according to the sign
of �. Simple induction on the length n ≥ 2 leads either to
strict subadditivity

1=S�(�)<

n∑

i=1

S�(Ci), (56)

or to strict super-additivity

1=S�(�)>

n∑

i=1

S�(Ci). (57)

Hence, for orders belonging to O2, the matching S�(Ci) =
pi with

∑
pi =1 is impossible. Therefore, O satisfies (i) iff O1

does; and (ii) only constrains O1, because every order in O2

trivially satisfies that condition.
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There are two cases to consider.
1. For orders in O1, i.e., those with finitely additive S�,�.
According to Theorem 13, (i) of Luce et al. (in press a),

each S� satisfies the choice property, and combining (37) with
(38) we have the representation

U�(g[n])=
n∑

i=1

UX(xi)S�,�(Ci)+H�(C1, . . . ,Cn), (58)

where

H�(C1, . . . ,Cn) :=U�(e,C1; . . . ; e,Cn)

= 1
µ�(�)

[

h�(�)−
n∑

i=1

h�(Ci)

]

are symmetric functions satisfying the branching relation (47),
i.e.,

H�(C1, . . . ,Cn)=H�(C1 ∪C2,C3, . . . ,Cn)

+H�(C1,C2)S�,�(C1 ∪C2). (59)

Let �,�′∈ O1 be any two orders with equal weights, (16),
then it follows from assumption (ii) that

H�(C1, . . . ,Cn) = U�(e,C1; . . . ; e,Cn)

= U�(CE�(e,C1; . . . ; e,Cn))

= UX(CE�(e,C1; . . . ; e,Cn))

= UX(CE�′(e,C1; . . . ; e,Cn))

= H�′(C1, . . . ,Cn).

(60)

For arbitrary
(

C1, C2, . . . , Cn

p1, p2, . . . , pn

)

, (61)

where the Ci form a non-trivial partition and the pi >0 form
a non-trivial probability distribution, we define Hn by

Hn

(
C1, C2, . . . , Cn

p1, p2, . . . , pn

)

=H�(C1, . . . ,Cn), (62)
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where �∈O is any order satisfying S�,�(Ci)=pi (i =1, . . . , n).
By Assumptions (i), such an order exists and by (60) the
value of Hn does not depend on the choice of the order. As
was shown earlier, � necessarily is in O1. Hence the Hn (n =
2,3, . . . ) are well-defined functions and (62) holds for all �∈
O1.

With that, and reasoning as in Appendix C.1, (59) gives

Hn

(
C1, C2, . . . , Cn

p1, p2, . . . , pn

)

=Hn−1

(
C1 ∪C2, C3, . . . , Cn

p1 +p2, p3, . . . , pn

)

+H2

(
C1, C2
p1

p1+p2
,

p2
p1+p2

)

(p1 +p2).

According to the results established in Ebanks et al. (1988),
under mild regularity assumptions, such as

p �→H2

(
C1, C2

p, 1−p

)

(63)

is locally bounded, which is implied by Assumption (iii) of
Theorem 2, there exists a function V: B∗ →R and a constant
A such that

Hn

(
C1, C2, . . . , Cn

p1, p2, . . . , pn

)

=V (�)−
n∑

i=1

V (Ci)pi

−A

n∑

i=1

pi log2 pi. (64)

Putting the obtained forms of Hn into (62) we get the form
of H� for all �∈ O1. Putting that further back into (58) we
arrive at the representation (19).

2. For orders in O2, i.e., those with non-trivially p-additive
S�,�.

No assumption impacts O2 apart from those of Theorem
13, and the asserted RDU representation is that of Theorem
13.

(Using expansibility, which means a gamble with a null
event is equivalent to the gamble with the corresponding
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branch omitted, the form (64) could be extended to include
the empty event and zero weights under appropriate conven-
tions.)

Proposition 3

Suppose g[n] is a gamble based on the partition (C1, . . . ,Cn).
We have the two decompositions

g[n] ∼KE�(g[n])⊕ (e,C1; . . . ; e,Cn)

g[n] ∼′ KE�′(g[n])⊕ (e,C1; . . . ; e,Cn).

So

U�(g[n])=UX(KE�(g[n]))+U�(e,C1; . . . ; e,Cn) (65)
U�′(g[n])=UX(KE�′(g[n]))+U�′(e,C1; . . . ; e,Cn). (66)

Using (16) and the representation (24), we have

UX(KE�(g[n]))=
n∑

i=1

UX(xi)S�,�(Ci)

=
n∑

i=1

UX(xi)S�′,�(Ci)

=UX(KE�′(g[n])). (67)

So, the kernel equivalent terms are identical in (65) and (66),
whence we have the equivalences

U�(g[n]) = U�′(g[n])⇔U�(e,C1; . . . ; e,Cn)

= U�′(e,C1; . . . ; e,Cn)

⇔ [
y ∼ (e,C1; . . . ; e,Cn)⇔y ∼′ (e,C1; . . . ; e,Cn)

]
.

Proposition 6

For this proof and the next one, we omit the subscript � on
U and S.
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1.(a) implies 1.(b). Suppose that S� is finitely additive.
Using the fact that primed events mean independent realiza-
tions of an event, we have

U(x ⊕ (e,C1; e,C2)⊕ (e,C ′
1; e,C ′

2))=U(x)+U(e,C1; e,C2)

+U(e,C ′
1; e,C ′

2)

=U(x)SC1∪C2(C1 ∪C2)+U(e,C1; e,C2)

+U(e,C ′
1; e,C ′

2)

=U(x)
[
SC1∪C2(C1)+SC1∪C2(C2)

]+U(e,C1; e,C2)

+U(e,C ′
1; e,C ′

2)

=U(x)SC1∪C2(C1)+U(e,C1; e,C2)+U(x)SC′
1∪C′

2
(C ′

2)

+U(e,C ′
1; e,C ′

2)

=U(x,C1; e,C2)+U(e,C ′
1;x,C ′

2)

=U((x,C1; e,C2)⊕ (e,C ′
1;x,C ′

2)).

This proves (26) for all x ∈X, i.e., 1.(b).
1.(b) implies 1.(c). This follows immediately.
1.(c) implies 1.(a). Suppose that (26) holds for some x �∼ e.

Then tracking the above calculations we get that U(x)[SC1∪C2

(C1)+SC1∪C2(C2)]=U(x). Because U(x)�=0, we get SC1∪C2(C1)+
SC1∪C2(C2)=1. Multiplying both sides by S�(C1 ∪C2) and using
the choice property, we get the additivity of S�.

2.(a) implies 2.(b). Suppose that S� is additive. Using the
fact that primed events mean independent realizations of an
event, we have

U
[
(x,C1 ∪C2; e,�\C1 ∪C2)⊕ (e,C ′

1; e,�\C ′
1)

⊕(e,C ′
2; e,�\C ′

2) ]

=U(x)S�(C1 ∪C2)+U(e,C1 ∪C2; e,�\C1 ∪C2)

+U(e,C ′
1; e,�\C ′

1)+U(e,C ′
2; e,�\C ′

2)

=U(x)S�(C1)+U(x)S�(C2)+U(e,C1 ∪C2; e,�\C1 ∪C2)

+U(e,C ′
1; e,�\C ′

1)+U(e,C ′
2; e,�\C ′

2)

=U(x)S�(C1)+U(e,C ′
1; e,�\C ′

1)+U(x)S�(C2)

+U(e,C ′
2; e,�\C ′

2)

+U(e,C1 ∪C2; e,�\C1 ∪C2)
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=U(x)S�(C ′′
1 )+U(e,C ′′

1 ; e,�\C ′′
1 )+U(x)S�(C ′′

2 )

+U(e,C ′′
2 ; e,�\C ′′

2 )

+U(e,C ′′′
1 ∪C ′′′

2 ; e,�\C ′′′
1 ∪C ′′′

2 )

=U
[
(x,C ′′

1 ; e,�\C ′′
1 )⊕ (x,C ′′

2 ; e,�\C ′′
2 )

⊕(e,C ′′′
1 ∪C ′′′

2 ; e,�\C ′′′
1 ∪C ′′′

2 ) ] .

This proves (27) for all x ∈X, i.e., 2.(b), from which 2.(c) fol-
lows.

2.(c) implies 2.(a). Suppose that (27) holds for some x �∼ e.
Then tracking the above calculations we get that

U(x)S�(C1 ∪C2)=U(x)[S�(C1)+S�(C2)]

Because U(x) �= 0, we get S�(C1 ∪ C2) = S�(C1) + S�(C2), i.e.,
the additivity of S�.

Theorem 8

Suppose that (i) holds. By separability it translates into

SC1∪C2(C1)≥SD1∪D2(D1) iff SC1∪C2(C2)≤SD1∪D2(D2). (68)

In functional terms it means that there exists an order revers-
ing function � such that for all binary partitions (C1,C2)

SC1∪C2(C2)=�(SC1∪C2(C1)). (69)

This “obvious” result is a special case of those in Aczél
(1965).

We have made one general background assumption on all
weighting functions: that for fixed non-empty �, {S�(E)|E ⊂
�} = [0,1]. Therefore, � is a homeomorphism of ]0,1[ onto
]0,1[.

By the choice property, for any nontrivial partition
(C1,C2,C3) and �=C1 ∪C2 ∪C3, we have the relations

S�(C3)

S�(C2 ∪C3)
=SC2∪C3(C3), (70)

and
S�(C1 ∪C2)SC1∪C2(C2)

S�(C2 ∪C3)
=SC2∪C3(C2). (71)
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By (69) applied to the nontrivial partition (C2,C3), �(SC2∪C3

(C3))=SC2∪C3(C2), hence (70) and (71) give

�

(
S�(C3)

S�(C2 ∪C3)

)

= S�(C1 ∪C2)SC1∪C2(C2)

S�(C2 ∪C3)
. (72)

Using (69) in parallel fashion for various nontrivial binary
partitions, we have �(SC1∪C2(C1))=SC1∪C2(C2), �(S�(C1 ∪C2))=
S�(C3) and �(S�(C1))= S�(C2 ∪C3). So (72) can be rewritten
as

�

(
�(S�(C1 ∪C2))

�(S�(C1))

)

=S�(C1 ∪C2)
�(SC1∪C2(C1))

�(S�(C1))
. (73)

Letting r := S�(C1 ∪ C2) and s := SC1∪C2(C1), we get from
the choice property that rs =S�(C1). With that (73) yields the
equation

�

(
�(r)

�(rs)

)

= r
�(s)

�(rs)
(r, s ∈ ]0,1[ ). (74)

Let γ : ]0,1[ → ]0,∞[ be defined by

γ (r)=�(r)/r, (r ∈ ]0,1[ ). (75)

Because � is an order reversing homeomorphism of ]0,1[ onto
]0,1[, γ is an order reversing homeomorphism of ]0,1[ onto
]0,∞[ . With that, (74) gives

�(r)

�(rs)
=γ −1

(
�(s)

γ (r)

)

, (r, s ∈ ]0,1[ ). (76)

Taking the logarithm on both sides we get

(− ln �)(r)− (− ln �)(rs)= (− ln γ −1)

(
�(s)

γ (r)

)

,

(r, s ∈ ]0,1[ ). (77)

Let u := − ln(r), v := − ln(s), and let F :]0,∞[ → ]0,∞[ be
defined by

F(u)=− ln �(exp(−u)), (u∈ ]0,∞[ ). (78)
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Then F is an order reversing homeomorphism and (77)
becomes

F(u)−F(u+v)= (− ln γ −1)

(
�(exp(−v))

γ (exp(−u))

)

,

(u, v ∈ ]0,∞[ ). (79)

Defining K: R→ ]0,∞[ by

K(z)=− ln γ −1(exp(−z)), (z∈R), (80)

we rewrite (79) as

F(u)−F(u+v)=K[u−F(u)+F(v)], (u, v ∈ ]0,∞[ ).

Theorem 1 of Aczél et al. (2000) is applicable, and, in partic-
ular, the differentiability of F follows. Tracing back through
(78) we obtain the differentiability of �.

Equation (74) implies

�

(
�(r)

�(rs)

)

= r�

(

s
�(r)

�(rs)

)

, (r, s ∈]0,1[), (81)

which is an equation treated in Ng (1998) (cf. his equation
(25)), with solution (cf. his equation (38))

�(r)= (1− rρ)1/ρ (r ∈]0,1[) (82)

where ρ >0 is a constant. With (82), (69) gives

SC1∪C2(C1)
ρ +SC1∪C2(C2)

ρ =1.

Multiplying by S�(C1 ∪C2)
ρ and using the choice property we

get

S�(C1)
ρ +S�(C2)

ρ =S�(C1 ∪C2)
ρ. (83)

This proves (ii).
The fact that (ii) implies (i) is straight forward.
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Proposition 9

The equivalence between (a) and (b) is a simple consequence
of the symmetry in the element of chance terms. The equiv-
alence between (b) and (c) is seen from KE�(x,C1; e,C2) ∼X

KE�(x,C2; e,C1) iff UX(x)S�,C1∪C2(C1) = UX(x)S�,C1∪C2(C2) iff
S�,C1∪C2(C1)=S�,C1∪C2(C2) because UX(x) �=0.

Theorem 11

We have made one general background assumption on all
weighting functions: that for fixed non-empty �, {S�(E)|E ⊂
�}= [0,1]. Hence by this range condition on the weights, there
exist, respectively, (C1,C2) and (D1,D2) such that

S
ρ�
�,C1∪C2

(C1)=1/2 (84)

and

S
ρ�′
�′,D1∪D2

(D1)=1/2. (85)

By the additivity of S
ρ�
�,�

, and of S
ρ�′
�′,�, we get

S
ρ�
�,C1∪C2

(C1)=S
ρ�
�,C1∪C2

(C2)

and

S
ρ�′
�′,D1∪D2

(D1)=S
ρ�′
�′,D1∪D2

(D2).

So,

S�,C1∪C2(C1)=S�,C1∪C2(C2)

and

S�′,D1∪D2(D1)=S�′,D1∪D2(D2).

Hence the existence of �-subjectively equal (C1,C2) and �′-
subjectively equal (D1,D2) is not an issue.

Suppose that (i) is satisfied. By Proposition 9, we get
respectively

(x,C1; e,C2)∼ (x,C2; e,C1)
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and

(x,D1; e,D2)∼′ (x,D2; e,D1).

By Assumption (i),

KE�(x,C1; e,C2)∼X KE�′(x,D1; e,D2), (86)

and so

UX(KE�(x,C1; e,C2))=UX(KE�′(x,D1; e,D2)).

That is,

UX(x)S�,C1∪C2(C1)=UX(x)S�′,D1∪D2(D1).

Cancelling UX(x) �=0 leaves

S�,C1∪C2(C1)=S�′,D1∪D2(D1). (87)

On the other hand, by (84) and (85) we have

S
ρ�
�,C1∪C2

(C1)=S
ρ�′
�′,D1∪D2

(D1).

Comparing it with (87) we get (ii): ρ� =ρ�′ .

Next, suppose (ii), that ρ� =ρ�′ .

To prove (iii), suppose that (x,C1; e,C2)∼ (x,C2; e,C1) and
(x,D1; e,D2)∼′ (x,D2; e,D1) are given. According to Proposi-
tion 9, we get respectively

S�,C1∪C2(C1)=S�,C1∪C2(C2),

S�′,D1∪D2(D1)=S�′,D1∪D2(D2).

Hence

S
ρ�
�,C1∪C2

(C1)=S
ρ�
�,C1∪C2

(C2),

S
ρ�′
�′,D1∪D2

(D1)=S
ρ�′
�,D1∪D2

(D2).

By additivity we get S
ρ�
�,C1∪C2

(C1)=1/2 and S
ρ�′
�′,D1∪D2

(D1)=1/2.
Thus

S
ρ�
�,C1∪C2

(C1)=S
ρ�′
�′,D1∪D2

(D1).
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Using ρ� =ρ�′ we get (87):

S�,C1∪C2(C1)=S�′,D1∪D2(D1).

Using that we can back step to (86), proving (iii).
It is clear that (iii) implies (i).

Theorem 12

The following proof, which is stated in full for completeness,
is very similar to that of Part 1 of Theorem 2 with S�,�

replaced by S
ρ

�,�
.

According to Theorem 16 of Luce et al. (in press a), each
S�,� satisfies the choice property, and combining (42) with
(43), we have the representation

U�(g[n])=
n∑

i=1

UX(xi)S�,�(Ci)+H�(C1, . . . ,Cn), (88)

where

H�(C1, . . . ,Cn) :=U�(e,C1; . . . ; e,Cn)

= 1
µ�(�)

[

h�(�)−
n∑

i=1

h�(Ci)

]

are symmetric functions satisfying the branching relation (47),
i.e.,

H�(C1, . . . ,Cn)=H�(C1 ∪C2,C3, . . . ,Cn)

+H�(C1,C2)S�,�(C1 ∪C2). (89)

Let �,�′∈O be any two orders with equal weights satisfy-
ing (16) with S�,� replaced by S

ρ

�,�
. Then it follows from (ii)

of assumption (iii) that

H�(C1, . . . ,Cn) = U�(e,C1; . . . ; e,Cn)

= U�(CE�(e,C1; . . . ; e,Cn))

= UX(CE�(e,C1; . . . ; e,Cn))

= UX(CE�′(e,C1; . . . ; e,Cn))

= H�′(C1, . . . ,Cn).

(90)
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For arbitrary
(

C1, C2, . . . , Cn

p1, p2, . . . , pn

)

,

where the Ci form a non-trivial partition and the pi >0 form
a non-trivial probability distribution, we define Hn by

Hn

(
C1, C2, . . . , Cn

p1, p2, . . . , pn

)

=H�(C1, . . . ,Cn), (91)

where �∈O is any order satisfying S
ρ

�,�
(Ci)=pi (i =1, . . . , n).

By assumptions (ii) and (iii), such an order exists and by (90)
the value of Hn does not depend on the choice of the order.
Hence the Hn (n=2,3, . . . ) are well-defined functions.

With that, and reasoning as in Appendix C.1, (89) gives,
with κ :=1/ρ,

Hn

(
C1, C2, . . . , Cn

p1, p2, . . . , pn

)

=Hn−1

(
C1 ∪C2, C3, . . . , Cn

p1 +p2, p3, . . . , pn

)

+H2

(
C1, C2

p1
p1+p2

,
p2

p1+p2

)

(p1 +p2)
κ .

For ρ =1, the solution was encountered in Part 1 of Theorem
2. For ρ �=1, according to the results established in Ebanks et
al. (1988), there exists a function V:B∗ →R and a constant A

such that

Hn

(
C1, C2, . . . , Cn

p1, p2, . . . , pn

)

=V (�)−
n∑

i=1

V (Ci)p
κ
i

−A

[

1−
n∑

i=1

pκ
i

]

. (92)

(As in Theorem 2, using expansibility, the form could be
extended to include the empty event and zero weights under
appropriate conventions.)

Putting the obtained forms of Hn into (91) we get the form
of H�. Putting that further back into (88) we arrive at the
conclusion of the theorem.
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Proposition 14

1. implies 2. If C ∈ B∗ is maximal, let b = V (C). Now, for
each � ∈ B∗, select non-trivial ordered binary partitions C =
(C1,C2), D= (D1,D2) of �. Then Ci,Di, i =1,2, are not max-
imal and, by weight solvability, Definition 1, for each non-
trivial binary probability vector p = (p,1 − p), there exists at
least one pair of orderings �,�′∈O such that

S�,�(C1)
ρ =S�′,�(D1)

ρ =p.

Then, using (33) and (34) with the representation (32), cancel-
ing common terms and rearranging the remaining terms, gives

[V (C1)−V (D1)]p1/ρ + [V (C2)−V (D2)](1−p)1/ρ =0.

However, the above equality holds for all non-trivial binary
partitions C,D of each �∈B∗ and all p∈]0,1[, and so V (C)=
constant for all non-maximal C ∈B∗.

The converse is trivial.

NOTES

1. Another additive representation consistent with exactly the same axi-
oms, and the only other polynomial one, is the bounded p-additive
form

U(x ⊕y)=U(x)+U(y)+ δU(x)U(y)

which, when δ �= 0, transforms into an additive representation Û

under

Û (x)= sgn(δ) log [1+ δU(x)]

provided the range of U , for δ > 0, is
]

− 1
δ
,∞

[

, and, for

δ <0, it is
]

−∞,− 1
δ

[

.

2. Luce et al (in press a) did not explicitly subscript functions such as
U and S� by � because � was fixed throughout. Here we will be
considering a family of orderings that are each extensions of �X and
so we must make � explicit.
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3. Luce et al. (in press a) assumed one-sided monotonicity plus the
commutativity of ⊕; here monotonicity is two-sided and we derive
commutativity and associativity.

4. Conversation with Luce on December 30, 2006.
5. There we indexed H with an integer that redundantly showed the

number of arguments. Here we suppress it, although we reintroduce
it in a later definition.
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