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Abstract. In [Sca99], T. Scanlon proved a quantifier elimination result for valued
D-fields in a three-sorted language by using angular component functions. Here we
prove an analogous theorem in a different language L2 which was introduced by F.
Delon in her thesis. This language allows us to lift the quantifier elimination result
to a one-sorted language by a process described in the Appendix. As a byproduct,
we state and prove a “positivstellensatz” theorem for the differential analogue of
the theory of real-series closed fields in the valued D-field setting.
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1. Introduction

Let us recall that a valued field is a field together with a valuation v : K → Γ∪{∞},
where Γ := v(K×) is a totally ordered abelian group which is called the value group.
The subring OK := {x ∈ K : v(x) > 0} of K is called the valuation ring of 〈K, v〉
and the residue field of K is kK := OK/MK , where MK := {x ∈ K : v(x) > 0}. The
residue map is denoted by π : OK 7−→ kK . In this paper, we will think of a valued
field as the three-sorted structure 〈K, kK,Γ〉.

We are interested in valued fields equipped with a derivation which induces a
derivation on the residue field in a natural way, so there is a strong interaction
between the derivation and the valuation topology which implies the continuity of
the derivation D with respect to this topology. We will place ourselves in a particular
case of the framework introduced by T. Scanlon (see [Sca00]). In [Sca00], T. Scanlon
considered a valued field K equipped with an additive operator D which satisfies the
identity D(x.y) = D(x).y + x.D(y) + e.D(x).D(y) where e is an element of K such
that v(e) > 0; this “twisted” derivation D is assumed to induce a derivation on the
residue field (it is equivalent to the condition: D(MK) ⊆ MK). In fact, he assumes
a stronger “continuity condition”: for all x in K, v(D(x)) > v(x), which implies that
the twisted derivation D on K induces a derivation on the residue field kK . These
valued fields will be called valued D-fields.

In this paper, we are dealing with the pure differential residue field case, i.e. e =
0 in the previous terminology. T. Scanlon has dealt with the following problem.
Fixing a differential residue field theory Th(k) and a totally ordered value group
theory Th(G) which both admit quantifier elimination respectively in some suitable
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expansions of languages of differential fields and of totally ordered abelian groups:
under which additional conditions on the differential field k and the totally ordered
abelian group G does the corresponding three-sorted theory of valued D-fields admit
quantifier elimination (in a reasonable language)?

In [Sca00], T. Scanlon considered the following Assumptions on 〈K, k,Γ〉:

(1) the differential residue field k is linearly differentially closed,
(2) K has sufficiently many nth roots, i.e. for each natural number n and each

element x of K if n divides v(x) then there exists an element y of K such that
yn = x,

(3) a differential lifting principle called D-Hensel’s Lemma,
(4) v(C×

K) = Γ where CK is the subfield of constants of K and,
(5) k |= Th(k) and Γ |= Th(G).

He called his models (k,G)-D-henselian fields and showed a transfer principle anal-
ogous to the Ax-Kochen-Ersov theorem. In [Sca99], he generalized this framework
in showing a similar transfer principle, removing Assumption 2 but by using angular
component functions.

Under the same hypotheses on K as in [Sca99], we are able to show a similar
transfer principle for an expansion by definition, denoted by L2, of a three-sorted
language of valued D-fields. This language was introduced by F. Delon in [Del82]. It
consists of adding new predicates Fφ,~n which combine the nth powers in the valued D-
field and the residue field formulas. We will show an analogous quantifier elimination
theorem in L2 which allows us to lift quantifier elimination results for the value group
and the residue field to the whole three-sorted valued D-field structure. Moreover,
it enables us to get a quantifier elimination result in a one-sorted language, often
more suited for algebraic applications. The passage from a three-sorted language
to a one-sorted language was done in Delon’s thesis (see [Del82, p. 40]) and for the
convenience of the reader, it can be found in the Appendix.

In Section 2, we recall the general setting of the problem in keeping the notations
of [Sca00]. The important modification concerns the language since we do not want
to use the angular component functions.

In Section 3, we prove our main result of quantifier elimination. The proof uses
a standard back-and-forth construction. But since we do not suppose Assumption
2 (contrary to [Sca00]), the back-and-forth construction requires some subtlety in
order to handle radical field extensions. In the construction of partial isomorphism
extensions, we use the concept of an efficient substructure of a (k,G)-D-henselian
field (as introduced by F. Delon).

In Section 4, we consider the theory of closed ordered differential fields, denoted
by CODF (introduced by M.F. Singer in [Sin78]) and use this theory as differential
residue field theory for valued D-fields. In [Sca00], under the previous assumptions on
k and G, T. Scanlon proves that (k,G)-D-henselian fields 〈K, k,G〉 admit quantifier
elimination and so, a model completeness result holds. But in our context, k is a
model of CODF and we have that Assumptions 2 and 4 imply that kK is root-closed
(i.e. (k×K)n = kK

× ∀n ∈ N \ {0, 1}).
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So we first prove a model completeness result for this theory. This model-theoretic
tool allows us to transpose, in this valued D-field setting, a “positivstellensatz” the-
orem for real-closed series fields obtained in [Far91].

2. Preliminaries

Given any unitary ring R, we denote its units by R× = {x ∈ R : ∃y (xy = 1)}.
If 〈R,D〉 is a differential ring then we denote the subring of constants {x ∈ R :
D(x) = 0} by CR. The differential polynomial ring over the differential ring R
equipped with the natural derivation extending that of R is denoted by R{X}. For
any differential polynomial P ∈ R{X}, the partial derivative of the corresponding
polynomial P (X,X(1), · · · , X(n)) at the variable X(i) is denoted by ∂

∂X(i)P where X(i)

is the ith derivative of X. We keep the same notations if K is a differential field; in
particular, its subring of constants CK is a field.

From now on, we always deal with fields of characteristic zero. First we recall the
canonical example of valued D-fields (see also Section 6 in [Sca00]). We consider
a differential field 〈k, δ〉 and a totally ordered abelian group G. The set k((tG)) is
defined by {f : G → k : supp(f) := {g ∈ G : f(g) 6= 0} is well-ordered in the
ordering induced by G}. Each element of k((tG)) can be viewed as a formal power
series

∑
g∈G

f(g) · tg with the addition and the multiplication defined as follows:

(f + h)(g) := f(g) + h(g) and

(f.h)(g) :=
∑

g′+g′′=g

f(g′)h(g′′) for any g ∈ G.

It is easy to check that k((tG)) is a field. There is a natural valuation v on k((tG))
defined as min supp(f) for any f ∈ k((tG)). Moreover we can equip this field with
the derivation D defined term by term:

(Df)(g) := δ(f(g)).

From the general valuation theory, we know that k((tG)) is a maximally complete
valued field. It is clear that it satisfies the “continuity condition” for the derivation
D. It is natural to consider valued fields in a three-sorted language where the three
sorts are 〈K, k,Γ〉 in the context of this paper:

• K is equipped with the signature of a differential field: 〈+, ·,−, −1, D, 0, 1〉
where D is an unary function to be interpreted as a derivation.

• k is equipped with the signature of an expansion of the language 〈+,−, ., −1, D,
{pn}n∈N\{0,1}, 0, 1〉 where pn is an unary predicate to be interpreted as nth
powers (as introduced by A. Macintyre in [Mac76]). The associated language
will be denoted LR in the sequel, independently of the added extra predicates.
We will not use distinct symbols for the symbols of derivation in the sorts K
and k since there is few risk of confusion.

• Γ is equipped with a signature 〈+,−, 0,6〉 of a totally ordered abelian group
possibly with some additional predicates (for example, divisibility predicates
{n|·}n∈N\{0,1}. The associated language will be denoted by LV , independently
of the added extra predicates.
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Moreover we add symbols to describe some relations between the three sorts. First
we add an extra symbol ∞ both in the sort k and in the sort Γ; we will denote both
by the same notation since it will be clear from the context in which sort we will be.
The sorts are connected by the functions π : K 7−→ k∪{∞} and v : K 7−→ Γ∪{∞}.
Such a three-sorted first-order language will be always denoted by L1.

In this paper, we will consider classes C of L1-structures where the sort K will be
a differential field, the sort k will be a differential field k which admits quantifier
elimination in the language LR and the sort Γ will be a totally ordered abelian group
G which admits quantifier elimination in the language LV . Moreover, for convenience,
we will require that all our structures satisfy: 0−1 = ∞ (in the sort k) and ∀γ ∈ Γ
γ < ∞. The symbol v will be interpreted as a valuation map, i.e. v satisfies the
following axioms:

• ∀x, y
[
v(xy) = v(x) + v(y)

]
,

• ∀x
[
v(x) = ∞ ⇐⇒ x = 0

]
,

• ∀x, y
[
v(x+ y) > min{v(x), v(y)}

]
.

The sort Γ is the whole value group, i.e. v(K) = Γ∪{∞}. The symbol π is interpreted
as the residue map, formally it means that π : OK 7−→ kK is the canonical residue
map and π(K \OK) = ∞. We also require that our structures satisfy the continuity
condition:

∀x ∈ K [v(D(x)) > v(x)]

and that the symbol of derivation D over the sort k is interpreted by the derivation
induced by the derivation of the sort K:

D(π(x)) = π(D(x)).

Structures in such a class C are called valued D-fields. Let us note that a substructure
of a valued D-field is itself a valued D-field if and only if π and v are surjective.

Now we describe F. Delon’s language (which will be denoted L2 in the sequel). Let
Pn(x) be the formula with variables in K: ∃y (yn = x), and let pn(η) be the formula
with variables in kK : ∃ǫ (ǫn = η).

With a language L1, we associate a language L2 obtained by adding to L1 the
following set of new predicates (see [Del82, p. 38])

{
Fφ,n1,··· ,nr

;φ formula of LR with r + s variables, n1, · · · , nr ∈ N \ {0, 1}
}
.

These predicates will be interpreted in the following way:

∀x1, . . . , xr ∈ K ∀η1, . . . , ηs ∈ k
{
Fφ,n1,··· ,nr

(x1, · · · , xr, η1, · · · , ηs) ⇐⇒

∃z1, · · · , zr ∈ K [
r∧

i=1

v(zi) = 0 ∧ φ(π(z1), · · · , π(zr), η1, · · · , ηs)

∧
r∧

i=1

Pni
(xizi)]

}
.

Now we can naturally consider the classes C described above as classes of L2-
structures, since the interpretation of “F. Delon predicates” are L1-definable.



0-D-VALUED FIELDS 5

From now on, we will always consider a class C as a class of L2-structures with the
natural interpretation given for Delon’s predicates.

Let us fix a differential field k of characteristic zero and a totally ordered abelian
group G which satisfy all the previous requirements. The class C of valued D-fields
such that the sort k is a model of Th(k) and the sort Γ is a model of Th(G) will be
called the class of valued (k,G)-D-fields.

Let us recall the interpretation of the divisibility predicates for the sort Γ:

n|x ⇐⇒ ∃y (y + · · ·+ y︸ ︷︷ ︸
n times

= x) for each n ∈ N \ {0, 1}.

Indeed these predicates will often be needed in order to be sure that Th(G) admits
quantifier elimination. Moreover, since the theory of value group eliminates quan-
tifiers in LV , the divisibility predicate is equivalent to a quantifier-free formula in
LV .

Definition 2.1. The valued D-field 〈K, kK, v(K×)〉 is said to have enough constants
if it satisfies v(K×) = v(C×

K) (see Definition 7.3 in [Sca00]).

Now we define a subclass of valued (k,G)-D-fields which will be called (k,G)-D-
henselian fields:

Axiom 1. Any non-zero linear differential equation operator L ∈ k[D] is surjective
as a map L : k 7−→ k. We call a differential field satisfying this condition linearly
differentially closed.

Axiom 2. K has enough constants.
Axiom 3 (D-Hensel’s Lemma). If P ∈ OK{X} is a differential polynomial over

OK , a ∈ OK and v(P (a)) > 0 = v( ∂
∂Xi

P (a)) for some i, then there is some b ∈ K

with P (b) = 0 and v(a− b) > v(P (a)).

Axiom 1 is quite natural since it was shown in [Mic86] that every differential field
which admits quantifier elimination in the language of pure differential rings is linearly
differentially closed.

In fact, in Section 6 of [Sca00], it is shown that the generalized power series field
k((tG)) provides a canonical model for the theory of (k,G)-D-henselian fields; the
only non-trivial point is to prove that the D-Hensel’s Lemma holds. It is done in
Proposition 6.1 of [Sca00] by using Taylor expansion and the fact that k is linearly
differentially closed.

3. Quantifier elimination result

In this section, we prove a quantifier elimination result, analogous the one of T.
Scanlon in [Sca00], for (k,G)-D-henselian fields in the previous language L2 by using
a back-and-forth test. In Chapter 2 of [Del82], F. Delon proved a quantifier elim-
ination result for maximally algebraic valued field (i.e. valued fields which do not
have proper algebraic immediate extensions) and we are going to follow the general
scheme of her proof. In particular, we use the concept of an efficient substructure
of a (k,G)-D-henselian field. This notion will allow us to construct radical field
extensions in a back-and-forth process (see Proposition 3.11).
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Now we recall the “efficient” concept introduced in [Del82, p. 48].

Definition 3.1. Let A be an L1-substructure of a (k,G)-D-henselian field M . We
define the relation RM over A: RM(a) iff ∀n ∈ N\{0, 1}, if n divides v(a), then there
exists a0 in A such that M satisfies v(a0) = 0 ∧ Pn(aa0). The ring A is said to be
efficient in M if for every element a of A, A satisfies RM(a).

Remark 3.2. • Let a ∈ A satisfying RM(a) and a′ ∈ A with the same value, then
we get Pn(aa0) iff Pn(a

′(a′−1aa0)) and so, A is efficient iff ∀w ∈ v(A×) ∃a ∈ A,
M satisfies v(a) = w ∧ RM(a).

• Let N be an elementary L1-substructure of a (k,G)-D-henselian field M and
let A be an L1-substructure of N . Then A is efficient in N iff A is efficient in
M .

Now we recall a lemma needed in Proposition 3.4.

Lemma 3.3. (See Proposition 1 in [Mic86]) Let 〈L,D〉 be an ℵ1-saturated differential
field and let 〈K,D〉 be a countable differential subfield with a non-trivial derivation.
Then we can find an element d of L which is differentially transcendental over K.

In the sequel, if f is an isomorphism between two valued D-fields in the sort K then
we denote the isomorphism corresponding to the residue field sort k (respectively the
value group sort Γ) by fR (respectively fV ). The domain of f will be denoted by
dom(f).

Let M1 and M2 be two ℵ1-saturated (k,G)-D-henselian fields. Let A1 ⊆L2 M1 and
A2 ⊆L2 M2 be two countable L2-substructures with a countable elementary submodel
N of M1 containing A1 and a partial isomorphism f : A1 → A2. By using quantifier
elimination of Th(G) in LV , we can extend fV to v(N×) = ΓN . In the case of fR,
the situation is more complicated since the residue variables occur in the predicates
Fφ,~n. Since kN = π(ON) is countable and M2 is ℵ1-saturated, it suffices to satisfy
any finite conjunction of formulas in n-types of elements of kN over kA1 .

That is, if ~λ ⊆ kN , ~α ⊆ kA1 and ~x ⊆ A1 satisfy

(*) ψ(~λ, ~α) ∧ Fφ,~n(~x,~λ⌢~α)

for residue formulas ψ and φ, then we get that

M2 |= ∃~λ[ψ(~λ, fR(~α)) ∧ Fφ,~n(f(~x), ~λ⌢fR(~α))].

This formula is exactly

F∃~λψ(~λ,fR(~α))∧φ(−,~λ⌢fR(~α)),~n(f(~x), fR(~α));

it can be easily deduced via f from (*). So the isomorphism f has been extended
to the three-sorted structure 〈A, kN , v(N×)〉. The previous isomorphisms fR and fV
are implicitly extended whenever we handle extensions of the isomorphism f .

Now we proceed as in Proposition 2.17 of [Del82] in order to build differentially
transcendental residue field extensions of a valued D-field. To this effect, we use
Lemma 3.3 and the proof of Lemma 7.12 in [Sca00]. For the convenience of the
reader, we give the details in the following proof.
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Proposition 3.4. Under the previous assumptions, we can extend f such that dom(f)
is a countable unramified valued D-field extension which has the same residue field as

a countable elementary submodel N̂ of M1 containing N and dom(f), and is efficient

in N̂ .

Proof. First we can assume that the derivation is non-trivial on A1; otherwise we
can extend the L1-isomorphism f such that its new domain, also denoted by A1, has
a non-trivial derivation. We proceed as follows. Since kM1 is linearly differentially
closed and M1 is ℵ1-saturated, we find an element a (in kM1) which is transcen-
dental over kA1 and D(a) = 1. By using Lemma 7.12 of [Sca00], we extend the
L1-isomorphism f such that dom(f) has a non-trivial derivation.

Let us choose an enumeration v(A×
1 ) = {gi; i < ω} and elements (ai)i<ω in A1

with v(ai) = gi. We are now building a valued D-subfield B :=
⋃
i<ω Bi of M1 (by

induction on i) such that the following properties hold:

B0 = A1

Bi+1 = Bi〈ei〉 with





v(ei) = 0

π(ei) is differentially transcendental over π(OBi
)

Pn(aiei) holds if and only if n|v(ai).
A priori the ei’s depend on the natural number n but we can use the ℵ1-saturation
of M1 in order to avoid it. By using the proof of Lemma 7.12 of [Sca00] in the case
of differentially transcendental residue field extension, each extension Bi+1 of Bi is
uniquely determined (up to L1-isomorphism) by the LR-type of π(ei) over π(OBi

),
denoted by tp(π(ei)/π(OBi

)). To prove the existence of such a ei in M1, it suffices to
prove the consistency of:

Σ(ei) :=






v(ei) = 0

p(π(ei)) 6= 0 for a differential polynomial p ∈ π(OBi
){X}

Pn(aiei) holds if and only if n divides v(ai).

For the satisfiability of Σ, it suffices to check the satisfiability of each finite part
of Σ in which case we use the following argument. Since n divides v(ai), there
exist bi, ci ∈ M1 satisfying v(ai) = v(bni ), v(ci) = 0 and π(ci) = π(a−1

i bni ). If π(ci) is
differentially transcendental over π(OBi

), we have Σ(ci). Otherwise, by using Lemma
3.3, we can take di ∈M1 of value zero such that π(di) is differentially transcendental

over π(OBi
); so Σ(dni ci) holds. Now we take a countable elementary submodel N̂ of

M1 containing N and B.
First, we extend the isomorphism fR to k bN = π(O bN) and then, we extend the

isomorphism f such that its domain has residue field k bN
.

We first extend the L1-isomorphism f from B =
⋃
i<ωBi onto a valued D-subfield

B′ =
⋃
i<ω B

′
i such that B′

i+1 = B′
i〈e′i〉 with π(e′i) = fR(π(ei)) and Pn(f(ai)e

′
i) iff

n|v(f(ai)). We proceed by induction on i. Suppose that f is already extended to Bi.
We want to find e′i in M2 such that π(e′i) |= fR(tp(π(ei)/π(OBi

))) and Pn(f(ai)e
′
i) iff

n|v(f(ai)). By the ℵ1-saturation of M2, it follows from the following facts:

• M2 |= Fφ(η),n(f(ai)) ⇐⇒ ∃z [v(z) = 0 ∧ φ(π(z)) ∧ Pn(f(ai)z)],
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• since f preserves the predicates Fφ,n, Fφ(η),n(f(ai)) holds in A2 for any φ ∈
fR(tp(π(ei)/π(OBi

))).

As in Proposition 7.21 of [Sca00], we use Lemma 7.12 of [Sca00] in order to extend
the L1-isomorphism such that its valued D-field domain, denoted by N ′, is efficient

in N̂ with kN ′ = k bN
. Now we check that it is also an L2-isomorphism.

Claim (See Lemma 2.18 of [Del82]):

Let N ′ be the previous L1-structure which is efficient in N̂ . The data of the
relations Pn(aiei) for the previous ai’s and ei’s and of the L1-diagram of N ′ determine
the L2-diagram.

Let x1, · · · , xn be elements in N ′. If ni divides v(ai) for some positive integer ni,
there exists ei ∈ N ′ verifying v(ei) = 0, v(ai) = v(xi) and Pni

(aiei). We then have

Pni
(zxi) ⇐⇒ Pni

(zxia
−1
i e−1

i ) ⇐⇒ pni
(π(z)π(e−1

i )π(xia
−1
i )).

Hence Fφ,n(x̄, ᾱ) is equivalent to an LR-formula (with new parameters in N ′), which
proves the claim.

Since the valuedD-fieldN ′ is efficient in N̂ and the data of the relations Pn(aiei) are
preserved by the L1-isomorphism f , we obtain the required L2-isomorphism f . �

The following lemma is an adaptation of Lemma 2.9 of [Del82] in the setting of
our back-and-forth process.

Lemma 3.5. Let M1 and M2 be two ℵ1-saturated (k,G)-D-henselian fields. Let
A1 ⊆L2 M1 and A2 ⊆L2 M2 be countable L2-substructures with a countable elementary
submodel N of M1 containing A1 such that kA1 = kN and the value group v(A×

1 ) of
A1 is pure in v(N×). Let f be a partial L1-isomorphism from A1 to A2. Then f is
also an L2-isomorphism.

Proof. Let x1, . . . , xr be in A1, let η1, . . . , ηs be in kA1 and let φ be an LR-formula.
We have the following equivalences:

A1 |= Fφ,n1,...,nr
(x1, . . . , xr, η1, . . . , ηs) iff M1 |= Fφ,n1,...,nr

(x1, . . . , xr, η1, . . . , ηs) iff

M1 |= ∃z1, . . . , zr
{ r∧

i=1

v(zi) = 0 ∧ φ(π(z1), . . . , π(zr), η1, . . . ηs) ∧
r∧

i=1

Pni
(xizi)

}
.

Since N ≺L2 M1, this is equivalent to

N |= ∃z1, . . . , zr
{ r∧

i=1

v(zi) = 0 ∧ φ(π(z1), . . . , π(zr), η1, . . . ηs) ∧
r∧

i=1

Pni
(xizi)

}
.

Since v(A×
1 ) is pure in v(N×) and kA1 = kN , we can replace, in the previous equiv-

alence, N |=
r∧

i=1

Pni
(xizi) by N |=

r∧

i=1

pni
(π(xiaib

−ni

i )) for some ai, bi ∈ A1 such that

v(xi) = niv(bi) and π(ai) = π(zi). We apply the isomorphism f to this residue
formula and by the previous process, we get the result. �

The following lemma follows the same idea as in Corollary 2.6 of [Del82].
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Lemma 3.6. Let A ⊆L2 B be two L2-substructures of a (k,G)-D-henselian field M
such that B is an immediate valued D-field extension of A. Then the L2-diagram of
B is a consequence of its L1-diagram and of the L2-diagram of A.

Proof. Let b1, . . . , br be in B and let η1, . . . , ηs be in kB = kA. Since B is an immediate
extension, there exist a1, . . . , ar ∈ kA such that v(ai) = v(bi) < v(ai − bi) for all
i ∈ {1, · · · , r}.

So we have that

B |= Fφ,n1,...,nr
(b1, . . . , br, η1, . . . , ηs) iff M |= Fφ,n1,...,nr

(b1, . . . , br, η1, . . . , ηs).

By Lemma 2.5 in [Del82], this is equivalent to

(*) M |= Fφ,n1,...,nr
(a1, . . . , ar, η1, . . . , ηs).

Hence we get that (*) iff A |= Fφ,n1,...,nr
(a1, . . . , ar, η1, . . . , ηs) since A is an L2-

substructure of M . So the result follows. �

Remark 3.7. Let M1 and M2 be two ℵ1-saturated (k,G)-D-henselian fields. Let
A1 ⊆L2 M1 and A2 ⊆L2 M2 be two countable L2-substructures with a countable
elementary submodel N of M1 containing A1 and a partial isomorphism f : A1 → A2.
Thanks to Lemma 7.11 in [Sca00] and the preceding lemma, we can extend the
isomorphism f to the Henselization of A1.

The two following lemmas will help us to extend (in the main quantifier elimination
Theorem 3.13) the L2-isomorphism f such that dom(f) has the same value group as
a countable (k,G)-D-henselian field.

The first lemma is a differential adaptation of the proof of Lemma 2.11 in [Del82]
where we deal with a cross-section of the valuation in the constant field and the
second lemma is the differential adaptation of Lemma 2.12 in [Del82].

Let us first recall that a cross-section β of a valued field 〈K, v〉 on its value group is a
group homomorphism v(K×) → K× such that v(β(γ)) = γ for all γ ∈ v(K×) and the
notion of a cross-section on a subgroup H of v(K×) is defined similarly. In [Koc74],
S. Kochen expands the three-sorted language of valued fields by a cross-section in
order to approach the problem of quantifier elimination for henselian valued fields
of finite ramification index. We will use the following facts about cross-sections (see
Section 8 in [Koc74]):

• every ℵ1-saturated valued field admits a cross-section on its value group,
• a cross-section on a pure subgroup of the value group can be extended to a

cross-section on the whole value group.

In these two following results, the valued constant field plays an important role.

Lemma 3.8. Let K ⊆ M be two valued D-fields and let β be a cross-section of
v in CM such that β(v(M×)) ⊆ C×

M and β(v(K×)) ⊆ C×
K. Let G := β(v(M×))

and let H be a subgroup of G containing β(v(K×)). Then we have kK〈H〉 = kK,
v(K〈H〉×) = v(H) and the L1-diagram of K〈H〉 is a consequence of the L1-diagram
of K, the LV -diagram of H and the fact that H ⊆ C×

M .
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Moreover, if M is a (non differential) valued field with the same hypotheses on the
valued D-field K then K〈H〉 admits a valued D-field structure such that the derivation
D is zero on H.

Proof. For the convenience of the reader, we give the details of the proof below.
Take an element x in K[H ]. Write x as

∑
i kihi with each ki ∈ K and each hi ∈ H .

I claim that we may assume that the values v(kihi) are strictly increasing.

Suppose that v(kihi) = v(kjhj), for some i 6= j. So we have v(hjh
−1
i ) = v(kik

−1
j )

and hjh
−1
i is in β(v(K×)) ⊆ C×

K . So we can write kihi + kjhj = hi(ki + kjhjh
−1
i )

where ki + kjhjh
−1
i ∈ K. This proves the claim and the equality v(K〈H〉×) = v(H).

Now we take an element x in K(H) such that x = (
∑n

i=1 kihi)(
∑n′

j=1 k
′
jh

′
j)

−1,

v(x) = 0, ki, k
′
j ∈ K, hi, h

′
j ∈ H , with the v(kihi)’s and the v(k′jh

′
j)’s strictly in-

creasing. So we get v(k1h1) = v(k′1h
′
1) and h′1h

−1
1 ∈ K; and conclude π(x) =

π((k1k
′
1
−1)(h1h

′
1
−1)) ∈ kK . Therefore, if the valuation on K and the subgroup H

are given then the valuation on K(H) is completely determined.
Now we show that the field structure is completely determined (and so the valued

D-field structure is determined). We consider the ring of generalized power series
K[th; h ∈ H ] and the substitution f which sends th to h. If we show that the kernel
is the ideal I generated by the (tg − g)g∈β(v(K×)), we obtain an isomorphism and it
is finished. Clearly ker(f) contains I. Let x be an element in ker(f) with the form∑n

i=1 kit
hi and the v(kihi)’s increasing. We have v(k1h1) = v(k2h2) since

∑n
i=1 kihi =

0, so h2h
−1
1 ∈ β(v(K×)) and x is equal modulo I to y = th1(k1+k2h2h

−1
1 )+

∑n

i=3 kit
hi,

and y is an element of ker(f) with a monomial less. We iterate this and obtain the
congruence x ≡ 0.

It remains to show that K(H) admits a structure of valued D-field determined
only by D(h) = 0 for all h ∈ H , i.e. satisfies the property v(D(x)) > v(x) (3) for
all element x of K(H). Let x =

∑
i kihi be an element of K[H ] with the v(kihi)’s

strictly increasing. Then D(x) =
∑

iD(ki)hi since H ⊆ C×
K . Hence we get that

v(D(x)) > min
i
{v(D(ki)hi)} > min

i
{v(kihi)} = v(k1h1) = v(x)

since K is a valued D-field. So the property (3) is satisfied for all element x of K[H ]
and by Lemma 7.7 of [Sca00], K(H) is a valued D-field. �

Lemma 3.9. Let K ⊆ M be two valued D-fields and let G ⊆ C×
M be a multi-

plicative subgroup of constants on which the valuation is injective and such that
v(G) ∩ v(K×) = {0}. Then

• v(K〈G〉×) = v(K×) ⊕ v(G),
• kK〈G〉 = kK,
• the L1-diagram of K is determined by the LV -diagram of v(K×) ⊕ v(G) and

the fact that G ⊆ C×
M .

Proof. The proof is similar to the one of Lemma 3.8. �

Now we recall a special case of Proposition 9.8 in [Sca99].
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Proposition 3.10. Let K be a valued D-field. Let L be a field extension of K such
that zn1 = c where z1 ∈ L, c ∈ K and v(c) /∈ m · v(K×) for each positive integer
m dividing n. Then there exists a unique (up to L1(K)-isomorphism) extension of
valued D-fields of the form K〈 n

√
c〉.

Proof. Let z1 = n
√
c. Since the extension K(z1) is totally ramified, the valuation

structure is completely determined. We claim that the valued D-field structure is
completely determined by v(Dc) > v(c) and zn1 = c. Indeed, since zn1 = c, we get by
differentiating:

Dz1 =
Dc

c · n · z1.
Hence we have v(Dz1) > v(z1) since the residue field is of characteristic zero and
v(Dc) > v(c). We check that this prescription correctly defines a valued D-field. Let
x =

∑n−1
i=0 xiz

i
1 ∈ K〈z1〉 for some xi ∈ K. Then v(x) = mini{v(xi) + i

n
· v(c)}. Since

Dz1 = Dc
c·n

· z1, we get

Dx =
n−1∑

i=0

(Dxi +
Dc · i
c · n · xi)

︸ ︷︷ ︸
∈K

zi1.

So we conclude that v(Dx) > v(x). �

Proposition 3.11. Let M1 and M2 be two ℵ1-saturated (k,G)-D-henselian valued
fields. Let A1 ⊆L2 M1 and A2 ⊆L2 M2 be countable substructures with a countable
elementary submodel N of M1 containing A1 and a partial isomorphism f : A1 → A2.
Suppose in addition that kA1 = kN and A1 is efficient in N . Then we can extend f
such that its countable domain N ′ has a value group which is pure in v(N×) = ΓN ,
N ′ ⊆ N and N ′ is a totally ramified valued D-field extension of A1.

Proof. First we prove the following claim:
Claim: Let w be in v(N×) such that n · w ∈ v(A×

1 ) for some minimal positive
integer n. Then there exists x ∈ N such that v(x) = w and xn = c ∈ A1.

Let w = v(y) for some y ∈ N and v(yn) = n · w = v(a) for some a ∈ A1. Then we
get that π(yna−1) ∈ kN = kA1 , so π(yna−1) = π(b) for some b ∈ A1; we take c = ab.
Since N is henselian, the relation v(c) = v(yn) < v(c− yn) proves the existence of a
nth root x of c in N , and the claim is proved.

Let v̂(A×
1 ) be the pure hull of v(A×

1 ) in v(N×). We choose, in order to generate

v̂(A×
1 ), elements ui ∈ N such that ui is radical over A1〈uj; j < i〉.

So we build inductively a substructure N ′ =
⋃
i<ωN

′
i of N such that N ′

i+1 = N ′
i〈ui〉

where n · v(ui) ∈ v(N ′
i
×) for some positive integer n, minimal with this property and

N ′
0 = A1. By using the Claim and Proposition (3.10), N ′

i〈ui〉 is a valued D-field
extension of N ′

i uniquely determined up to L1(N
′
i)-isomorphism. Now we extend,

inductively on i, the isomorphism f to N ′. Assume that the isomorphism is already
extended to N ′

i (i > 0 and N ′
0 = A1) and extend the isomorphism to N ′

i+1. Assume
that m · v(ui) ∈ v(A×

1 ) for some minimal natural number m. By the previous claim,

there exists yi in Ã1(ui) such that ymi = di ∈ A1 where Ã1(ui) is the Henselization of
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A1(ui). So ui = ǫ · yi where v(ǫ) = 0 and ǫ ∈ Ã1(ui). Since f respects the predicates
Fφ,~n, the predicates Pn are preserved by f (because we have Pn(x) ⇐⇒ Fφ,n(x) for
φ(η) := (η = 1)). So f(di) is a mth power in M2. Now we can uniquely extend f over
A1〈yi〉 in taking for f(yi) a root y′i of order m of f(di). Moreover the isomorphism can

be extended to Ã1(yi). Now we let, for f(ui), the element f(ǫ)·y′i and the isomorphim
f is extended to N ′

i+1 = N ′
i〈ui〉. By induction we obtain that f is an L1-isomorphism

such that dom(f) = N ′. Moreover, by Lemma 3.5, f is an L2-isomorphism since

v(N ′×) = v̂(A×
1 ) is pure in v(N×). �

The following proposition allows us to extend the isomorphism f such that dom(f)
has enough constants in the sense of Definition 2.1.

Proposition 3.12. Let M1 and M2 be two ℵ1-saturated (k,G)-D-henselian valued
fields. Let A1 ⊆L2 M1 and A2 ⊆L2 M2 be countable substructures with a countable
elementary submodel N of M1 containing A1 and a partial L2-isomorphism f : A1 →
A2. Suppose in addition that kA1 = kN , A1 is efficient in N and the value group
v(A×

1 ) is pure in v(N×) = ΓN . Let γ be in v(A×
1 ) \ v(C×

A1
).

Then the L2-isomorphism f can be extended to a countable valued D-field extension
A′

1 of A1 which has the same residue field as a countable elementary submodel N ′ of
M1 containing N , has a value group which is pure in v(N ′×) = ΓN ′ and CA′

1
has an

element of value γ.

Proof. We use the same argument as in the proof of Proposition 7.18 of [Sca00]. Let
γ ∈ v(A×

1 )\v(C×
A1

) and a ∈ A1 such that v(a) = γ. Proposition 7.16 in [Sca00] allows
us to see that finding an element x such that D(x) = 0 and v(x) = v(a) is equivalent
to finding an element y(= a/x) such that v(y) = 0 and D(y) = (D(a)/a) · y.

Let us consider the following partial type Σ in the sort k

{D(x) = π(D(a)/a) · x} ∪ {x 6= b| b ∈ kA1}.
This partial type p is consistent since we are in characteristic zero and kN is linearly
differentially closed. Now we choose an element b1 ∈ kM1 such that b1 |= Σ and we let
the type p := tp(b1/kA1). By the saturation hypothesis, fR(p) is realized in kM2 by
some b2. By the D-Hensel’s Lemma, there is some c1 in M1 and some c2 in M2 such
that π(ci) = bi, D(c1) = (D(a)/a) · c1 and D(c2) = f(D(a)/a) · c2. By Proposition
7.16 of [Sca00], the extension of f given by c1 → c2 is an L1-isomorphism and the
element a/c1 is a constant with value v(a). Now we take a countable elementary
submodel N ′ of M1 containing N and A1〈c1〉. We note that the new domain A1〈c1〉
has the same value group as A1 and so, it is efficient in N ′. As usual, we extend
the L1-isomorphism f such that its domain has the same residue field as N ′. By the
Claim of Proposition 3.4, we have that f is also an L2-isomorphism. Now we use
Proposition 3.11 to finish the proof. �

Now we apply the previous results in order to prove our main result of quantifier
elimination. We will follow the lines of the proof of Theorem 2.2 in [Del82].

Theorem 3.13. The L2-theory of (k,G)-D-henselian fields eliminates quantifiers.
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Proof. We prove this by a standard back-and-forth test. Let M1 and M2 be two
ℵ1-saturated (k,G)-D-henselian fields. Let A1 ⊆ M1 and A2 ⊆ M2 be countable
L2-substructures. Let f : A1 → A2 be an isomorphism of L2-structures. Let b ∈M1.
We have to prove that f extends to a partial isomorphism from M1 to M2 having
b in its domain. Before extending f , we fix a countable elementary submodel N of
M1 containing A1 and b. So we have that kN is a linearly differentially closed field of
characteristic zero equal to π(ON ), kA1 ⊆ kN and ΓA1 ⊆ ΓN where ΓN = v(C×

N).
First, we extend the partial residue field isomorphism fR (respectively the partial

value group isomorphism fV ) to kN (respectively to v(N×)).
By using Proposition 3.4 and Proposition 3.11, we can extend f such that its

domain, also denoted by A1, has the same residue field as a countable elementary
submodel N1 of M1 containing N , is efficient in N1 and its value group is pure in
v(N×

1 ). We can also extend fR and fV to kN1 and respectively to v(N×
1 ) as in the

paragraph after Lemma 3.3.
Now we have to extend f such that its domain A′

1 has the same residue field as a
countable elementary submodel N ′

1 of M1 containing N1, its value group is pure in
v(N ′

1
×) and A′

1 has enough constants. For this purpose, we proceed by induction on
ω to take N (i−1) � N (i) a countable elementary submodel of M1 and find a countable
extension A(i) of A(i−1) on which an extension of f is defined such that v(C×

A(i))

contains v(A(i−1)×) and v(A(i)×) is pure in ΓN(i) = v(N (i)×), π(OA(i)) = kA(i) = kN(i),
A(i) ⊆ N (i) and A(i) is efficient in N (i).

We begin the induction with A(0) := A1, N
(0) := N1, N

(−1) := A1 (the re-
quired properties are ignored at this initial stage) and by the first step, we have
that kA1 = kN1 , v(A

×
1 ) is pure in v(N×

1 ) and A1 is efficient in N1. Eventually we
let N ′

1 (respectively A′
1) be the direct limit of the N (i)’s (respectively of the A(i)’s)

and we get that N ′
1 is a countable elementary submodel of M1 and A′

1 is an efficient
L2-substructure of N ′

1 such that kA′

1
is equal to kN ′

1
, A′

1 has enough constants and its

value group is pure in v(N ′
1
×).

Assume A(m) and N (m) have been built for each m 6 i (for some natural number i).

We enumerate the following set v(A(i)×) \ v(C×
A(i)) by a sequence of elements (γn)n∈ω.

We proceed by induction on ω to take N (i,n−1) � N (i,n) ≺ M1 a countable model
and find a countable extension A(i,n) of A(i,n−1) on which an extension of f is defined

such that, for each element γn in v(A(i)×) \ v(C×
A(i)), A

(i,n) has a value group which

is pure in v(N (i,n)×), contains a constant with value γn and is efficient in N (i,n) such
that π(OA(i,n)) = kA(i,n) = kN(i,n) and A(i,n) ⊆ N (i,n). We begin the induction with
A(i,0) := A(i), N (i,0) := N (i), N (i,−1) := A(i) (and the required properties are ignored
at this initial stage). Eventually we let N (i+1) (respectively A(i+1)) be the direct
limit of the N (i,n)’s (respectively of the A(i,n)’s) and the couple (N (i+1), A(i+1)) is as
required.

Assuming A(i,m) and N (i,m) have been built for each m 6 n (for some natural
number n > 0), we are now building the required A(i,n+1) andN (i,n+1). By Proposition
3.12, we can extend the L2-isomorphism f such that its domain A(i,n+1) has the same
residue field as a countable elementary submodel N (i,n+1) of M1 (containing N (i,n)),
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is efficient in N (i,n+1) and v(A(i,n+1)×) is a pure subgroup of v(N (i,n+1)×) containing
γn.

Now we may assume that the domain of the L2-isomorphism f , denoted by A′
1,

has enough constants, the same residue field as a countable elementary submodel N ′
1

of M1 and has a value group which is pure in v(N ′
1
×).

Since CA′

1
→֒ CN ′

1
as valued fields, we take an ℵ1-saturated ultrapower U of this

valued fields embedding: CU
A′

1
→֒ CU

N ′

1
, and we have CU

A′

1
(which is ℵ1-saturated)

admits a cross-section β1 which can be extended to a cross-section β̃1 of CU
N ′

1
by the

ℵ1-saturation of CU
N ′

1
and the pureness of v(C×

A′

1
) in v(C×

N ′

1
). Since v(C×

A′

1
) = v(A′

1
×)

and v(C×
N ′

1
) = v(N ′

1
×), we can consider β1 (respectively β̃1) as a cross-section of A′

1
U

(respectively N ′
1
U). In the language L2 enriched by a symbol for β (β̃) and a predicate

for A′
1
U , we consider a countable elementary substructure L′

1 of N ′
1
U containing N ′

1.
We obtain:

D′
1 = A′U

1 ∩ L′
1

D′
2

fU↾D′

1 ∼

L′
1 N ′U

1 MU
1

MU
2

≺ ≺

Since L′
1 ≺ N ′U

1 and N ′U
1 |= ∀x∃y ∈ A′U

1 [π(x) = π(u)], we get that kD′

1
= kL′

1

and L′
1 admits a cross-section β on its value group satisfying β(v(D′

1
×)) ⊆ CD′

1
and

β(v(L′
1
×)) ⊆ CL′

1
. Now we are extending fU↾D′

1
to an L2-isomorphism f ′

1 such that

its domain is E ′
1 = D′

1(β(v(L′
1
×))). By applying Lemma 3.8, we get that kE′

1
= kL′

1

and v(E ′
1
×) = v(L′

1
×) and the valued D-field structure is characterized by these data.

Since v(A′U
1

×
) is a direct summand of v(N ′U

1

×
), there exists a subgroup H of L′

1
× such

that v(L′×
1 ) = v(D′×

1 ) ⊕ v(H) (because L′
1 ≺ N ′U

1 |= ∀x∃y ∈ A′U
1 ∀z ∈ A′U

1 [v(x) =
v(y) ∨ v(x) − v(y) 6= v(z)]). By using the isomorphism (f ′

1)V to v(H) and the fact
that CU

M2
admits a cross-section β2 on its value group (because CU

M2
is ℵ1-saturated

and v(M×
2 ) = v(C×

M2
)), we apply Lemma 3.9 to β2((f

′
1)V (v(H))). Hence we get an

L1-isomorphism f ′
1 which will respect the language L2 by Lemma 3.5. Let us denote

by D′
2 (respectively E ′

2) the image of D′
1 (respectively E ′

1) by the L2-isomorphism f ′
1.

Since L′
1 is not necessarily included in M1 and E ′

2 is not necessarily included in
M2, we have to use the ℵ1-saturation of M1 and M2 and the countability of L′

1

(respectively E ′
2) in order to find an image L1 (respectively E2) isomorphic to L′

1

(respectively E ′
2) by an isomorphism f1 (respectively f2) which pointwise fixes A′

1

(respectively A′
2). We can represent the situation by the following diagram:
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D1 E1 L1 M1

D′
1 E ′

1 L′
1 MU

1

D′
2 E ′

2 MU
2

D2 E2

f1↾D′

1
∼

fU↾D′

1
∼

fU
2 ↾D′

2
∼

f ′
1 ∼

f2

≺

≺

f1↾E′

1
f1

M2

≺∼

Now we denote by E1 the image of E ′
1 by the isomorphism f1. We have extended

the isomorphism f such that dom(f) is equal to E1 and E1 is an L2-substructure of
a countable elementary substructure of M1, namely L1.

Now we may assume that the domain of the isomorphism f , denoted by A∗, has
enough constants and that N∗ is an immediate extension of A∗ as in the proof of
Theorem 6.4 in [Sca99]. Moreover, N∗ is a countable elementary substructure of M1

and so, we use the same proof as in [Sca00]. As in Lemma 7.49 of [Sca00], we take an
immediate extension of A∗ in M1 which is in fact an ∞-full extension of A∗ (following
the terminology in Definition 7.26 of [Sca00]). So this immediate extension contains
N∗ and so b. In [Sca00], Lemma 7.50 allows us to express the form of this immediate
extension of valued D-fields and Proposition 7.52 of [Sca00] shows that there is an
extension of f to an L1-embedding of N∗ into M2. Now by using the fact that dom(f)
is an immediate extension of A∗ and Lemma (3.6), we have that this L1-isomorphism
is also an L2-isomorphism. So we have finished the proof. �

The following result is a reformulation of [Del82, Corollary 2.21] in the valued
D-field setting.

Corollary 3.14. Let M be a (k,G)-D-henselian field. Assume that for all n ∈
N \ {0, 1}, k×M/(k×M)

n
is finite with jn its number of elements.

Then M eliminates quantifiers in L1 ∪{Cn,j ;n ∈ N \ {0, 1}, 1 6 j 6 jn}∪{Pn;n ∈
N \ {0, 1}}, the Cn,j’s are constants of the field and for each n, the π(Cn,j)’s are a
set of representatives of k×M/(k

×
M)

n
.
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Proof. There is quantifier elimination in L2, so in L2∪{Cn,j;Pn}. But the predicates
are quantifier-free definable in L1 ∪ {Cn,j;Pn}:
M |= Fφ,n1,··· ,nr

(x1, · · · , xr, η1, · · · , ηs) ⇐⇒

M |= ∃z1, . . . , zr
[ r∧

i=1

v(zi) = 0 ∧ φ(π(z1), . . . , π(zr), η1, . . . ηs) ∧
r∧

i=1

Pni
(xizi)

]
⇐⇒

kM |= ∃ζ1, . . . , ζr φ(ζ1, . . . , ζr, η1, . . . ηs) ∧
r∧

i=1

{ jni∨

j=0

[pni
(ζiπ(Cni,j)) ∧ Pni

(C−1
ni,j
xi)]

}
.

This formula is equivalent to a disjunction of terms where the variables with quanti-
fiers concern only residue sort formulas. �

4. Application

We keep the notations of the previous sections. If K is a field equipped with two
valuations v and w then we add a subscript v in order to distinguish the valuation
rings, maximal ideals and residue fields of the valuation v with those of w (i.e. OK,v,
MK,v and kK,v). To a valuation defined on K, we can associate a binary relation D
which is interpreted as the set of 2-tuples (a, b) of K2 such that v(a) 6 v(b). So this
relation D satisfies the following:

• D is transitive, ¬D(0, 1),
• D is compatible with + and · and,
• either D(a, b) or D(b, a) for all a, b ∈ K (*).

Such a relation is called a linear divisibility relation (l.d. relation).
If A is a subring of K with fraction field K and a relation D which satisfies the

properties (*) then, by extending D to K as follows:

D(
a

b
,
c

d
) ⇐⇒ D(ad, bc),

we get that the l.d. relation on K induces a valuation v on K by defining v(a) 6 v(b)
if D(a, b).

This section concerns a differential analogue of a positivstellensatz result for real-
series closed fields (see [Far91] or Chapter 1 in [Far93]). So we introduce the differen-
tial counterpart of the theory of real-closed fields. More precisely, we are interested in
D-henselian valued fields with differential residue fields which are models of CODF
(see [Sin78]) and Z-groups as value groups. By using our quantifier elimination result,
we prove the model completeness of this theory which allows us to solve the problem
(see Theorem 4.13).

First, we are interested in ordered valued fields with a compatibility condition
between the order and the valuation topology.

Definition 4.1. Given a valuation v on the ordered field 〈K,6〉, we will say that
v is convex or compatible with the order 6, if v satisfies the following equivalent
conditions:

(1) OK is a convex subset of 〈K,6〉,
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(2) v(x) > v(y) implies |x| < |y| for all x, y ∈ K×,
(3) 1 + MK ⊆ P where P is the positive cone of 〈K,6〉.

In the sequel, a real-closed field k is a field such that the set of squares form a
positive maximal cone P , i.e. P is equal to the set of positive elements for a total
ordering 6, for which the intermediate value property holds.

Following the terminology of [Jac80], we can now define a real-series closed field.

Definition 4.2. A field K with a distinguished non-zero element is said to be real-
series closed if K carries a henselian valuation v with real-closed residue field and as
value group a Z-group with v(a) = 1 is the least positive element of v(K×).

Since the valuation v on K is henselian and the residue field kK is real-closed,
we can show that there exists an order 6 on K such that v is convex and so, this
order induces the initial order on kK . Moreover, if v and w are two such valuations,
their valuation rings OK,v and OK,w are convex for every order of K and therefore,
OK,v ⊆ OK,w or OK,v ⊇ OK,w. Suppose OK,v ⊆ OK,w. By the conditions v(a) = 1
and w(a) = 1, we have that MK,v = a · OK,v ⊆ a · OK,w = MK,w and OK,v = OK,w.
Such a field has exactly two orders determined by the conditions a > 0 or a < 0
and with positive cones K2 ∪ aK2 and K2 ∪−aK2 respectively. For a proof of these
previous general facts, the reader can refer to Chapter 0 in [Far93].

From now on, we deal with 〈K, a〉 a field with a distinguished element a; we will
add a constant a to the language of valued fields. When we will deal with discrete
valuation v on a field K, we will denote the least positive element of v(K×) by 1.

In the theory of real-closed series fields, an operator γ(X) (defined in the following
lemma) plays an important role as the Kochen’s operator in the p-adic field case (see
[Koc67]). The next lemma determines whenever an element of the maximal ideal of
a valued field 〈K, v〉 has the least positive value.

Lemma 4.3. (See Lemma 2.3 in [Far91]) Let 〈K, v〉 be a valued field and let a be
a non-zero element of K. Let γ be the operator defined by γ(X) = X

X2−a
. Then the

following are equivalent:

(1) v(a) = 1,
(2) γ(K) ⊆ OK and a ∈ MK.

So, it follows from (2) that the valuation is discrete.
The statement of the following lemma can be found in [Far91].

Lemma 4.4. Let 〈K, a〉 be a real-series closed field. Then the valuation ring OK is
equal to γ(K).

Proof. By definition of real-series closed field, v(a) is equal to 1 in v(K×), and by
Lemma 4.3, we have that γ(K) ⊆ OK . Let k be in OK . We consider the polynomial
f(X) = (X2 − a)k − X. Clearly 0 is a simple residue root of f . So by Hensel’s
Lemma, we find b ∈ OK such that k = γ(b). �

Notation 4.5. If A is a subset of K then we denote by SG(A) the semigroup generated
by A and by S(A) the semiring (closed under addition and multiplication) generated
by A.
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With these notations we can state Theorem 1.1 in [Far91].

Proposition 4.6. Let K be a field of characteristic zero, A, M and B subsets of
K such that Z ·M ⊆ M and A ·M ⊆ M . Then S(K2 ∪ B ∪ 1 + M) =

⋂
P where

P = {P/P is the positive cone of an order in K containing B and such that there
exists a compatible valuation v with A ⊆ OK,v and M ⊆ MK,v}.

In [Sin78], M.F. Singer introduced the theory of closed ordered differential fields,
denoted by CODF . This theory admits quantifier elimination in the language of
differential ordered fields i.e. LD ∪{6} where LD is the language of differential fields
Lfields ∪ {D}, Lfields is the language of fields, 6 is a binary relation to be interpreted
as a total ordering and D is an unary function to be interpreted as a derivation.

Now we recall an axiomatization of CODF :

(1) the theory RCF of real-closed fields,
(2) D is a derivation,
(3) for any positive integer n, for any differential polynomial f(X, · · · , X(n)) of

order n,

∀ǫ ∀b0, · · · , bn
[
f ∗(b0, · · · , bn) = 0 ∧ ∂

∂X(n)
f ∗(b0, · · · , bn) 6= 0

⇒ ∃z f(y) = 0 ∧
n∧

i=0

|y(i) − bi| < ǫ
]

where f ∗ is the differential polynomial seen as an ordinary polynomial in the
differential indeterminates and |x| is the absolute value operator.

By using CODF as differential residue theory, we can introduce the valued D-field
analogue of the theory of real-series closed fields.

Definition 4.7. A differential field 〈K,D, a〉 is called a closed real-series differential
field if 〈K,D〉 admits a D-henselian valuation v such that kK is a model of CODF
and K has a Z-group of value with v(a) = 1 and D(a) = 0.

Remark 4.8. A model of this theory was given in Section 2 where k is a model of
CODF and G is a Z-group. In this example, t plays the role of a in the previous
definition (so D(a) = 0). Generally, when such a triple is given, we consider K as an
ordered field where the positive cone is given by K2 ∪ aK2 (i.e. a > 0 in K).

Now we apply Corollary 3.14 in order to prove a model completeness result for the
theory of closed real-series differential fields in a suitable language La. In the sequel,
we will use this result about this three-sorted theory of D-henselian fields. In the
algebraic application, we want to use a one-sorted language. Hence we will use a
l.d. relation D in order to express the axioms of (k,Z)-D-henselian fields such that
k |= CODF .

We consider the language La := LD ∪ {D, a} where D will be interpreted as a l.d.
relation with respect to a valuation v on a field K and a is a constant symbol. The
axioms for the La-theory of closed real-series differential fields, denoted by CSDF ,
are the following (the reader can be easily verified that these following properties can
be written in the first-order language La):
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K is a model of CSDF iff

• K is a valued D-field of equicharacteristic zero;
• K |= ∀x∃y [Dy = 0 ∧ D(x, y) ∧ D(y, x)] which means that v(K×) is equal to
v(C×

K);
• K satisfies the D-Hensel’s Lemma which can be formulated as follows:

for each positive integer n, for each differential polynomial f(X, · · · , X(n)) of
order n with coefficients in the valuation ring O (i.e. O = {x| D(1, x)}),

∀b
[
D(1, b) ∧

n∨

i=0

(D(1,
∂

∂X(i)
f(b)) ∧ D(

∂

∂X(i)
f(b), 1)) ∧ ¬D(f(b), 1)

]

⇒ ∃z
{
f(z) = 0 ∧ D(f(b), b− z)

}
;

• kK is a model of CODF and v(K×) is a Z-group;
• K satisfies the following axiom which says that the constant element a has

value 1 in v(K×):

D(1, a) ∧ ∀x [D(1, x) ∧ ¬D(x, 1) ⇒ D(a, x)] ∧D(a) = 0.

Now we want to establish a model-theoretic result needed in the proof of Theorem
4.13 which is a differential positivstellensatz for closed real-series differential fields.

Lemma 4.9. In the La-theory of real-series closed fields, the nth power predicates
and their negations are existentially definable in the language of rings with the dis-
tinguished element a.

Proof. Let us consider an element x 6= 0 of a model K of CSDF such that v(x) > 0
(otherwise we use that Pn(x) ⇐⇒ Pn(x

−n+1)). Then for each natural number n, we
get that

K |= ∃y [
n−1∨

i=0

v(x) = v(aiyn)].

Since OK satisfies the Hensel’s Lemma and kK is real-closed, this is equivalent to

kK |= ∃z {
n−1∨

i=0

zn = x · a−i · y−n ∨
n−1∨

i=0

zn = −x · a−i · y−n}.

So we get that K =
⋃n−1
i=0

⋃
k∈{0,1}(−1)kaiKn if n is even and K =

⋃n−1
i=0 a

iKn if n is

odd (and the unions are disjoint). �

Proposition 4.10. The La-theory CSDF is model complete.

Proof. Let k be a model of CODF . It is well-known that the theory of Z-groups
admits quantifier elimination in the language LV of totally ordered abelian groups
with divisibility predicates (see Section 2) and that the theory of closed ordered dif-
ferential fields admits quantifier elimination in the language LR of differential ordered
fields. We have to show that any La-formula is equivalent to an existential formula.

Let φ(x̄) be an La-formula with x̄ the free variables. By using the Appendix,
we can translate this La-formula to an (LD,LV ,LR)-formula φ∗(x̄). Now we apply
Corollary 3.14 to obtain an (LD,LV ,LR)-quantifier-free formula equivalent to φ∗(x̄).
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Since the divisibility predicates n|. of the language of Z-groups and their negations
are existentially definable in the language {+,−, ., 0, 1}; and the order, the predicates
of nth powers and their negations are existentially definable in the language of fields
in CODF , we get by using the previous lemma and the Appendix, an existential
La-formula ψ(x̄) equivalent to φ(x̄) (we also used v(a) = 1). �

Proposition 4.11. Let 〈K,D,6, v, a〉 be an ordered valued D-field. Assume that the
valuation v is convex and v(a) = 1 in v(K×). Then we can extend the ordered valued
D-field 〈K,D,6, v, a〉 to a model 〈L,D,6, w, a〉 of CSDF .

Proof. We know that ifH is a discrete totally ordered abelian group and α = 1H is the

least positive element of H then there exists G an extension of H contained in H̃, the
divisible hull ofH such that G is a Z-group with first positive element α (see Lemma 4
in [Koc67]). First we build an henselian unramified valued D-field extension K ′ of K
such that its differential residue field is a model of CODF . Since CODF is the model
completion of the theory of ordered differential fields, we can consider an extension
k′ of kK which is a model of CODF . Using the existence part of Lemma 7.12 in
[Sca00], we obtain our extension K ′. Moreover, by Lemma 1.2 of [Far91], we can
equip K ′ with an order which extends the one of K, is compatible with the valuation
on K ′ and induces the order on k′ (moreover, as in Proposition 1.3 of [Far91], we
can assume K ′ henselian). Then we build an ordered totally ramified valued D-field
extension K ′′ of K ′ such that its value group v(K ′′×) is equal to G. Indeed let g in
G \ v(K ′′×) = v(K×) be such that n · g ∈ v(K×) for some minimal positive integer
n. We choose an element x and define the extension K ′(x) by xn = k ∈ K ′ such
that v(k) = n · g ∈ v(K). By Lemma 3.10, we obtain a totally ramified valued D-
field extension of K ′ which contains an element of value h. By transfinite induction,
we obtain K ′′ with the required properties. To obtain an ordered extension of K ′,
it suffices to take the element x in the real closure of K ′ as in Proposition 1.3 of
[Far91]. Now by using the construction in Proposition 3.12 and the first step of the
proof we obtain an unramified valued D-field extension K ′′′ of K ′′ which has enough
constants and has a model of CODF as differential residue field. To finish the proof,
we proceed as in [Sca00], more precisely we use Lemma 7.25 of [Sca00] to produce
the necessary pseudo-convergent sequence in K ′′′ and then use Proposition 7.32 of
[Sca00] to actually find a solution in an immediate valued D-field extension. So we
obtain the required valued D-field extension L. Since the extension is immediate,
the valuation v is henselian on L and kL |= CODF with v(L×) a Z-group. If we put
L2 ∪ aL2 as positive cone for the order 6L on L then v is convex for the order 6L;
so L is also an ordered extension of K〈X〉. �

Notation 4.12. In the sequel we use the operator † defined as x† = D(x)/x which
is the logarithmic derivative. We will denote the differential field of the differential
rational functions in n differential indeterminates by K〈X〉.

Now we prove a differential positivstellensatz for closed real-series differential fields
which is the analogue of Theorem 2.6 in [Far91].

Theorem 4.13. Let 〈K,D, a〉 be a closed real-series differential field and 6 the order
for a > 0. Let f, g1, · · · , gr ∈ K〈X〉.
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Assume that f(x̄) > 0 for every x̄ ∈ Kn such that f(x̄), g1(x̄), · · · , gr(x̄) are defined
and gi(x̄) > 0 for all i ∈ {1, · · · , r} (*).

Then there exist k ∈ N, δi, δi,j ∈ {0, 1} for i = 1, · · · , k, j = 1, · · · , r, h1, · · · , hk ∈
K〈X〉, u1, · · · , uk ∈ SG(γ(K〈X〉)∪(K〈X〉)†) such that f =

∑k

i=1 h
2
ia
δig

δi,1
1 · · · gδi,rr (1+

ui).

Proof. We follow the lines of the proof of Theorem 2.6 in [Far91]. We suppose that
f does not admit such an expression i.e. f /∈ S(K〈X〉2 ∪ {a, g1, · · · , gr} ∪ 1 + a ·
SG(γ(K〈X〉)∪(K〈X〉)†)). We set A = γ(K〈X〉) andM = a·SG(γ(K〈X〉), (K〈X〉)†)).
From the fact a ∈ γ(K) and Z ⊆ γ(K), one can easily deduce M · M ⊆ M ,
A · M ⊆ M and Z · M ⊆ M . Thus, by Theorem 4.6, there exists in K〈X〉 an
order and a valuation w compatible such that f < 0, g1, · · · , gr > 0, a ∈ MK,v

and γ(K〈X〉), (K〈X〉)† ⊆ OK〈X〉,w. In particular, w makes K〈X〉 into a valued
D-field and we have that w(a) = 1 by Lemma 4.3. By Proposition 4.11, we take
〈L,D,6, w̃〉 an extension of 〈K〈X〉, D,6, w〉 with 〈L,D, w̃〉 D-henselian, kL, ew is a
model of CODF , 〈L,6〉 an ordered extension of 〈K〈X〉,6〉 and w(L×) a Z-group
such that w̃(a) = 1 ew(L×). By the henselian property of v and w̃, we deduce that
OK,v = γ(K) and OL, ew = γ(L); so OK,v ⊆ OL, ew. But v and w̃ are such that v(a) = 1
and w̃(a) = 1 then we have that MK,v = a · OK,v ⊆ a · OL, ew = ML,ew. Apply-
ing Proposition 4.10, we deduce that K ≺La

L. Keeping in mind that as well K
as in L the order for which a > 0 is defined by the formula x > 0 if and only if
∃y (x = y2 ∨ x = ay2), we have that K ≺La∪{6} L. But f < 0, g1, · · · , gr > 0 in
L implies f(X) < 0, g1(X) > 0, · · · , gr(X) > 0 and hence the formula φ expressing
∃x̄ f(x̄), g1(x̄), · · · , gr(x̄) is defined and f(x̄) < 0, gi(x̄) > 0, i = 1, · · · , r holds in L.
By the elementary inclusion, φ holds in 〈K,D,6〉 showing that (*) is false. �

Appendix

In this section we recall the process used to transfer the quantifier elimination
theorem from a three-sorted language to a one-sorted language.

Let L0 be the language of fields with a binary symbol D which stands for the l.d.
relation related to a valuation v. Let LoR be the symbols of language of differential
fields in the residue language LR, let LoV be the symbols of language of ordered
groups in the value group language LV and L0 is the three-sorted language of valued
D-fields with respect to LoR and LoV . Suppose that LR \ LoR and LV \ LoV contains
only relation symbols, then L2 can be translated to an one-sorted language L2 which
we are going to define.

To every relation symbol r ∈ L2 \ L0 we associate a symbol r∗ and L2 is the union
L0 ∪ {r∗; r ∈ L2 \ L0}. In order to be clear, we distinguish the L2-structure M and
the L2-structure 〈M, kM , v(M

×)〉. For r ∈ L2 \L0, we define r∗ in the following way:

• if r ∈ LR, M |= r∗(~x) iff 〈M, kM , v(M
×)〉 |=

∧
i v(xi) = 0 ∧ r(~x),

• if r ∈ LV , M |= r∗(~x) iff 〈M, kM , v(M
×)〉 |= r(

−−→
v(xi)),

• if r = Fφ,~n, M |= r∗(~x, ~y) iff 〈M, kM , v(M
×)〉 |=

∧
i v(yi) > 0 ∧ r(~x, π(~y)),

Let T be the translation in L2 of the L2-theory T of the (k,G)-D-henselian fields,
then Theorem 3.13 becomes
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Theorem 1. T admits quantifier elimination in L2.

Proof. • The application ∗ can be extended to a lifting in L2 of any formula
which contains only field variables (quantifier variables are included):

1) lifting for atomic formula’s
– we have defined the lifting of symbols in (LV \ LoV ) ∪ (LR \ LoR)
– if r is a symbol of the language of differential fields then r∗ = r,
– for the symbols of LoR: (π(x) = π(y))∗ = D(1, x) ∧ D(1, y) ∧ D(1, x −
y) ∧ ¬D(x− y, 1), 0∗ = 0, 1∗ = 1, +∗ = +, .∗ = ., (−1)∗ = −1, D∗ = D.

– for the symbols of LoV : [v(x) = v(y)]∗ = D(x, y)∧D(y, x), 0∗ = 1, +∗ = .,
[v(x) 6 v(y)]∗ = D(x, y).

2) Extension by natural induction on the complexity of the formula’s.
• Conversely we can translate a formula φ in L2 to a formula φ∗ in L2:

– for any symbol of the language of differential fields r, we define r∗ = r,
– [D(x, y)]∗ = v(x) 6 v(y),
– [r∗(~x)]∗ = r(π(~x)) if r ∈ LR \ LoR,

– [r∗(~x)]∗ = r(
−−→
v(xi)) if r ∈ LV \ LoV .

We continue by induction on all formulas in L2. The only formulas which are
concerned with are those whose all variables are in the differential fields and
we get that

M |= φ(~x) ⇐⇒ 〈M, kM , v(M
×)〉 |= φ∗(~x).

Now we use the result of quantifier elimination of Theorem 3.13. Let φ be
a formula in L2. We apply Theorem 3.13 to the formula φ∗, i.e.

M |= φ(~x) ⇐⇒ 〈M, kM , v(M
×)〉 |= φ∗(~x).

It is equivalent to the fact that 〈M, kM , v(M
×)〉 satisfies a boolean combina-

tion of formulas (or the negation)

P (~x) = 0, φR(π(P1(~x))), φV (
−−−−−→
v(P2(~x))), Fφ,~n(

−−−→
P3(~x),

−−−→
P4(~x))

where P, ~P1, ~P2, ~P4 and ~P4 are differential polynomials with constant coeffi-
cients, φR is a formula in LR, φV is a formula in LV . This is equivalent to
〈M, kM , v(M

×)〉 satisfies a boolean combination of formulas

P (~x) = 0, φ∗
R(π(P1(~x))), φ

∗
V (
−−−→
P2(~x)), F

∗
φ,~n(

−−−→
P3(~x),

−−−→
P4(~x)).

�
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