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Hempel’s Paradox and Wason’s Selection Task:
Logical and Psychological Puzzles of Confirmation

Raymond S. Nickerson

Tufts University, Medford, USA

Hempel’s paradox of the ravens has to do with the question of what constitutes
confirmation from a logical point of view; Wason’s selection task has been used
extensively to investigate how people go about attempting to confirm or
disconfirm conditional claims. This paper presents an argument that the paradox is
resolved, and that people’s typical performance in the selection task can be
explained, by consideration of what constitutes an effective strategy for seeking
evidence of the tenability of universal or conditional claims in everyday life.

INTRODUCTION

Confirmation  has more than one connotation, as they term is used in everyday
language. Sometimes it is intended to be synonymous with proof or verification
and to indicate establishment of the truth of something with certainty; and
sometimes it conveys the idea of support or corroboration . An observation is
said to confirm a claim or hypothesis in the latter sense if it justifiably increases
its credibility, even though it does not establish truth beyond doubt.

These two connotations have been referred to, respectively, as the absolute
and the incremental senses of the term (Poundstone, 1990). The focus in this
paper is on confirmation in the second, incremental, sense: confirmatory evi-
dence is taken to be evidence that provides support to a claim or hypothesis.
This connotation admits the possibility of finding confirmatory evidence for a
claim or hypothesis that, with complete information, would be recognised to be
false.

Underlying the notion of incremental confirmation is the idea that a case of a
hypothesis supports that hypothesis—that the observation of a black raven, for
example, supports the hypothesis that all ravens are black. This idea has been
challenged. Good (1967) gives examples of situations in which a case of a

Requests for reprints should be sent to Raymond S. Nickerson, Department of Psychology, Tufts
University, Medford, MA, 02155, USA.
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pointing out to me several of the more recent studies cited and for other helpful comments on a draft
of this article.



D
ow

nl
oa

de
d 

B
y:

 [C
D

L 
Jo

ur
na

ls
 A

cc
ou

nt
] A

t: 
20

:5
1 

5 
A

ug
us

t 2
00

7 

2 NICKERSON

hypothesis can be disconfirmatory with respect to that hypothesis. Without
denying the validity of Good’s argument or the legitimacy of his examples, I
think the problem can be ignored for present purposes, on the grounds that
situations of the sort he describes are not characteristic of those typically
encountered in everyday life. It is assumed here that in the vast majority of real-
life situations calling for evaluation of hypotheses, a case of a hypothesis does
support the hypothesis.

The nature of confirmation is the subject of an old and continuing debate
(Salmon, 1973). This paper is concerned with two well-known aspects of the
debate—Hempel’s paradox and Wason’s selection task. Both of these topics
have received a great deal of attention, the former primarily from philosophers
and the latter from psychologists. The purpose of this paper is to consider what
light, if any, either topic sheds on the other.

THE PARADOX OF THE RAVENS

In 1945, the philosopher Carl Hempel presented a problem of reasoning relating
to confirmation which evoked discussion that continues to the present. Consider
the assertion “All ravens are black”. On the assumption that a case of a
hypothesis supports that hypothesis, observations of black ravens should
strengthen our confidence in the truth of this assertion.

Hempel pointed out that the assertions “All ravens are black” and “All
nonblack things are nonravens” are logically equivalent, each being the
contrapositive of the other. Any evidence that strengthens belief that one of
them is true should strengthen belief that the other (equivalent) one is true as
well. By the rule that a case of a hypothesis supports that hypothesis, the
observation of a white shoe should increase our confidence in the truth of the
second assertion. And given that the two statements are equivalent, we have no
choice, Hempel argues, but to take the same observation as confirmatory
evidence also for the claim that all ravens are black.

But who would do so? Most of us would consider the observation of a white
shoe to have little, if anything, to do with the claim that all ravens are black.
We would be especially reluctant to take the observation of a white shoe as
confirmation of this claim upon realising that the logic that leads to the
conclusion that we should do so leads also to the conclusion that we should take
the same observation as confirmation of the contradictory claim that all ravens
are red, because the contrapositive of the latter claim is that all nonred things
are nonravens.

WASON’S SELECTION TASK

About 20 years after Hempel first described his paradox, Peter Wason (1966,
1968) invented a task for use in the study of conditional reasoning, and reported
the results of an initial experiment that stimulated a host of subsequent studies
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PUZZLES OF CONFIRMATION 3

and much discussion and theorising about the capabilities and limitations of
humans as intuitive logicians. Wason’s (1966, p.145) description of the task was
as follows:

The subjects (students) were presented with an array of cards and told that every
card had a letter on one side and a number on the other side, and that either would
be face upwards. They were then instructed to decide which cards they would need
to turn over in order to determine whether the experimenter was lying in uttering
the following statement: If a card has a vowel on one side then it has an even
number on the other side.

Wason considered the correct response to be selection of cards displaying either
a vowel or an odd number, because only the discovery of a card with this
combination would prove the statement false. He found the most frequent
response to be selection of cards displaying a vowel and those displaying an
even number; no-one selected cards showing a consonant and only a small
minority selected those showing an odd number.

Although it is not clear from this description whether the array Wason
originally used contained only four cards, this has been the case in many sub-
sequent experiments. The following array is typical:

A B 4 7

Given this set of cards, selection of those showing A and 7 has generally been
considered the correct answer, because either of these cards could have a
symbol on the back that would show the claim of interest to be false; the card
showing the B and the one showing the 4 have been considered irrelevant,
because whatever either has on its other side is consistent with the claim.

The typical finding of experiments with this task bears out Wason’s original
result: a small minority of participants select the two cards showing the vowel
and the odd number; most select the cards showing the vowel and the even
number, or only the one showing the vowel. Essentially the same finding has
been obtained by numerous investigators with one or another variant of the
selection task; the results of experimentation with this task have been reviewed
many times (Cosmides, 1989; Evans, 1982; Evans, Newstead, & Byrne, 1993;
Tweney & Doherty, 1983).

In most of the remainder of this article, I will use the notation “If P then Q”
to discuss the selection task in general terms. Although as applied to Wason’s
original version of the task P corresponds to “a card has vowel on one side”,
and Q  is “it has an even number on the other”, relative to other versions of the
task the symbols may have other referents; given, for example, the conditional
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4 NICKERSON

“If a letter is sealed then it has a 50 lira stamp on it”, P represents “a letter is
sealed”, and Q “it has a 50 lira stamp on it”.

A Critical Ambiguity

It has been claimed that Wason’s selection task has generated more psycho-
logical research than any other single experimental paradigm. Among the attrac-
tions of this paradigm are its simplicity and the consistency with which it has
yielded the particular result that people typically fail to see the relevance of the
~Q option—the odd-number card in Wason’s original experiment or its
equivalent in other paradigms—which has been taken by many as evidence that
people generally have difficulty thinking in accordance with the rules of con-
ditional logic. The apparent simplicity of the task may be illusory, to an extent;
there is an ambiguity in some statements of it that did not, for a long time,
receive the attention it deserves.

Consider again the case in which one is shown four cards, and asked to say
which of the cards must be turned over to determine the truth or falsity of the
assertion “If a card has a vowel on one side, it has an even number on the
other”. In the absence of further qualifications, there are at least two ways to
interpret the question that is being asked: (1) which of the four cards in view
must be turned over in order to determine the truth or falsity of the assertion
with respect to those four cards, and (2) which of the four types of cards
represented should be turned over in order to determine the plausibility of the
assertion in general, or at least with respect to a set of cards larger than the four
showing, say a large deck from which the four were drawn. Sometimes the
instructions have made it clear that the first of these interpretations is the
intended one, but often they have not.

When it is clear that one’s task is to say which of four visible cards must be
turned over in order to determine whether a particular conditional of the form
“If P then Q” is true of those four cards, there can be no question that the only
correct answer is the card showing P and the one showing ~Q. When the task
can be interpreted as that of obtaining evidence regarding the truth or falsity of
the assertion with respect to a larger set of cards for which the four in view are
proxies, plausible rationales can be presented to justify other selections,
depending on the specifics of the properties represented by P and Q and what
is known or assumed about their prevalence in the population of interest.

In what follows, the second interpretation of the selection task is intended
except when the context clearly indicates otherwise. This interpretation makes
the selection task more representative, I think, of conditional reasoning of the
sort that one is called upon to do in everyday life; seldom are we faced with the
problem of determining the truth or falsity of a conditional claim involving only
four entities, all of which are immediately available for inspection.
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PUZZLES OF CONFIRMATION 5

RELATIONSHIP BETWEEN HEMPEL’S PARADOX AND
WASON’S SELECTION TASK

The assertion of interest in Hempel’s paradox is stated in categorical terms, “All
P (ravens) are Q (black)”; that in Wason’s task is stated as a conditional, “If P
(a card has a vowel on one side) then Q (it has an even number on the other)”.
But this difference is superficial. The claim regarding ravens could as well be
stated as “If P (X is a raven), then Q (X is black)”, and Wason’s task could be
stated as that of determining the truth or falsity of the categorical assertion “All
P (cards with a vowel on one side) are Q (cards with an even number on the
other)”. In what follows, I shall most often use the conditional form, but will
use the categorical form when it seems more appropriate to the context.

Logicians distinguish between two basic forms of the hypothetical syllogism:
modus ponens and modus tollens. Letting ~ represent negation, modus ponens
is:

If P then Q
P
Therefore Q

and modus tollens:

If P then Q
~Q
Therefore ~P.

What is required to demonstrate “If P then Q” to be false is the observation
of something that is both P and ~Q. If something that is P and ~Q exists, it is
a member both of the set defined by P and of the set defined by ~Q. One might
say that modus ponens focuses the search for such a falsifying case on the set
defined by P and that modus tollens focuses the search on the set defined by ~Q.
Because in Wason’s original task, P is “a card has a vowel on one side” and Q
is “it has an even number on the other”, turning the card that shows a vowel to
see if it has an even number on the back is applying the modus ponens
implication to the task, whereas turning over the card showing the odd number
(~Q) to be sure that it is accompanied by the consonant (~P) is applying the
modus tollens form.

The aspect of people’s performance of Wason’s task that has attracted the
greatest attention is the common failure to select the card showing an odd
number (~Q). This is often described as a failure to apply the modus tollens
form of argument. The idea that people find it less natural to use modus tollens
than modus ponens has considerable experimental support (Evans et al., 1993;
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6 NICKERSON

Rips & Marcus, 1977; Rumain, Connell, & Braine, 1983; Wason & Johnson-
Laird, 1972).

However, just as “All nonblack things are nonravens” is the contrapositive of
“All ravens are black”, so “If ~Q then ~P” is the contrapositive of—and thus
logically equivalent to—“If P then Q”. If one recognises this equivalence, one
can identify the card showing an odd number by applying modus ponens to the
first of the latter two assertions. So an alternative way of describing the failure
to specify ~Q in the selection task is as a failure to recognise the equivalence
of an assertion and its contrapositive.

This language is essentially the same as that which has been used to describe
Hempel’s paradox. Is there some relationship between Wason’s card showing the
odd number and Hempel’s white shoe? Is the tendency of people to overlook the
relevance of the former related to the difficulty we have in seeing why the
observation of a white shoe should increase our confidence that all ravens are
black?

IMPLICATIONS OF “IF P THEN Q”

As it is used in everyday language, “if” is ambiguous; normally the intended
meaning is disambiguated by the context in which it occurs. In logic an asser-
tion of the form “If P then Q” is defined by its truth function. As shown in
Table 1, the assertion is said to be true when both P and Q are true, when P is
false and Q is true, and when both P and Q are false; it is said to be false only
when P is true and Q is false. An alternative way of showing the conditional is
as in Table 2, where the cell entries indicate which combinations of P or ~P and
Q or ~Q are consistent with the assertion, “If P then Q.” (Conventionally, P is
called the antecedent, and Q the consequent.)

I like the latter way of representing the implications of the conditional,
because it makes more immediately obvious than does the truth-function
representation the fact that knowing the antecedent to be true (P) permits one to
make an inference about the consequent, and knowing the consequent to be false
(~Q) permits one to make an inference about the antecedent, whereas knowing
the antecedent to be false (~P) does not permit an inference about the
consequent, and knowing the consequent to be true (Q) does not permit an

TABLE 1
The Truth Function of “If P then Q”

P Q If P then Q

T T T
T F F
F T T
F F T
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PUZZLES OF CONFIRMATION 7

TABLE 2
An Alternative Way of Showing the Conditional

Consequent
Antecedent Q ~Q

P Yes No
~P Yes Yes

TABLE 3
Combinations Required, Allowed, and Disallowed

Consequent
Antecedent Q ~Q

P Required Disallowed
~P Allowed Required

Each cell entry indicates whether the combinations
specified by the associated row and column headings is
required, allowed, or disallowed, assuming the assertion “If
P then Q” is true and none of the sets, P, ~P, Q, and ~Q
is empty.

Each cell entry indicates whether the combination specified by
the associated row and column headings is consistent with the
assertion “If P then Q”.

inference about the antecedent. The first row of the Table shows that if P is true,
Q must be true, and the second column shows that if Q is false, P must be false;
so if one knows the antecedent to be true, one knows the consequent must be
true (modus ponens), and if one knows the consequent to be false, one knows
the antecedent must be false (modus tollens). But because a false P can be
associated with either a true or false Q (second row) and a true Q can be
associated with either a true or false P (first column), nothing can be inferred
from a knowledge of either of these states.

Although Table 2 does a better job than Table 1 of explicating the implica-
tions of the conditional, it still obscures an interesting fact. If we assume that
none of the sets, P, ~P, Q, or ~Q, is empty, the relationship “If P then Q”
requires that the combinations PQ and ~P~Q exist, and it disallows the com-
bination P~Q. And it allows, but does not require, that the combination ~PQ
exists. (Here and in what follows, I use juxtaposition to represent conjunction,
so PQ represents something that is both P and Q, e.g. a black raven.) The
situation is shown in Table 3.

That the ~PQ combination bears a relationship to the conditional which dif-
fers from that of the other two combinations that are also consistent with it,
follows from the fact that “If P then Q” is consistent both with the situation in
which P is a proper subset of Q (as dogs are a proper subset of mammals) and
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8 NICKERSON

with that in which P and Q are the same set (as are spouses and marriage
partners). In the latter case, in which P and Q are the same set, ~PQ is empty.

JUDGING THE TRUTH OR FALSITY OF “IF P THEN Q”

The just-preceding comments centre on the implications of the assumption that
“If P then Q” is true. But suppose the truth of the assertion is in question, as
it is in the selection task, as first described by Wason. Here I want to consider
the subject in general terms: the question is, how should one judge the tenability
of a hypothesis of the form “If P then Q”?

It should be clear that the (only) way to show the hypothesis to be false, if
it is false, is to determine that the combination P~O exists, and that this suffices
to show conclusively  that the hypothesis is false. Conversely, the only way to
show, conclusively, that the hypothesis is true, if it is true, is to demonstrate that
this combination does not exist. In many—perhaps most—real-world situations
of interest, it is not possible to do the exhaustive testing necessary to satisfy the
latter requirement, so typically general assertions are not said to have been
demonstrated to be true in the absolute sense of it having been determined by
exhaustive examination that no falsifying evidence exists. But, in the absence of
counterindications, we do—in accordance with the case principle mentioned at
the outset—accept as inductive evidence of a general assertion the observation
of cases of the generalisation that is asserted.

To be specific: Because both PQ and—by the rule of the contrapositive—
~P~Q are clearly cases of the generalisation, “If P then Q”, we would consider
the observation of either of these combinations as confirmatory of the hypothe-
sis. But what about ~PQ, which is allowed by the hypothesis but not required
of it? The general question is: what, assuming we accept the notion that a
hypothesis is confirmed by a case of that hypothesis, should be considered a
“case of a hypothesis”? Should we think of a case of a hypothesis as something
that the hypothesis allows, or only as something the hypothesis implies must be
true? There can be little doubt that, at least as conditional reasoning is done in
science, an observation that is predicted by a hypothesis is seen as more con-
firmatory of the hypothesis than one that is merely allowed—not prohibited—
by it.

Hempel (1945) argued that the ~PQ combination should be considered con-
firmatory because “All ravens are black ” is equivalent to “A thing is either not
a raven or is black, or both”—in terms of the conditional, “If P then Q ” is
equivalent to “Either ~P or Q or both”. It follows, Hempel argued, that “All
ravens are black” is confirmed not only by a white shoe but by a black one as
well, or indeed by anything, of any colour, that is not a raven. Hempel asserts
(1945, p.14): “By virtue of the equivalence condition, we have therefore to
consider confirming for S1 {‘All ravens are black’}, any object which is either
no raven or also black (in other words: any object which is no raven at all, or
a black raven)”.
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PUZZLES OF CONFIRMATION 9

As the reader can easily verify, the truth function of the inclusive disjunctive
“~P or Q or both” is indeed the same as that of “If P then Q”. But if one accepts
the foregoing argument that the existence of ~PQ is not required by the truth   of
“If P then Q”, as is that of PQ and ~P~Q, then one might have reservations
about the inclusiveness of Hempel’s claim here. We shall see presently that
under certain plausible assumptions, a Bayesian view of the situation would
interpret ~PQ as disconfirmatory.

In sum, we may say that the observation of P~Q is, by deductive logic,
conclusively disconfirmatory, and the observation of either PQ or ~P~Q is, by
induction, inconclusively confirmatory. If one accepts Hempel’s claim, the
observation of ~PQ is also inconclusively confirmatory, but, for the moment,
let us withhold judgment on the status of this combination. So, given the
question of whether a generalisation of the sort “If P then Q” is true, if I ob-
serve an instance of P~Q, I know it to be false; if I observe an instance of
either PQ or ~P~Q (while not observing any instances of P~Q), I increase my
confidence somewhat that it is true. If I observe ~PQ, it is not yet clear what
I should do.

These comments have focused on antecedent–consequent combinations , and,
in particular, on the confirmatory or disconfirmatory character of possible com-
binations of P or ~P and Q or ~Q with respect to the conditional assertion “If
P then Q”. In the selection task, as originally conceived, one does not initially
see a combination  of P or ~P and Q or ~Q; one sees each of four cards with
the elements, P, ~P, Q, and ~Q. But one knows that each of the cards showing
P or ~P has Q or ~Q on its hidden side, and that each of the cards showing Q
or ~Q has P or ~P on its hidden side.

All this being true, one should know that the conclusively disconfirmatory
combination, P~Q can be found (if it exists) only by turning over either the card
showing P or the one showing ~Q. One should know, too, that the incon-
clusively confirmatory combination PQ might be found by turning over either
the card showing P or the one showing Q, and that the inconclusively con-
firmatory combination ~P~Q might be found by turning over the card showing
~P or the one showing ~Q. It would seem, according to this line of reasoning,
that any of the cards could yield confirmatory information. Why, if that is the
case, is not the correct response in the selection task to turn over all the cards?
The answer is obvious for the case in which the task is to specify which of four
cards must be turned over in order to determine the truth or falsity of the
assertion with respect to those four cards, but recall that we are now focusing
on the case in which the task is interpreted as that of specifying which of the
four types of cards represented should be turned over in order to determine the
truth or falsity of the assertion in general.

We will return to the question of whether selection of all four cards should
be considered the correct answer in the general case. Suffice it to emphasise  at
this point that, although any of the cards could yield inconclusively confirma-
tory information, conclusively disconfirmatory information can be produced by
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10 NICKERSON

only two of them, P and ~Q. The fact that performers of the selection task
commonly select the card representing Q (the even number, in the case of our
example) as well as the one representing P (the vowel) suggests that, given the
task of assessing the credibility of a conditional assertion, people are more likely
to look for confirmatory than for disconfirmatory information. The fact that they
typically select the card representing P but not the one representing ~Q suggests
that they are more likely to look for instances in which the consequent is present
when the antecedent is known to be present, than to look for the absence of the
antecedent when the consequent is known to be absent. In terms of Hempel’s
paradox, they are more likely to look for black ravens than for either white
ravens or white shoes.

NICOD’S CRITERION OF CONFIRMATION

Hempel discussed a conception of confirmation put forward by Jean Nicod
(1930), which purports to explain how a fact can affect the probability of a law
of the form P entails Q. According to Nicod (1930, p.219):

If this fact consists of the presence of Q in a case of P, it is favourable to the law
“P entails Q”; on the contrary, if it consists of the absence of Q in a case of P,
it is unfavourable to this law. It is conceivable that we have here the only two
direct modes in which a fact can influence the probability of a law . . . Thus, the
entire influence of particular truths or facts on the probability of universal
propositions or laws would operate by means of these two elementary relations
which we shall call confirmation  and invalidation.  {I have substituted P and Q,
where Nicod used A and B, respectively.}

Hempel criticised Nicod’s criterion on two grounds: (a) that it is applicable
only to hypotheses of universal conditional form and not, for instance, to exis-
tential hypotheses (There is life outside the solar system), and (b) that it does
not necessarily recognise an observation that is confirmatory of a given
statement as confirmatory also of any logically equivalent statement—to wit, it
does not recognise the observation of a nonblack nonraven, which confirms the
statement that all nonblack things are nonravens, as confirming of the logically
equivalent claim that all ravens are black.

The second shortcoming means “that Nicod’s criterion makes confirmation
depend not only on the content of the hypothesis, but also on its formulation”
(Hempel, 1945, p.l1). This violates the equivalence condition, according to
which, “Whatever confirms (disconfirms) one of two equivalent sentences, also
confirms (disconfirms) the other” (Hempel, 1945, p.12). Hempel argues (1945,
p.13) that “the equivalence condition has to be regarded as a necessary con-
dition for the adequacy of any definition of confirmation”, which is to say that
if the observation of a white shoe is to be taken as confirming of the claim that
all nonblack things are nonravens, it must also be considered confirmatory of
the claim that all ravens are black.
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PUZZLES OF CONFIRMATION 11

HEMPEL’S RESOLUTION OF HIS PARADOX

Hempel (1945, p.18) argued that the paradox of the ravens is a paradox in
appearance only—a psychological illusion resulting from reliance on a mis-
leading intuition:

One source of  misunderstanding is the view . . . that a hypothesis of the simple
form “Every P is a Q”, such as “All sodium salts burn yellow”, asserts something
about a certain limited class of objects only, namely, the class of all Ps. This idea
involves a confusion of logical and practical considerations: Our interest in the
hypothesis may be focused upon its applicability to that particular class of
objects, but the hypothesis nevertheless asserts something about, and indeed
imposes restrictions upon, all objects (within the logical type of the variable
occurring in the hypothesis, which in the case of our last illustration might be the
class of all physical objects). Indeed, a hypothesis of the form “Every P is a Q”
forbids the occurrence of any objects having the property P but lacking the
property Q; i.e., it restricts all objects whatsoever to the class of those which
either lack the property P or also have the property Q. Now every object either
belongs to this class or falls outside it, and thus, every object—and not only the
Ps—either conforms to the hypothesis or violates it; there is no object which is
not implicitly “referred to” by a hypothesis of this type. In particular, every object
which either is no sodium salt or burns yellow conforms to, and thus “bears out”
the hypothesis that all sodium salts burn yellow; every other object violates that
hypothesis.

(By hypothesis, the class containing “every other object” is empty; that is, if the
hypothesis is true, there are no objects that are sodium salts and fail to burn
yellow.)

Hempel argued, too, that the illusion rests also in part on the fact that, as the
paradox is presented here, the ~Q object is something that we already know is
~P (we know that a white shoe is not a raven), so we gain no information that
is relevant to the hypothesis that every P is a Q by observing one. In fact, this
points up an important difference between the situation considered by Hempel
and the selection task. Observing an odd number on a card (~Q) in the selection
task is not quite equivalent to observing a white shoe in the situation considered
by Hempel. In the latter case, one knows that the object is white and that it is
a shoe; in the former one knows only that one side of the card shows an odd
number—before turning it over one does not know what is on the other side.

The raven-paradox equivalent of being shown the one side of a card dis-
playing an odd number in the selection task would be to be given a box and told
only that it contains a nonblack object. Even people who believe that ob-
servation of a white shoe should be considered irrelevant to the claim that all
ravens are black might wish to open the box to satisfy themselves that the
nonblack thing in it is not a raven. In any case, according to the logic of the
contrapositive, upon opening a box known to contain a white object, one
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12 NICKERSON

obtains information—learns something—that is confirmatory of the claim that
all ravens are black if the opened box reveals a white shoe. More generally, if
given the box and told nothing about its contents, one gets evidence that is
consistent with the hypothesis if, upon opening it, one finds anything other than
a nonblack raven . . . a black raven, a white shoe, a black shoe, or a confused
logician.

THE PRINCIPLE OF FALSIFICATION AND SEARCH
EFFICIENCY

It is a first principle of reasoning that universal claims about innumerable sets
in the physical world (all ravens) cannot be proved—evidence can be
marshalled that increases their tenability, but they cannot be verified with
certainty. Sometimes they can be shown definitely to be false if they are false,
but they cannot be shown definitely to be true if they are true.

From the Popperian perspective, the best way to marshall evidence for a
universal statement is to fail to falsify it despite trying very hard to do so
(Popper, 1959). What is needed to falsify the claim that all ravens are black is,
of course, the observation of one nonblack raven. Everyone, even people who
may disagree on the question of whether the observation of a black raven and
that of a white shoe should or should not be considered equally confirmatory,
will agree on this point. So, according to this view, the way to test the claim that
all ravens are black is to try very hard to find (at least) one nonblack raven. A
practical question that arises is that of how to conduct a search so as to minimise
the effort required to find such a creature if one exists. Where does one look to
maximise the chances of finding a counterexample to the claim if there is one
to be found?

Most of us, I suspect, would go looking for ravens, noting, whenever we
found one, whether or not it was black; we would be unlikely to go looking for
nonblack objects, noting for each one that was found whether or not it was a
raven. Hempel’s argument notwithstanding, the second strategy would appear to
be a singularly unproductive one. Wetherick (1993) appeals to this idea as an
explanation of why people performing the selection task select P but not ~Q. If
people interpret the selection task as “a laboratory model of the real-world
task”, as he suggests they do, their failure to select ~Q is just an analogue of
the reasonable decision not to look for a nonblack raven by searching the
universe of nonblack things. The assumption that there are many more nonblack
things than ravens in the world is critical to this line of reasoning. If it were the
case that ravens outnumbered nonblack things, then the more efficient strategy
would be to search the set of nonblack things, checking each to see if it is a
raven.

More generally, what constitutes an optimal search strategy for falsifying
evidence regarding a universal claim depends—other things being equal—on the
size of the class defined by the subject of the claim relative to the size of
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PUZZLES OF CONFIRMATION 13

the class defined by the complement of the predicate. In other words, although
there is no logical difference between looking for a P that is ~Q and looking for
a ~Q that is P, psychologically and practically the difference can be substantial.
If the set defined by P and that defined by ~Q are greatly different in size,
searching the smaller set will maximise the chances of finding a falsifying case,
if one exists, in a given time or for a given expenditure of resources.

If it is the case that for most meaningful conditional assertions that are made
for purposes of communication in everyday life the antecedent, P, defines a class
that is considerably smaller than that defined by the complement of the
consequent, ~Q, then it is good strategy, as a practical matter, to focus on the
former class when seeking to find a member of the intersection of the two classes.
This could be interpreted to mean, in effect, making more use of modus ponens
than of modus tollens arguments in attempting to judge the plausibility of
conditional claims. This interpretation is similar, at least in spirit, to Cheng and
Nisbett’s (1993) position that modus tollens and the contrapositive are
(apparently) not part of the repertoire of people’s logical intuitions because they
do not have great practical utility.

A COUNTER CASE

Suppose one knew the US senate to be composed, at a particular time (say at
the opening of the 104th congress in 1995) of 47 Democrats and 53
Republicans, and of 92 males and 8 females, but that one did not know the
parties to which individual senators belonged. Consider the two following
claims:

All Republicans in the US senate are males. (If X is a Republican US senator, X
is a male.)

All females in the US senate are Democrats. (If X is a female US senator, X is a
Democrat.)

To falsify either of these claims, really the same claim by the rule of the
equivalence of contrapositives, one needs to determine that the senate contains
at least one female Republican. One could look for such evidence systematically
by checking all senators, looking for a female Republican; by checking all
Republicans, looking for a female; or by checking all females, looking for a
Republican. In view of the relative sizes of the relevant classes, the most
efficient approach, in the case of both claims, would be to check all the females
looking for a Republican. Given the second claim, this is the strategy we would
expect people to select, on the basis of the results that are commonly obtained
with Wason’s selection task. Given the first claim, selection-task results make
us suspect that many people would elect to check all Republicans looking for
a female, even though it is not the optimal strategy.
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14 NICKERSON

With respect to the first claim, a female Democrat (nonmale non Republican)
plays the same role as does the white shoe (nonblack nonraven) in the original
statement of Hempel’s paradox. However, I suspect that it is much easier to see
the observation of a female Democratic senator as confirming of the claim that
all Republican senators are male than to see the observation of a white shoe as
confirming of the claim that all ravens are black. The difference, I wish to
argue, is in the relative sizes of the relevant sets.

When one thinks of universal assertions about the world that one might want
to test, my sense is that those that come readily to mind are like “All ravens are
black” with respect to the fact that the class defined by the subject tends to be
small relative to the class defined by the complement of the predicate. It is
possible to find exceptions to this rule, as the example “All Republicans in the
US senate are males” attests, but I think these are exceptions and one must work
harder to find realistic examples than one does to find examples that fit the
rule.

DEGREES OF CONFIRMATION

The idea that a case of a hypothesis supports that hypothesis was identified at
the outset as basic to the notion of incremental confirmation. Until now, nothing
has been said about the possibility that cases differ with respect to the degree
to which they confirm their hypotheses. Intuitively, most of us would probably
consider the observation of a case from a small set of possibilities to be more
confirming than that of a case from a large set of possibilities. For example, we
would be likely to consider the observation of a red marble to be more
confirming of the hypothesis that all the marbles in a specified bag are red if
the bag contains only three marbles than if it contains 300.

According to Hempel’s equivalence condition, an observation that is
confirmatory of a given statement is confirmatory also of any logically
equivalent statement. On the assumption that confirmatory observations can
be confirmatory to different degrees, we might qualify the equivalence condition
to the effect that an observation that is confirmatory of a given statement is
confirmatory, to the same degree, also of any logically equivalent statement.

If one accepts this version of the equivalence condition and the idea that
the degree to which cases confirm depends on the sizes of the sets involved,
the observation of a white shoe should be taken as confirming of the claim that
all nonblack things are nonravens, but only to a very small degree, so it should
be considered confirmatory also of the claim that all ravens are black, but only
to the same very small degree. According to this line of reasoning, the claim that
all ravens are black is confirmed both by the observation of a black raven and
by that of a white shoe, as Hempel argues, but the degree of confirmation
received is greater—much greater—in the former case than in the latter.

This is one proposed resolution of Hempel’s paradox (see e.g. Howson &
Urbach, 1989)—not universally accepted. It attributes the appearance of
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PUZZLES OF CONFIRMATION 15

paradox to the enormity of the disparity between the size of the class of ravens
and that of the class of nonblack objects. According to this view, the observation
of  a nonblack nonraven (white shoe) should increase the credibility of the belief
that all ravens are black but only very very slightly, indeed hardly at all, because
the observation of one nonblack nonraven reduces the chance of finding a raven
within the set of nonblack things but only by an immeasurably small amount
(Hosiasson-Lindembaum, 1940; Mackie, 1963).

AN ILLUSTRATIVE BAYESIAN ANALYSIS

The foregoing ideas can be illustrated with a Bayesian analysis of an imaginary,
and very simple, world. Consider a world that contains 1000 things. Suppose it
is known that 50 of the things are ravens and that 100 are black. For purposes
of this exercise, we should forget what we know about birds in the real world,
such as the fact that, as a rule, birds of a given species have the same colour;
we should assume that the proportion of ravens in this world that are black
could be anything from 0 to 1.0.

Suppose we wish to evaluate the hypothesis that all the ravens are black (H).
The Bayesian approach requires that we begin with a set of mutually exclusive
and exhaustive hypotheses. In addition to the hypothesis of interest that all
ravens are black (H), we must specify at least one contrary hypothesis (~H) in
terms of some proportion, other than 1.0, of ravens that are hypothesised to be
black. Application of Bayes’s rule will permit us to evaluate the likelihood of one
of the hypotheses relative to that of the other.

What to use as ~H is a question. Should we evaluate the hypothesis that all
the ravens in our imaginary world are black against the hypothesis that none is?
That half of them are? That all but one of them are? To develop the example,
I will use for ~H the hypothesis that half the ravens are black, but the analysis
that follows can be applied to any other value for ~H. The situation for H: all
ravens are black and ~H: 0.5 of the ravens are black is shown in Table 4. (For
mnemonic convenience, I use R and B to represent ravens and black in what
follows, but the reader will note that R and B correspond to P and Q, respec-
tively, of the foregoing.)

Let us assume that, in the absence of any observations, the hypotheses, H and
~H, are equally likely to be true, i.e. initially p(H) = p(~H) = 0.5. We would like
to know how each of the observations that could be made should change our
estimates of these probabilities. According to Bayes’s theorem, the probability
of a hypothesis conditional on an observation, (the posterior probability) is
simply the probability of the observation conditional on the hypothesis
(conditional probability) multiplied by the prior probability of the hypothesis
divided by the sum of such products for all (both) of the hypotheses. Letting D
represent an observation, or datum,

p(H |D) = p(D |H )p(H)/{pD | H )p(H)+p(D |~H)p(~H)}. (1)
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16 NICKERSON

TABLE 4
Hypotheses H and ~H

H ~H
B ~B T B ~B T

R 50 0 50 25 25 50
~R 50 900 950 75 875 950

T 100 900 1000 100 900 1000

The effect of a specific observation may be considered the difference between
the probability of the hypothesis conditional on the observation and the proba-
bility of that hypothesis before the observation was made:

Effect of D on H = p(H |D) – p(H). (2)

How we apply the equation for p(H |D) to our imaginary world depends on
what we consider an observation, or datum, to be. One possibility is to consider
the pair of attributes one discovers when one inspects a random object. This
gives us four possibilities: RB, R~B, ~RB, and ~R~B. Given the numbers in
Table 4, we have:

p(RB |H) = 0.050 p(RB |~H) = 0.025
p(R~B |H) = 0.000 p(R~B |~H) = 0.025
p(~RB |H) = 0.050 p(~RB |~H) = 0.075
p(~R~B |H) = 0.900 p(~R~B |~H) = 0.875

It should be clear that these values are simply the cell entries of Table 4
divided by the total number of objects in the world. The posterior probability
of H (or of ~H) given a specified observation is obtained by using these num-
bers, along with the prior probability of 0.5, in equation (1). So, for example,

p(H~ |RB) = p(RB |H)p(H)/{p(RB |H)p(H)+p(RB |~H)p(~H)}
= (0.05)(0.5)/{(0.05)(0.5)+(0.025)(0.5)} = 0.667

Computation of the posterior probability of H and ~H for all possible observa-
tions yields the following values (the numbers in parentheses represent the
effects of the observations, as given by equation 2):

The numbers of combinations of R or ~R with B or ~B, in an imagi-
nary world under the hypothesis (H) that all the Rs are B and (~H) that
half the Rs are B.
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PUZZLES OF CONFIRMATION 17

p(H |RB) = 0.667 (0.167) p(~H |RB) = 0.333 (–0.167)
p(H |R~B) = 0.000 (–0.500) p(~H |R~B) = 1.000 (0.500)
p(H |~RB) = 0.400 (–0.100) p(~H |~RB) = 0.600 (0.100)
p(H |~R~B) = 0.507 (0.007) p(~H |~R~B) = 0.493 (–0.007)

The effects of the various observations on H then are as follows. RB is the
most strongly confirmatory, R~B is conclusively disconfirmatory, ~RB is (con-
trary to Hempel’s claim) somewhat disconfirmatory, and ~R~B is confirmatory,
but only to a very small degree. Inasmuch as H and ~H are exhaustive and mu-
tually exclusive hypotheses, what is confirmatory (disconfirmatory) for H is
equally disconfirmatory (confirmatory) for ~H.

Of course, if objects are selected for inspection at random, the various
possible observations would not be expected to occur with equal frequency; by
far the most likely observation would be ~R~B under either hypothesis, which
is why the finding of this pair has relatively little effect on the probability of
either hypothesis.

To make the imaginary-world illustration more relevant to Wason’s selection
task, let us suppose that, with the information in Table 4 in hand, we are told
that we can gather information to help us decide whether H is true in the
following way: we can specify that we would like to inspect a raven (R), a
nonraven (~R), a black thing (B), or a nonblack thing (~B). If we specify R, an
R will be selected at random from all the Rs and we will learn whether it is B
or ~B, and similarly for all the other choices.

In what follows, I will use the notation rB to represent the case in which
one selects a raven and discovers it to be black, and Rb, that in which one
selects a black thing and finds it to be a raven. In other words, a letter
combination represents what one sees, and the lower-case letter identifies the
set—selected by the hypothesis evaluator—from which the object was randomly
drawn.

Recall that to find p(RB|H), the number in the cell in Table 4 representing RB,
under hypothesis H, was divided by the total number of objects in the world,
1000. To find p(rB|H) or p(r~B|H) we divide the number in the cell representing
RB or that representing R~B, under hypothesis H, by the total number of Rs in the
world; to find p(~rB|H) or p(~r~B|H) we divide the number in the cell
representing ~RB or that representing ~R~B, under hypothesis H, by the total
number of ~Rs in the world. Doing this, we obtain the following conditional
probabilities:

p(rB|H) = 1.000 p(rB|~H) = 0.500
p(r~B|H) = 0.000 p(r~B|~H) = 0.500
p(~rB|H) = 0.053 p(~rB|~H) = 0.079
p(~r~B|H) = 0.947 p(~r~B|~H) = 0.921
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18 NICKERSON

If we use these numbers in equation 1, again with the prior probability of
H set at 0.5,

p(H|rB) = p(rB|H)p(H)/{p(rB|H)p(H)+p(rB|~H)p(~H)}
= (1)(0.5)/{(1)(0.5)+(0.5)(0.5)} = 0.667

The same computation applied to all of the preceding conditional probabilities
yields:

p(H|rB) = 0.667 (0.167) p(~H|rB) = 0.333 (–0.167)
p(H |r~B) = 0.000 (–0.500) p(~H |r~B) = 1.000 (0.500)
p(H |~rB) = 0.400 (–0.100) p(~H |~rB) = 0.600 (0.100)
p(H |~r~B) = 0.507 (0.007) p(~H |~r~B) = 0.493 (–0.007)

Thus observing a black raven has the same effect on the hypothesis whether the
observation results from a random selection from all the objects in the world or
from specifically picking a random raven and discovering that it is black. A
similar comment applies for all the other possible observations.

Suppose that instead of selecting ravens or nonravens to determine their
colour, we selected black or nonblack objects to determine whether or not they
are ravens. The conditional probabilities in this case are as follows:

p(Rb|H) = 0.500 p(Rb|~H) = 0.250
p(R~b|H) = 0.000 p(R~b|~H) = 0.028
p(~Rb|H) = 0.500 p(~Rb|~H) = 0.750
p(~R~b|H) = 1.000 p(~R~b|~H) = 0.972

The reader may easily verify that use of these numbers in equation 1, again
along with p(H) = p(~H) = 0.5, produces the same posterior probabilities as did
use of the preceding set of conditionals.

So, according to this analysis, the effect that a particular observation—say the
observation of a black raven—should have on our confidence in the hypothesis
that all ravens are black, is the same whether the observation is made as a
consequence of selecting an object (at random from among all objects) and
discovering it to be a black raven, selecting a raven (at random from among all
ravens) and discovering it to be black, or selecting a black object (at random
from among all black objects) and discovering it to be a raven. And a similar
comment applies to all the other observations that could be made.

In this analysis, I have held the number of black things constant, indepen-
dently of the truth or falsity of the hypothesis that all ravens are black (Table
4). One might argue that it would be more reasonable to hold the number of
black things other than ravens constant, thus making the total number of black
things (including black ravens) dependent on the status of the hypothesis: in this
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PUZZLES OF CONFIRMATION 19

case there will be more black things in the imagined world if all the ravens in
it are black than if only some of them are.

We can give our imaginary world this property by changing the numbers
representing the combinations ~RB and ~R~B under ~H from 75 and 875 to 50
and 900, respectively, and modifying the column totals on the ~H side of the
Table to be consistent with these changes. If the foregoing analyses are repeated
with the numbers in Table 4 thus modified, it will be seen that no longer is the
effect of the observation of a black raven the same whether the observation is
made as a consequence of selecting a random raven and discovering it to be
black or selecting a random black object and discovering it to be a raven.
Selecting a raven and discovering it to be black still changes the probability of
the hypothesis that all ravens are black from 0.5 to 0.667, but selecting a black
object and discovering it to be a raven changes it only from 0.5 to 0.6. Selecting
a nonblack thing and finding it to be a nonraven again increases the probability
of H, but by a very small amount; in this world, selecting a nonraven and
determining its colour has no effect on the probability of H, no matter what its
colour is found to be.

I will continue to focus on the case in which the total number of black things
is held constant. The reader may wish to do the analysis with the number of
black nonravens held constant. The main points of this essay are not dependent
on which constraint is imposed. And the difference between the implications of
the two possibilities is negligible if the number of ravens is assumed to be very
small relative to the number of black things in the world.

The question now is, given the task of selecting among R, ~R, B, and ~B to
obtain information to help one decide what to believe about the truth or falsity of
H with respect to our imaginary world, what should we do? Presumably we
should like to maximise our chances of observing R~B if such an object exists,
because this is the only observation that permits a definite conclusion. Beyond
that one might argue that our next preference should be for RB, because that is
next-most influential datum.

Importantly, vis-a-vis the selection task, the probability of making a given
observation is highly dependent on the selection choices one makes. The proba-
bility of observing a black raven, for example, differs considerably depending
on whether one inspects a random raven to see if it is black or inspects a random
black thing to see if it is a raven. In our imaginary world, P(rB) is 1 under H
and 0.5 under ~H, whereas the comparable numbers for p (Rb) are 0.5 under H
and 0.25 under ~H.

If our objective in the selection task is to select in such a way as to ensure
a relatively high likelihood of getting useful information from each inspection,
we have to take into account both the effect of each of the possible observations
and the probability that any given selection will yield that observation. Table 5
summarises what has been said about our imaginary world in this regard so far.
The first row of the Table represents what one selects; the second what each
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20 NICKERSON

TABLE 5
The Possible Observational Outcomes of Selections

Effect of observation Prob of observation,
Selection Obs on p(H) given selection

H ~H

B 0.167 (Strongly confirmatory) 1.000 0.500
r ~B –0.500 (Conclusively disconfirmatory) 0.000 0.500

B –0.100 (Moderately disconfirmatory) 0.053 0.079
~r ~B 0.007 (Weakly confirmatory) 0.947 0.921

R 0.167 (Strongly confirmatory) 0.500 0.250
b ~R –0.100 (Moderately disconfirmatory) 0.500 0.750

R –0.500 (Conclusively disconfirmatory) 0.000 0.028
~b ~R 0.007 (Weakly confirmatory) 1.000 0.972

selection could reveal (two possibilities for each selection), the third the effect
of what is revealed, and the fourth and fifth the probability of the observation,
given the selection, as specified by H and ~H. (The “strongly”, “moderately”,
and “weakly” designations in this Table are intended to connote relative
strengths only.)

According to most normative theories of choice, a selection should be made
on the basis of the expected desirability or “utility” of its outcome, and this is
generally taken to be represented by the sum of the utilities of the outcomes the
selection could produce, each weighted by the probability of its occurrence. I
will not use the concept of expected utility here, because I think the way in
which it should be defined in this context is debatable, but will assume that the
selection should be based on the expected impact of the outcome of that selec-
tion on the probability of the hypothesis under consideration, and I will define
impact as the absolute value of an observation’s effect, as represented by
equation 2. Table 6 shows the expected impact of the possible selections on the
probability of each hypothesis for the world represented by Table 4; the
expected impact of a given selection is the sum of the impacts that selection
could have, each weighted by the probability of its occurrence.

So, according to this analysis, whether one believes H or ~H, one expects the
selection of a raven to be more useful—have greater impact, by a lot, than
selection of any of the other possibilities. The ordering of the remaining pos-
sibilities depends on whether one believes H or ~H, but, interestingly, selection of
a black object (comparable to the even number in Wason’s original task) is  the
second-best choice for both hypotheses.
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PUZZLES OF CONFIRMATION 21

TABLE 6
Expected Impacts of Selections, Given
the Conditions Represented by Table 4

Selection Expected impact under hypothesis
H ~H

r 0.167 0.334
~r 0.012 0.014
b 0.013 0.117
~b 0.001 0.021

Of course the numbers in Tables 5 and 6 follow from the relative sizes of the
relevant sets of objects in our imaginary world. These set sizes are intended to
represent ordinally their relative sizes in the real world, but obviously they do
not come close to reflecting the actual relative sizes, at least when objects of
interest are ravens and black things. We might move a little in the direction of
greater realism by defining a world that contained, say, 1,000,000 objects,
10,000 of which are black and 50 of which are ravens. For this world, again
letting ~H be that half the ravens are black, one obtains the expected impacts of
selections in Table 7.

The most striking effect of increasing the differences among the sizes of the
various sets in the way indicated is the great reduction of the expected impact
of all selections other than r. If one accepts this line of reasoning, and assumes
that, in most real-world situations of interest, the class represented by P is very
small relative to that represented by Q, and that the latter is very small relative
to the universe of discourse, one could convince oneself that there is seldom
much point in looking anywhere except among the Ps for evidence regarding
the tenability of the hypothesis that “All Ps are Q or “If P then Q”.

Another way in which these examples could be modified to reflect situations
that may be closer to many found in the real world would be to use, as a counter

TABLE 7
Expected Impacts of Selections, Given a World

of 1,000,000 Objects, 10,000 of Which are
Black and 50 of Which are Ravens

Selection Expected impact under hypothesis
H ~H

r 0.166667 0.333334
~r 0.000012 0.000012
b 0.001432 0.001434
~b 0.000006 0.000019
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22 NICKERSON

to the hypothesis that all ravens are black, a hypothesis that, say, 98% of all
ravens are black. Or one could start by leaning in one direction or the other, say
by giving H a high prior probability and ~H a correspondingly low one. The
reader may want to repeat the preceding exercise using sets of numbers that
might be considered more realistic than those in this illustration.

I am well aware that the examples considered here do not constitute a proof
of anything. I offer them only as evidence of the plausibility of the conjecture
that both the strong preference that people show for the P alternative in the
selection task and their reluctance to accept white shoes as useful evidence of
the truth of the claim that “All ravens are black” may have a robust rational basis
in the kind of reasoning that practicality demands in the real world.

Legrenzi, Girotto, and Johnson-Laird (1993) have attributed the preference
that people typically show for P to a tendency to focus on what is explicitly
represented in their mental models of the situation; they assume that models of
the selection task in its original form usually explicitly represent P and, in some
cases, P and Q. The present analysis is not incompatible with this view; one
might say it provides a statistical justification for focusing on P, whether by
means of representation in a mental model or otherwise.

Oaksford and Chater (1994) have proposed a model of the selection task that
is similar in principle to this analysis, according to which people should make
selections so as to maximise their gain in information regarding the tenability of
the hypothesis that the conditional, “If P then Q”, is true relative to the tenability
that it is false. They define the information gained from observing the back of
a given card in terms of Shannon’s measure and argue that, on their
assumptions—notably that the properties described by P and Q are rare—the
expected information gain for card selections is ordered as P > Q > ~Q > ~P,
which corresponds to the ordering that people’s selections often follow (and to
the ordering produced by the present analysis).

Evans and Over (in press) question the plausibility of Oaksford and Chater’s
information measure as an indication of the value of what one learns by turning
over cards in the selection task, but they support the general idea that selections
should be influenced by what one expects to learn from them. For present
purposes, more important than a precisely defined measure of information gain
(or expected gain) or the exact ordering of cards in terms of their expected
informativeness, is the point that it is reasonable to assume that beliefs about the
relative commonality of specific entities or properties in the world will translate
into different expectancies as to what the turning of specific cards in the selec-
tion task will reveal.

The common failure to select both potentially falsifying cards in the selection
task has often been interpreted as evidence that many people tend to look only or
primarily for directly confirming evidence and not for evidence that would
disconfirm or falsify, and that they do not consider looking for falsifying in-
formation as an indirect means of confirmation. Persistence in failing to select
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PUZZLES OF CONFIRMATION 23

both potentially falsifying cards even after the falsification principle has been
explained (Wason, 1969; Wason & Johnson-Laird, 1972; Wason & Shapiro,
1971), and sometimes even when people have been instructed specifically to
attempt to demonstrate the conditional assertion to be false (Wason & Golding,
1974), might seem to support this view.

Because both P and ~Q have the potential to yield either confirmatory or dis-
confirmatory information, one must be cautious about taking the selection of
either of these as a compelling reason to conclude that the selector is looking for
a particular type of evidence. However, the justification for focusing primarily
on P is very strong. As the preceding analysis shows, if disconfirmatory
evidence exists, one is much more likely to find it by inspecting P, than by
inspecting ~Q, on the generally plausible assumption that P is much smaller
than ~Q. And, although either P or ~Q could conclusively disconfirm the
hypothesis, only P could yield evidence that is (relatively) strongly confirmatory
(PQ), whereas ~Q could yield confirmatory evidence, but only of the indirect
“white-shoe” variety (~Q~P).

None of this is to deny that when participants in a selection-task experiment
interpret their task to be to specify which of the four cards in view must be
turned over in order to determine the truth or falsity of the assertion with respect
to those four cards, they should select the card showing P and the one showing
~Q; this is what logic demands. The evidence that many people do not
understand the logic of the situation appears to be quite strong. The point here
is that the behaviour that appears to be irrational—perhaps is irrational—in the
context of the task when interpreted in this way can be seen as being based on
principles that make sense when the task is interpreted as that of indicating
which of the four types of cards represented should be turned over in order to
determine the truth or falsity of the assertion in general, which seems more
representative of the types of hypothesis testing that one is likely to want to do
in the everyday world.

SOME EMPIRICAL FINDINGS

The discussion to this point has been largely speculative. The conjecture that the
choices people make in the selection task may be determined, in part, by extra-
logical factors, such as the relative sizes of the sets involved and the presumed
relative informativeness of different possible observations in real-world analogs
of the laboratory task, is invited by theoretical considerations alone. The same
considerations make Hempel’s paradox seem less paradoxical than it otherwise
might. Thanks to some recent attempts by several investigators to begin to
bridge the considerable gap between the literature on reasoning and that on
decision making, there are some empirical findings that relate to the conjecture.

The idea that the choices people make should be guided by considerations of
subjective expected utility, which is ubiquitous in the literature on decision
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24 NICKERSON

making, has not been very prominent in the literature on reasoning. However,
some investigators of reasoning have begun to argue that performance on
reasoning problems, and in particular on the selection task, cannot be accounted
for adequately without reference to what are usually thought of as decision-
theoretic constructs (Kirby, 1994a,b; Manktelow & Over, 1991, 1992).
Oaksford and Chater (1995, p.133) suggest that the selection task “poses a
problem of optimal data selection, rather than a problem of logical inference, as
is frequently assumed”.

I have already noted that Oaksford and Chater (1994) have proposed a model
of the selection task according to which people should make selections so as to
maximise their gain in information regarding the tenability of the hypothesis that
the conditional under consideration is true relative to the tenability that it is false.
Kirby (1994a) makes a distinction between inferential  and choice processes, and
contends that both types must be taken into account to explain performance of
the selection task. Choices, he suggests, may be influenced by a variety of non-
inferential factors such as their likely costs and benefits and certain response
biases (matching bias, attentional bias). The fact that one fails to select a
logically normative card in any given instance of the selection task is not
compelling evidence that one does not understand the possibility  that that card
contains disconfirming information; it could be, he argues, that one simply
considers the disconfirming outcome to be unlikely or unimportant.

Among the more important findings, vis-a-vis the speculations in this article,
is that of a direct relationship between the size of the set defined by P and the
probability that participants in the selection task would choose to check the
alternative representing ~Q. Kirby (1994a) hypothesised that—assuming the
objective of identifying cards that show the rule under consideration to be false—
people may fail to select the ~Q option because the probability of finding a
disconfirming instance by checking the ~Q alternative may, in many cases, be
judged to be small, relative to the probability of finding one by checking the P
alternative. Reasoning that selection of a specific card should become more
likely as the odds of finding disconfirming information on the back of that card
increase, he varied the size of the set identified by P and found the predicted
relationship between the size of this set and the relative frequency with which
people selected ~Q.

Kirby’s interpretation of this result was challenged by Over and Evans (1994)
and defended by Kirby (1994b), but the challengers did not argue that outcome
probabilities have no effect on selections. They cited results obtained by Pollard
and Evans (1983), who made participants aware of the probabilities of combina-
tions on cards through a learning task and then found that ~Q selections
increased with the probability that the conditional assertion was false, as
supportive of Kirby’s hypothesis.

Further support for the idea that expectations regarding outcomes can affect
selections comes from a study by Love and Kessler (1995) who varied task
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PUZZLES OF CONFIRMATION 25

scenarios and instructions in such a way as to lead participants to have different
beliefs about the probability that P and ~Q would co-occur. The greater the
probability of co-occurrence, the more likely participants were to select P and
~Q. An investigation by Platt and Griggs (1995) of the effect of P-set size on
probability of selection of ~Q yielded negative results; but in this study, Platt
and Griggs used explicated statements and had participants give a reason for
each of the cards they selected or decided not to select, and these conditions
yielded relatively high rates of selection of ~Q independently of other factors.
The effects of relative set sizes on performance of the selection task seem
certain to be the focus of further research.

In the attempt to bring decision-theoretic notions to bear on the study of
conditional reasoning, investigators have begun to focus not only on outcome
probabilities, but on utilities as well (Kirby, 1994a; Love & Kessler, 1995;
Manktelow & Over, 1990, 1991, 1992). The results that have been obtained in
this regard are not so relevant to the present discussion, but they demonstrate
the importance of utilities to an understanding of conditional reasoning,
especially deontic reasoning.

CONFIRMATION OF CONFLICTING CLAIMS BY
THE SAME EVIDENCE

As noted earlier, according to the equivalence condition, as stated by Hempel,
the observation of a white shoe should be taken as confirmatory evidence both
for the claim that all ravens are black and for the contradictory claim that all
ravens are red. It may seem obvious that the same data cannot be confirmatory
for each of two mutually exclusive hypotheses. Poundstone (1990) takes this
position in a discussion of Hempel’s paradox. He uses a red herring rather than
a white shoe in his argument, but that is an inconsequential difference. He points
out that if one accepts Hempel’s argument that a red herring should be taken as
evidence that all ravens are black, it must also be taken as evidence that all
ravens are white, because it confirms the assertion, “All nonwhite things are
nonravens”, which is the contrapositive of “All ravens are white”. “An observa-
tion cannot confirm two mutually exclusive hypotheses”, Poundstone argues
(1990, p.26):

Once you admit such a patent contradiction, it is possible to “prove” anything. The
red herring confirms that the color of all ravens is black, and that that color is
white; ergo:

Black is white. QED.

In fact it is not the case that admitting that the same evidence can confirm two
mutually exclusive hypotheses necessarily leads to logical chaos. When Bayes’s
rule is used to evaluate a set of three or more mutually exclusive hypotheses,
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26 NICKERSON

it is not unusual for more than one of the hypotheses to increase in probability
following a given observation. It is easy to see how this can be the case.

Assume that an urn contains red and white balls, that the proportion of red
balls is known to be, 0.1, 0.8, or 0.9, and that the three possibilities, which will
be denoted H1, H2, and H3, respectively, are assumed to be equally probable,
p = 0.333, a priori. It will perhaps be intuitively obvious that the random
drawing of a red ball should decrease the plausibility of the first hypothesis and
increase the plausibility of both of the others; in fact, applying Bayes’s rule
following the drawing of a single red ball yields posterior probabilities for H1,
H2, and H3 of 0.056, 0.444, and 0.500, respectively, which represents an
increase for both H2 and H3. So at least according to one highly regarded
approach to probabilistic reasoning, it is not impossible, or even necessarily
unusual, for the same bit of data to be confirmatory of mutually exclusive
hypotheses, and our intuitions are not, I think, offended by the example given
to illustrate the point.

The idea that observation of a white shoe constitutes evidence that is
confirmatory for the hypothesis that all ravens are black may be difficult to
accept, for a variety of psychological reasons, but, at least to a Bayesian, the fact
that acceptance of this idea requires that one see the same observation as
confirmatory with respect to conflicting hypotheses as well should be no im-
pediment. Perhaps even many nonBayesians will find it easy to see, intuitively,
how the same data might, in some situations, increase the plausibility of two or
more competing hypotheses, only one of which can be correct. To make intuitive
sense of this it helps to bear in mind that it is possible to confirm (in the
incremental sense, though not in the absolute sense) hypotheses that are not true,
and to assume that if an unbiased search for evidence is continued, the
confirmation of a false hypothesis is likely to be short-lived.

THE ROLE OF WORLD KNOWLEDGE

The statistical resolution of Hempel’s paradox rests on the notion of degrees of
confirmation. According to this view, the observation of a white shoe, or any
nonblack nonraven, is confirmatory of the claim that all ravens are black, but
only to a very small degree relative to the amount of confirmation obtained by
the observation of a black raven. Hempel acknowledged that this view may have
some merit under certain conditions, but dismissed it as a general resolution, in
part because it may not always be easy to determine that the class of ~Qs is
much more numerous than the class of Ps.

In fact, however, we often do have knowledge of—or can make plausible
assumptions about—the relative sizes of classes of interest. And there can be
little doubt that this knowledge, or these assumptions, figure prominently in our
reasoning about the world. Moreover, usually the complement of a natural class
of interest (class of interest being identified by either the subject or predicate in
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PUZZLES OF CONFIRMATION 27

a universal statement) is not a single natural class but is composed of (is the
union of) many natural classes. If this conjecture is true, then when people focus
on the natural class that is named by the subject of a universal assertion, rather
than on the class defined by the complement of the predicate, they are making
efficient use of their cognitive resources.

Our knowledge of the world that is likely to influence our reasoning about
classes of objects is not limited to the relative sizes of some of those classes. A
propos the raven paradox, we know, for example, that birds of a given species
usually are coloured alike. Having seen a few birds—or even a single bird—of
an unfamiliar species for the first time, we are likely to assume that all birds of
that species are coloured as the one(s) we have seen. Thagard and Nisbett (1982/
1993) apply this fact to the raven paradox. Starting with the assumption that the
degree to which an observation confirms a generalisation in the mind of an
observer depends on the observer’s background knowledge of variability among
the kinds of entities involved, they argue that the observation of a black raven
is more confirmatory of the generalisation “All ravens are black” than is the
observation of a white shoe, because of the disparity of the observer’s know-
ledge of birds and all things other than black ravens. According to Thagard and
Nisbett (1982/1993, p.63):

Our background knowledge tells us that ravens are kinds of birds, and black is a
kind of color, and that birds are fairly invariant with respect to color. However, we
have no analogous background knowledge about nonblack things and nonravens.
“Nonblack” and “nonraven” are not kinds of anything. With those properties, we
are relegated to doing the kind of induction by simple enumeration which requires
us to gather very many instances before we can have any confidence that we have
more than an accidental correlation. In contrast, “raven” and “black” fit into our
knowledge system in such a way that we can use information about variability of
kinds to establish a high degree of confirmation on the basis of relatively few
instances. This, in addition to size of the relevant classes, allows us to judge that
“All ravens are black” is much better confirmed by a black raven than “All
nonblack things are nonravens” is confirmed by a white shoe.

CONFIRMATION AND CONDITIONAL REASONING
IN EVERYDAY LIFE

In real-world situations, we are less likely, I suspect, to be interested in the truth
or falsity of universal statements than in that of near-universal statements.
Excepting logical or mathematical tautologies, and fundamental laws of physics,
universal statements are not, as a rule, true statements of how things are. It is
probably not true, for example, that all ravens are black—that every single raven
that exists is black. Almost certainly there exists somewhere an albino raven.
More likely there are many of them.
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28 NICKERSON

In everyday language, we often use “all” to mean “all or nearly all”, or “a
very large percentage”. And, for practical purposes, the knowledge or
assumption that nearly all Xs, or a very large percentage of Xs, are Ys is as
useful, or very nearly as useful, as knowing that all of them are.

“All”, taken literally, and “nearly all” have quite different implications for
confirmation and falsification, however. I would be reluctant to bet on the truth
of the claim that literally all ravens are black, no matter how many black ravens
I had seen without encountering a single one of another colour. My confidence
in the truth of the claim that nearly all—most, a very high percentage of—
ravens are black could get quite high if I had seen a great many ravens all of
which were black. Conversely, observation of a single nonblack raven is enough
to convince me that the claim that all ravens are black is false; however, the
sighting of one or a few nonblack ravens will not necessarily shake my
confidence in the truth of the claim that nearly all ravens are black, provided my
sample is large enough to be considered representative of the general population
and the percentage of the nonblack ravens in it is small.

Also, we cannot, for practical purposes, consider confirmation an all-or-none
affair as it applies to everyday matters. Many of the questions that concern us are
not questions that we can expect to be able to answer with certainty. The truth or
falsity of many of the assertions that we wonder about cannot be determined
beyond doubt. Each of us believes some things more strongly than others, and,
presumably, rightly so. The evidence of the tenability of beliefs is more
compelling in some cases than in others. This is true of beliefs involving
universal claims and of those involving near-universal claims as well.

EVERYDAY REASONING, HEMPEL’S PARADOX,
AND WASON’S SELECTION TASK

According to Popper’s logic of falsifiability, the best way to test the credibility
of universal, or near-universal, claims typically is to look for—try to think of—
exceptions to them. I believe that we often do just this, and that people have an
intuitive grasp of the principle that a single counterexample suffices to show a
universal claim to be false. What is more natural than pointing out counter-
examples to generalisations we wish to contest? This is not to suggest that
everyone who uses the principle is highly conscious of doing so, or can
verbalise it in precise terms. However, when we find an exception to a universal
claim, we know the claim to be false; in the case of near-universal claims, the
easier it is to find exceptions, the less credibility we give to the claims.
(“Exception” is a bit of a misnomer as applied to near-universal claims—a white
raven would not literally constitute an exception to the claim that nearly all
ravens are black—but the term is used loosely here to connote an observation
the possibility of which is denied by the universal claim and the probability of
which is implied to be low by the near-universal claim.)
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PUZZLES OF CONFIRMATION 29

Hempel’s paradox is seen as a paradox, in part, because looking for an
exception to the claim that all ravens are black by searching the class of
nonblack things is such an obviously unpromising way of finding a nonblack
raven if one exists. Generally, when one has the goal of deciding whether or not
to accept a universal, or near-universal, claim, a search is much more likely to
turn up exceptions, if they exist, if it is conducted on the class identified by the
subject in a categorical statement or on the class identified by the antecedent in
a conditional statement; there are exceptions to this rule, but they are
exceptions.

Our tendency to focus on these classes is justified, according to this view, by
practical considerations. Searching the class identified by the complement of the
predicate term of a categorical statement or by the complement of the con-
sequent of a conditional statement would typically be enormously more time
consuming and effortful, or, for the same expenditure of time and effort, it
would yield a very much smaller return.

But, on the principle that a case of a hypothesis supports that hypothesis, it
makes sense to look not only for exceptions to a hypothesised rule, but also for
incrementally confirmatory instances. I believe we do that too, and, indeed, that
we are more inclined to look for confirmatory cases than for disconfirming ones.
It seems safe to assume that for most of the generalisations one would be
interested in evaluating in meaningful contexts, the class designated by the
subject of a categorical assertion or the antecedent of a conditional is smaller
than that designated by the predicate of a categorical assertion or the consequent
of a conditional—and therefore more likely to yield a confirmatory case—and
very much smaller than the complementary classes, so very much more likely to
yield confirmatory evidence than they. This, coupled with the fact that, of the
smaller classes, P and Q, only P can yield disconfirming evidence, makes P a
more promising class to search, by far, than any of the others.

In sum, when the selection task can reasonably be interpreted as the
specification of which of four cards must be turned over in order to determine
whether the conditional assertion in question is true in general, the tendency to
focus much more on P than on any of the other possibilities is quite consistent
with—perhaps even predicted by—the assumption that people are searching for
information in a relatively efficient, possibly optimal, way. When it is clear that
the task is understood to be to indicate which of the cards must be turned over in
order to determine the truth or falsity of the assertion in question with respect
only to those four cards, the extra-logical considerations do not apply. In this
case, the (only) correct response is selection of P and ~Q. When people under-
stand the task in the latter way and, nevertheless, make selections other than P
and ~Q, or fail to select the second of these, it could be because they have a poor
understanding of logic; however, it could also be that they, somewhat
uncritically, carry over to laboratory situations approaches to reasoning prob-
lems that have proved to be highly effective in everyday life.
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30 NICKERSON

A final conclusion to be drawn from these considerations is that if one wants to
get unambiguous results from performance of one or another version of the
selection task, it is imperative that it be clear to those who are asked to perform it
which of the possible interpretations of the task is intended. In fact there are more
interpretations than the two mentioned here (Platt & Griggs, 1995), but
distinguishing between the general and specific interpretations suffices for
present purposes.
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Revised manuscript received 31 January 1996
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