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Abstract

The best accuracy arguments for probabilism apply only to credence functions with
finite domains, that is, credence functions that assign credence to at most finitely many
propositions. This is a significant limitation. It reveals that the support for the accuracy-
first program in epistemology is a lot weaker than it seems at first glance, and it means
that accuracy arguments cannot yet accomplish everything that their competitors, the
pragmatic (Dutch book) arguments, can. In this paper, I investigate the extent to which
this limitation can be overcome. Building on the best arguments in finite domains, I
present two accuracy arguments for probabilism that are perfectly general—they apply
to credence functions with arbitrary domains. I then discuss how the arguments’ premises
can be challenged. We will see that it is particularly difficult to characterize admissible
accuracy measures in infinite domains.

Introduction

Probabilism is the principle that it is irrational to have credences that violate the axioms
of probability theory. What reason is there to accept this principle? There is an influential
argument, which has its roots in results due to de Finetti (1974), based on the idea that
probabilism promotes accuracy. There is a precise sense in which non-probabilistic credence
functions are less accurate than probabilistic ones. So, the argument goes, insofar as it is
irrational to have inaccurate credences, there is good reason to accept probabilism.

Several variations of this accuracy argument for probabilism have been developed over the
years, but there is a major gap in all of the arguments that have been most influential in the
philosophical literature: they all assume that credence functions have finite domains.1 The
domain of a credence function is a collection of propositions. To say that a credence function
has a finite domain is to say that it assigns credences to at most finitely many propositions.
To say that a credence function has an infinite domain is to say that it assigns credences to
infinitely many propositions.

It is widely accepted that rationality does not preclude credence functions with infinite
domains. Consider that probability functions with infinite domains are ubiquitous throughout
the sciences. If there are some circumstances in which it is rationally permissible to align
one’s credences with such scientifically approved probabilities, then credence functions with

1I have in mind Joyce (1998, 2009); Predd et al. (2009); Pettigrew (2016a, 2022).
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infinite domains are permissible. And it seems very plausible that there are circumstances
in which it is permissible to align one’s credences with the probabilities endorsed by science.
This is a very weak claim. To deny it would be to claim that rationality always forbids
aligning one’s credences with the probabilities used by scientists. As far as I know, no one
defends this.

But if credence functions can have infinite domains, then accuracy arguments give us
little reason to accept probabilism in general. The most that the arguments show is that
probabilism promotes accuracy in certain special cases, namely for credence functions with
finite domains. If an agent finds herself in a circumstance in which she has credences in
infinitely many propositions, then, for all the accuracy arguments show, there is no reason
for her to obey the axioms of probability.

This gap in the accuracy arguments has been pointed out elsewhere. In his book on
accuracy and credence, Richard Pettigrew identifies infinite domains as the first of several
open problems for future research (2016a, p. 222). But I think Pettigrew undersells the
problem that infinite domains pose.

Pettigrew uses accuracy arguments not only to justify particular principles like probabil-
ism but also to defend a sweeping program in epistemology called accuracy-first.2 According
to the accuracy-first program, accuracy is the fundamental epistemic good. Many will agree
that it’s good to have accurate credences and that it’s also good to have credences that
are probabilistic. But, according to accuracy-firsters, the goodness of accuracy is basic,
whereas probabilism is good because it promotes accuracy. And what goes for probabilism
goes in general: the principles of rationality promote accuracy. This is the claim with which
accuracy-first program stands or falls.3

The main support for the accuracy-first program is of an inductive variety.4 The accuracy-
firster selects a particular principle of rationality and argues that it promotes accuracy. As
successful instances of such arguments multiply, the accuracy-firster’s view that every prin-
ciple of rationality promotes accuracy becomes more plausible. Surveying the literature,
one gets the impression that the inductive base of this argument is strong. Since Joyce’s
(1998) accuracy argument for probabilism, research in the accuracy-first program has flour-
ished, producing arguments for conditionalization5, the principal principle6, the principle of
indifference7, and more.8

But how much support do these arguments really lend to the accuracy-first program? In
view of the gap between finite and infinite domains, arguably not very much. For accuracy

2I discuss accuracy-first only as it applies to credences and not as it applies to full belief. For a defense of
the latter, see Goldman (2002, ch. 3).

3What I and Pettigrew (2022) call “accuracy-first” is closer to what Pettigrew (2016a) calls “veritism.”
According to what Pettigrew (2016a, p. 29) calls “accuracy-first,” there may be rational principles—for
example, the principle that one ought to respect one’s evidence—that do not promote accuracy in general;
but when there are conflicts between principles that promote accuracy and those that do not, the accuracy
promoting principles have priority. The distinction between this version of accuracy-first and veritism is
mostly irrelevant for my purposes because the two views agree that “non-evidential” principles like probabilism
promote accuracy.

4Pettigrew (2016a, pp. 6–8)
5Greaves and Wallace (2006); Leitgeb and Pettigrew (2010); Briggs and Pettigrew (2020).
6Pettigrew (2013).
7Pettigrew (2016b).
8Many of these arguments are given in Pettigrew’s (2016a) book.
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arguments do not show that probabilism promotes accuracy, as they are supposed to do.
What they show is that probabilism promotes the accuracy of credence functions with finite
domains. At best, then, the accuracy arguments for probabilism support only a highly
qualified version of accuracy-first—that accuracy is the fundamental epistemic good for agents
with credences in at most finitely many propositions. This is a far cry from what accuracy-
firsters claim.9

Because of this, I would argue that the problem of infinite domains does not represent
merely one of “the ways in which the [accuracy-first] project may be extended” (Pettigrew,
2016a, p. 221). Rather, the restriction to finite domains severely limits the support for the
accuracy-first program that accuracy arguments for probabilism are supposed to provide.

There is another reason the gap between finite and infinite domains is important. Part of
the accuracy argument’s initial appeal comes by way of contrast with the pragmatic (“Dutch
book”) arguments championed by Ramsey (1931) and de Finetti (1974). Joyce writes, for
example, “The pragmatic character of the Dutch book argument makes it unsuitable as an
‘epistemic’ justification of the fundamental probabilist dogma that rational partial beliefs
must conform to the axioms of probability” (1998, p. 575). Whatever one thinks of the
justificatory powers of pragmatic arguments, it is clear that, in infinite domains, they fare
much better than accuracy arguments. De Finetti’s Dutch book argument for probabilism
is perfectly general; it applies to any credence functions whatsoever, not only to those with
finite domains.10 And a number of other pragmatic arguments extend to infinite domains as
well.11 Insofar as accuracy arguments for probabilism are meant to replace or compete with
pragmatic arguments, then, it is important to see them extended to infinite domains.

That is what I will do in this paper. I will develop two accuracy arguments for probabilism
that apply to credence functions with arbitrary domains. I begin, in the next section, by
outlining the general structure of accuracy arguments.

1 The Structure of Accuracy Arguments

All accuracy arguments for probabilism have a similar form, which consists of three compo-
nents (Pettigrew, 2022). First, there is a premise that specifies which measures of accuracy
are admissible. Second, there is a normative premise that connects rationality and the pro-
motion of accuracy. Third, there is a mathematical theorem showing that non-probabilistic
credence functions fail to promote accuracy. It then follows that non-probabilistic credence
functions are irrational.

There is fairly widespread agreement among purveyors of accuracy arguments about how
to flesh out normative premises. Start by saying that a credence function fails to promote
accuracy if there is a second credence function that is more accurate than it in every possible

9What about accuracy arguments for principles other than probabilism? Do they too apply only to cre-
dences with finite domains? One can run accuracy-first arguments for conditionalization in infinite domains
using the results in Easwaran (2013) and Huttegger (2013). But these results assume that credences are prob-
abilistic from the outset (this is explicit on p. 121 of Easwaran’s paper and on p. 416 of Huttegger’s). Since
an argument is only as strong as its weakest premise, and since there is no accuracy argument for probabilism
in infinite domains, it’s not clear that these arguments for conditionalization lend much additional support to
the accuracy-first program.

10For a detailed discussion, see Nielsen (2021c).
11See, for instance, Rescorla (2018), Huttegger and Nielsen (2020), and Nielsen (2021a).
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world. We say that the second credence function accuracy-dominates the first. The first
normative premise that we will consider says that a credence function is irrational if, according
to any admissible measure of accuracy, it is accuracy-dominated. In section 3.1, we will
consider an objection to this premise as well as an alternative normative premise.

There is less agreement about how to handle the accuracy arguments’ first component.
The disagreement is over how to answer the question, What properties characterize the
measures of accuracy that are admissible when it comes to assessing the rationality of credence
functions? I will delay giving any answers to this question until the next section of the
paper, where we develop a formal framework in which the question can be answered precisely.
Admissible inaccuracy measures will also be discussed at length in 3.2.

This leaves the mathematical theorems, which we will refer to as accuracy-dominance
theorems. In order to conclude that probabilism is a general principle of rationality, accuracy
arguments require a theorem with the following form.

General accuracy-dominance theorem According to any admissible measure of accu-
racy, every non-probabilistic credence function is accuracy-dominated by some proba-
bilistic credence function.12

However, no accuracy-dominance theorem like this has ever been established. The best
theorems on offer have the following form.

Finitary accuracy-dominance theorem According to any admissible measure of accu-
racy, for credence functions with finite domains, every non-probabilistic credence func-
tion is accuracy-dominated by some probabilistic credence function.

Because the best accuracy-dominance theorems apply only to credence functions with
finite domains, they do not in fact support probabilism. At best, an accuracy argument that
uses a finitary accuracy-dominance theorem supports the principle that it is irrational for a
credence function with a finite domain to violate the axioms of probability theory. Obviously,
this principle is much weaker than probabilism.

In order to bridge the gap between what accuracy arguments seek to establish (prob-
abilism) and what they actually establish (probabilism for credence functions with finite
domains), a general accuracy-dominance theorem is needed. I will provide such a theorem in
the next section.

2 An Accuracy Argument for Probabilism

In this section, I will present the paper’s first accuracy argument for probabilism. The form
of the argument was sketched in the previous section. Here, I will fill in the argument’s
details, starting with formal definitions of the concepts introduced above (2.1). A general
accuracy-dominance theorem, which is the argument’s main innovation, is then stated in 2.2.

12A theorem with this form actually proves more than needed, given our current normative premise. To show
that non-probabilistic credence functions are irrational, we need only show that they are accuracy-dominated
by some credence function, whether probabilistic or not. We focus our attention on the stronger result for
three reasons: (1) the literature is mainly concerned with results of this form, (2) the stronger result is more
interesting from a purely mathematical point of view, and (3) the added strength will be useful when we
consider an objection to our normative premise in 3.1.
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2.1 Formal Framework

In this subsection, we define (probabilistic) credence functions (2.1.1), admissible inaccuracy
measures (2.1.2), and accuracy-dominance (2.1.3). The section concludes by recalling the
normative premise of the paper’s first argument for probabilism.

2.1.1 Credence Functions

Let W be a set of worlds that are epistemically possible for an agent. Subsets of W are called
propositions. The set of all propositions (the powerset of W ) is denoted by 2W . A credence
function c is function from propositions to numbers in [0, 1], that is c : 2W → [0, 1].13 The
number c(A) represents an agent’s confidence that the proposition A is true.

A credence function c is called probabilistic iff it has the following properties.

Normalization c(W ) = 1.

Additivity If A and B are disjoint propositions, then c(A ∪B) = c(A) + c(B).14

An example of a probabilistic credence function is the valuation function at world w, defined
by

vw(A) =

{
1, if w ∈ A

0, if w /∈ A.
(1)

Let C be the set of all credence functions, and let P be the set of all probabilistic credence
functions.

If W = {w1, ..., wn} is finite, then so is 2W . In fact, |2W | = 2n. This allows us to identify
credence functions with vectors in R2n . In particular, C = [0, 1]2

n
. WhenW is finite, then, the

analysis of credence functions is just the analysis of familiar Euclidean space. If W is infinite,
we still have C = [0, 1]2

W
, but now this space has infinite dimension, which complicates the

analysis.

2.1.2 Admissible Inaccuracy Measures

Up to this point, I have been speaking of measures of accuracy. It is more common, however,
to measure inaccuracy in the formal framework. Formally, an inaccuracy measure J is a
function from C × W into the extended half-line [0,∞],15 that is J : C × W → [0,∞].16

An inaccuracy measure represents how inaccurate a credence function is in a possible world.
Given an inaccuracy measure J , one can think of −J as an accuracy measure, and vice
versa. So there is no harm in shifting the focus from accuracy to inaccuracy.

One inaccuracy measure that has received a lot of attention is the Brier score, which was
used by de Finetti to establish the first accuracy-dominance theorems.

13The arguments in this paper can be adapted to credence functions defined on an algebra of subsets of
W by introducing various measurability requirements. I have avoided this generalization in order to ease the
exposition.

14 This is finite additivity. It would certainly be interesting to investigate accuracy-based justifications for
countable additivity, but that project is beyond the scope of this paper. See Kelley (2021) for some partial
results.

15Since we are using extended-real numbers, it is worth reminding the reader that ∞−∞ is undefined.
16In order to adapt the argument to an arbitrary algebra of subsets of W , one would need to require J to

be measurable in a suitable algebra over C ×W .
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Brier score JBr(c, w) =
∑

A⊆W (vw(A)− c(A))2.

Notice that if W is finite, then the Brier score is bounded for each credence function c. That
is, for all c, there is some real number r such that JBr(c, w) ≤ r for every possible world w.
This is because the Brier score is real-valued ; it never attains the value ∞. So, for a fixed c,
we obtain the bound r by letting r = maxw JBr(c, w).

Other scoring rules are unbounded even when W is finite. For example:

Log score Jlog(c, w) = − log c({w}).

If c({w}) = 0, then the log score takes the value ∞.
We now return to the question of how to characterize admissible inaccuracy measures. I

will begin by following Pettigrew (2022), who makes two claims about admissible inaccuracy
measures in finite domains. First, he claims that the currently best accuracy arguments for
probabilism require only that measures of inaccuracy be strictly proper and continuous. These
properties will be defined momentarily. Second, he claims that weaker characterizations of
admissibility give rise to better accuracy arguments.17 The second claim is meant to be just
a logical point: the weaker an argument’s premises, the stronger the argument. We will
question these claims in section 3.2.

Let us look at the formal definitions of strict propriety and continuity. In order to define
strict propriety, we need some notation for mathematical expectation with respect to a prob-
ability function.18 If p is a probability function, and c is a credence function, let Ep(J (c))
be the expectation of the function J (c, ·) according to p. Strict propriety is then defined as
follows.

Strict propriety For all p ∈ P and all c ∈ C \ {p}, Ep(J (p)) < Ep(J (c)).

Intuitively, strict propriety requires that probabilistic credence functions are the unique min-
imizers of their own expected inaccuracy. In finite domains, the Brier score is strictly proper,
but the log score is not.19

Continuity is defined as follows.

Continuity For all p ∈ P, the function Ep(J (·)) is continuous on C.20

Both the Brier score and the log score are continuous in finite domains.

17Pettigrew (2022) begins his paper by arguing that the best accuracy-first argument for probabilism is based
on the accuracy-dominance theorem of Predd et al. (2009). In addition to strict propriety and continuity, Predd
et al. require accuracy measures to be additive (not to be confused with additivity for probability functions).
But Pettigrew claims to improve the Predd et al. theorem, and hence the argument for probabilism that it
supports, by dropping the additivity requirement.

18Section A of the appendix summarizes the theory of finitely additive expectation (integration) for extended-
real functions that I use in this paper.

19The log score is strictly proper when it is restricted to probabilistic credence functions on finite domains
but not when it is defined for all credence functions, as it is in this paper. For example, if c assigns credence
1 to every proposition, then it is non-probabilistic but has minimal expected inaccuracy.

20We equip C with the product topology, where [0, 1] has its standard topology. It follows that both C
and P are compact. I provide some details about convergence in the product topology in Section B of the
appendix. In finite domains, the definition of continuity is equivalent to the following: if w ∈ W , c ∈ C,
and (cn) is a sequence of credence functions such that limn→∞ cn(A) = c(A) for every proposition A, then
limn→∞ J (cn, w) = J (c, w).
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The general accuracy-dominance theorem that I will prove weakens both strict propriety
and continuity, and in that way is at least as good as the accuracy arguments that Pettigrew
considers best.21 On the other hand, my theorem relies on a third property that some may
wish to relax. This issue will be discussed more in section 3.2.1.

Here are the weaker properties that replace strict propriety and continuity, respectively.

Quasi-Strict Propriety An inaccuracy measure J is quasi-strictly proper iff Ep(J (p)) ≤
Ep(J (c)) for all p ∈ P and all c ∈ C, with strict inequality if c ∈ C \ P.

Continuity on P For all p ∈ P, the function Ep(J (·)) is continuous on P.

Unlike strict propriety, quasi-strict propriety does not require probability functions to be
unique minimizers of their own expected inaccuracy. It allows for Ep(J (p)) = Ep(J (p′))
provided p′ is probabilistic. A strict inequality is required only for non-probabilistic credence
functions. Continuity on P differs from continuity by allowing the function Ep(J (·)) to be
discontinuous on non-probabilistic credence functions.

The third property that we will need is the following.

Local boundedness on P For all p ∈ P, the function J (p, ·) is bounded on W .22

There are a few things to note about this new property. First, in finite domains, it is
satisfied by several common inaccuracy measures. As pointed out above, the Brier score is one
example. Second, local boundedness on P is much weaker than requiring J to be a bounded
function. We can see this in two ways. First, local boundedness on P allows the inaccuracy
measure J to be unbounded on P ×W .23 Second, it allows non-probabilistic credences to
have infinite inaccuracy. For all it says, there could be a non-probabilistic credence c and
world w such that J (c, w) = ∞. So, as boundedness properties go, this one is not exceedingly
strong.

We will say that an inaccuracy measure is admissible if it satisfies quasi-strict propriety,
continuity on P, and local boundedness on P.24

21Here I follow, Nielsen (2021b), which also corrects some errors in Pettigrew’s formal results.
22That is, supw∈W J (p, w) < ∞.
23That is, it allows supp∈P supw∈W J (p, w) = ∞. While for each probability function there is some bound

on how inaccurate it can be, different probability functions can have different bounds, and there is no uniform
bound for all of them.

24Do admissible inaccuracy measures exist in infinite domains? Yes. Here is a trivial example. For all
w ∈ W , let J (p, w) = 0 if p ∈ P, and let J (c, w) = 1 if c ∈ C \ P. Of course, one wonders what less trivial
examples might look like. Constructing such examples turns out to be a difficult mathematical problem,
which I have not been able to resolve completely. I thank Johannes Jahn and Daniel Daners for discussing
this problem with me. I can show, however, that the notion of admissibility used in this paper avoids the most
obvious triviality result. Let us say that an admissible inaccuracy measure J is trivial if either J is constant
on P × W or, for all c ∈ C \ P, every p ∈ P accuracy-dominates c (definition below). On this definition,
non-trivial, admissible inaccuracy measures exist for arbitrary W . Here is an example that Alex Pruss shared
with me. Fix w1, w2 ∈ W . For all p ∈ P, define J by

J (p, w) =
1

4

∑
A⊆{w1,w2}

(vw(A)− p(A))2.

It’s clear that J is locally bounded on P by 1, and, because J is defined on P by a finite sum, it follows that
J is continuous on P. The reader can use the standard proof that the Brier score is proper to verify that J
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2.1.3 Accuracy-Dominance

There are several notions of accuracy-dominance in the literature. We will focus on what
Predd et al. (2009) call strong accuracy-dominance.

Accuracy-dominance Let c and c′ be credence functions. We say that c accuracy-dominates
c′ (according to J ) iff J (c, w) < J (c′, w) for all worlds w.

In other words, c accuracy-dominates c′ if c is strictly less inaccurate than c′ in every possible
world.

As discussed in Section 1, accuracy arguments rely on a normative premise that connects
accuracy-dominance with rationality. We will start with the following normative premise,
taken from Pettigrew (2022).

Normative Premise for Probabilism If, according to every admissible measure of inac-
curacy, a credence function is accuracy-dominated, then it is irrational.

We will consider objections to this premise in section 3.1.

2.2 A General Accuracy-Dominance Theorem

We have two of the three components that we need for an accuracy argument for probabilism.
We have specified which inaccuracy measures are admissible, and we have a normative premise
connecting accuracy-dominance and rationality. The final component of our argument is the
following theorem.

Theorem 1. Let J be an admissible inaccuracy measure, and let c be a non-probabilistic
credence function. Then, there is a probabilistic credence function that accuracy-dominates c
according J .

Proof. See section C in the appendix.

If c is any non-probabilistic credence function, then, by Theorem 1 it is accuracy-dominated
according to any admissible measure of inaccuracy. By the Normative Premise for Proba-
bilism, c is irrational. So, probabilism follows: it is irrational for credences to violate the
axioms of probability theory.

is proper when restricted to P. Moreover, since J behaves exactly like the (normalized) Brier score when it is
restricted to probability functions supported by {w1, w2}, one can see that J is strictly proper when restricted
to probability functions supported by {w1, w2}. It follows that J is not constant on P ×W . Now, for every
c ∈ C \ P, let pc be a probability function supported by {w1, w2} such that pc({w1}) ∈ (0, 1), and define

J (c, w) =

{
J (pc, w1), if w = w1

2, otherwise.

By this definition, it is not the case that every c ∈ C \P is accuracy-dominated by every probability function.
So J is non-trivial. It remains to observe that J is quasi-strictly proper. It suffices to show that Ep(J (p)) <
Ep(J (c)) for all c ∈ C \ P and p ∈ P. The reader can verify this by considering three cases: (i) p ̸= pc and
p({w1}) < 1; (ii) p ̸= pc and p({w1}) = 1; (iii) p = pc. Hopefully, future work on this topic will focus more
attention on the existence and construction of non-trivial admissible inaccuracy measures.
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3 Discussion

This completes the presentation of the paper’s first accuracy argument for probabilism. The
first component of the argument is a premise characterizing the admissible inaccuracy mea-
sures as those satisfying quasi-strict propriety, continuity on P, and local boundedness on P.
The second component is the Normative Premise for Probabilism, and the third component
is Theorem 1.

Like de Finetti’s Dutch book argument for probabilism, this accuracy argument is to-
tally general. It applies to any credence functions whatsoever, not only to those with finite
domains. In developing the first two premises, however, we have relied quite heavily on Pet-
tigrew (2022), and it is certainly worth questioning some of the decisions we have made. We
will begin by raising an objection to our normative premise. This will lead us to the paper’s
second accuracy argument for probabilism.

3.1 Normative Premises

One might worry that the Normative Premise for Probabilism is too strong. Recall that
it says the following: If, according to every admissible measure of inaccuracy, a credence
function is accuracy-dominated, then it is irrational. The idea behind this premise is that
when a credence function is accuracy-dominated, it fails to promote accuracy, and failures
to promote accuracy indicate failures of rationality. The worry that the Normative Premise
for Probabilism is too strong arises by observing that while the argument from the previous
section concludes that non-probabilistic credence functions are irrational, it leaves open the
question whether probabilistic credence functions are irrational as well. That is, nothing we
said in section 2 rules out the possibility that probabilistic credence functions, in addition
to non-probabilistic ones, are accuracy-dominated and therefore irrational. If probabilistic
credence functions turned out to be accuracy-dominated, this would provide a means for
arguing that the Normative Premise for Probabilism is too strong. Arguably, a normative
premise according to which all credence functions are irrational is heavy-handed.

Pettigrew (2016a, 2.1) suggests a way of pressing this objection directly with a concrete
example. Let {cx : x ∈ (0,∞)} be an enumeration of the credence functions defined on W =
{w1, w2}, and suppose that the only admissible inaccuracy measure is defined by J (cx, w) = x
for every x ∈ R and w ∈ W .25 Then, every credence function, including the probabilistic ones,
is accuracy-dominated: if x < y, then cx accuracy-dominates cy. But, arguably, it would be
incorrect to conclude that every credence function in this example is irrational. Since every
credence function is accuracy-dominated anyway, the best any agent can do is adopt some
cx, with x “very small”—and perhaps this is enough to avoid charges of irrationality. But
this line of thought tells against the Normative Premise for Probabilism, which forces us to
say that every credence function in the example is irrational.

In response, one might complain about the artificiality of the example. No one thinks,
for instance, that the J defined therein might be the only admissible inaccuracy measure.
In response to this, however, one might insist that normative premises be evaluated inde-
pendently of an accuracy argument’s admissibility component: what’s needed is a normative
premise that’s plausible regardless of which inaccuracy measures are counted as admissible.

25This is a variation on the Name Your Fortune example given by Pettigrew (2016a, p. 20).
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Although I can’t settle once and for all what the correct normative premise is, I think the
concerns raised above are troubling enough to consider weakening the Normative Premise for
Probabilism. A standard way of weakening the Normative Premise for Probabilism invokes

Weak accuracy-dominance Let c and c′ be credence functions. We say that c weakly
accuracy-dominates c′ (according to J ) iff J (c, w) ≤ J (c′, w) for all worlds w and
J (c, w) < J (c′, w) for some world w.

We now consider the following normative premise.

Weak Normative Premise If, according to every admissible measure of inaccuracy, c is
accuracy-dominated by some c′, and c′ is not weakly accuracy-dominated by any cre-
dence function, then c is irrational.26

Unlike the previous Normative Premise for Probabilism, the Weak Normative Premise
does not entail that every credence function in the example above is irrational because,
although every credence function cx in the example is dominated by some cy with y < x,
the dominating credence function cy is itself dominated by another cz with z < y. The
Weak Normative Premise also has some intuitive appeal. A credence function might not be
irrational when it’s accuracy-dominated since every credence function might be accuracy-
dominated (as the example suggested). But if there are credence functions that aren’t even
weakly accuracy-dominated, and one of them accuracy-dominates c, then this provides better
grounds for declaring c irrational.

If we simply replace the Normative Premise for Probabilism with the Weak Normative
Premise, then we no longer have a valid argument for probabilism. Theorem 1 doesn’t
show enough for us to conclude that non-probabilistic credence functions are irrational. All
it shows is that every non-probabilistic credence function is accuracy-dominated by some
probabilistic credence function. In order to apply the Weak Normative Premise, we need
to know that probabilistic credence functions aren’t weakly accuracy-dominated. The next
result establishes this.

Theorem 2. Let J be an admissible inaccuracy measure, and let p be a probabilistic credence
function. Then, there is no credence function that weakly accuracy-dominates p according J .

Proof. See section D in the appendix.

With Theorem 2 in hand, we now have a valid argument for probabilism that uses the
Weak Normative Premise. According to any admissible measure of inaccuracy, if c is a
non-probabilistic credence function, then, by Theorem 1 it is accuracy-dominated by some
probabilistic credence function. Probabilistic credence functions, in turn, are not even weakly
accuracy-dominated (Theorem 2). By the Weak Normative Premise, c is irrational. That is,
probabilism holds. This is the paper’s second accuracy argument for probabilism.27

26This is similar to what Pettigrew (2016a) calls Undominated Dominance (p. 22).
27It is worth remarking that the admissibility hypothesis in Theorem 2 can be weakened. An inspection of

the theorem’s proof reveals that local boundedness on P is not used. So Theorem 2 continues to hold under
the weaker assumption that J is quasi-strictly proper and continuous on P.
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3.2 Admissibility

Let us now revisit the first component of our accuracy arguments, which characterizes the
admissible inaccuracy measures. We began by following Pettigrew (2022) in asserting that
the best accuracy arguments require only strict propriety (or something weaker) and conti-
nuity (or something weaker). We have also made the additional assumption that admissible
inaccuracy measures are locally bounded on P. The notion of admissibility characterized by
quasi-strict propriety, continuity on P, and local boundedness on P can be criticized in a
number of ways. My discussion of these criticisms will set continuity aside, as I have nothing
to add to the detailed discussion in Pettigrew (2016a, 4.2). To my mind, quasi-strict propriety
and local boundedness on P are the more interesting and controversial properties.

3.2.1 Local Boundedness on P

The first objection I will consider is that requiring local boundedness on P makes our notion
of admissibility too exclusive. In finite domains, local boundedness on P rules out inaccuracy
measures that allow probabilistic credence functions to be infinitely inaccurate. As discussed
in section 2.1.2, the log score is one such inaccuracy measure. Ruling it out might strike some
as too restrictive. (But it should be noted that this particular version of the objection is not
available to proponents of strict propriety because the log score is not strictly proper.)

I do not have a principled defense of local boundedness on P. Frankly, it’s a technical
assumption that’s needed in the proof of Theorem 1. As remarked at the end of the previous
section, however, local boundedness on P is not needed in the proof of Theorem 2. This raises
the question whether local boundedness on P is necessary for the conclusion of Theorem 1 to
hold: Is there an inaccuracy measure J that is not locally bounded on P according to which
every non-probabilistic credence function is accuracy-dominated by a probabilistic credence
function? The answer to this question is affirmative, as a simple example will illustrate.
Assume that |W | ≥ 2, and let w′ ∈ W . Let p′ be some probabilistic credence function that
assigns {w′} probability 0, and define J by

J (c, w) =


1, if c ∈ C \ P;

0, if c ∈ P \ {p′};
0, if c = p′ and w ̸= w′;

∞, if c = p′ and w = w′.

It’s clear that J is not locally bounded on P because J (p′, w′) = ∞. On the other hand,
every non-probabilistic c is accuracy-dominated by a probabilistic p (just choose any p ̸= p′).
It should also be noted that J is quasi-strictly proper. This observation notwithstanding,
the example is of limited interest because J is not continuous on P. In particular, we can
see that the conclusion of Theorem 2 fails to hold: p′ is weakly-accuracy dominated by every
probabilistic p ̸= p′.

Where does this leave us? Although local boundedness on P is not implied by the conclu-
sion of Theorem 1, it is essential to its current proof. I leave it to future research to answer
whether Theorem 1 can be generalized by relaxing local boundedness on P.
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3.2.2 (Quasi-)Strict Propriety

We now turn away from boundedness and toward propriety. Once again our discussion begins
with an objection: allowing inaccuracy measures to be merely quasi-strictly proper makes our
notion of admissibility too inclusive. By a merely quasi-strictly proper inaccuracy measure,
I mean an inaccuracy measure that is quasi-strictly proper but not strictly proper. The
objection, then, claims that quasi-strictly proper inaccuracy measures are not admissible
unless they are also strictly proper.

The purported problem with merely quasi-strictly proper inaccuracy measures is that
they exhibit an unjustified bias in favor of probabilistic credence functions that renders
them unsuitable for use in an argument seeking to justify probabilism. Merely quasi-strictly
proper inaccuracy measures have too much probabilism “baked in.” If J is merely quasi-
strictly proper, then every probabilistic p expects itself to be less inaccurate than any non-
probabilistic c, i.e. Ep(J (p)) < Ep(J (c)); but p does not expect itself to be less inaccurate
than every other probabilistic p′, i.e. there is some p′ ∈ P such that Ep(J (p)) = Ep(J (p′)).
Put more simply, the inaccuracy measure J treats probabilistic and non-probabilistic cre-
dence functions differently: in terms of expected inaccuracy, probabilistic credence functions
can be equals, but non-probabilistic credence functions are always inferiors. It is this differ-
ential treatment that the objection targets, alleging that it represents an unacceptable bias
in favor probabilism.

I should be forthright and admit that I do not have a decisive argument for quasi-strict
propriety. But I do have several points to make in response to the objection just raised. The
first is dialectical: the aim of this paper is not to defend quasi-strict propriety. Rather, my
main aim, which I think has been accomplished with the results above, has been to generalize
the best extant accuracy arguments for probabilism to infinite domains. Those arguments
assume strict propriety, and anyone who objects to merely quasi-strictly proper inaccuracy
measures will have to admit that, all else equal, an accuracy argument that weakens the as-
sumption of strict propriety is stronger, in a strictly logical sense, than an accuracy argument
that relies on the full strength of strict propriety. Concerns about unacceptably biased quasi-
strictly inaccuracy measures, then, do little to undermine what I have set out to achieve.
Still, one can grant all of this this while at the same time having good reason to favor a more
exclusive notion of admissibility, one that requires strict propriety.

It turns out, however, that this position is untenable due to the remarkable fact that
strictly proper inaccuracy measures do not exist in infinite domains. This can be shown
with a fairly straightforward counting argument. If W is infinite, then the cardinality of the
set of probabilistic credence functions is greater than the cardinality of the set of functions
from W into [0,∞].28 But this means that for every inaccuracy measure J there are two
probabilistic credence functions, p and p′, that have identical inaccuracy scores in the sense
that J (p, w) = J (p′, w) for all w ∈ W . And this means that J cannot be strictly proper. It
will fail to satisfy Ep(J (p)) < Ep(J (p′)), for instance. So, in infinite domains, insisting on
strict propriety is a non-starter.29

28See http://alexanderpruss.blogspot.com/2021/03/scoring-rules-for-finitely-additive.html.
29Strictly speaking, accuracy arguments remain valid when the set of admissible inaccuracy measures is

empty. In particular, Theorems 1 and 2 remain true—but trivially so. The problem here is not with the
arguments’ validity but with the fact that proponents of accuracy arguments are committed to the claim that
inaccuracy can be measured somehow.
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But why insist on strict propriety in the first place? There is a well known way of arguing
for strict propriety that appeals to a kind of rational immodesty.30 A rational agent, the
argument goes, expects his own credence function to minimize inaccuracy. That’s because
if he expected another credence function to be less inaccurate than his, then he would be
compelled to adopt that other credence function instead, which would indicate that his actual
credence function wasn’t rationally held in the first place.

In response to this, it has been argued that even if we accept this line of thought, it
doesn’t support strict propriety.31 According to the immodesty argument, rational credences
must minimize their own expected inaccuracy, but they needn’t do so uniquely. Rational
agents aren’t compelled to adopt credence functions that they expect to be as inaccurate as
their own. So far, then, the immodesty argument supports only

Weak propriety For all p ∈ P and all c ∈ C, Ep(J (p)) ≤ Ep(J (c)).

But weak propriety, even in the presence of continuity and boundedness, is not enough to
secure an accuracy-dominance theorem. For example, constant inaccuracy measures are
weakly proper, continuous, and uniformly bounded.32 But if J is constant, then no credence
functions are (even weakly) accuracy-dominated.

In a recent paper, Campbell-Moore and Levinstein (2021) try to salvage the immodesty
argument by showing that weak propriety, together with some additional assumptions, implies
strict propriety. We need not concern ourselves with the details of their argument, but I
emphasize the familiar theme: Campbell-Moore and Levinstein’s argument assumes a finite
domain. It’s far from clear how their argument might extend to infinite domains, so it’s far
from clear that rational immodesty supports strict propriety in general.33

Finally, there is a more direct, albeit speculative, line of argument worth considering that
attempts to defend the bias in favor of probabilistic credence functions that quasi-strictly
inaccuracy measures exhibit. The idea is that this bias may well be acceptable to those who
are already inclined to endorse probabilism. The accuracy arguments presented above, the
idea goes, showcase a kind of virtuous circularity by which friends of probabilism can assure
themselves that the principle promotes accuracy.34 On this view, accuracy arguments will do
little on their own to convert agnostics about probabilism, but, for those with some faith in
other arguments for probabilism, the accuracy arguments may provide additional support.

It’s not clear to me that this defense of quasi-strict propriety is viable. What seems clearer,
however, is that it’s not compatible with the accuracy-first program. If defending quasi-strict
propriety requires arguments for probabilism other than the accuracy arguments (for example,
pragmatic arguments), then it seems likely that the total case for probabilism—that is, the
virtuously circular version of the accuracy arguments—will end up relying on epistemic goods
besides accuracy. In particular, it will rely on those epistemic goods invoked by whatever

30See Joyce (2009) and Campbell-Moore and Levinstein (2021).
31See Pettigrew (2009) and Mayo-Wilson and Wheeler (2016).
32An inaccuracy measure J is constant if there is some x ∈ [0,∞] such that J (c, w) = x for all c ∈ C and

w ∈ W .
33Moreover, since strictly proper inaccuracy measures do not exist in infinite domains, a straightforward

generalization of Campbell-Moore and Levinstein’s argument for strict propriety would only show that the
assumptions of the argument cannot be jointly satisfied in general. I thank an anonymous referee for pointing
this out.

34I thank an anonymous referee for suggesting this idea to me.
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auxiliary argument for probabilism is used to defend quasi-strict propriety. So, if the virtuous
circle offers a promising defense of quasi-strict propriety, it might turn out, surprisingly, that
the accuracy arguments are most useful to those who reject the accuracy-first program.

So far, we have been considering the objection that our notion of admissibility is too
inclusive, that it admits inaccuracy measures with an unacceptable bias in favor of proba-
bilism. Before concluding, it’s natural to consider what happens if we relax (quasi-)strict
propriety. A manuscript by Mikayla Kelley (2021) contains some intriguing mathematical re-
sults, but I don’t think they can support a general accuracy argument for probabilism. Kelley
studies inaccuracy measures that are determined by “generalized quasi-additive Bregman di-
vergences” and “Bregman distances.” These inaccuracy measures exhibit dramatic failures
of quasi-strict propriety. For instance, Kelley gives examples (4.1 and 4.2) of probabilistic
credence functions p such that J (p, w) = ∞ for every world w, where J is a generalization
of the Brier score.35 Using these radically improper inaccuracy measures, Kelley is able to
obtain some fairly general accuracy-dominance theorems.

But her most general results (in section 5 of her paper)—those most comparable to the
results in this paper—don’t support probabilism in the traditional sense. I will explain this
at a high level as the details are quite technical. Kelley’s inaccuracy measures are “quasi-
additive” in the sense that, in finite domains, they are sums of local scoring rules. The
standard example here is the Brier score. In infinite domains, these sums must be replaced
by integrals; and in order to integrate, one must have a reference measure with respect to
which the integration is defined. Let us call this reference measure µ, and let us say that a
proposition holds µ almost surely if the set of worlds at which the proposition is false has
measure 0 according to µ. Now, Kelley is able to show that every non-probabilistic credence
function c is accuracy-dominated by a credence function c′ such that c′ is probabilistic µ
almost surely.36 This result does not guarantee that c′ is probabilistic, rather it guarantees
only that c′ is non-probabilistic with µ measure 0. But, in general, µ will assign measure 0
to non-empty sets of worlds, so, in general, c′ will not be probabilistic.37

This might not be a problem for someone who endorses the Normative Premise for Proba-
bilism. For such a person to infer that non-probabilistic credence functions are irrational, all
that’s needed is to show that they are accuracy-dominated by something, and Kelley’s result
shows this. But for someone who favors the Weak Normative Premise, Kelley’s results don’t
lead to probabilism. And regardless of which normative premises one supports, it’s just not
clear that probabilism µ almost surely is an interesting and well-motivated principle.38 For

35It follows that Ep(J (p)) = ∞, which is incompatible with quasi-strict propriety.
36What I am glossing as a “credence function” here is actually what Kelley calls a “measurable credence

function,” which is a function that takes not just propositions as inputs but also worlds. In addition to the
problems pointed out in the main text, then, one might also object that Kelley’s framework does not study
credence functions in the traditional sense.

37Kelley admits as much: “In some measure spaces, like the weighted counting measure spaces underlying
generalized legitimate inaccuracy measures, we lose nothing since every credence function is measurable and
only the empty set is measure zero. However, in other cases, these assumptions are substantive” (p. 16).
Moreover, the result mentioned above (Theorem 5.3), assumes that µ is finite, which means it cannot be the
counting measure over an infinite domain.

38As Kelley concludes: “Further, while the measure theoretic framework introduced in Section 5 to score
inaccuracy of credence functions over opinion sets of arbitrary cardinality seems like a natural extension of
the finite and countably infinite frameworks, is it well motivated that inaccuracy does not track the behavior
of a credence function on measure zero sets?” (p. 17).
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those who would relax (quasi-)strict propriety, it seems like there is still a lot of work to be
done in extending the accuracy arguments for probabilism to infinite domains.

Conclusion

I have presented two accuracy arguments for probabilism. They are perfectly general in that
they apply to credence functions with arbitrary domains. The arguments help to close the
significant gap between accuracy arguments and their pragmatic counterparts. And they
might be taken as providing additional inductive support to the accuracy-first program.
Whether they do depends, of course, on whether the arguments’ premises are defensible. We
have seen that characterizing admissibility in infinite domains is especially complicated. On
the one hand, strictly proper inaccuracy measures simply don’t exist. On the other, allowing
inaccuracy measures to be merely quasi-strictly proper might introduce an objectionable bias
in favor of probabilism. Relaxing propriety constraints altogether leads to unknown territory.
Perhaps a framework like Kelley’s can vindicate probabilism in the end, but this remains to
be seen. It also remains to be seen whether the arguments can be generalized away from all
boundedness assumptions. So, there is plenty of work to do—as always—but the picture is
becoming clearer.
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Appendix

A Finitely Additive Expectation of Extended-Real Functions

I begin this appendix by summarizing the theory of finitely additive expectation for extended-
real functions that is used below. Let us start by defining some notation. Let B be the set of
all bounded real functions on W . Let F+ be the set of non-negative extended-real functions
on W . If f and g are two extended real functions on W , let f ∧ g be the function defined
by (f ∧ g)(w) = min{f(w), g(w)}, and let f ∨ g be the function defined by (f ∨ g)(w) =
max{f(w), g(w)}. If A ⊆ W , let 1A be the indicator function for A.

Let p ∈ P be given. The theory of expectation used in this paper starts with the standard
theory of expectation over B (Aliprantis and Border, 2006, 11.2). For f ∈ F+, define

Ep(f) = sup
{
Ep(h) : h ∈ B, h ≤ f

}
. (2)

Now, for a general extended-real function f on W , let f+ = f ∨ 0 and f− = (−f)∨ 0. Then,
f+, f− ∈ F+ and f = f+ − f−. If at least one of Ep(f

+) or Ep(f
−) is finite, then we say

that Ep(f) exists and let
Ep(f) = Ep(f

+)− Ep(f
−). (3)

It is now straightforward to verify the following proposition, following Lemma 9 (p. 257) in
Schervish et al. (2020), for example.

Proposition 1. Let f, g be extended-real functions on W and p, q ∈ P. Let c ∈ R, and let
λ ∈ [0, 1]. If f + g is well defined and Ep(f), Ep(g), Ep(f + g), and Eq(f) exist, then

1. f ≤ g implies Ep(f) ≤ Ep(g)

2. Ep(f + g) = Ep(f) + Ep(g),

3. Ep[cf ] = cEp(f),

4. Eλp+(1−λ)q(f) = λEp(f) + (1− λ)Eq(f).

I will appeal to Proposition 1 freely throughout the rest of the appendix.

B Convergent Nets

Some of the results below rely on the notion of a convergent net in P. I’ll review the main
concepts here.

A directed set is a set D equipped with a binary relation ⪰ that is reflexive, transitive,
and such that for every α, β ∈ D there exists γ ∈ D for which γ ⪰ α and γ ⪰ β. A net (xα)
in a set X is a function from a directed set into X. Every sequence is a net; in this case,
D = N with the usual ordering. If X is a topological space, and (xα) is a net in X, then we
say that (xα) converges to a point x ∈ X and write xα → x iff for every neighborhood V of
x there is some β such that xα ∈ V for all α ⪰ β. A basic result about convergent nets is
that a subset C of a topological space is closed iff x ∈ C whenever (xα) is a net in C such
that xα → x.39

39For more details, see Aliprantis and Border (2006, 2.4). Since C is equipped with the product topology
(footnote 20), a net (pα) in P converges to p ∈ P iff pα(A) → p(A) for all A ⊆ W .
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The following lemma illustrates these ideas and will be needed later.

Lemma 1. Let h ∈ B, and let (pα) be a net in P that converges to p ∈ P. Then,

lim
α

Epα(h) = Ep(h).

Proof. The result is immediate if h is a step function because in that case the expectation
of h is given by a finite sum. For general h ∈ B, let ϵ > 0, and use the fact that step
functions are dense in B under the supremum norm topology to find a step function g such
that supw |g(w)− h(w)| ≤ ϵ/4. Then, for all α,∣∣Epα(h)− Ep(h)

∣∣ ≤ 2 sup
w

|g(w)− h(w)|+
∣∣Epα(g)− Ep(g)

∣∣. (4)

But, because g is a step function, there is some β such that for all α ⪰ β, |Epα(g)−Ep(g)| ≤
ϵ/2. Thus, by (4), |Epα(h)− Ep(h)| < ϵ for all α ⪰ β, which proves the result.

C Proof of Theorem 1

For all c ∈ C, let the function J (c) : W → [0,∞] be defined by J (c)(w) = J (c, w) for all
w ∈ W . We note that Ep(J (c)) exists, according to the definition in section A, because
J (c) ∈ F+.

If J is a quasi-strictly proper inaccuracy measure, let the divergence DJ : C×P → [0,∞]
associated with J be defined by DJ (c, p) = Ep(J (c)) − Ep(J (p)) for all c ∈ C and p ∈ P.
Quasi-strict propriety implies that Ep(J (p)) < ∞ for all p ∈ P, so DJ is well defined.

Definition 1. Let X be a topological space. A function f : X → [−∞,∞] is lower semicon-
tinuous (lsc) on X iff {x ∈ X : f(x) ≤ r} is closed for every r ∈ R.

Lemma 2. Let J be any inaccuracy measure, and let c ∈ C. The function E(·)(J (c)) is lsc
on P.

Proof. Let r ∈ R be given and let Fr = {q ∈ P : Eq(J (c)) ≤ r}. Let (pα) be a net in Fr that
converges to p ∈ P. Let h ∈ B and h ≤ J (c). Then, for all α,

r ≥ Epα(J (c)) ≥ Epα(h),

which, by Lemma 1, implies
r ≥ lim

α
Epα(h) = Ep(h). (5)

Taking a supremum over h on the right-hand side of (5) and using (2) we get

r ≥ Ep(J (c)).

Thus, p ∈ Fr, and the lemma is proved.

Lemma 3. Let J be quasi-strictly proper and locally bounded on P. Let c ∈ C. Then the
function DJ (c, ·) is lsc on P.
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Proof. Let r ∈ R be given and let Fr = {q ∈ P : DJ (c, q) ≤ r}. Let (pα) be a net in Fr that
converges to p ∈ P. Then, for all α, by quasi-strict propriety,

r ≥ DJ (c, pα) = Epα(J (c))− Epα(J (pα)) ≥ Epα(J (c))− Epα(J (p)). (6)

Now let ϵ > 0. By Lemma 1, there is some β such that Epα(J (p)) − Ep(J (p)) ≤ ϵ for all
α ⪰ β. So if α ⪰ β, then (6) implies

r + Ep(J (p)) + ϵ ≥ Epα(J (c)). (7)

But the net (pα)α⪰β also converges to p, so (7) and Lemma 2 imply

r + Ep(J (p)) + ϵ ≥ Ep(J (c)).

As ϵ is arbitrary, this implies r ≥ Ep(J (c))− Ep(J (p)) = DJ (c, p). That is, p ∈ Fr, and the
lemma is proved.

Lemma 4. Let X be a compact topological space, and let f : X → [−∞,∞] be a lsc function.
Then, f attains a minimum on X.

Proof. Let A = f(X). If −∞ ∈ A, then the result is immediate, so assume this is not
the case. For all r ∈ A, let Fr = {x ∈ X : f(x) ≤ r}. If r ∈ R, then Fr is closed by
lower semicontinuity, and if r = ∞, then Fr = X is closed as well. If {r1, ..., rn} ⊆ A, then⋂n

i=1 Fri = Fmini ri is non-empty. Since X is compact, this implies that
⋂

r∈A Fr is non-empty.
But f attains a minimum at any point in

⋂
r∈A Fr.

40

Theorem 1. Let J be an admissible inaccuracy measure, and let c be a non-probabilistic
credence function. Then, there is a probabilistic credence function that accuracy-dominates
c.

Proof. If J (c, w) = ∞ for all w ∈ W , then the result is immediate: by local boundedness on
P, any p ∈ P accuracy-dominates c. So assume that J (c, w) < ∞ for some w ∈ W . Using
Lemmas 3 and 4, let p∗ ∈ P minimize DJ (c, ·) on P. Since there is some w ∈ W such that
J (c, w) < ∞, we have

DJ (c, p
∗) ≤ DJ (c, vw) = J (c, w)− J (vw, w) < ∞.

This, in turn, implies that Ep∗(J (c)) < ∞.
Now let w ∈ W be arbitrary. If n ∈ N, let pn = n−1vw + (1− n−1)p∗. Note that because

Epn(J (pn)) < ∞ and

Epn(J (pn)) = n−1J (pn, w) + (1− n−1)Ep∗(J (pn)),

we must have Ep∗(J (pn)) < ∞ for all n. Using the fact that p∗ is a minimizer of DJ (c, ·),
we have, for all n,

0 ≤ n
(
DJ (c, pn)−DJ (c, p∗)

)
= n

(
Epn

(J (c))− Epn
(J (pn))− Ep∗(J (c)) + Ep∗(J (p∗))

)
= n

(
n−1J (c, w) + (1− n−1)Ep∗(J (c))− n−1J (pn, w)− (1− n−1)Ep∗(J (pn))− Ep∗(J (c)) + Ep∗(J (p∗))

)
=

(
J (c, w)− Ep∗(J (c))− J (pn, w) + Ep∗(J (pn))

)
+ n

(
Ep∗(J (p∗))− Ep∗(J (pn))

)
≤ J (c, w)− Ep∗(J (c))− J (pn, w) + Ep∗(J (pn)). (8)

40For completeness, I have reproduced the proof of this result from Nielsen (2021b).
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where the final inequality uses quasi-strict propriety. Next, (8) rearranges to

J (pn, w) ≤ J (c, w)− Ep∗(J (c)) + Ep∗(J (pn)). (9)

Since pn → p∗, continuity on P and (9) imply

J (p∗, w) ≤ J (c, w)−DJ (c, p
∗). (10)

Quasi-strict propriety implies DJ (c, p
∗) > 0 because c ∈ C \ P. So from (10) we have

J (p∗, w) < J (c, w) if J (c, w) < ∞. And if J (c, w) = ∞, then local boundedness on P
implies J (p∗, w) < J (c, w). Thus, p∗ accuracy-dominates c.

D Proof of Theorem 2

Theorem 2. Let J be an admissible inaccuracy measure, and let p be a probabilistic credence
function. Then, there is no credence function that weakly accuracy-dominates p according J .

Proof. Suppose for contradiction that c is a credence function that weakly accuracy-dominates
p. It follows from weak accuracy-dominance that Ep(J (c)) ≤ Ep(J (p)), and the reverse in-
equality holds by quasi-strict propriety. Thus,

Ep(J (c)) = Ep(J (p)). (11)

Another consequence of weak accuracy-dominance is that there is some w ∈ W such that

J (c, w) < J (p, w). (12)

Now, if n ∈ N, let pn = n−1vw + (1− n−1)p. Using (11) and quasi-strict propriety, we have,
for all n,

n−1J (c, w) + (1− n−1)Ep(J (p)) = n−1J (c, w) + (1− n−1)Ep(J (c))

= Epn(J (c))

≥ Epn(J (pn))

= n−1J (pn, w) + (1− n−1)Ep(J (pn))

≥ n−1J (pn, w) + (1− n−1)Ep(J (p)). (13)

Since quasi-strict propriety implies that Ep(J (p)) < ∞, from (13) we deduce that

J (c, w) ≥ J (pn, w) (14)

holds for all n. Since pn → p and J is continuous on P, from (14) we deduce

J (c, w) ≥ J (p, w). (15)

But (15) contradicts (12).41

41This proof is a modification of some results that Alex Pruss shared with me.
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