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Abstract
The Everett interpretation faces no challenge more pertinent than

the problem of how to square manifest determinism with the proba-
bility familiar from the conventional quantum algorithm. In this pa-
per I review recent attempts at solving this problem at the conceptual
and quantitative (Born) level. I conclude that momentous progress
has been made, but certain aspects (subjective uncertainty, decision-
theoretic axioms) still require further development.
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1 Introduction: Everett’s Many Worlds Proposal

1.1 The Measurement Problem

The inherent incompleteness of the conventional quantum mechanical algo-
rithm (often referred to as the Copenhagen interpretation) is well-known to
scholars of foundational physics. Recall that the generic quantum state vector
|ψ〉 is postulated to be governed by two manifestly incompatible dynamical
laws; on the one hand, if a system is disturbed by a measurement of some
physical observable (formally represented by a Hermitian operator, X), the
state is posited to undergo an instantaneous non-linear collapse into one of the
eigenstates of X viz. {|xi〉}|ni=1 with ’Born’ probability p(xi) = |〈xi|ψ(t)〉|2 ∈
[0, 1]. In honor of John von Neumann, [17], we designate this fundamentally
indeterministic law ’process I’. On the other hand, if left to itself, the state
will evolve in a deterministic and linear manner in accordance with |ψ(t1)〉 =
U(t0, t1)|ψ(t0)〉, where U(t0, t1) is an energy-dependent unitary operator on
the n-dimensional Hilbert space HS - call this ’process II’. Symptomatic for
the latter law is - of course - Schödinger evolution, in which case

|ψ(t1)〉 = exp
(
− i

~

∫ t1

t0

Hdt

)
|ψ(t0)〉 (1)

where H is the systemic Hamiltonian.
The problem with this picture is that the line of demarcation between these

laws (i.e. the measurement process) is notoriously nebulous. Prima facie, one
might conjecture that the interaction between a macroscopic apparatus and a
quantum system is tantamount to process I kicking into effect, yet a moment’s
thought should reveal that there is no non-arbitrary definition of what con-
stitutes the macro-realm. Indeed, there is seemingly nothing to bar us from
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treating the measurement apparatus per se as a hyper-complex quantum sys-
tem (it is, after all, supervenient upon a multitude of molecules) whence the
deterministic process II will give rise to a result contradicting the former (a
so-called ”macroscopic superposition”).

To remedy this impasse it is sometimes argued that a stringent definition
of the measurement process requires reference to an altogether different onto-
logical category viz. consciousness. Nevertheless, it should be fairly obvious
that this ”regression” into metaphysics is very controversial: not only does the
very fabric of mentality elude us, but we must also enquire at which point in
our evolutionary history consciousness reached a sufficient level of complexity
for the universal wave function (state-vector) to collapse? These are excruci-
atingly difficult questions, which reek of empirical vacuity, wherefore a more
physically level-headed approach is desirable.

1.2 Everett’s Worlds

In this paper we shall concern ourselves with a radical solution to the mea-
surement problem which eradicates the stochastic process I in toto from the
axioms of quantum mechanics (i.e. which rejects the very notion that the ”act
of measuring” is an ontologically significant concept). Explicitly, we shall con-
template an interpretation attributed to the late Hugh Everett III, [8], which
during the past decade has been extensively developed by the philosophy of
physics community at the University of Oxford (cf. [5], [10], [16], [19], etc.).

The central idea of the Everett interpretation is that the universal wave
function Ψ exhausts our lower level (fundamental) ontology of the material
universe, where Ψ at all times is governed by the deterministic process II. To
appreciate the implications of this, consider the measurement of spin Sz on an
electron in the positive Sx eigenstate | ↑x+〉 by an observer O with a reliable
apparatus M . This will result in the evolution:

|O0〉⊗|M0〉⊗| ↑x+〉 U−→ 1√
2

(|Oz+〉 ⊗ |Mz+〉 ⊗ | ↑z+〉+ |Oz−〉 ⊗ |Mz−〉 ⊗ | ↑z−〉)

(2)
Here, |O0〉 is the initial (0) quantum state vector representing the observer,
whereas the subscripts z+ and z− represent the observer with a particular be-
lief as to the outcome of the spin-z measurement (analogously, |M0〉 is the
initial state vector of the apparatus etc.).

Now, on the conventional interpretation, the superposition in (2) is a state
where there is no matter of fact concerning the outcome of the measurement.
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But we know from direct introspection that this is erroneous: measurements
do have definite outcomes. Concordantly, if we are to make any sense of Ev-
erett’s conjecture, it seems that we literally must construe evolution into en-
tangled states as the branching of worlds (observe that this principle makes no
reference to the terms ’observer’, ’measurement’ or ’macro-’). Thus, (2) should
be seen as a case where a single universe fissions into two distinct worlds: one
in which the observer records a positive eigenvalue +~

2 for his spin measure-
ment along the z-axis, and one in which he records a negative eigenvalue −~

2 .
Since the universal state vector by assumption has proliferated in this manner
since the beginning of time, it follows that the totality of facts is a multiverse
comprised of a near-infinite number of worlds in one-to-one correspondence
with the terms in the superposition. (As an aside, observe that this many-
worlds scenario is not tantamount to an affirmation of David Lewis’ modal
realism postulate; the Everettian worlds are naturally restricted by the require-
ment of compatibility with unitary evolution from a particular set of initial
conditions).

1.3 The Basis Problem

Alas, there is a sense in which this scheme falls short of being well-defined: as
it happens there is nothing in the quantum formalism per se which stipulates
which basis in the Hilbert space one should employ to identify the nature of
the physical worlds. More concretely, the superposition in (2) is mathemati-
cally equivalent to

1√
2

(
|ζ+〉 ⊗ | ↑x+〉+ |ζ−〉 ⊗ | ↑x−〉

)
(3)

where |ζ±〉 = 1√
2
(|Oz+〉⊗|Mz+〉±|Oz−〉⊗|Mz−〉), which looks like two worlds

in each of which the electron has a definite value for spin along the x-axis.
Since Sx does not commute with Sz a flagrant contradiction now seems to
undermine the Everettian project in its current formulation, [2].

Proposed solutions to this problem generally make the assumption that the
relevant worlds must somehow be added explicitly to the quantum formalism.
However, it has recently been argued that this is unnecessary: in particular, it
appears that the decoherence program can provide a gateway out of this conun-
drum insofar as we are willing to embrace a certain measure of vagueness in
our macro-ontology, [21], [22]. The idea is that the kind of Hamiltonians which
actually obtain, encode structures which behave dynamically essentially as
classical worlds and which for all practical purposes are causally isolated from
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one another. Provided that we adopt a Dennettian approach ([6]) according to
which macro-structures ultimately must be seen as emergent (fuzzy) patterns
in the micro ontology (a step which seems to harmonize with the reductionism
inherent to the scientific enterprise), our near-classical, near-causally isolated
worlds may be treated as the physical structures in which we are imbedded.
In other words, it would be superfluous to add an auxiliary determination
of the relevant worlds to the quantum formalism - the very nature by which
quantum mechanics operates essentially selects a preferred basis1.

1.4 The Probabilistic Predicament

As I see it, a more pressing objection to the Everett program is the bipartite
problem of probability. Firstly, there is a challenge of downright incoherence:
since the many worlds interpretation has a manifestly deterministic dynam-
ics, how can it even make sense to assign probabilities to outcomes? Secondly,
even if Everettian stochasticity somehow does make sense, surely there is also
a quantitative problem to be solved: for why should the probabilities be given
by the Born rule as in the conventional quantum algorithm? These concerns
will be the topic of consideration for the remaining part of this paper; in par-
ticular we shall scrutinize recent attempts by Deutsch ([7]), Wallace ([19], [20])
and Greaves ([10]) to remedy this deplorable situation2.

1Here’s how decoherence works: let |εz+〉 be the environmental state which has adjusted
itself to the | ↑z+〉 state, and let |εz−〉 have an analogous interpretation, then the orthogonality
relation 〈εzi |εzj 〉 ≈ δij , i, j ∈ {+,−} is an excellent approximation. This means that if we write
down the reduced density matrix on the electron system (HS) of the entangled state |χ〉 =
(|εz+〉 ⊗ | ↑z+〉+ |εz−〉 ⊗ | ↑z−〉) /

√
2 viz.

ρred = TrHε(|χ〉〈χ|)

then ρred ≈ 0.5| ↑z+〉〈↑z+ | + 0.5| ↑z−〉〈↑z− |. The latter equation may be interpreted as ”with
probability 0.5 the particle definitely has spin-up and with probability 0.5 the particle definitely
has spin-down”. I.e. the wave will appear to have collapsed and classicality will appear to have
been recovered.

2Initial reactions to the probability problem tend to be skeptical: can’t we simply assign a
probability-weight to an Everettian branch in accordance with how likely the mind of the ob-
server is to find itself in that branch post-measurement? No; that would be to commit ourselves
to an outdated and dubious Cartesian dualism: recall that the body with which O is identified
will split into two copies when the world branches. Hence, if we make the common assump-
tion that the mind is an emergent property of the neurological structures in the brain, both
post-branching observers will be conscious and claim to be the original observer.
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2 Elusive Probability

2.1 Credence & Objective Probability

At this point it is incumbent on us to take a detour into the philosophical
foundations of probability: as a starting point it is worthwhile illuminating
the dual semantics of the term. For one, there is subjective probability (coined
’credence’) which we employ as a measure of our personal degree of belief in
a given hypothesis. This phenomenon is in itself fairly well defined: from
Savage’s decision theoretic considerations, we can show that the agent must
quantify his uncertainty in terms of probability (or alternatively contravene
some plausible set of principles connecting rational behavior with personal
preferences) - this will be explicated below. Disregarding eliminativism, we
may safely assert that credence falls short of capturing robust, observer inde-
pendent probability (the so-called ’objective probability’, or OP, [20]) which
is found in the physical sciences. Perhaps surprisingly, we have yet to un-
cover a truly satisfactory analysis of OP: after all, can’t we simply take the
pedestrian view that probability is the relative frequency of events in a bound-
less number of trials, i.e. nx

n∞
= p(x), where nx is the number of trials with

outcome x and n∞ is the total number of trials tending to infinity? Despite
an incontestable intuitive appeal, the problem with this view is that we are
epistemically barred from accessing anything like n∞. The best we can do is
metaphysically slippery extrapolations of our limited sequence observations,
which very well could deviate wildly from the results in the infinite trial limit
(for example, upon flipping a fair coin, it is in principle possible to get 100
’heads’ in a sequence of 100 trials). And although this does not altogether un-
dermine the frequency interpretation of OP, it certainly does establish that the
program is in dire need of more careful scrutiny.

Whilst our understanding of the nature of objective probability borders on
the non-existent, we do however have a fairly good idea of how it integrates
itself into our general conceptual scheme, viz. via Lewis’ principal principle
(PP):

Definition 1. (PP) If an agent knows that the objective probability of an event
ξ is p, then that agent is rationally compelled to set his or her personal credence
in ξ equal to p. More formally, let Xp be the proposition that OP (ξ) = p and A
be any admissible proposition compatible with Xp then

Cr(ξ|A ∧Xp) = p. (4)
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This, in turn, enables us to offer at least a functional definition of OP (see
[20]):

Definition 2. (Functional OP) If some physical theory T defines some magni-
tude c for events, then c is OP just if any agent believing T is compelled to set
his or her credences equal to c. That is, c is OP iff: ∀ξ if [T ∧ B → c(ξ) = p],
where B is any admissible background information, then

Cr(ξ|B ∧ T ) = p. (5)

Although this definition delicately evades an explication of what OP actually
is, the definition is not without merit: for consider the case where B is the
proposition Pc=’c satisfies the functional definition’ (or more loosely the prin-
cipal principle). Suppose that we accept both T and Pc (which inter alia implies
that we accept the existence of OP), then we should set our credence in the
event ξ equal to c(ξ). Provided that c(ξ) computed from T significantly ex-
ceeds our preliminary credence in ξ,Cr(ξ), we should accordingly treat [T∧Pc]
as the explanans for ξ (and thence take ξ as evidence for T and Pc). This is
vividly demonstrated using Bayes’ Theorem:

Cr(T ∧ Pc|ξ)
def=

Cr(ξ|T ∧ Pc)Cr(T ∧ Pc)
Cr(ξ)

; (6)

hence, using the PP:

Cr(T ∧ Pc|ξ)
Cr(T ∧ Pc)

=
c(ξ)
Cr(ξ)

. (7)

wherefore we can acquire powerful evidence for OP (functionally defined), in spite of
being left in the dark about its true nature3.

3There is an interesting question as to whether the functional definition of OP is complete.
Here’s what I mean: in deriving the functional definition from the principal principle, can we
really be sure that we haven’t omitted some property Q of OP, such that something satisfying
definition 2, but not possessing Q, does not qualify as OP? Semantically this objection certainly
seems defensible (people do refer to ’probability’ ambiguously). However, if we look at the
OP from a strictly scientific perspective (i.e. as the aspect apparently called for in experimental
situations) it is less clear what kind of evidence we could possibly have for Q. For as Wallace
points out ([20], p. 662), consider the case where we have some theory T1 which assigns high
genuine probabilities to experimental data which we in fact observe (we say that T1 explains
the data well). Furthermore, suppose we have some other theory T2 which involve only Q-
lacking OP-satisfying quantities (’quasi-probabilities’) s.t. T2 assigns quasi-probabilities to the
data exactly equal to the genuine probabilities assigned by T1. Under these circumstances, we
may reasonably question the relevance of Q: for in the process in which we continue to test our
theories T1 and T2, ’probability’ (quasi or genuine) is tied to our observations solely through
the PP, which - mind you - is oblivious to whether property Q is satisfied.
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2.2 Cautious Functionalism

Of course, as philosophers we would like to know what actually lies behind
the concept of objective probability. One option is to jump on the functionalist
bandwagon ([20], p. 659), according to which OP is a set of physically de-
finable properties which can be defined independently of PP (but which can
be shown to satisfy the functional definition). Alas, projects within this field
remain at a rather rudimentary stage of development: for instance, for the
aforementioned frequentist program, it is notoriously difficult to establish that
the functional definition of probability is satisfied. However, it is profoundly
questionable whether this ”failure of imagination” on our part is enough for us
to abandon functionalism altogether. For consider the alternatives, viz. prim-
itivism (the functional OP definition is taken as a fundamental natural law4,
[20], p. 660) or eliminativism (the nihility of OP, [20], p. 660) - both of which
patently are remarkably radical strategies.

In case of primitivism, we are opting for a rationality principle (which, I
think, is what functional OP amounts to) as a natural law on a par with the dy-
namical laws of space-time and field theories. Clearly, this would have some
rather counterintuitive modal implications: we could, for example, consider
a possible world which is completely identical to our universe from a physi-
cal perspective, but which nonetheless has entirely different implications for
what it means to be rational (i.e. where ’¬Functional OP’ is true). But surely,
if we have our doubts about whether there are such physically identical ratio-
nally different possible worlds, then eliminativism should strike us as absurd:
it will, for instance, have us believe that the half-life of a decaying nucleus is a
subjective phenomenon. Thus, it seems reasonable to proceed along the lines
of a cautious mode of functionalism.

Cautious functionalism operates as follows: given a theory T which defines
some property c (seemingly playing the role of probability), collect evidence
for the joint hypothesis [T ∧Pc] as above. However, bear in mind that T comes
with an attached promissory note: eventually we will need to account for (i)
how to define c independently of the PP, and (ii) given this characterization of
c, how Pc can be derived. And although T might be construed as phenomeno-
logical until (i) and (ii) have been answered satisfactorily, T can still be highly
explanatory (as is the case with thermodynamics and special relativity5).

4Thus the functional OP definition is not to be shown to hold for an independently definable
property c. Rather, it is simply postulated to be true of c and it defines c via its role in the law.

5It is generally recognized that physical theories fall within two different classes. Firstly,
there are those theories which claim to be constructive in the sense that they have a rigid dy-
namics which describes the behavior of purportedly ontologically significant entities. Classical

8



3 Subjective Uncertainty in the Everett Interpretation

3.1 Saunder’s Argument

Let us contemplate the problem of incoherence raised in subsection 1.4: em-
ploying the vernacular above, the quantum algorithm assigns objective prob-
abilities to the possible outcomes of (quantum) experiments. A rational agent
is concordantly compelled to match his or her credences with these objective
chances (if known), and thence the agent harbors a quantitative measure of
uncertainty with respect to the experimental outcome(s). The Everettian’s task
is thus to account for how subjective uncertainty (SU) can be squared with the
manifest determinism of the interpretation, where every possible outcome is
realized.

For this reason, Simon Saunders ([16]) has offered us this intuition pump:
consider the case of ”classical” fission, where an individual O with a brain
of perfect functional bilateral symmetry, has his corpus callosum severed in a
Sperryian surgical procedure. The left cerebral hemisphere is subsequently
placed in the (brainless) body O′, whilst the right cerebral hemisphere is place
in the (brainless) bodyO′′ and the required neural connections are established.
Now in ordinary, non-fission situations, the fact that O expects to become his
future self, is brought about by the fact that his present and future selves are
connected by the right causal and structural relations. What, then, should O
expect post-fission i.e. when he has more than one future self? Saunders sees
three possibilities:

1. O should expect abnormality: e.g. to somehow end up as both O′ and
O′′.

2. O should expect to become O′ or O′′, but not both.

3. O should expect oblivion i.e. to cease to exist upon having his brain
severed.

kinetic theory is suggested to be such a theory (of course, nobody would take the ideas of hard-
spheres and Newtonian motion as more than an approximation today). Secondly, there are
those kind of theories (coined phenomenological or principle) which we know do not reflect phys-
ical reality at its deepest level: theories, which FAPP describe the behavior of macro-ontological
entities and concepts well, but which we hope ultimately will be replaced by more fundamental
theories. Thermodynamics, e.g., is utterly oblivious to what gasses actually consist of, yet it is
remarkably good at describing how they behave. But surely, we would still like to know what
a measurable thing like pressure actually is! In a similar vein Einstein hoped [The Times, 1919]
that the kinematics of the acclaimed special theory of relativity might find a more constructive
derivation, rather than its current principle form.
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Although we certainly can imagine the minds of O′ and O′′ to be intercon-
nected via some instantaneous, all-incompassing telepathic link, (1) should
strike the reader as highly implausible. For under the reasonable assumption
that consciousness should be treated as an emergent property from the ap-
propriate physical structures (the brain), we should abandon (1) immediately,
since no such thing exists between O′ and O′′. Likewise, (3) is preposterous:
intuitively, if only one cerebral hemisphere was transplanted (and the other
annihilated) we would be inclined towards saying that the agent O has sur-
vived (after all, the post-surgery individual would be mentally just like O and
there is a direct causal link between the person stages (elements of physical
continuity)). Why, then, should O expect oblivion just because his other cere-
bral hemisphere also is given a ”new home”? By the process of elimination,
(2) is the one to opt for, and in the absence of some strong criterion as to which
of O′ and O′′ the original O will become, he will have to treat that question as
subjectively indeterministic. And this is relevant to the topic, because the clas-
sicality of the fission by no means is integral to the argument: we could equally
well consider the kind of person splitting occurring in quantum branching i.e.
agents in an Everettian universe should treat their own branching as subjectively in-
deterministic.

The problem with this argument is the presupposition of blatantly archaic
notions about the relevance of classical personal identity (which per defini-
tionem is an equivalence relation6), despite a metaphysically shaky foundation.
I see no justifiable reason why one should regard the expectation of becoming
both as the anomalous state of affairs in which an essentially single mind su-
pervenes upon two spatially separated brains. Rather, upon being confronted
with the prospect of fission, O should expect to end up as each of the branch-
ing copies, where O′ and O′′ harbor distinct minds (and thus experiences), yet
both claim to be the direct temporal descendant of O (from psychological con-
tinuity). From a classical identity point of view this is paradoxical because the
situation violates transitivity: however, as has been persuasively argued by
Parfit ([14]), what truly seems to matter in the identity stakes is personal sur-
vival (the continuation of mentality) - and surely, O′ and O′′ will both purport
to have survived the surgical procedure asO. Importantly, personal survival is
not an equivalence relation, wherefore multiple copies of an agent coherently
can claim concurrently that they are survivors of one and the same person7.

6I.e. the identity relation, =, satisfies reflexivity (∀x : x=x), symmetry (∀x∀y : [x=y ↔ y=x])
and transitivity (∀x∀y∀z : [x=y ∧ y=z → x=z]).

7Let me attempt to sharpen this critique some more: in the same way that Dennett and Wal-
lace view macro-objects as fuzzy patterns in the micro-ontology, I see the self as an evolutionar-
ily convenient construct brought about by a bundle of abstract categories (memories, thoughts,
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Hence, on Parfit’s analysis, Saunders’ argument fails to demonstrate why
we are required to consider branching as subjectively indeterministic: the in-
coherence problem remains problematic.

3.2 Wallace’s Semantics

Let us contemplate an alternative (semantic) solution due to David Wallace
([20]): by considering how to interpret the language of inhabitants of a branch-
ing universe, he argues that the SU-problem can be solved. To this end, imag-
ine an intelligent race of beings inhabiting a branching (Everettian) universe,
although they are oblivious of this fact. As it happens, upon being confronted
with what (unbeknownst to them) really are branching events, they are dis-
posed to say ”I am uncertainL what is going to occur”, where ’uncertainL’ is
a word in their language L. Furthermore, they are normally disposed to utter
”x willL happen” iff x happens in every branch post-assertation. When asking
their philosophers of language (likewise ignorant of the branching) to account
for ’uncertainL’ and ’willL happen’, the philosophers will based on a false (yet
considered8) metaphysics say that one should be uncertainL of something just
if there is an objective matter about which to be uncertainL, and something
willL happen just if it happens in the single determinate future.

What do the phrases ’uncertainL about’ and ’willL happen’ really mean?
It is clear that if we take the elite view and accept the philosophers’ semantic
analysis, then almost all beings make wildly inaccurate or downright mean-
ingless claims. E.g. on the elite view, the proposition P=’the current president
willL not be reelected’ is understood as ’in the single determinate future, the
current president will lose the election’. But as none of the beings know, there
are in fact multiple futures - some in which she might be reelected. The ques-

...). And just as we do not notice the inherent ”fuzziness” of macro-patterns (such as molecular
diffusion), we fail to recognize that the self might not be an altogether well-defined coherent
entity, but rather some slightly fluctuating pattern of consciousness. Of course, Descartes fa-
mously argued that the only thing of which we can be certain is the I: but is it really? It seems
to me that the aforementioned certainty really ought to pertain the existence of sensations (which
jointly ”conspire” to create the notion of the self). The upshot is that even in non-fission cases
the question of ”personal identity between two temporal slices of the same person” is meaning-
less: precisely because there strictly is no I-substance (just distinct mental patterns which are
suitably related to create an overall sense of coherence). Thus, it is completely sensible to talk
about personal survival in the face of fuzzy consciousness. (As an aside, it just might be possi-
ble to argue from an oscillating physical macro-pattern such as the brain (upon which we hold
mentality is supervenient) to an oscillating abstract pattern such as the self. However, there is
certainly no a priori reason why this should follow, so the argument requires a lot of work).

8Which is of course more than one can say of the non-philosophers, who simply use words
conventionally.
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tion is whether this makes it true that the president will be reelected (whence
the beings’ assertion is false) - or merely ill-posed (in which case P is gibber-
ish). Alternatively, we might take the (non-elite) view that the man on the street
uses ’uncertainL’ and ’willL’ entirely correctly (and that the philosophers are
wrong), but this in turn faces the problem that although it makes the beings’
discourse almost entirely accurate, this fact is purely incidental. E.g. statement
P comes out true on the pedestrian view since ’willL not’ negates that ’the
president is reelected in every future branch’ (again: the man on the street is
no metaphysician; he simply uses terms in a given context because he was told
that that was appropriate when he first accumulated an understanding of L9).

Following the plausible views of semantics advocated by Davidson, Lewis,
Quine et al. there are no further facts about meaning beyond fit to usage and,
accordingly, the best interpretation is that which optimizes the truth of the
community’s utterances. Thus, we would have to conclude that the non-elite
view is superior, and this has profound implications for the way we use our
language, assuming our world is in fact described by Everettian quantum the-
ory. Specifically, it would seem that we are completely justified in our charac-
terization of our attitude towards quantum measurements as ’uncertain’ (the
fact that it is an erroneous metaphysics which initially led to this term is ir-
relevant). As Wallace stresses, observe that the elite/non-elite view is not a
mere linguistic dispute: the point is that our existing uncertainty locutions
(and associated conceptual framework) for all we know already refer to quan-
tum branching. In this way, we can with full justification employ our exist-
ing machinery for corroborating physical theories to the Everett interpretation
(wherefore any evidence for the quantum algorithm can be regarded as evi-
dence for the Everett interpretation). And this would seem to be the solution
to the SU-problem: we should be genuinely uncertain about which outcome of
branching occurs, and credences can coherently be assigned in spite of perfect
objective knowledge ([20]).

3.3 Quantitative Preliminary

Since each experimentally possibly outcome is assigned a quantum weight
(here, simply understood as modulus squared of the amplitude), we might
conjecture that these quantities are something which could fit the function def-
inition of OP from subsection 2.1. Now we could simply take ’weights satisfy
the functional definition’ as an axiom, in which case the Everett interpretation

9An analogy: most people can distinguish objects which are red, although they have little
idea of what ’red’ and ’color’ really mean.
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implies the quantum algorithm (and any evidence for the algorithm may be
taken as supporting the many worlds interpretation). In itself this would be
quite impressive as it would offer us a solution to the measurement problem:
moreover, by adopting the cautious functionalist approach espoused above,
we can just sit back and hope that some future argument ultimately will ac-
count for why weights fit the functional definition. However, recent work
by Deutsch ([7]) and Wallace ([19]) indicates that the Everettian’s situation is
brighter than this: in fact, using principles of decision theory it appears that
the quantitative problem can be solved completely: in other words, assuming the
correctness of the Everett interpretation, it can be shown that rational agents set
probability = weight. The finer details of this argument will be scrutinized in
the following section.

4 The Deutsch-Wallace Theorem

4.1 Quantum Games

Before the Deutsch-Wallace (DW) theorem is presented, it is necessary to un-
derstand (a) the notion of a ”quantum game” and (b) the axioms of decision
theory (see subsection 4.2), both of which are integral to the proof thereof.

Quite informally, a quantum game is a bet placed on the outcome of a mea-
surement: evidently, this involves a system being prepared in some particular
quantum state, the measurement of some physical observable and a reward
which depends on the result of the measurement. More technically,

Definition 3. A quantum game (boldface) is an ordered triple 〈|ψ〉,X,P〉,
where

• |ψ〉 is a state vector in some Hilbert spaceHS .

• X is a self-adjoint operator acting on HS , which is assumed throughout
to have a discrete spectrum (written as σ(X)).

• P is a function from the spectrum of X into the reals: P : σ(X) 7→ R.

In itself, this is really a mathematical entity, and of course our interest is
the physical processes which are described by that object. To this end, let us
define a game (not in boldface) as the physical process which instantiates some
game, where:

13



Definition 4. A given process instantiates some game 〈|ψ〉,X,P〉 iff that pro-
cess consists of:

1. The preparation of some quantum system, S, in the state represented by
|ψ〉 ∈ HS , whereHS is the state space of the system.

2. The measurement10 on S of the physical observable represented by X .

3. The monetary reward ofP(x) [units of currency] in each branch in which
result ’x’ was recorded.

(In a similar vein, a compound game of rank n is defined as a triple 〈|ψ〉,X,P〉,
where P is a map from σ(X) to simple games (definition 3) and compound
games of rank n−1. Unsurprisingly, a compound game is any physical process
instantiating a compound game). The reason why we bother with differenti-
ating between quantum games and games is as follows: they do not stand in
one-to-one correspondence (a fact exploited in the DW theorem). More pre-
cisely, the instantiation map from games to games is one-to-many (as is the
inverse map from games to games) - there are for instance many ways to con-
struct a measuring device! For this reason, let us define an equivalence relation
∼ between games: g ∼ g′ if games g and g′ are instantiated by the same game.

Before stating a general equivalence theorem, it will be convenient to enun-
ciate some general conventions for games which henceforth will be adopted.
Specifically, we shall in general assume that the operator X being measured is
degenerate, viz. a given eigenvalue xi of X might be associated with multiple
mutually orthogonal eigenkets |λ(j)

i 〉. Thus, if P X(xi) is the projector onto the
eigensubspace of X with eigenvalue xi:

X =
∑

xi∈σ(X)

xiP X(xi) where P X(xi) =
di∑
j=1

|λ(j)
i 〉〈λ

(j)
i | (8)

10As it was hinted in the introduction, we define the measurement procedure for the generic
observable X on |ψ〉 as follows: let |M0〉 ∈ HM be the state representing the pre-measurement
apparatus s.t. |M0〉 is an element in the decoherence-induced preferred basis. Furthermore,
let {|λi〉} be the set of eigenstates of X (i.e. X|λi〉 = xi|λi〉) and let {|M ;xi;α〉} be the set of
orthogonal readout states ofHS ⊗HM , where each vector represents the apparatus displaying
xi as the measurement outcome. Upon expanding |ψ〉 in terms of the |λi〉s, a (generally ”dis-
turbing”) measurement of X is then defined as the dynamical evolution, which takes |λi〉⊗|M0〉
into the state

P
α µ(λi;α)|M ;xi;α〉, where µ(λi;α) ∈ C and

P
α |µ(λi;α)|2 = 1. (The α label

allows for the possibility that several different output states of the apparatus may correspond
to the same measurement outcome).
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where di is the degeneracy of eigenvalue xi. Moreover, for a given game, g =
〈|ψ〉,X,P〉, we define the weight map Wg : R 7→ R by

Wg(c) =
∑

x∈P−1(c)

〈ψ|P X(x)|ψ〉. (9)

This equation requires some elucidation: the summation ranges over that sub-
set of eigenvalues in the spectrum, %(X) ⊆ σ((X)), such that ∀x ∈ %(X) :
P(x) = c, where c is some fixed real number. Less technically, we sum over all
branches in which payoff c is given. E.g. suppose we perform a measurement
of spin Sz on the state | ↑x+〉 and that we are rewarded with $10 if the outcome
is +~

2 and nothing if the outcome is −~
2 . It follows that Wg($10) = 〈↑x+ | ↑z+

〉〈↑z+ | ↑x+〉 = |1/
√

2|2 = 1/2 (likewise, Wg($0) = 1/2). This highlights the
general point that the weight map of c simply is the sum of weights of those
branches with payoff c. (Here we call the modulus squared of the amplitudes
for ’weights’ rather than ’probability’ in order to avoid illegitimate presuppo-
sitions).

We can now state the equivalence theorem of games.

Theorem 1. Equivalence Theorem

1. Payoff equivalence (PE):

〈|ψ〉,X,P ◦ f〉 ∼ 〈|ψ〉, f(X),P〉 (10)

where f : σ(X) 7→ R.

2. Measurement Equivalence (ME):

〈|ψ〉,X,P〉 ∼ 〈U |ψ〉,X ′,P ′〉 (11)

where (i) U is a unitary transformation, (ii) X and X ′ satisfy UX =
X ′U (so their spectra are identical) and (iii) P and P ′ agree on σ(X) ≡
σ(X ′). Observe that we here allow U to connect different Hilbert spaces;
had we restricted ourselves to a fixed Hilbert space, then we obtain the
result

〈|ψ〉,X,P〉 ∼ 〈U |ψ〉,UXU †,P〉 (12)
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3. General equivalence (GE):

g ∼ g′ iff Wg = Wg′ (13)

In this paper we shall just consider the Deutschian proof of the DW theorem,
which makes use of PE and ME, but not GE. Thus, only the former two will be
proven (the proof of the latter can be found in [19], p. 423):

Proof. PE: Let |M ;xi〉 be a read-out state of HS ⊗ HM (system + apparatus)
i.e. the state which physically displays xi in some way measurable by an
observer. Now the rule associating a particular eigenvalue with a read-out
state is purely conventional. Thus, change that convention: regard |M ;xi〉 as
displaying f(xi) and instead of getting payoff P ◦ f(x) from x, change the
payoff to P(x). These two changes replaces the game 〈|ψ〉,X,P ◦ f〉 with
〈|ψ〉, f(X),P〉, and all we have done is to change our labeling convention (in
particular no physical change has been made). Thus, the games are equiva-
lent.

Proof. ME: Let us for the sake of simplicity assume that X and X ′ act on two
different Hilbert spaces H and H′. Since UX = X ′U it is possible to label the
eigenstates of X ′, viz. {|µi〉}n

′
i=1, such that for a 6 n, U |λi〉 = |µi〉 and X ′|µi〉 =

xi|µi〉. Expanding |ψ〉 as a superposition of X eigenstates i.e.
∑n

i=1 αi|λi〉, let
us consider the following physical process:

1. Prepare the physical system represented by the state spaceH in the state
|ψ〉 and the system represented byH′ in the state |0′〉, such that the over-
all quantum state is |ψ〉 ⊗ |0′〉 ⊗ |M0〉, where |M0〉 is the initial state for
the measurement device acting on theH′-system.

2. Let some unitary transformation U act on H ⊗ H′ such as to realize the
evolution |φ〉 ⊗ |0′〉 −→ |0〉 ⊗U |φ〉, where |φ〉 is an arbitrary H state and
|0〉 is some fixedH state.

3. For notational convenience, scrap the system represented by H, where-
fore the joint system is now in the state U |ψ〉 ⊗ |M0〉.

4. Measure X ′ using the dynamics |µi〉 ⊗ |M0〉 −→ |M ;xi〉, where |M ;xi〉
is the readout state associated with xi (if X ′ is degenerate there will be
several such mutually orthogonal states).
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5. Clearly, the final state is now
∑n

i=1 αi|M ;xi〉 (in the degeneracy case this
is insufficient as the sum only contains one ket per eigenvalue - the gen-
eralization is straightforward though). In those branches where xi is
recorded, give the payoff P ′(xi).

One way in which we might construe this process is as follows: steps (1)-(3)
essentially prepare the state U |ψ〉 ∈ H′, using an auxiliary system represented
by H. Step (4) is the case where the operator X is measured on the prepared
state, and step (5) provides the payout P ′. Hence, the game 〈U |ψ〉,X ′,P ′〉 is
instantiated.

An alternative way to view the process is this: upon viewing steps (2)-(4)
as a ”black box” process, where input and output states are all we know about,
then the following transformation is realized:(

n∑
i=1

αi|λi〉

)
⊗ |0′〉 ⊗ |M0〉 −→

n∑
i=1

αi|M ;xi〉 (14)

which as a matter of definition amounts to a measurement of X on the state
|ψ〉 using a measurement device with initial state |0′〉 ⊗ |M0〉. Hence, process
(1)-(5) can also be understood as the state of affair in which we prepare the
state |ψ〉 ∈ H (1), measure the operator X on |ψ〉 (2)-(4), and provide a payout
P (5). Since there is no physical difference between providing payoff P and
P ′, it follows that the process is an instantiation of the game 〈|ψ〉,X,P〉.

Obviously there is no physical difference between these two descriptions
of (1)-(5); therefore 〈|ψ〉,X,P〉 ∼ 〈U |ψ〉,X ′,P ′〉.

4.2 Decision Theory

Following Deutsch ([7]) let us now introduce some decision theoretic assump-
tions about rational agents’ preferences between games. To this end, let us
define a value function, V : {games} 7→ R, such that if some game’s payoff
function is constant (= c), then the value of that game is c (as a matter of
notational convenience, let us write the value of 〈|ψ〉,X,P〉 as V(|ψ〉,X,P)).
The governing idea behind introducing this quantity is that a rational agent
prefers a game g to another g′ if and only if V(g) > V(g′) (think of V(g) as the
”cash value” of g to the agent, who will be indifferent between playing g and
receiving a reward of value V(g)).

We now make certain key assumptions about how rational agents must
behave, by imposing the following restrictions on V:
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• Dominance: If ∀x : P(x) > P ′(x) then

V(|ψ〉,X,P) > V(|ψ〉,X,P ′). (15)

I.e. if one game invariably leads to a better reward than another, ratio-
nally you must prefer the former.

• Substitutivity: If gcomp is a compound game formed from some game g

by substituting for its payoffs {ci}|ni=1 games {gi}|ni=1 such that V(gi) =
ci, then V(gcomp) = V(g). In words: if you are indifferent between re-
ceiving a reward of value c and playing some game, it is rational to be
indifferent between a chance of getting c and the same chance of playing
that game.

• Weak additivity: If k is any real number, then

V(|ψ〉,X,P + k) = V(|ψ〉,X,P) + k. (16)

To motivate this, consider a physical process which instantiates the game
g = 〈|ψ〉,X,P〉, after which a reward of value k is delivered with cer-
tainty. Physically, this is tantamount to performing a measurement on
|ψ〉 and thence receiving, sequentially, two rewards upon getting result
xi: first one of value P(xi) and then one of value k. This, of course,
amounts to the single reward P(xi) + k and thus the physical process
instantiates V(|ψ〉,X,P + k). Very well, suppose instead that k is re-
ceived prior to playing g: by substitutivity it is rational to be indifferent
between (a) receiving k then playing g and (b) receiving k then receiv-
ing V(g). And clearly, the latter amounts to the ”lump-sum” payment of
V(g) + k as desired.

• Zero-sum: For a given payoff functionP , let−P be defined by (−P)(x) =
−(P(x)), then:

V(|ψ〉,X,−P) = −V(|ψ〉,X,P). (17)

Motivating this, consider the case where two agents (I & II), with equiv-
alent preferences, play a game where a gain to either one of them is bal-
anced by a loss to the other. It seems reasonable to assume that if one
actively wants to play (expects to benefit), then the other actively wants
not to play (expects to lose out). Suppose g = 〈|ψ〉,X,P〉 and agent I
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plays g′ = 〈|ψ〉,X,P −V(g)〉, with agent II acting as a banker (i.e. play-
ing−g′ = 〈|ψ〉,X,V(g)−P〉). From weak additivity V(g′) = 0, so agent
I is indifferent to playing g′. Thus, agent II is indifferent to playing −g′

and (applying the lemma again) zero-sum must hold.

For now, let us simply take these (rather strong!11) assumptions at face value
and state the final assumption we need to make viz. physicality12.:

• Physicality: Two games instantiated by the same physical process have
the same value:

g ∼ g′ → V(g) = V(g′). (18)

”Obviously” real agents have preferences between games, not games
(but see subsection 4.4 for subtleties).

.

4.3 The DW Proof

Using the formalism developed in subsections 4.1 and 4.2 we are finally able
to state and prove the Deutsch-Wallace theorem. Recall the sheer significance
of this result: if we accept the proof we will have shown that Everettians,
based on pure principles of rationality, should set their credences in the vari-
ous branches equal to those given by the Born rule. And if we trust the work
developed previously in this paper, it turns out to be perfectly coherent that
agents harbor this kind of uncertainty (although the many-worlds interpreta-
tion is deterministic) - hence, the problem of probability will be solved.

11As Wallace points out ([19], p. 426), they entail that ”it is rational to bet the mortgage on a
1-in-1.000.000 chance of winning the GNP of Europe”.

12As an aside, observe that weak additivity and zero-sum are special cases of the gen-
eral principle of additivity, viz. V(|ψ〉,X,P + P ′) = V(|ψ〉,X,P) + V(|ψ〉,X,P ′). This
principle is in fact not assumed by Deutsch, but this is unlikely to be due to any particular
non-triviality vis-a-vis the other decision-theoretic axioms. However, the conjunction of ad-
ditivity and dominance does allow us to prove a probability representation theorem (see
Appendix) the content of which is far from trivial. Explicitly, the representation theorem
states that if V is a value function satisfying the axioms, then V is given by the formula
V(|ψ〉,X,P) =

P
x∈σ(X) Prψ,X(x)P(x), where the numbers {Prψ,X(x) ∈ R|0 6 x 6 1}

depend on |ψ〉 and X , but not on P . Also
P
x Prψ,X(x) = 1. More on this in section 5.
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Theorem 2. (DW theorem): if V is a value function which satisfies physicality,
weak additivity, substitutivity, dominance, and zero-sum, then V is given
uniquely by the Born rule:

V(|ψ〉,X,P) =
∑

x∈σ(X)

〈ψ|P X(x)|ψ〉P(x) ≡
∑

c∈P[σ(X)]

cWg(c) (19)

More prosaically: the value of a quantum game is the sum of the payoffs given
in the various Everettian branches, where each branch is weighted by its Born
probability (recall that each possible eigenvalue outcome of a measurement
corresponds one-to-one with a branch).

Now the proof of this theorem is somewhat intricate: following DW ([19])
we break it down into six steps (lemmas) of increasing order of complexity
(such that lemma n + 1 assumes the validity of lemma n, where {n ∈ N|1 <
n < 5}). Once these steps have been established, the DW theorem readily
follows.

Lemma 1. Let |ψ〉 = 1√
2
(|λ1〉 + |λ2〉), then V(|ψ〉,X, idX) ≡ V(|ψ〉,X) =

1
2(x1 +x2), where the function idX is a restriction of the identity map id(x) = x
to σ(X).

Proof. Consider V(|ψ〉,X, idX) + k. Applying weak additivity and then PE
we obtain:

V(|ψ〉,X, idX) + k = V(|ψ〉,X, idX + k) = V(|ψ〉,X + k, idX) (20)

Correspondingly, applying PE and zero-sum to V(|ψ〉,−X, idX) we get:

V(|ψ〉,−X, idX) = V(|ψ〉,X,−idX) = −V(|ψ〉,X, idX) (21)

and (20) and (21) jointly imply that:

V(|ψ〉,−X + k) = −V(|ψ〉,X) + k (22)

Suppose we let f be the function of reflection about the point 1
2(x1 + x2) i.e.

f(x) = −x + x1 + x2. Then provided that X is non-degenerate and σ(X) is
invariant under the action of f , the operator U f (defined by U fXU †f = f(X))
will be well-defined and will leave |ψ〉 invariant. From ME we immediately
obtain:

V(|ψ〉,−X + x1 + x2) = V(|ψ〉,X) (23)
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where the LHS from (22) can be written as −V(|ψ〉,X) + x1 + x2 and thus (23)
can be rewritten as:

V(|ψ〉,X) = 1
2(x1 + x2) (24)

as desired13.

Lemma 2. If N = 2n where n ∈ Z+, and if |ψ〉 = 1√
N

(|λ1〉+ ...+ |λN 〉), then

V(|ψ〉,X) = 1
N (x1 + ...+ xN ) (25)

Proof. The proof of this is recursive on n; let us start by defining the following
quantities:

• |ψ〉 = 1
2

∑4
i=1 |λi〉

• |α〉 = 1√
2

∑2
i=1 |λi〉 and |β〉 = 1√

2

∑4
i=3 |λi〉

• yα = 1
2(x1 + x2) and yβ = 1

2(x3 + x4)

• Y = yα|α〉〈α|+ yβ|β〉〈β|

From lemma 1, the value of the game g = 〈|ψ〉,Y 〉 is 1
2(yα + yβ) = 1

4(x1 +
x2 +x3 +x4). Consider the yα branch, in which a reward of 1

2(x1 +x2) is given.
By substitutivity a rational agent will be indifferent between receiving that
reward and playing the game gα = 〈|ψ〉,X〉 (as it is of corresponding value).
Analogous considerations apply to yβ ; hence, the value to an agent measuring
Y on |ψ〉 and then playing gα or gβ according to the result of the measurement
is 1

4(x1 + x2 + x3 + x4). But the physical process instantiating this sequence of
games is simply (

1
2

4∑
i=1

|λi〉

)
⊗ |M0〉 −→ 1

2

4∑
i=1

|M ;xi〉 (26)

which also happens to be an instantiation of the game 〈|ψ〉,X〉. So the result
holds for N = 4. But for N ∈ {8, 16, 32, ...} we simply follow a prescription
analogous to the one above (the generalization is straightforward). Hence, the
lemma follows.

13The non-degeneracy/non-invariance assumption is not crucial: if either does not obtain let
Q be the span of {|λ1〉, |λ2〉} and let V : Q 7→ H be the embedding map, then ME gives us:
〈|ψ〉,X|Q〉 ∼ 〈|ψ〉,X〉which allows us to generalize.
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Lemma 3. Let N = 2n as before, and a1, a2 ∈ Z+ such that a1 + a2 = N . Let
|ψ〉 = 1√

N
(
√
a1|λ1〉+

√
a2|λ2〉) then

V(|ψ〉,X) = 1
N (a1x1 + a2x2) (27)

Proof. From ME we may without loss of generality assume that H is spanned
by |λ1〉, |λ2〉. SupposeH′ is an N -dimensional Hilbert space which is spanned
by |µ1〉, ..., |µN 〉, then let us define

• Y =
∑N

i=1 i|µi〉〈µi|

• f(i) = x1 for i between 1 and a1, otherwise f(i) = x2.

• V : H 7→ H′ by

V |λ1〉 = 1√
a1

a1∑
i=1

|µi〉 and V |λ2〉 = 1√
a2

N∑
i=a1+1

|µi〉 (28)

Since f(Y )V = V X we have from ME and PE:

〈|ψ〉,X〉 ∼ 〈V |ψ〉, f(Y ), idf(Y )〉 ∼ 〈V |ψ〉,Y , f ◦ idY 〉 (29)

But V |ψ〉 = 1√
N

∑N
i=1 |µi〉 so the result follows from lemma 2:

V(|ψ〉,X) = 1
N

(
a1∑
i=1

f(i) +
a2∑

i=a1+1

f(i)

)
= 1

N (a1x1 + a2x2) (30)

where the second bullet point has been used for the last equality.

Lemma 4. Let {a ∈ R|0 < a < 1} and let |ψ〉 =
√
a|λ1〉+

√
1− a|λ2〉. Then

V(|ψ〉,X) = ax1 + (1− a)x2 (31)

Proof. Without loss of generality, suppose x1 6 x2. Let us make the following
definitions:

• g = 〈|ψ〉〉, where X is implicit.

• {an} is a decreasing sequence of numbers of the form an = An/2n where
An ∈ Z+ s.t. an → a as n→∞14.

14This is always possible as numbers of this form are dense in R+.
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• |ψn〉 =
√
an|λ1〉+

√
1− an|λ2〉.

• |φn〉 = 1√
an

(
√
a|λ1〉+

√
an − a|λ2〉)

• gn = 〈|ψn〉〉

• g′n = 〈|φn〉〉

From lemma 3 it follows that V(gn) = anx1 + (1− an)x2. Although we do not
know the value of V(g′n), it follows from dominance that it is at least x1. So
from substitutivity the value to a rational agent of measuring |ψn〉 and then
receiving x2 [units of currency] if the result is x2 and playing g′n if the result is
x1, is at least V(gn). But if we think about it, this sequence of games is just an
instantiation of g. To see this, notice that the end state is one in which a reward
of x1 [units of currency] is given with amplitude√

an · aan =
√
a (32)

whilst a reward of x2 [units of currency] is given with amplitude√
an · an−aan

+ (1− an) =
√

1− a (33)

It follows that ∀n : V(g) > V(gn) and thence V(g) > ax1 + (1− a)x2.
Upon considering a similar argument with an increasing sequence, we can

likewise establish that V(g) 6 ax1 + (1− a)x2 wherefore lemma 4 follows.

Lemma 5. Let α1, α2 ∈ C such that |α1|2 + |α2|2 = 1, and let |ψ〉 = α1|λ1〉 +
α2|λ2〉, then

V(|ψ〉,X) = |α1|2x1 + |α2|2x2 (34)

Proof. Let us define U =
∑

i exp(iθi)|λi〉〈λi|, then we see that U leaves X
invariant, and so ME gives us 〈U |ψ〉,X〉 ∼ 〈|ψ〉,X〉. But the eigenstate U |ψ〉
has only positive real coefficients, and so the value is given by lemma 4.

Lemma 6. Let |ψ〉 =
∑

i αi|λi〉 then

V(|ψ〉,X) =
∑
i

|αi|2xi (35)

Proof. In exactly the same way that lemma 2 generalized lemma 1, lemma 6
generalizes lemma 5 and the proof runs analogously. I.e. using substitutiv-
ity any n-term measurement can be construed as successive 2-term measure-
ments.

23



Now lemma 6 if of course just the DW theorem subject to the special con-
dition that the payoff function is the identity (P = idX ). The generalization to
arbitrary P is utterly trivial:

Proof. Because of PE we have

〈|ψ〉,X,P〉 ∼ 〈|ψ〉,P(X), idX〉 (36)

so we were completely justified in using idX as the default payoff function
throughout these lemmas.

This concludes the proof of the Deutsch Wallace theorem.

4.4 Measurement Neutrality

In the preceding subsections we were fairly meticulous in our explication of
the assumptions required in the DW derivation of the Born rule. Firstly, we
assumed the correctness of the Everett interpretation. (Whether this is a plau-
sible move ultimately boils down to one’s metaphysical preferences, but cer-
tainly Many Worlds is the one realist approach to the quantum algorithm,
which doesn’t ”regress” into hidden variables (as the Pilot Wave theory), ob-
jectively stochastic dynamics (as Dynamical Collapse theories) or ontological
significant observers (Many-Minds / variants of von Neumann)). Secondly, we
assumed the validity of regarding Everettian branching as subjectively uncer-
tain (the acceptability of this move is closely connected to whether the reader
accepts Wallace’s argument from semantics). In fact, our ability to import clas-
sical decision theory into quantum mechanics rests entirely on this assump-
tion. Thirdly, we assumed a fairly strong set of decision theoretic postulates:
without decision theory we have no license to convert uncertainty into prob-
ability (and none of the constraints imposed upon those probabilities which
ultimately allow the DW theorem to be proven). The fourth and final assump-
tion we made has hitherto remained hidden in the shadows by our notation:
it is known as measurement neutrality and it is what ties the value function
V together with real decision making. More precisely, it is the claim that ”a
rational agent is indifferent between two physical games whenever they in-
stantiate the same game” (cf. the assumption of physicality) - i.e. as long as a
process matches the definition of a measurement X on |ψ〉, the finer details of
how that measurement is executed is irrelevant for decision-making purposes.

Prima facie, this certainly comes across as a reasonable assumption. Upon
being confronted with two different measurement devices M1 and M2 for
some observable X , one certainly tends to engage in the kind of counterfactual

24



reasoning15 that ”whichever eigenvalue xi is obtained using deviceMi, would
equally well have been the case if Mj had been employed instead (where i 6= j
and i, j = 1, 2)”. However, the postulate does encode some non-trivial impli-
cations: for example, it is measurement neutrality which is responsible for the
fact that the DW theorem does not propagate ramifications into the Pilot Wave
theory. For recall that this interpretation comes with a dual ontology viz. the
universal state vector and corpuscles (the positions of which are the hidden
variables). Accordingly, it is possible for two physical processes to agree as to
the measurement carried out, the payoff given, and the Hilbert space state, but
to disagree on the hidden variables (a rational agent might thus prefer one to
the other).

Furthermore, even in the context of the Everett interpretation, measure-
ment neutrality is incompatible with the strategy wherein all branches are re-
garded as equiprobable. To see this, suppose that we measure Sz on a spin-
half particle and gain some monetary reward if the result is ”spin-up” but
lose money otherwise. Now measurement device M1 (improbably) results in
one branch for the spin-up result and one branch for the spin-down result,
whilst device M2 incorporates a quantum random-number generator which is
triggered by a spin-up result, so that there are, say, 1012 spin-up branches and
only one spin-down branch. Adopting the equiprobability strategy, we should
be as likely to win as to lose if we use device M1, but virtually certain to win
if we use device M2 - however, measurement neutrality instructs us that each
is as good as the other (cementing the point that the principle has non-trivial
implications).

5 The Fission Program

5.1 Half-baked SU

Of those aspects which go into Wallace’s solution to the bipartite probability
problem, ’subjective uncertainty’ seems to be the most contentious one (see
e.g. [1] and [15]). For this reason, Hilary Greaves ([9], [10]) has worked exten-
sively on a solution known as the Fission Program, which eradicates the concept
of SU altogether. Indeed, such a program must be construed as the nihility of
objective chances: an agent who knows quantum mechanics (and the govern-
ing state vector) is not in any way uncertain about the outcomes of measure-
ment. Rather, it will be the case that the agent knows that he has a plenitude of
successors, wherefore he, upon being faced with Everettian branching, must

15Maybe at a mere subconscious level.
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consider the interests of these post-branching successors by taking the course
of action which best serves them.

More precisely, the fission program should to be understood as offering a
reinterpretation of the decision-theoretic axioms such that they no longer apply
to an agent’s ignorance of his single future (which was why we needed SU in
the first place), but to the agent’s predilection vis-a-vis his branching succes-
sors. To exemplify this, consider the aforementioned principle of dominance,
which, to repeat, states that a rational agent must prefer A to B insofar as A
rewards him better than B (irrespective of how the future turns out). On the
fission approach this translates as follows: a rational agent should regard A
as preferable B if each of his future successors is rewarded more richly under
A than under B. Applying analogous reinterpretations uniformly to our deci-
sion theory, we acquire a representation theorem (see footnote 12) which tells
us that agents choose that action which maximizes expected utility (EU), where
the weights in the EU formula are not credences in unknown outcomes, but
a measure pertaining to how much that agent cares about each of his future
branching descendants. We shall henceforth refer to this as the caring measure.

How does this caring measure relate to quantum mechanical weight of the
respective branches? Fissionists propose the following rationality principle -
designated the quantum caring principle (QCP):

Definition 5. (QCP): Rational agents are compelled to allocate caring mea-
sures to branches in proportion to their quantum mechanical weight, when
they know the latter. Thus, if ξ is a given proposition, T is the Everettfission

interpretation, and X is the proposition that ”the weight, at the time in ques-
tion, of all branches on which |ξ| = > is x (relative to the agent)”, then QCP
requires that

Cr(ξ|T ∧X) = x (37)

It follows that if QCP is true then rational agents (conscious of the fact
that they are imbedded in an Everettian universe) will act just as they would
have acted in an indeterministic universe where the conventional quantum
algorithm was true: despite the non-existence of objective probabilities. But if
we think about it, our justification for QCP is no worse off than our justification
for ’credence = weight’. This follows from the fact that the proof in subsection
4.2 extends mutatis mutandis to the fission program, with the decision-theoretic
axioms properly reinterpreted (so as to entail that ’caring measure = weight’).
And even if we are not prepared to accept this proof, QCP does not obviously
come across as a more contentious rationality principle than PP. In both cases
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it appears that we are prepared to continue using the principle, even if we do
not know how to derive it.

5.2 The Fatness Objection

There is an interesting critique of QCP and the proof thereof, due to David
Albert ([1]). Suppose that I self-consciouly decide that the degree to which it
is reasonable for me to care about what transpires in a given one of my future
branches, ought to be proportional to how corpulent I am in that branch (em-
ploying the rationale that those branches in which there is more of me deserve
to attract more attention). The question is, whether it is any more irrational or
incoherent to adopt one’s fatness as a caring measure, γ, than it is to adopt the
modulus squared of the quantum amplitude as a caring measure16?

One reason to be suspicious of γ might be that the coherence of a caring
measure which depends exclusively on obesity, is going to depend on there
being some perfectly definite matter of fact about exactly how many branches
there are, which is in fact highly unlikely (Greaves17). However, this objection
is easily avoided by modifying the example: suppose that I adopt the slightly
more sophisticated caring measure, Γ, where I care about what transpires on
a given branch in proportion to the product of my fatness in that branch and
the associated branch weight.

A second worry is that adopting caring measure Γ is somehow inconsistent
with or irrational in light of the claim that I am as a matter of fact entirely in-
different as to whether I am fat or thin. But there is nothing incoherent about
me having no preference between two different non-branching deterministic
future evolutions between which my level of obesity is markedly different,
and at the same time be eager to arrange that things are to my liking on the
branch in which I am fatter when faced with a genuinely branching event. For
upon being faced with genuine branching we supposed rationale-wise that on
those branches where there is more of me, there is more to be concerned about,
whilst no such considerations can apply to non-branching cases, since the en-
tirety of me, fat or thin, will be on the single branch to come. And there is
nothing paradoxical about the fact that while I care a great deal about the rel-
ative level of obesity of my branching descendants, those same fatness values
are going to be of no concern whatsoever to the descendants themselves. For
surely it is perfectly consistent for me to harbor particular interests at t = t0

16True, the latter is justified via the DW proof, but here we assume that the axioms underpin-
ning this derivation stand in need of justification.

17See the paper by Albert [1], p. 11; also take a look at Greaves [9], pp. 11-14, for an interesting
discussion of allowed caring measures.
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with respect to my branching descendants at t = t1, which do not correspond
to the interests of a given one of those t1-descendants vis-a-vis his circum-
stances at that time.

As Wallace points out ([1], p. 12), adopting a fatness caring measure might,
admittedly, in practice prove onerous: it might for example involve me trying
to anticipate - even control - how much food I ingest on some particular future
branch. But surely, the prevalence of such difficulties have no direct bearing
on the question whether it is reasonable for me to care about the matter. Analo-
gously, although current technology renders a quadrupling of my (Spearman)
g-factor impossible, that does imply that I find such an intelligence-boost any
less desirable. Nor does the fact that we are computationally incapable of
predicting how even relatively mundane actions might propagate chaotically
through time and lead to the end of millions of innocent lives, mean that we
simply don’t care whether people die as a result of our actions. Obviously, any
altruistic being does whatever is in his or her power to secure the continuation
of his species.

Thus, we certainly have some ground for doubting whether it is altogether
irrational for us to adopt a caring measure which does not comply with the
branch weights.

5.3 The Wrong Question

Another relevant objection to the fission program is that it, as presented above,
provides an answer to the wrong question (cf. [1], [20]): more precisely, we are
told that ’supposing that we believed that the Everett interpretation was true,
what rationality principles should we conform to in deciding how to live our
lives?’. And whilst this surely is an interesting enquiry if we were diehard
Everettians, our situation is rather that we want to know whether we should
believe the Many Worlds interpretation in the first place: id est is the Everett
picture explanatory of our current epistemic situation? And certainly, it is far from
obvious how to answer this question if we are barred from our customary
”probabilistic vernacular”, as the fissionists would have us believe.

Faced with this objection, one might rightly question what would make
us come to accept the fission program in the first place? A reasonable conjec-
ture would be, that the Everettfission interpretation offers an explanation of ob-
served phenomena just as good as the quantum algorithm (while at the same
time solving the measurement problem). Observed phenomena which, recall,
essentially are a vast array of experimental outcomes the frequencies of which
harmonize very well with the probabilities defined by quantum mechanics.
Nevertheless, the fact that the fission program predicts that there are branches
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where this indeed is true (and concordantly ascribes high weights to those
branches), offers us no reason why it is rational to assume that we are in such
a branch. What the fission program really provides is a prudential reason to
care about successors in proportion to their branch weight, but as Wallace ob-
serves (Ibid, p. 667) that does not seem to be of epistemic import.

This point is perhaps better understood from a Bayesian perspective of the-
ory confirmation. Recall that our credence in a given hypothesis traditionally
(and plausibly!) is understood as being updated qua a conditionalizing pro-
cedure. I.e. if CrA(B) is our credence in some proposition B subsequent to
learning A, then CrA(B) = Cr(B|A) ≡ Cr(A ∧B)/Cr(A). Thus, using Bayes’
theorem, if T is some physical theory, and ξ is some evidence, then our up-
dated credence should be

Crξ(T ) =
CrT (ξ)Cr(T )

Cr(ξ)
(38)

Thus, if we treat the quantity Cr(ξ) as low (i.e. event ξ is unlikely a priori), but
CrT (ξ) is high (i.e. the theory ascribes high OP to the event, since the Principal
Principle sets c(ξ) = CrT (ξ)), then equation (38) instructs us that our credence
in T should rise upon observing ξ. The problem with the fission program is
that outcomes simply cannot be regarded as being of high or low objective
probability: since all outcomes occur it follows that CrT (ξ) = 1 irrespective
of the weight of ξ. But if quantum weights do not appear in the Bayesian
updating rule, then - if true - it cannot be the case that our observation of
heigh weight events provides any evidental support for quantum mechanics
whatsoever.

Anticipating this kind of objection, Greaves ([11]) has argued that on the
assumption that we live in an Everettian branching universe, then we can con-
struct an analogue for the Bayesian updating rule and prove its validity. Alas,
this does not seem to remedy the situation in which we are concerned about
evidence for the Everett interpretation, unless we make further assumptions.
To see this, suppose her argument succeeds, and let T be the hypothesis that
Many Worlds is true, and Xi be the hypothesis that the weight of branches
in which evidence ξ occurs is xi. Then Greave’s transformed updating rule
implies that

Crξ,T (Xi) =
xiCrT (Xi)∑
j xjCrT (Xj)

(39)

and although this formula surely allows us to update various credences all of
which are conditional on T (i.e. the Everett interpretation), it does not allow
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us to make statements about rational credence in the Everett interpretation
itself. In other words, the fission program is so perversely construed that it
does not allow us to assess any evidence for the Everett proposal, because its
very epistemic framework presumes the validity of the theory.

6 Conclusion

In this paper we have seen that a quantum dynamics consisting solely of the
deterministic process II and a fundamental ontology consisting of nothing but
the universal state vector will allow us to resolve the corrosive measurement
problem faced by the conventional quantum algorithm. However, this Ev-
erettian approach entails the radical result that all terms in entangled quantum
superpositions must be treated as branching worlds in a multiverse: worlds
which we argued for all practical purposes are selected unambiguously in the
process of decoherence. Nonetheless, the Everett interpretation faces a dual
problem concerning the status of quantum probability viz. the worry that any
talk of stochasticisity is downright incoherent (the subjective uncertainty prob-
lem), and the quantitative worry that the traditional Born probabilities are un-
justifiable.

I argued that objective probability enters our scientific theories only through
the principal principle and that the best approach to the phenomenon is cau-
tious functionalism wherein we surmise that something eventually can be
proved to satisfy PP. Whether the SU problem can in fact be solved remains
contentious: we saw that Saunders’ argument was insufficient, whilst Wal-
lace’s semantics might prove more promising. Insofar as it can be solved, the
branch weights are candidates for OP in the sense that they satisfy the func-
tional definition offered by PP (and thus the Everett interpretation might be
no worse off than any other physical theory involving probability). How-
ever, we also saw that Deutsch and Wallace have offered us an ingenious
decision-theoretic proof that ”probability = weight” - a proof which rests upon
some fairly strong axioms of what constitutes rational behavior. Provided that
we find reasons to doubt these postulates (such as the fatness objection) the
DW theorem falls to the ground. Finally we saw that the SU-rejecting caring-
measure alternative known as the fission program fails to provide an epistem-
ically acceptable account of how we come to accept the Everett interpretation.

I conclude that the theory of Many Worlds has come a long way since it ini-
tially emerged with characteristic nebulosity in a paper by Hugh Everett III.
While I maintain that the preferred basis problem has been completely solved,
I still think that there are technicalities surrounding the solution(s) to the prob-
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ability problem, which are worth looking at. More precisely, subjective uncer-
tainty and the appeal to decision theory call for greater philosophical scrutiny.
However, I do see the work by Deutsch, Wallace and Greaves as a profound
step in the right direction, in the sense that even if the probability problem is
insurmountable, now we have a much deeper understanding of what exactly
goes wrong (which in itself is great philosophical insight).

In the case that the Everett interpretation ultimately proves untenable, I
would not hesitate to recommend de Broglie Bohm’s ”Pilot Wave” theory as
the primal alternative to understanding quantum mechanics. Being dynam-
ically isomorphic to Many Worlds, the Pilot Wave solves the measurement
problem. Also, by introducing corpuscles into its fundamental ontology, there
exits an unambiguous preferred basis (since the actual world is taken to super-
vene upon these entities). Finally, the appearance of probability in the quan-
tum algorithm is perhaps less mysterious: although the universal wave func-
tion encodes the blueprint for all physically possible worlds in a measurement
scenario, only one of these is actually realized viz. the one into which the
corpuscles end up. For a detailed discussion of this see [13].

Acknowledgements: I thank my former mentors, Wayne Myrvold and David
Wallace, for teaching me to reason about foundational quantum mechanics.
Special thanks to Jeremy Butterfield who made detailed and helpful comments
on a draft of this paper.

7 Appendix

For the sake of completeness, let us prove (see [19], p. 438) the probability
representation theorem, which was mentioned in sections 4 and 5 of this paper.
Recall:

Theorem 3. Representation Theorem: If V is a value function satisfying ad-
ditivity and dominance, then V is given by:

V(|ψ〉,X,P) =
∑

x∈σ(X)

Prψ,X(x)P(x) (40)

where the numbers {Prψ,X(x) ∈ R|0 6 x 6 1} depend on |ψ〉 and X , but not
on P ; and where ∑

x

Prψ,X(x) = 1. (41)
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To show this we need the lemma that V is linear:

Lemma 7. Linearity: If V satisfies additivity and dominance, then for any
sets of real numbers {ai}|Ni=1 and payoffs {Pi}|Ni=1,

V

(
|ψ〉,X,

N∑
i=1

aiPi

)
=

N∑
i=1

aiV (|ψ〉,X,Pi) (42)

Proof. For notational convenience let us write V(P) instead of V(|ψ〉,X,P).
Let a ∈ R+ and let {kn} ans {mn} be sequences of integers s.t. {km/mn} is an
increasing sequence which tends towards a. Using the principles of dominance
and additivity we have ∀n : mnV(aP) > knV(P) and thence V(aP) > aV(P).
If we repeat this step with a decreasing sequence we find that the only common
overlap is V(aP) = aV(P) for any a > 0. To extend this proof to negative a
we simply use zero-sum and the full result follows from additivity.

Thus, the probability representation theorem can be demonstrated:

Proof. For any x ∈ σ(X) let us define δx(y) thus:

δx(y) =

{
1, if y = x

0, otherwise.

Any payoff function P for σ(X) can be expressed uniquely as

P =
∑

x∈σ(X)

P(x)δx

and applying the lemma of linearity we thus get

V(P) =
∑

x∈σ(X)

P(x)V(δx).

If we set Pr(x) = V(δx) then we establish equation (40), and putting ∀x :
P(x) = 1 gives equation (41) as a special case.
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