Finite automata presentable abelian groups ${ }^{\underline{\alpha}}$

André Nies ${ }^{\text {a }}$, Pavel Semukhin ${ }^{\text {b }}$
${ }^{a}$ Department of Computer Science, The University of Auckland, New Zealand
${ }^{b}$ Department of Mathematics, National University of Singapore, Singapore

Abstract

We give new examples of FA presentable torsion-free abelian groups. Namely, for every $n \geqslant 2$, we construct a rank n indecomposable torsion-free abelian group which has an FA presentation. We also construct an FA presentation of the group $(\mathbb{Z},+)^{2}$ in which every nontrivial cyclic subgroup is not FA recognizable.

Key words: Automatic structures, Torsion-free abelian groups 2000 MSC: 20K15, 68Q45

1. Introduction

The study of finite automata (FA) presentable, or automatic, structures began in the works by Hodgson [6, 7] and then carried on in Khoussainov and Nerode [8]. A structure is called FA presented if its domain and atomic relations are recognized by finite automata operating synchronously on their input. So, these structures have finite presentations. The class of automatic structures is of special interest in the field of theoretical computer science. One of the reasons for this is that the first-order theory of an FA presentable structure is decidable, and in fact the model checking problem is decidable. For instance, Hodgson [6, 7] was the first to use this property to give a new proof of the decidability of Presburger arithmetic $\operatorname{Th}(\mathbb{N},+)$.

There is a complete description of FA presentable structures in the classes of Boolean algebras [10] and well-ordered sets [4], but for another classes of structures such as groups, rings, linear orders, etc., the situation is far from clear. For example, it is unknown whether the group of rationals under addition has an FA presentation. In [9], Khoussainov and Rubin posed the problem of characterizing automatic abelian groups (Problem 4).

In this paper, we describe a new method for constructing FA presentable abelian groups and monoids using the notion of amalgamated product. We show that under certain conditions, the amalgamated product of FA presentable groups or monoids is itself FA presentable. We then use this method to give new examples of FA presentable torsion-free abelian groups. The only known examples of such groups were $(\mathbb{Z},+),\left(R_{p},+\right)$ (the group of rationals with denominators powers of p), and their finite direct products. Our examples are indecomposable and strongly indecomposable torsion-free abelian groups.

[^0]An interesting characterization of finitely generated FA presentable abelian groups was discovered by Oliver and Thomas [13]. A group is called abelian-by-finite or virtually abelian if it contains an abelian subgroup of finite index. It turns out that a finitely generated group is FA presentable if and only if it is abelian-by-finite.

On the other hand, Nies and Thomas [12] showed that every finitely generated subgroup of an infinite FA presentable group is abelian-by-finite. This statement would be an easy corollary of the previous result if the domain of every finitely generated subgroup in every FA presented group was FA recognizable. However, this is not the case. Akiyama et al. [1] constructed an FA presentation of the abelian group R_{p}, for each prime p, where the subgroup of the integers is not FA recognizable. In the last section of this paper, we provide an even more interesting example of this sort. We will construct an FA presentation of the group $(\mathbb{Z},+)^{2}$ every nontrivial cyclic subgroup of which is not FA recognizable. This contrasts with the standard presentation of $\mathbb{Z} \times \mathbb{Z}$ where every cyclic subgroup is FA recognizable.

We now give formal definitions that will be used in this paper.
Definition 1.1. Let Σ be a finite alphabet, and $\bar{a}=\left(a_{1}, \ldots, a_{k}\right)$ be a tuple of words from Σ^{*}. A convolution of \bar{a} is a word in alphabet $(\Sigma \cup\{\square\})^{k}$ which is constructed by placing the words a_{1}, \ldots, a_{k} one under another and adding a special symbol \square at the end of the words to get the same length. For example,

$$
\operatorname{Conv}(01,1011,100)=\begin{array}{cccc}
0 & 1 & \square & \square \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & \square
\end{array}
$$

A convolution of a relation $R \subseteq\left(\Sigma^{*}\right)^{k}$ is defined as $\operatorname{Conv}(R)=\{\operatorname{Conv}(\bar{a}): \bar{a} \in R\}$.
Definition 1.2. A relation $R \subseteq\left(\Sigma^{*}\right)^{k}$ is $F A$ recognizable, or regular, if $\operatorname{Conv}(R)$ is recognized by a finite automaton.

Definition 1.3. A structure $\mathcal{A}=\left(A ; R_{1}, \ldots, R_{n}, f_{1}, \ldots, f_{m}\right)$ is $F A$ presented if, for a finite alphabet $\Sigma, A \subseteq \Sigma^{*}$ is an FA recognizable set of words in Σ^{*}, and all the relations R_{1}, \ldots, R_{n} together with the graphs of operations f_{1}, \ldots, f_{m} are recognized by finite automata.

A structure \mathcal{A} is FA presentable if it is isomorphic to an FA presented structure.
In some cases to prove that a given structure is FA presentable, we will not construct its automatic presentation explicitly. Instead we give its first-order interpretation in a structure already known to be FA presented. The description of this method together with formal definitions and proofs can be found in [3]. For more background on FA presentable structures see [11].

2. An FA presentation of the group \boldsymbol{R}_{p}

Definition 2.1. Let R_{p} be the subgroup of $(\mathbb{Q},+)$ consisting of elements of the form k / p^{i}.
In the literature, R_{p} is also denoted by $\mathbb{Q}^{(p)}$ (for example, see $[5]$) or $\mathbb{Z}[1 / p]$. The next theorem shows that R_{p} is FA presentable, and we will use this particular presentation of R_{p} in section 5 to construct new examples of FA presentable abelian groups.

Theorem 2.2. R_{p} is FA-presentable.
Proof. First, we will construct an automatic presentation of R_{p}^{+}, the submonoid of R_{p} consisting of elements greater than or equal to 0 . Later we describe how to obtain an FA presentation of the entire group R_{p} from the one for R_{p}^{+}.

The alphabet of the FA presentation for R_{p}^{+}will be $\Sigma=\left\{\binom{n}{m}: n \in\{0,1\}\right.$ and $m \in$ $\{0, \ldots, p-1\}\}$. Every element $z \in R_{p}^{+}$will be represented by two lines of digits,

n_{1}	n_{2}	\cdots	n_{k}
m_{1}	m_{2}	\cdots	m_{k}

where $n_{1} n_{2} \ldots n_{k}$ represents the integral part of z in binary presentation with the least significant digit first, and $m_{1} m_{2} \ldots m_{k}$ represents the fractional part of z in base p with the most significant digit first. If needed, we put additional zeros to the right to make the lengths of integral and fractional part equal. For example, if $p=3$ then the element $14 \frac{17}{27} \in R_{3}^{+}$is represented by

0	1	1	1
1	2	2	0

Let the domain D of an FA presentation of R_{p}^{+}consist of all words in Σ^{*} not ending in $\binom{0}{0}$, except for $\binom{0}{0}$ itself which represents 0 . Clearly, D is FA recognizable.

Let $A d d$ be the graph of the addition operation. We prove that $A d d$ is FA recognizable. First, we construct an auxiliary automaton \mathcal{A} whose alphabet is $(\Sigma \cup\{\square\})^{3}$. The states of \mathcal{A} are $q_{0},(0,0),(0,1),(1,0),(1,1)$, where q_{0} is an initial state and $(0,0)$ is a final state. The state (α, β) means that we have a carry bit α in the addition of integral parts, and a carry bit β in the addition of fractional parts.

The transitions of \mathcal{A} are defined below. It is assumed there that the special symbol \square is identical to the symbol $\binom{0}{0}$.

There is a transition from q_{0} to (α, β) with the label $\left(\binom{n_{1}}{m_{1}},\binom{n_{2}}{m_{2}},\binom{n_{3}}{m_{3}}\right)^{\top}$ if and only if

$$
\left\{\begin{array} { r l }
{ n _ { 1 } + n _ { 2 } } & { = 2 \alpha + n _ { 3 } } \\
{ m _ { 1 } + m _ { 2 } + \beta } & { = m _ { 3 } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{rl}
n_{1}+n_{2}+1 & =2 \alpha+n_{3} \\
m_{1}+m_{2}+\beta & =p+m_{3} .
\end{array}\right.\right.
$$

This means that from the first letter of the input, \mathcal{A} guesses the carry bit from the fractional part to the integral part: in the first case the carry bit is 0 , while in the second case the carry bit is 1 .

There is a transition from (α, β) to $\left(\alpha^{\prime}, \beta^{\prime}\right)$ with the label $\left(\binom{n_{1}}{m_{1}},\binom{n_{2}}{m_{2}},\binom{n_{3}}{m_{3}}\right)^{\top}$ if and only if

$$
\left\{\begin{aligned}
n_{1}+n_{2}+\alpha & =2 \alpha^{\prime}+n_{3} \\
m_{1}+m_{2}+\beta^{\prime} & =p \beta+m_{3}
\end{aligned}\right.
$$

Now as one can see $\operatorname{Conv}(A d d)=L(\mathcal{A}) \cap \operatorname{Conv}\left(D^{3}\right)$. Therefore, since D^{3} is FA recognizable, then so is $A d d$.

Let us define an FA presentation for R_{p}. Consider the presentation of R_{p}^{+}given above; let $\pi: D^{2} \rightarrow D^{2}$ be the following function

$$
\pi(x, y)= \begin{cases}(x-y, 0) & \text { if } x \geqslant y \\ (0, y-x) & \text { if } x<y\end{cases}
$$

Note that the graph of π is an FA recognizable subset of D^{4} since it can be defined in terms of $A d d$ and \leqslant relations which are FA recognizable in our presentation of R_{p}^{+}. Now the domain of the FA presentation of R_{p} is

$$
\{(x, y): x, y \in D \text { and }(x=0 \vee y=0)\}
$$

with addition operation defined as

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right) \text { if and only if }\left(x_{3}, y_{3}\right)=\pi\left(x_{1}+x_{2}, y_{1}+y_{2}\right)
$$

3. Amalgamations of monoids and abelian groups

Before turning to abelian groups, let us consider commutative monoids which have cancellation property, namely, $a+c=b+c$ implies $a=b$ for all elements a, b, c. In what follows, by monoid we will mean commutative monoid with cancellation property.

Proposition 3.1. Let M, N, and U be monoids, and $f: U \rightarrow M, g: U \rightarrow N$ be isomorphic embeddings. Consider the direct product $M \times N$ of the monoids and a relation \sim_{U} on $M \times N$ defined as follows:

$$
\left.\begin{array}{rl}
\left(x_{0}, y_{0}\right) \sim_{U}\left(x_{1}, y_{1}\right) \Longleftrightarrow \exists u, v \in U\left(x_{0}+f(u)\right. & =x_{1}+f(v) \wedge \\
y_{0} & +g(u)
\end{array}=y_{1}+g(v)\right) . ~ \$
$$

Then \sim_{U} is a congruence on $M \times N$, and $M \oplus_{U} N$, the amalgamated product of M and N over U, is the quotient structure $M \times N / \sim_{U}$, which also is a commutative monoid with cancellation property.

Proof. It is straightforward to show that \sim_{U} is a congruence, and that $M \oplus_{U} N$ is a commutative monoid. We prove that it possesses cancellation property. Suppose $\left(x_{0}, y_{0}\right)+(z, w) \sim_{U}$ $\left(x_{1}, y_{1}\right)+(z, w)$; then $x_{0}+z+f(u)=x_{1}+z+f(v)$ and $y_{0}+w+g(u)=y_{1}+w+g(v)$ for some $u, v \in U$. Since M and N possess cancellation property, we have that $x_{0}+f(u)=x_{1}+f(v)$ and $y_{0}+g(u)=y_{1}+g(v)$, that is $\left(x_{0}, y_{0}\right) \sim_{U}\left(x_{1}, y_{1}\right)$.

We will use the notation $\langle x, y\rangle_{U}$ to denote the equivalence class of $(x, y) \in M \times N$ with respect to \sim_{U}.
Proposition 3.2. Let $M \oplus_{U} N$ be an amalgamated product of monoids M and N over U. Then there are submonoids \widetilde{M} and \widetilde{N} in $M \oplus_{U} N$ such that $\widetilde{M} \cong M, \widetilde{N} \cong N$, and $M \oplus_{U} N=\widetilde{M}+\widetilde{N}$.

Proof. Let $\widetilde{M}=\left\{\langle x, 0\rangle_{U}: x \in M\right\}$ and $\widetilde{N}=\left\{\langle 0, y\rangle_{U}: y \in N\right\}$; as one can see, \widetilde{M} and \widetilde{N} are submonoids of $M \oplus_{U} N$, and $M \oplus_{U} N=\widetilde{M}+\widetilde{N}$. Consider the mappings $\varphi: M \rightarrow \widetilde{M}$ and $\psi: N \rightarrow \widetilde{N}$ such that $\varphi(x)=\langle x, 0\rangle_{U}$ and $\varphi(y)=\langle 0, y\rangle_{U}$. Clearly, φ and ψ are epimorphisms. Let us show, for instance, that φ is one-to-one. Suppose $\langle x, 0\rangle_{U}=\left\langle x^{\prime}, 0\right\rangle_{U}$; then $x+f(u)=x^{\prime}+f(v)$ and $g(u)=g(v)$ for some $u, v \in U$. Therefore, $u=v$ and the cancellation property implies that $x=x^{\prime}$.

In the case of abelian groups, we can define the notion of amalgamated product in a slightly different manner.

Definition 3.3. Let A, B, and U be abelian groups and $f: U \rightarrow A, g: U \rightarrow B$ be isomorphic embeddings. Then $A \oplus_{U} B$, the amalgamated product of A and B over U, is the quotient group $A \oplus B / \widetilde{U}$, where $\widetilde{U}=\{(f(u), g(u)) \mid u \in U\}$.

The next proposition is the strengthening of 3.2 for abelian groups.
Proposition 3.4. Let $A \oplus_{U} B$ be an amalgamated product of ${\underset{\sim}{\widetilde{A}}}_{\widetilde{B}}$ and B over U. Then there are subgroups \widetilde{A} and \widetilde{B} in $A \oplus_{U} B$ such that $\widetilde{A} \cong A, \widetilde{B} \cong B, \widetilde{A} \cap \widetilde{B} \cong U$, and $A \oplus_{U} B=\widetilde{A}+\widetilde{B}$, where $\widetilde{A}+\widetilde{B}=\{a+b \mid a \in \widetilde{A}, b \in \widetilde{B}\}$.

Proof. By definition $A \oplus_{U} B=A \underset{\sim}{\oplus} B / \widetilde{U}$. Let $\widetilde{\sim} \underset{A}{ }=\{(a, 0)+\widetilde{U} \mid a \in A\}$ and $\widetilde{B}=\{(0, b)+\widetilde{\sim}|\widetilde{B}| b \in$ $B\}$. As one can see, $A \oplus_{U} B=\widetilde{A}+\widetilde{B}$ and $\widetilde{A} \cong A, \widetilde{B} \cong B$. We now prove that $\widetilde{A} \cap \widetilde{B} \cong U$. Let $x \in \widetilde{A} \cap \widetilde{B}$, then $x=(a, 0)+\widetilde{U}$ and $x=(0, b)+\widetilde{U}$; hence $(a,-b) \in \widetilde{U}$ and $a=f(u)$, $b=-g(u)$. Therefore, $x=(f(u), 0)+\widetilde{U}$ and $\widetilde{A} \cap \widetilde{B}=\{(f(u), 0)+\widetilde{U} \mid u \in U\}$, which is isomorphic to U.

Remark 3.5. The intersection $\widetilde{M} \cap \widetilde{N}$ of the submonoids of $M \oplus_{U} N$ defined in the proof of Proposition 3.2 is not necessarily isomorphic to U. To show this let M, N, U be $(\mathbb{N},+)$, and f, g be the identity embeddings. As one can see, $M \oplus_{U} N$ is isomorphic to $(\mathbb{Z},+)$ because $\langle x, y\rangle_{\mathbb{N}}=\left\langle x^{\prime}, y^{\prime}\right\rangle_{\mathbb{N}}$ iff $x-y=x^{\prime}-y^{\prime}$, and we can identify $\langle x, y\rangle_{\mathbb{N}}$ with $x-y \in \mathbb{Z}$. In this case, \widetilde{M} and \widetilde{N} correspond to the submonoids of non-negative and non-positive numbers, respectively. Thus $\widetilde{M} \cap \widetilde{N}=\left\{\langle 0,0\rangle_{\mathbb{N}}\right\} \not \not \mathbb{N}$.

The converse of 3.4 also holds.
Proposition 3.6. Let L be an abelian group, A, B subgroups of L, and $U=A \cap B$. Then

$$
A+B \cong A \oplus_{U} B
$$

where the embeddings f, g of U into A and B are the identity mappings.
Proof. In this case, $A \oplus_{U} B=A \oplus B / \widetilde{U}$, where $\widetilde{U}=\{(u, u) \mid u \in U\}$. Let $\varphi: A \oplus_{U} B \rightarrow A+B$ be defined as follows:

$$
\varphi((a, b)+\widetilde{U})=a-b
$$

We show that φ is an isomorphism. First, note that it is well defined: if $(a, b)+\widetilde{U}=\left(a^{\prime}, b^{\prime}\right)+\widetilde{U}$ then $\left(a-a^{\prime}, b-b^{\prime}\right)=(u, u)$ for some $u \in U$; therefore $a-b=\left(a^{\prime}+u\right)-\left(b^{\prime}+u\right)=a^{\prime}-b^{\prime}$.

It is easy to see that φ is an epimorphism. We now prove that it is one-to-one. Let $a-b=a^{\prime}-b^{\prime}$; then $a-a^{\prime}=b-b^{\prime} \in A \cap B=U$. Therefore, $\left(a-a^{\prime}, b-b^{\prime}\right)=(u, u) \in \widetilde{U}$ and $(a, b)+\widetilde{U}=\left(a^{\prime}, b^{\prime}\right)+\widetilde{U}$.

Remark 3.7. If M, N, and U are abelian groups then both definitions of amalgamated product, that is the one for groups and the one for monoids, give us the same structure $M \oplus_{U} N$.

4. Constructions of FA presentable monoids and abelian groups

In this section, we will prove a version of Proposition 3.2 for FA presentable structures.
Theorem 4.1. If M, N, and U are FA presented monoids and $f: U \rightarrow M, g: U \rightarrow N$ are isomorphic embeddings that are $F A$ recognizable subsets of $U \times M$ and $U \times N$, respectively, then the amalgamated product $M \oplus_{U} N$ is FA presentable. Moreover, $M \oplus_{U} N$ contains $F A$ recognizable submonoids \widetilde{M} and \widetilde{N} such that $\widetilde{M} \cong M, \widetilde{N} \cong M$ and $M \oplus_{U} N=\widetilde{M}+\widetilde{N}$.

Proof. We prove that $M \oplus_{U} N$ is FA presentable by constructing an interpretation of it in the FA presentable structure $E=M \sqcup N \sqcup U$ enriched with unary predicates for subsets M, N, U and binary predicates R_{f} and R_{g} for the graphs of f and g. Let R^{M} and R^{N} be the graphs of the addition operation in M and N, respectively.

The domain for $M \oplus_{U} N$ is defined in E^{2} by the formula $\Delta\left(x_{0}, y_{0}\right)=M\left(x_{0}\right) \wedge N\left(y_{0}\right)$. Addition is defined by

$$
\Phi\left(x_{0}, y_{0}, x_{1}, y_{1}, x_{2}, y_{2}\right)=R^{M}\left(x_{0}, x_{1}, x_{2}\right) \wedge R^{N}\left(y_{0}, y_{1}, y_{2}\right) .
$$

Equality is defined by

$$
\begin{aligned}
\epsilon\left(x_{0}, y_{0}, x_{1}, y_{1}\right)=\exists u, v(U(u) \wedge U(v) & \wedge x_{0}+f(u)=x_{1}+f(v) \\
& \left.\wedge y_{0}+g(u)=y_{1}+g(v)\right)
\end{aligned}
$$

or more formally

$$
\begin{aligned}
\epsilon\left(x_{0}, y_{0}, x_{1}, y_{1}\right)= & \exists u, v, w_{0}, w_{1}, w_{2}, w_{3}, z_{0}, z_{1}\left(U(u) \wedge U(v) \wedge R_{f}\left(u, w_{0}\right)\right. \\
& \wedge R_{f}\left(v, w_{1}\right) \wedge R_{g}\left(u, w_{2}\right) \wedge R_{g}\left(v, w_{3}\right) \wedge R^{M}\left(x_{0}, w_{0}, z_{0}\right) \\
& \left.\wedge R^{M}\left(x_{1}, w_{1}, z_{0}\right) \wedge R^{N}\left(y_{0}, w_{2}, z_{1}\right) \wedge R^{N}\left(y_{1}, w_{3}, z_{1}\right)\right) .
\end{aligned}
$$

From the proof of Proposition 3.2 it follows that \widetilde{M} and \widetilde{N} are defined by the formulas

$$
\begin{aligned}
&\left(z_{0}, z_{1}\right) \in \widetilde{M} \Longleftrightarrow \exists x, u, v(M(x) \wedge U(u) \wedge U(v) \wedge \\
& z_{0}+f(u)\left.=x+f(v) \wedge z_{1}+g(u)=g(v)\right), \\
&\left(z_{0}, z_{1}\right) \in \widetilde{N} \Longleftrightarrow \exists y, u, v(N(y) \wedge U(u) \wedge U(v) \wedge \\
& z_{0}+f(u)\left.=f(v) \wedge z_{1}+g(u)=y+g(v)\right) .
\end{aligned}
$$

Therefore, \widetilde{M} and \widetilde{N} are FA recognizable submonoids.

Theorem 4.2. Let A and B be abelian groups such that B is a subgroup of A and $|A: B|$ is finite. If B is $F A$ presentable, then so is A.

Proof. Let r_{0}, \ldots, r_{k} be representatives of the cosets of B in A. Then there are a function $g:\{0, \ldots, k\}^{2} \rightarrow\{0, \ldots, k\}$ and elements $b_{i j} \in B$ with the following property: for every i and j,

$$
r_{i}+r_{j}=r_{g(i, j)}+b_{i j}
$$

We may assume that the FA presentation of B uses an alphabet Σ, such that $0, \ldots, k \notin \Sigma$, and that the domain of this presentation is $D \subseteq \Sigma^{*}$. Let the alphabet of the FA presentation of A be $\Sigma \cup\{0, \ldots, k\}$. Each element of A has the unique form $r_{i}+b$ for some $b \in B$, and is represented by the string $i v$, where $v \in D$ represents b. Since A is abelian,

$$
\left(r_{i}+b_{1}\right)+\left(r_{j}+b_{2}\right)=r_{g(i, j)}+b_{i j}+b_{1}+b_{2} .
$$

Hence the graph of addition operation can be recognized by a finite automaton.

Example 4.3 (Two different presentations of R_{6}). Consider the presentation of R_{6} described in Section 2. We will show that R_{6} in this presentation does not have FA recognizable subgroup isomorphic to R_{2}. Suppose M is an FA recognizable subgroup of R_{6} and $M \cong R_{2}$. Let $M^{+}=\{(x, 0):(x, 0) \in M\}$; then M^{+}is FA recognizable and $M^{+} \cong R_{2}^{+}$. Note that we can identify the FA presentation of R_{6}^{+}and the FA recognizable submonoid of R_{6} with domain $\left\{(x, 0):(x, 0) \in R_{6}\right\}$. This implies that R_{6}^{+}has an FA recognizable submonoid isomorphic to R_{2}^{+}.

Now if $M^{+} \leqslant R_{6}^{+}$is isomorphic to R_{2}^{+}, then for some $n_{0}, k_{0} \in \mathbb{N}$

$$
M^{+}=\frac{n_{0}}{6^{k_{0}}} \cdot R_{2}^{+}=\left\{\frac{n_{0} n 3^{k}}{6^{k_{0}+k}}: k, n \in \mathbb{N}\right\}
$$

For each k and let α_{k} be the smallest element of M^{+}of length $k_{0}+k$ in this presentation. Obviously, $\alpha_{k}=n_{0} 3^{k} 6^{-\left(k_{0}+k\right)}$ and it has the form

0	0	\cdots	0	0	\cdots	0
0	0	\cdots	0	r_{k}		

where

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\text { length }\left(r_{k}\right)}{\left(k+k_{0}\right)}=\log _{6} 3 \tag{1}
\end{equation*}
$$

Choosing sufficiently large k, we will have enough leading zeros in the presentation of α_{k} to pump this string. This will give us a contradiction with the formula (1). Therefore, M^{+}is not FA recognizable, and M is not FA recognizable too.

On the other hand, R_{6} is isomorphic to $R_{2}^{+} \oplus_{\mathbb{N}} R_{3}^{+}$. Indeed, $R_{2}^{+} \oplus_{\mathbb{N}} R_{3}^{+}=\left\{\langle x, y\rangle_{\mathbb{N}}:(x, y) \in\right.$ $\left.R_{2}^{+} \times R_{3}^{+}\right\}$and

$$
\langle x, y\rangle_{\mathbb{N}}=\left\langle x^{\prime}, y^{\prime}\right\rangle_{\mathbb{N}} \text { if and only if } x-y=x^{\prime}-y^{\prime} .
$$

Let $z=m / 6^{k} \in R_{6}$; there are $m_{0}, m_{1} \in \mathbb{Z}$ such that $m=3^{k} m_{0}-2^{k} m_{1}$; then $z=m_{0} / 2^{k}-$ $m_{1} / 3^{k}=\left(m_{0} / 2^{k}+l\right)-\left(m_{1} / 3^{k}+l\right)$ for any $l \in \mathbb{Z}$. Choosing sufficiently large l we see that
$z=x-y$, where $x \in R_{2}^{+}, y \in R_{3}^{+}$. Therefore, the mapping that sends $\langle x, y\rangle_{\mathbb{N}}$ to $x-y \in R_{6}$ gives us desired isomorphism.

Consider FA presentations for R_{2}^{+}and R_{3}^{+}described in Section 2. Recall that the integral part of every element is presented in base 2 both in R_{2}^{+}and R_{3}^{+}. Thus if we take FA presentation of \mathbb{N} in base 2 , then the graphs of the identity embeddings $f: \mathbb{N} \rightarrow R_{2}^{+}$and $g: \mathbb{N} \rightarrow R_{3}^{+}$will be FA recognizable. Therefore, by Theorem 4.1, R_{6} has an FA presentation which contains FA recognizable submonoids isomorphic to R_{2}^{+}and R_{3}^{+}. Now if $M^{+} \subseteq R_{6}$ is a submonoid isomorphic to R_{2}^{+}then $M=M^{+} \cup-M^{+}$is a subgroup isomorphic to R_{2}. Clearly, M is definable in terms of M^{+}and addition. Therefore, this presentation of R_{6} contains FA recognizable subgroups isomorphic to R_{2} and R_{3}. It is different from the presentation given in Section 2, in the sense that there is no automatic isomorphism between them.

5. Indecomposable FA presentable abelian groups

We describe rank n torsion-free abelian groups, G_{n} and H_{n}, which are indecomposable and strongly indecomposable, respectively. We then show how to apply the methods from the previous section to prove that they are FA presentable.

In what follows we will use expressions like $p^{-\infty} a$ as an abbreviation for an infinite set $p^{-1} a, p^{-2} a, \cdots$. For every $n \geqslant 2$, let G_{n} be a subgroup of \mathbb{Q}^{n} generated by $p_{1}^{-\infty} e_{1}, \ldots, p_{n}^{-\infty} e_{n}$, $q^{-1}\left(e_{1}+\cdots+e_{n}\right)$, where q, p_{1}, \ldots, p_{n} are different primes and e_{1}, \ldots, e_{n} are linear independent elements in \mathbb{Q}^{n} considered as a \mathbb{Q}-vector space. An example of such a group can be found in [5, vol. 2, §88, Exercise 2].
Theorem 5.1. The group G_{n} is indecomposable for all $n \geqslant 2$.
Proof. First, note that every $x \in G_{n}$ has the form

$$
x=\left(p_{1}^{-k_{1}} m_{1}+q^{-1} s\right) e_{1}+\cdots+\left(p_{n}^{-k_{n}} m_{n}+q^{-1} s\right) e_{n}
$$

where $m_{1}, \ldots, m_{n}, s \in \mathbb{Z}$ and $k_{1}, \ldots, k_{n} \in \mathbb{N}$. Let $E_{j}=\left\langle p_{j}^{-\infty} e_{j}\right\rangle$ where $1 \leqslant j \leqslant n$. We show that the groups E_{j} are fully invariant in G_{n}, i.e. $\varphi\left(E_{j}\right) \subseteq E_{j}$ for any endomorphism φ of G_{n}. Let $x \in E_{j}$ and $\varphi(x)=\sum s_{i} e_{i}$. In G_{n}, x is divisible by all powers of p_{j}, and so is $\varphi(x)$. Hence, $s_{i}=0$ for $i \neq j$ and $\varphi(x)=s_{j} e_{j}$.

Take any $i \neq j$. As mentioned above, s_{j} has the form $p_{j}^{-k_{j}} m_{j}+q^{-1} s$ and s_{i} has the form $p_{i}^{-k_{i}} m_{i}+q^{-1} s$. Since $s_{i}=0, q^{-1} s$ must be an integer. Therefore, $\varphi(x)=s_{j} e_{j}$ belongs to E_{j}.

Now suppose that $G_{n}=A \oplus B$. If $x \in G_{n}$, then x has the unique form $x=a+b$, where $a \in A, b \in B$. Define the following endomorphisms of $G_{n}: \varphi^{A}(x)=a$ and $\varphi^{B}(x)=b$, where $x=a+b$. Obviously, $x=\varphi^{A}(x)+\varphi^{B}(x)$. If $x \in E_{j}$ then $\varphi^{A}(x) \in E_{j} \cap A$ and $\varphi^{B}(x) \in E_{j} \cap B$, since E_{j} is fully invariant. This means that $E_{j}=\left(E_{j} \cap A\right) \oplus\left(E_{j} \cap B\right)$.

Note that E_{j} is indecomposable, because it has rank 1. Therefore, $E_{j} \subseteq A$ or $E_{j} \subseteq$ B. Assume there exists $1 \leqslant k<n$ such that possibly after re-indexing $E_{1}, \ldots, E_{k} \subseteq A$ and $E_{k+1}, \ldots, E_{n} \subseteq B$. Let $q^{-1}\left(e_{1}+\cdots+e_{n}\right)=a+b$, where $a \in A$ and $b \in B$. Then $e_{1}+\cdots+e_{k}+e_{k+1}+\cdots+e_{n}=q a+q b$. Since $e_{1}+\cdots+e_{k} \in A$ and $e_{k+1}+\cdots+e_{n} \in B$ we have that $a=q^{-1}\left(e_{1}+\cdots+e_{k}\right)$.

We show that this is impossible. Let $a=\left(p_{1}^{-k_{1}} m_{1}+q^{-1} s\right) e_{1}+\cdots+\left(p_{n}^{-k_{n}} m_{n}+q^{-1} s\right) e_{n}$; since $p_{n}^{-k_{n}} m_{n}+q^{-1} s=0, q^{-1} s$ must be an integer. Hence $p_{1}^{-k_{1}} m_{1}+q^{-1} s$ cannot be equal to q^{-1}.

So we can assume that $E_{1}, \ldots, E_{n} \subseteq A$. If $B \neq \mathbf{0}$ then let $b \in B$ be a nonzero element. Then there exists $m>0$ such that $m b \in\left\langle e_{1}, \ldots, e_{n}\right\rangle \subseteq E_{1}+\cdots+E_{n} \subseteq A$, which is impossible because $m b \neq 0$ and $m b$ is an element of B. Therefore, $B=\mathbf{0}$.

Definition 5.2 ([2]). A torsion-free abelian group A is strongly indecomposable if whenever $0 \neq k \in \mathbb{N}$ and $k A \leqslant B \oplus C \leqslant A$ then $B=\mathbf{0}$ or $C=\mathbf{0}$.

The group H_{n} from the next theorem was introduced in [2, Example 2.4].
Theorem 5.3. The group $H_{n}=\left\langle p_{1}^{-\infty} e_{1}, \ldots, p_{n}^{-\infty} e_{n}, q^{-\infty}\left(e_{1}+\cdots+e_{n}\right)\right\rangle$ is strongly indecomposable for all $n \geqslant 2$.

Proof. First, we show that any endomorphism of H_{n} is the same as multiplication by an integer. Let $x \in H_{n}$, by an argument similar to one at the beginning of the proof of Theorem 5.1, one can show that if x is divisible in H_{n} by all powers of p_{i}, then x has the form $m p_{i}^{-k} e_{i}$.

Now let $\widehat{e}_{1}=-e_{1}, \ldots, \widehat{e}_{n-1}=-e_{n-1}, \widehat{e}_{n}=e_{1}+\cdots+e_{n}$. Then $e_{n}=\widehat{e}_{1}+\cdots+\widehat{e}_{n}$ and we can write

$$
H_{n}=\left\langle p_{1}^{-\infty} \widehat{e}_{1}, \ldots, p_{n-1}^{-\infty} \widehat{e}_{n-1}, p_{n}^{-\infty}\left(\widehat{e}_{1}+\cdots+\widehat{e}_{n}\right), q^{-\infty} \widehat{e}_{n}\right\rangle .
$$

Therefore, if x is divisible in H_{n} by any power of q then it has the form $m q^{-k} \widehat{e}_{n}=m q^{-k}\left(e_{1}+\right.$ $\left.\cdots+e_{n}\right)$.

Let φ be an endomorphism of $H_{n} ; \varphi\left(e_{i}\right)=r_{i} e_{i}$ where $r_{i}=m_{i} p_{i}^{-k_{i}}$, because $\varphi\left(e_{i}\right)$ is divisible by any power of p_{i}. Hence $\varphi\left(e_{1}+\cdots+e_{n}\right)=\sum r_{i} e_{i}$. On the other hand, since $\varphi\left(e_{1}+\cdots+e_{n}\right)$ is divisible by all powers of q, it has the form $m q^{-k}\left(e_{1}+\cdots+e_{n}\right)$. Therefore, each r_{i} is equal to an integer number r and $\varphi(x)=r x$. Since the group is torsion-free, every nonzero endomorphism is one-to-one.

To conclude the proof we will show that if a torsion-free abelian group A has only one-to-one nonzero endomorphisms then it is strongly indecomposable. Assume that there are $k \neq 0$ and nonzero groups B and C such that $k A \leqslant B \oplus C \leqslant A$. Let ψ be an endomorphism of $B \oplus C$ defined as follows: if $x=b+c$ where $b \in B, c \in C$ then $\psi(x)=b$. Then the mapping φ defined by $\varphi(x)=\psi(k x)$ is an endomorphism of A. Take any $0 \neq c \in C$, then $\varphi(c)=\psi(k c)=0$ and, therefore, φ is not one-to-one. Note that φ is also nonzero, since if $0 \neq b \in B$ then $\varphi(b)=k b \neq 0$.

Theorem 5.4. The group G_{n} is $F A$ presentable.
Proof. Since R_{p} is FA presentable by Theorem 2.2, the direct sum $R_{p_{1}} \oplus \cdots \oplus R_{p_{n}}$ is also FA presentable. Note that $R_{p_{1}} \oplus \cdots \oplus R_{p_{n}}$ is a subgroup of finite index in G_{n}. Hence, by Theorem 4.2, G_{n} is also FA presentable.

Remark 5.5. Note that unlike G_{n}, the group H_{n} is not an extension of finite index of any known example of an FA presentable group. To show that it is FA presentable, we will use the method of amalgamated products described in section 4.

Theorem 5.6. The group H_{n} is FA presentable.

Proof. First, let us show that H_{n} is isomorphic to $\left(R_{p_{1}}^{+} \times \cdots \times R_{p_{n}}^{+}\right) \oplus_{\mathbb{N}} R_{q}^{+}$, an amalgamated product of monoids $R_{p_{1}}^{+} \times \cdots \times R_{p_{n}}^{+}$and R_{q}^{+}over \mathbb{N}, where the isomorphic embeddings $f: \mathbb{N} \rightarrow$ $R_{p_{1}}^{+} \times \cdots \times R_{p_{n}}^{+}$and $g: \mathbb{N} \rightarrow R_{q}^{+}$are chosen as follows: for all $m \in \mathbb{N}, f(m)=(m, \ldots, m)$ and $g(m)=m$. Note that our proof will show that the amalgamated product of these monoids is actually a group.

Every element of $\left(R_{p_{1}}^{+} \times \cdots \times R_{p_{n}}^{+}\right) \oplus_{\mathbb{N}} R_{q}^{+}$is of the form $\left\langle\left(a_{1}, \ldots, a_{n}\right), b\right\rangle_{\mathbb{N}}$, where $a_{i} \in R_{p_{i}}^{+}$, for $i=1, \ldots, n$, and $b \in R_{q}^{+}$. Suppose that

$$
\left\langle\left(a_{1}, \ldots, a_{n}\right), b\right\rangle_{\mathbb{N}}=\left\langle\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right), b^{\prime}\right\rangle_{\mathbb{N}}
$$

then there are $u, v \in \mathbb{N}$ such that

$$
\left\{\begin{aligned}
\left(a_{1}+u, \ldots, a_{n}+u\right) & =\left(a_{1}^{\prime}+v, \ldots, a_{n}^{\prime}+v\right) \\
b+u & =b^{\prime}+v .
\end{aligned}\right.
$$

This implies that $a_{i}-b=a_{i}^{\prime}-b^{\prime}$ for all $i=1, \ldots, n$. Thus we can correctly define a function h on $\left(R_{p_{1}}^{+} \times \cdots \times R_{p_{n}}^{+}\right) \oplus_{\mathbb{N}} R_{q}^{+}$such that

$$
h\left(\left\langle\left(a_{1}, \ldots, a_{n}\right), b\right\rangle_{\mathbb{N}}\right)=\left(a_{1}-b\right) e_{1}+\cdots+\left(a_{n}-b\right) e_{n} .
$$

As one can see, the range of h is a subset of H_{n}, and h is a homomorphism. To show that it is one-to-one, assume that

$$
h\left(\left\langle\left(a_{1}, \ldots, a_{n}\right), b\right\rangle_{\mathbb{N}}\right)=h\left(\left\langle\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right), b^{\prime}\right\rangle_{\mathbb{N}}\right) ;
$$

then

$$
\left(a_{1}-b\right) e_{1}+\cdots+\left(a_{n}-b\right) e_{n}=\left(a_{1}^{\prime}-b^{\prime}\right) e_{1}+\cdots+\left(a_{n}^{\prime}-b^{\prime}\right) e_{n}
$$

Therefore, $a_{i}-a_{i}^{\prime}=b-b^{\prime} \in R_{p_{i}} \cap R_{q}$ for $i=1, \ldots, n$. Since $R_{p_{i}} \cap R_{q}=\mathbb{Z}$ there is $w \in \mathbb{Z}$ such that

$$
\left\{\begin{aligned}
\left(a_{1}, \ldots, a_{n}\right) & =\left(a_{1}^{\prime}+w, \ldots, a_{n}^{\prime}+w\right) \\
b & =b^{\prime}+w
\end{aligned}\right.
$$

So $\left\langle\left(a_{1}, \ldots, a_{n}\right), b\right\rangle_{\mathbb{N}}=\left\langle\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right), b^{\prime}\right\rangle_{\mathbb{N}}$.
Now to prove that h is onto, consider an element $z \in H_{n}$; it must be of the form

$$
z=\left(\frac{m_{1}}{p_{1}^{k_{1}}}+\frac{l}{q^{r}}\right) e_{1}+\cdots+\left(\frac{m_{n}}{p_{n}^{k_{n}}}+\frac{l}{q^{r}}\right) e_{n}
$$

for integers m_{i}, l, and natural numbers k_{i}, r. Obviously,

$$
\frac{m_{i}}{p_{i}^{k_{i}}}+\frac{l}{q^{r}}=\left(\frac{m_{i}}{p_{i}^{k_{i}}}+t\right)-\left(-\frac{l}{q^{r}}+t\right)
$$

for any $t \in \mathbb{Z}$. Choosing sufficiently large t, we can make all $a_{i}=m_{i} / p_{i}^{k_{i}}+t$ and $b=-l / q^{r}+t$ to be positive. In this case, $\left\langle\left(a_{1}, \ldots, a_{n}\right), b\right\rangle_{\mathbb{N}}$ is an element of $\left(R_{p_{1}}^{+} \times \cdots \times R_{p_{n}}^{+}\right) \oplus_{\mathbb{N}} R_{q}^{+}$and $h\left(\left\langle\left(a_{1}, \ldots, a_{n}\right), b\right\rangle_{\mathbb{N}}\right)=z$. Therefore, the range of h is H_{n}, and hence it is an isomorphism.

Consider FA presentations of monoids $R_{p_{1}}^{+}, \ldots, R_{p_{n}}^{+}$, and R_{q}^{+}described in Section 2. From this we can easily construct an FA presentation of $R_{p_{1}}^{+} \times \cdots \times R_{p_{n}}^{+}$by putting strings representing elements of $R_{p_{i}}^{+}$one under another in a column using an extra padding symbol when necessary. Recall that the integral part of an element of $R_{p_{i}}^{+}$or R_{q}^{+}is presented in base 2. Therefore, if we consider the presentation of \mathbb{N} in base 2, then the graphs of isomorphic embeddings $f: \mathbb{N} \rightarrow R_{p_{1}}^{+} \times \cdots \times R_{p_{n}}^{+}$and $g: \mathbb{N} \rightarrow R_{q}^{+}$will be FA recognizable. Now, by Theorem 4.1, the structure $\left(R_{p_{1}}^{+} \times \cdots \times R_{p_{n}}^{+}\right) \oplus_{\mathbb{N}} R_{q}^{+}$is FA presentable, and as shown above it is isomorphic to H_{n}.

6. A new FA presentation of \mathbb{Z}^{2}

Let $(\mathbb{Z},+)$ be the group of integers under addition. In this section, we will construct an FA presentation of $(\mathbb{Z},+)^{2}$ in which no nontrivial cyclic subgroup is FA recognizable.

Consider $\mathbb{Z}[x] /\left\langle p_{3}\right\rangle$, the quotient of the polynomial ring $\mathbb{Z}[x]$ with respect to the ideal generated by $p_{3}(x)=x^{2}+x-3$. We will use the notation $p(x) \sim q(x)$ to denote that $p_{3}(x)$ divides $p(x)-q(x)$.
Remark 6.1. In the construction described below, we can use any polynomial of the form $x^{2}+x-q$, for a prime $q \geqslant 3$, instead of $p_{3}(x)$.

Let $A=\left(\mathbb{Z}[x] /\left\langle p_{3}\right\rangle,+\right)$ be the additive group of the ring $\mathbb{Z}[x] /\left\langle p_{3}\right\rangle$. It is not hard to see that A is isomorphic to \mathbb{Z}^{2}, since every polynomial in $\mathbb{Z}[x]$ is equivalent over $\left\langle p_{3}\right\rangle$ to a linear polynomial $k x+l$, which can be identified with a pair $(k, l) \in \mathbb{Z}^{2}$.

We say that a polynomial $a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$ is in reduced form (or briefly reduced) if $\left|a_{i}\right| \leqslant 2$ for all $i \leqslant n$.

Proposition 6.2. For every $p(x) \in \mathbb{Z}[x]$, there is a reduced polynomial $\widetilde{p}(x)$ equivalent to it.
Proof. This can be proved by induction: assume that $p(x)$ is in reduced form and show that $p(x) \pm x^{n}$ is equivalent to a reduced polynomial. It is enough to consider the case $p(x) \pm 1$ since $p(x) \pm x^{n}$ can be rewritten as $(q(x) \pm 1) x^{n}+r(x)$, where $q(x)$ and $r(x)$ are in reduced form and $\operatorname{deg}(r)<n$. Note that if $p_{0}(x)$ and $p_{1}(x)$ are in reduced form and have non-negative coefficients then $p_{0}(x)-p_{1}(x)$ is reduced. Moreover, any reduced $p(x)$ is equal to the difference of such $p_{0}(x)$ and $p_{1}(x)$. So, it is enough to consider the case when $p(x)$ is reduced and has non-negative coefficients and show that $p(x)+1$ is equivalent to a reduced polynomial with non-negative coefficients.

We will actually prove a stronger statement: if $p(x)$ is a reduced polynomial with nonnegative coefficients then $p(x)+\left(a_{1} x+a_{0}\right)$, where $0 \leqslant a_{0}, a_{1} \leqslant 2$, is equivalent to a polynomial of the same sort. The proof is now by induction on the degree of $p(x)$.

Let us write $p(x)$ as $p(x)=p_{1}(x) x^{2}+\left(b_{1} x+b_{0}\right)$; now using the fact that $3 \sim x^{2}+x$ we have

$$
\begin{aligned}
p(x)+\left(a_{1} x+a_{0}\right) & =p_{1}(x) x^{2}+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right) \\
& \sim\left(p_{1}(x)+r_{1} x+\left(r_{0}+r_{1}\right)\right) x^{2}+c_{1} x+c_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{0}= \begin{cases}a_{0}+b_{0}, & \text { if } a_{0}+b_{0}<3 \\
a_{0}+b_{0}-3, & \text { otherwise }\end{cases} \\
& c_{1}= \begin{cases}a_{1}+b_{1}+r_{0}, & \text { if } a_{1}+b_{1}+r_{0}<3 \\
a_{1}+b_{1}+r_{0}-3, & \text { otherwise }\end{cases} \\
& \left.c_{0}+b_{0}\right],
\end{aligned}
$$

Here $[v]$ is the integral part of v, defined by

$$
[v]= \begin{cases}\max \{k \in \mathbb{Z}: k \leqslant v\} & \text { if } v \geqslant 0 \\ \min \{k \in \mathbb{Z}: v \leqslant k\} & \text { if } v<0\end{cases}
$$

For example, $[1.5]=1$ and $[-1.5]=-1$. Note that $0 \leqslant c_{0}, c_{1} \leqslant 2$ and $0 \leqslant r_{0}, r_{1} \leqslant 1$. By induction, $p_{1}(x)+r_{1} x+\left(r_{0}+r_{1}\right)$ is equivalent to a reduced polynomial with non-negative coefficients; hence so is $p(x)$.

We now give an automatic presentation for the group A. The alphabet of the presentation is $\Sigma=\{-2,-1,0,1,2\}$. Each reduced polynomial $a_{n} x^{n}+\cdots+a_{0}$ is represented by a word $a_{0} \ldots a_{n} \in \Sigma^{*}$. We say that two words $a_{0} \ldots a_{n}$ and $b_{0} \ldots b_{m}$ from Σ^{*} are equivalent if $a_{n} x^{n}+$ $\cdots+a_{0} \sim b_{m} x^{m}+\cdots+b_{0}$.

This equivalence relation is FA recognizable. An algorithm for checking it is as follows. Given two words $a_{0} \ldots a_{n}, b_{0} \ldots b_{m}$; we can assume that $n=m$ since one can always add extra zeros to the right. The algorithm needs to remember two carries r_{0}, r_{1}; initially $r_{0}=r_{1}=0$. Note that since $3 \sim x+x^{2}$, whenever we subtract 3 from any digit, we need to add 1 to the next two digits in order to get an equivalent word. That is why we need two carries here.

Now for every $i=0, \ldots, n$ do the following. Check if 3 divides $a_{i}-b_{i}+r_{0}$. If 'no,' then the words are not equivalent. If 'yes,' then let $r_{0}^{\text {old }}=r_{0}, r_{1}^{\text {old }}=r_{1}$; redefine

$$
r_{0}=r_{1}^{\text {old }}+\frac{a_{i}-b_{i}+r_{0}^{\text {old }}}{3}, \quad r_{1}=\frac{a_{i}-b_{i}+r_{0}^{\text {old }}}{3}
$$

and go to step $i+1$. If we reach in this way step n then the words are equivalent if and only if $a_{n}-b_{n}+r_{0}=0$ and $r_{1}=0$.

Since at every step $\left|r_{0}\right| \leqslant 4$ and $\left|r_{1}\right| \leqslant 2$, this algorithm requires a constant amount of memory. Now it is not hard to construct a finite automaton recognizing the equivalence.

Consider the following order on Σ : $-2<-1<0<1<2$. It naturally extends to the length-lexicographical order on Σ^{*}, denoted as $<_{\text {llex }}$. Let the domain of the FA presentation of A be

$$
\operatorname{Dom}(A)=\left\{w \in \Sigma^{*}:\left(\forall u<_{l l e x} w\right) u \text { is not equivalent to } w\right\} .
$$

This set is FA recognizable since $<_{l l e x}$ is an FA recognizable relation.
To define addition on $\operatorname{Dom}(A)$ consider the relation $R(x, y, z)$ such that if $x=a_{0} \ldots a_{k}$, $y=b_{0} \ldots b_{l}$ then $z=c_{0} \ldots c_{n}$ is obtained from x and y by applying the following algorithm. Again, let r_{0}, r_{1} be two carries that are initially zero. At every step i starting from 0 , let c_{i} be such that $\left|c_{i}\right|<3$,

$$
c_{i} \equiv a_{i}+b_{i}+r_{0}(\bmod 3)
$$

and c_{i} has the same sign as $a_{i}+b_{i}+r_{0}$. Let $r_{0}^{\text {old }}=r_{0}, r_{1}^{\text {old }}=r_{1}$. Now redefine

$$
r_{0}=r_{1}^{\text {old }}+\left[\frac{a_{i}+b_{i}+r_{0}^{\text {old }}}{3}\right], \quad r_{1}=\left[\frac{a_{i}+b_{i}+r_{0}^{\text {old }}}{3}\right],
$$

and go to step $i+1$.
For example, if $x=2211$ and $y=22$, then this algorithm produces $z=120021$. By construction, if $R(x, y, z)$ holds then the polynomial corresponding to z is equivalent over $\left\langle p_{3}\right\rangle$ to the sum of polynomials represented by x and y. It is easy to see that at every step $\left|r_{0}\right| \leqslant 4$ and $\left|r_{1}\right| \leqslant 2$. Thus, as before, R can be recognized by a finite automaton.

Let $\operatorname{Add}(x, y, z)$ be defined as

$$
\begin{aligned}
A d d=\{(x, y, z): & x, y, z \in \operatorname{Dom}(A) \text { and } \\
& \exists w(R(x, y, w) \wedge w \text { is equivalent to } z)\} .
\end{aligned}
$$

Since $\operatorname{Dom}(A), R$, and the equivalence relation are FA recognizable $A d d$ is also FA recognizable. Obviously, $A d d$ is the graph of addition operation on $\operatorname{Dom}(A)$, and the FA presented structure $(\operatorname{Dom}(A), A d d)$ is isomorphic to A.

Our next goal is to show that no nontrivial cyclic subgroup in this presentation of \mathbb{Z}^{2} is FA recognizable.

Lemma 6.3. Let $p(x)$ and $q(x)$ be reduced polynomials such that $p(x) \sim q(x)$ and $x^{k} \mid p(x)$. Then $x^{k} \mid q(x)$.

Proof. Suppose that $x^{k} \nmid q(x)$; then $p(x)-q(x)=x^{l}\left(a_{0}+a_{1} x+\cdots\right)$, where $l<k,\left|a_{0}\right| \leqslant 2$, and $a_{0} \neq 0$. Since $3 \nmid a_{0}, p_{3}(x)=x^{2}+x-3$ cannot divide $p(x)-q(x)$, which gives a contradiction.

For $p(x) \in \mathbb{Z}[x]$, consider the set of all words in Σ^{*} that represent polynomials equivalent to $p(x)$. All these words start with the same number of zeros. So we say that $p(x)$ starts with k zeros in reduced form if there is $w \in \Sigma^{*}$ representing $p(x)$ that starts with k zeros.

The following lemma will be used several times later on.
Lemma 6.4. Let n be an integer, then $3^{k} \mid n$ if and only if n starts with k zeros in reduced form.

Proof. Suppose that $3^{k} \mid n$; then $n=3^{k} m \sim x^{k}(x+1)^{k} m$. Taking a reduced form for $(x+1)^{k} m$ and multiplying it by x^{k} we obtain a reduced form for n that starts with k zeros; thus n starts with k zeros in reduced form.

The other implication can be proved by induction on k. First, suppose that n starts with 0 in reduced form and $n=3 m+r$, where $0<r \leqslant 2$. Take any reduced form for $3 m$. Since it starts with $0, n=3 m+r$ has a reduced form that starts with $r \neq 0$. This contradicts our assumption, and hence $3 \mid n$.

It is not hard to see that if $p(x)$ starts with exactly k zeros in reduced form, and $q(x)$ starts with exactly l zeros, then a reduced form for $p(x) q(x)$ starts with exactly $k+l$ zeros. Now suppose that n starts with $k+1$ zeros in reduced form; then $n=3 m$ and m starts with k zeros, because $3 \sim 011$ starts with one 0 . By induction, $3^{k} \mid m$, and so we have $3^{k+1} \mid n$.

Let $\alpha=(\sqrt{13}-1) / 2$ be the positive root of $p_{3}(x)=x^{2}+x-3$. Consider a mapping $F: \mathbb{Z}[x] \rightarrow \mathbb{R}$ such that $F: p(x) \mapsto p(\alpha)$. Obviously,

$$
(p+q)(\alpha)=p(\alpha)+q(\alpha) \quad \text { and } \quad(p q)(\alpha)=p(\alpha) q(\alpha)
$$

Furthermore, if $p(x) \sim q(x)$ then $p(\alpha)=q(\alpha)$, since $p(\alpha)-q(\alpha)=p_{3}(\alpha) r(\alpha)=0$.
Consider an arbitrary nontrivial cyclic subgroup in our presentation of \mathbb{Z}^{2}. It has the form

$$
\langle w\rangle=\{n \cdot w: n \in \mathbb{Z}\}
$$

for some $w \in \operatorname{Dom}(A)$. Let $q(x)$ be the polynomial that corresponds to w. Note that $q(\alpha) \neq 0$ since w represents a nonzero element. Indeed, by applying the Euclidean algorithm one can see that there are polynomials s, r with $\operatorname{deg}(r)<2$ such that $q=s \cdot p_{3}+r$. Moreover, since the leading coefficient of p_{3} is $1, s$ and r have integer coefficients. Now if $q(\alpha)=0$, then $r(\alpha)=0$, which implies that $r=0$ since α is irrational. So $q=s \cdot p_{3}$ is equivalent to 0 .

Suppose that $\langle w\rangle$ is recognized by a finite automaton with d states. We know that $3^{d} \cdot w \in$ $\langle w\rangle$ starts with d zeros in reduced form. So let $3^{d} \cdot w$ be equivalent to $0^{d} v \in \operatorname{Dom}(A)$. By pumping lemma, there are $s_{0}, s_{1}, t \in \mathbb{N}$ with $t \neq 0$ such that $0^{d} v=0^{s_{0}} 0^{t} 0^{s_{1}} v$ and $w_{k}=$ $0^{t k+s_{0}+s_{1}} v \in\langle w\rangle$ for all $k \geqslant 0$.

Let $q_{k}(x)$ be the polynomial that corresponds to w_{k}. Since $w_{k} \in\langle w\rangle$, we have that $w_{k} \sim n_{k} \cdot w$ for some $n_{k} \in \mathbb{Z}$. If w starts with m zeros, then n_{k} starts with at least $t k-m+s_{0}+s_{1}$ zeros in reduced form; thus $3^{t k-m+s_{0}+s_{1}} \mid n_{k}$.

The fact that w_{k} is equivalent to $n_{k} \cdot w$ implies that $q_{k}(\alpha)=n_{k} q(\alpha)$. Now, on the one hand,

$$
\begin{aligned}
\left|q_{k}(\alpha)\right| & \leqslant 2\left(1+\alpha+\cdots+\alpha^{\left|w_{k}\right|-1}\right) \\
& =2 \frac{\alpha^{\left|w_{k}\right|}-1}{\alpha-1} \leqslant 8 \alpha^{\left|w_{k}\right|}=8 \alpha^{s_{0}+s_{1}+|v|} \alpha^{t k}=C_{0} \alpha^{t k}
\end{aligned}
$$

On the other hand,

$$
\left|q_{k}(\alpha)\right|=\left|n_{k}\right||q(\alpha)| \geqslant 3^{t k} 3^{s_{0}+s_{1}-m}|q(\alpha)|=C_{1} 3^{t k}
$$

Thus

$$
C_{1} 3^{t k} \leqslant C_{0} \alpha^{t k} \quad \text { for all } k \geqslant 0
$$

which is impossible because $\alpha<3$. Therefore, $\langle w\rangle$ is not FA recognizable.

References

[1] S. Akiyama, C. Frougny, and J. Sakarovitch, Powers of rationals modulo 1 and rational base systems. Preprint, 2005.
[2] D. Arnold, Finite Rank Torsion Free Abelian Groups and Rings (Springer-Verlag, 1982).
[3] A. Blumensath, E. Grädel, Automatic structures, 15th Annual IEEE Symposium on Logic in Computer Science (Santa Barbara, CA, 2000), 51-62, IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.
[4] C. Delhommé, Non-automaticity of ω^{ω}, 2001, manuscript.
[5] L. Fuchs, Infinite Abelian Groups, vol. 1, 2 (Academic Press, 1970, 1973).
[6] B. R. Hodgson, Théories décidables par automate fini, Ph.D. Thesis, University of Montreal, 1976.
[7] B. R. Hodgson, Théories décidables par automate fini, Annales de Sciences Mathématiques, 7:39-57, 1983.
[8] B. Khoussainov, A. Neorde, Automatic presentations of structures, in D. Leivant (ed.), Logic and Computational Complexity (LNCS 960, Springer-Verlag, 1995), 367-392.
[9] B. Khoussainov, S. Rubin, Automatic structures: overview and future directions. Weighted automata: theory and applications (Dresden, 2002), J. Autom. Lang. Comb., 2:287-301, 8 (2003).
[10] B. Khoussainov, A. Nies, S. Rubin and F. Stephan, Automatic structures: richness and limitations, Proceedings of the 19th IEEE Symposium on Logic in Computer Science (IEEE Computer Society, 2004), 110-119.
[11] A. Nies, Describing groups. Bull. Symb. Logic 13, 3:305-339 (2007).
[12] A. Nies, R. Thomas, FA presentable groups and rings. J. of Algebra 320(2008), 569-585.
[13] G. Oliver, R. Thomas, Automatic presentations for finitely generated groups. In STACS 2005, volume 3404 of Lecture Notes in Comput. Sci., pages 693-704. Springer, Berlin, 2005.

[^0]: *This research was partially supported by the Marsden Fund of New Zealand, grant no. 03-UOA-130.
 Email addresses: andre@cs.auckland.ac.nz (André Nies), pavels@nus.edu.sg (Pavel Semukhin)

