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Abstract

We give new examples of FA presentable torsion-free abelian groups. Namely, for every
n > 2, we construct a rank n indecomposable torsion-free abelian group which has an FA
presentation. We also construct an FA presentation of the group (Z,+)2 in which every
nontrivial cyclic subgroup is not FA recognizable.
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1. Introduction

The study of finite automata (FA) presentable, or automatic, structures began in the works
by Hodgson [6, 7] and then carried on in Khoussainov and Nerode [8]. A structure is called
FA presented if its domain and atomic relations are recognized by finite automata operating
synchronously on their input. So, these structures have finite presentations. The class of
automatic structures is of special interest in the field of theoretical computer science. One of
the reasons for this is that the first-order theory of an FA presentable structure is decidable,
and in fact the model checking problem is decidable. For instance, Hodgson [6, 7] was the first
to use this property to give a new proof of the decidability of Presburger arithmetic Th(N,+).

There is a complete description of FA presentable structures in the classes of Boolean
algebras [10] and well-ordered sets [4], but for another classes of structures such as groups,
rings, linear orders, etc., the situation is far from clear. For example, it is unknown whether
the group of rationals under addition has an FA presentation. In [9], Khoussainov and Rubin
posed the problem of characterizing automatic abelian groups (Problem 4).

In this paper, we describe a new method for constructing FA presentable abelian groups
and monoids using the notion of amalgamated product. We show that under certain condi-
tions, the amalgamated product of FA presentable groups or monoids is itself FA presentable.
We then use this method to give new examples of FA presentable torsion-free abelian groups.
The only known examples of such groups were (Z,+), (Rp,+) (the group of rationals with
denominators powers of p), and their finite direct products. Our examples are indecomposable
and strongly indecomposable torsion-free abelian groups.
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An interesting characterization of finitely generated FA presentable abelian groups was
discovered by Oliver and Thomas [13]. A group is called abelian-by-finite or virtually abelian

if it contains an abelian subgroup of finite index. It turns out that a finitely generated group
is FA presentable if and only if it is abelian-by-finite.

On the other hand, Nies and Thomas [12] showed that every finitely generated subgroup
of an infinite FA presentable group is abelian-by-finite. This statement would be an easy
corollary of the previous result if the domain of every finitely generated subgroup in every
FA presented group was FA recognizable. However, this is not the case. Akiyama et al. [1]
constructed an FA presentation of the abelian group Rp, for each prime p, where the subgroup
of the integers is not FA recognizable. In the last section of this paper, we provide an even
more interesting example of this sort. We will construct an FA presentation of the group
(Z,+)2 every nontrivial cyclic subgroup of which is not FA recognizable. This contrasts with
the standard presentation of Z × Z where every cyclic subgroup is FA recognizable.

We now give formal definitions that will be used in this paper.

Definition 1.1. Let Σ be a finite alphabet, and ā = (a1, . . . , ak) be a tuple of words from
Σ∗. A convolution of ā is a word in alphabet (Σ ∪ {�})k which is constructed by placing the
words a1, . . . , ak one under another and adding a special symbol � at the end of the words to
get the same length. For example,

Conv(01, 1011, 100) =
0 1 � �

1 0 1 1
1 0 0 �

A convolution of a relation R ⊆ (Σ∗)k is defined as Conv(R) = {Conv(ā) : ā ∈ R}.

Definition 1.2. A relation R ⊆ (Σ∗)k is FA recognizable, or regular, if Conv(R) is recognized
by a finite automaton.

Definition 1.3. A structure A = (A;R1, . . . , Rn, f1, . . . , fm) is FA presented if, for a finite
alphabet Σ, A ⊆ Σ∗ is an FA recognizable set of words in Σ∗, and all the relations R1, . . . , Rn

together with the graphs of operations f1, . . . , fm are recognized by finite automata.
A structure A is FA presentable if it is isomorphic to an FA presented structure.

In some cases to prove that a given structure is FA presentable, we will not construct its
automatic presentation explicitly. Instead we give its first-order interpretation in a structure
already known to be FA presented. The description of this method together with formal
definitions and proofs can be found in [3]. For more background on FA presentable structures
see [11].

2. An FA presentation of the group Rp

Definition 2.1. Let Rp be the subgroup of (Q,+) consisting of elements of the form k/pi.

In the literature, Rp is also denoted by Q(p) (for example, see [5]) or Z[1/p]. The next
theorem shows that Rp is FA presentable, and we will use this particular presentation of Rp

in section 5 to construct new examples of FA presentable abelian groups.
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Theorem 2.2. Rp is FA-presentable.

Proof. First, we will construct an automatic presentation of R+
p , the submonoid of Rp consist-

ing of elements greater than or equal to 0. Later we describe how to obtain an FA presentation
of the entire group Rp from the one for R+

p .

The alphabet of the FA presentation for R+
p will be Σ = {

(
n

m

)
: n ∈ {0, 1} and m ∈

{0, . . . , p− 1}}. Every element z ∈ R+
p will be represented by two lines of digits,

n1 n2 · · · nk

m1 m2 · · · mk

where n1n2 . . . nk represents the integral part of z in binary presentation with the least signif-
icant digit first, and m1m2 . . .mk represents the fractional part of z in base p with the most
significant digit first. If needed, we put additional zeros to the right to make the lengths of

integral and fractional part equal. For example, if p = 3 then the element 14
17

27
∈ R+

3 is

represented by

0 1 1 1
1 2 2 0

Let the domain D of an FA presentation of R+
p consist of all words in Σ∗ not ending in(

0
0

)
, except for

(
0
0

)
itself which represents 0. Clearly, D is FA recognizable.

Let Add be the graph of the addition operation. We prove that Add is FA recognizable.
First, we construct an auxiliary automaton A whose alphabet is (Σ ∪ {�})3. The states of
A are q0, (0, 0), (0, 1), (1, 0), (1, 1), where q0 is an initial state and (0, 0) is a final state. The
state (α, β) means that we have a carry bit α in the addition of integral parts, and a carry
bit β in the addition of fractional parts.

The transitions of A are defined below. It is assumed there that the special symbol � is
identical to the symbol

(
0
0

)
.

There is a transition from q0 to (α, β) with the label
((

n1

m1

)
,
(

n2

m2

)
,
(

n3

m3

))>

if and only if

{
n1 + n2 = 2α+ n3

m1 +m2 + β = m3

or

{
n1 + n2 + 1 = 2α + n3

m1 +m2 + β = p+m3 .

This means that from the first letter of the input, A guesses the carry bit from the fractional
part to the integral part: in the first case the carry bit is 0, while in the second case the carry
bit is 1.

There is a transition from (α, β) to (α′, β ′) with the label
((

n1

m1

)
,
(

n2

m2

)
,
(

n3

m3

))>

if and only

if {
n1 + n2 + α = 2α′ + n3

m1 +m2 + β ′ = pβ +m3 .

Now as one can see Conv(Add) = L(A) ∩ Conv(D3). Therefore, since D3 is FA recogniz-
able, then so is Add.
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Let us define an FA presentation for Rp. Consider the presentation of R+
p given above; let

π : D2 → D2 be the following function

π(x, y) =

{
(x− y, 0) if x > y,

(0, y − x) if x < y.

Note that the graph of π is an FA recognizable subset of D4 since it can be defined in terms
of Add and 6 relations which are FA recognizable in our presentation of R+

p . Now the domain
of the FA presentation of Rp is

{
(x, y) : x, y ∈ D and (x = 0 ∨ y = 0)

}

with addition operation defined as

(x1, y1) + (x2, y2) = (x3, y3) if and only if (x3, y3) = π(x1 + x2, y1 + y2).

3. Amalgamations of monoids and abelian groups

Before turning to abelian groups, let us consider commutative monoids which have can-
cellation property, namely, a+ c = b+ c implies a = b for all elements a, b, c. In what follows,
by monoid we will mean commutative monoid with cancellation property.

Proposition 3.1. Let M , N , and U be monoids, and f : U → M , g : U → N be isomorphic

embeddings. Consider the direct product M ×N of the monoids and a relation ∼U on M ×N
defined as follows:

(x0, y0) ∼U (x1, y1) ⇐⇒ ∃u, v ∈ U
(
x0 + f(u) = x1 + f(v) ∧
y0 + g(u) = y1 + g(v)

)
.

Then ∼U is a congruence on M × N , and M ⊕U N , the amalgamated product of M and

N over U , is the quotient structure M × N/ ∼U , which also is a commutative monoid with

cancellation property.

Proof. It is straightforward to show that ∼U is a congruence, and that M ⊕U N is a commu-
tative monoid. We prove that it possesses cancellation property. Suppose (x0, y0)+(z, w) ∼U

(x1, y1)+(z, w); then x0 +z+f(u) = x1 +z+f(v) and y0 +w+g(u) = y1 +w+g(v) for some
u, v ∈ U . Since M and N possess cancellation property, we have that x0 + f(u) = x1 + f(v)
and y0 + g(u) = y1 + g(v), that is (x0, y0) ∼U (x1, y1).

We will use the notation 〈x, y〉U to denote the equivalence class of (x, y) ∈ M × N with
respect to ∼U .

Proposition 3.2. Let M⊕UN be an amalgamated product of monoidsM and N over U . Then

there are submonoids M̃ and Ñ in M⊕UN such that M̃ ∼= M , Ñ ∼= N , and M⊕UN = M̃+Ñ .
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Proof. Let M̃ = {〈x, 0〉U : x ∈ M} and Ñ = {〈0, y〉U : y ∈ N}; as one can see, M̃ and Ñ

are submonoids of M ⊕U N , and M ⊕U N = M̃ + Ñ . Consider the mappings ϕ : M → M̃
and ψ : N → Ñ such that ϕ(x) = 〈x, 0〉U and ϕ(y) = 〈0, y〉U . Clearly, ϕ and ψ are
epimorphisms. Let us show, for instance, that ϕ is one-to-one. Suppose 〈x, 0〉U = 〈x′, 0〉U ;
then x + f(u) = x′ + f(v) and g(u) = g(v) for some u, v ∈ U . Therefore, u = v and the
cancellation property implies that x = x′.

In the case of abelian groups, we can define the notion of amalgamated product in a
slightly different manner.

Definition 3.3. Let A, B, and U be abelian groups and f : U → A, g : U → B be isomorphic
embeddings. Then A⊕UB, the amalgamated product of A and B over U , is the quotient group
A⊕ B/Ũ , where Ũ = {(f(u), g(u)) | u ∈ U}.

The next proposition is the strengthening of 3.2 for abelian groups.

Proposition 3.4. Let A ⊕U B be an amalgamated product of A and B over U . Then there

are subgroups Ã and B̃ in A⊕UB such that Ã ∼= A, B̃ ∼= B, Ã∩B̃ ∼= U , and A⊕U B = Ã+B̃,

where Ã+ B̃ = {a+ b | a ∈ Ã, b ∈ B̃}.

Proof. By definition A⊕UB = A⊕B/Ũ . Let Ã = {(a, 0)+Ũ | a ∈ A} and B̃ = {(0, b)+Ũ | b ∈
B}. As one can see, A ⊕U B = Ã + B̃ and Ã ∼= A, B̃ ∼= B. We now prove that Ã ∩ B̃ ∼= U .

Let x ∈ Ã ∩ B̃, then x = (a, 0) + Ũ and x = (0, b) + Ũ ; hence (a,−b) ∈ Ũ and a = f(u),

b = −g(u). Therefore, x = (f(u), 0) + Ũ and Ã ∩ B̃ = {(f(u), 0) + Ũ | u ∈ U}, which is
isomorphic to U .

Remark 3.5. The intersection M̃ ∩ Ñ of the submonoids of M ⊕U N defined in the proof of
Proposition 3.2 is not necessarily isomorphic to U . To show this let M , N , U be (N,+), and
f , g be the identity embeddings. As one can see, M ⊕U N is isomorphic to (Z,+) because

〈x, y〉N = 〈x′, y′〉N iff x−y = x′−y′, and we can identify 〈x, y〉N with x−y ∈ Z. In this case, M̃

and Ñ correspond to the submonoids of non-negative and non-positive numbers, respectively.
Thus M̃ ∩ Ñ = {〈0, 0〉N} 6∼= N.

The converse of 3.4 also holds.

Proposition 3.6. Let L be an abelian group, A,B subgroups of L, and U = A ∩B. Then

A+B ∼= A⊕U B,

where the embeddings f , g of U into A and B are the identity mappings.

Proof. In this case, A⊕UB = A⊕B/Ũ , where Ũ = {(u, u) | u ∈ U}. Let ϕ : A⊕UB → A+B
be defined as follows:

ϕ((a, b) + Ũ) = a− b.

We show that ϕ is an isomorphism. First, note that it is well defined: if (a, b)+Ũ = (a′, b′)+Ũ
then (a− a′, b− b′) = (u, u) for some u ∈ U ; therefore a− b = (a′ + u) − (b′ + u) = a′ − b′.
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It is easy to see that ϕ is an epimorphism. We now prove that it is one-to-one. Let
a− b = a′ − b′; then a− a′ = b− b′ ∈ A∩B = U . Therefore, (a− a′, b− b′) = (u, u) ∈ Ũ and

(a, b) + Ũ = (a′, b′) + Ũ .

Remark 3.7. If M , N , and U are abelian groups then both definitions of amalgamated
product, that is the one for groups and the one for monoids, give us the same structure
M ⊕U N .

4. Constructions of FA presentable monoids and abelian groups

In this section, we will prove a version of Proposition 3.2 for FA presentable structures.

Theorem 4.1. If M , N , and U are FA presented monoids and f : U → M , g : U → N are

isomorphic embeddings that are FA recognizable subsets of U ×M and U × N , respectively,

then the amalgamated product M ⊕U N is FA presentable. Moreover, M ⊕U N contains FA

recognizable submonoids M̃ and Ñ such that M̃ ∼= M , Ñ ∼= M and M ⊕U N = M̃ + Ñ .

Proof. We prove that M ⊕U N is FA presentable by constructing an interpretation of it in
the FA presentable structure E = M tN t U enriched with unary predicates for subsets M ,
N , U and binary predicates Rf and Rg for the graphs of f and g. Let RM and RN be the
graphs of the addition operation in M and N , respectively.

The domain for M ⊕U N is defined in E2 by the formula ∆(x0, y0) = M(x0) ∧ N(y0).
Addition is defined by

Φ(x0, y0, x1, y1, x2, y2) = RM(x0, x1, x2) ∧ RN (y0, y1, y2).

Equality is defined by

ε(x0, y0, x1, y1) = ∃u, v (U(u) ∧ U(v) ∧ x0 + f(u) = x1 + f(v)

∧ y0 + g(u) = y1 + g(v))

or more formally

ε(x0, y0, x1, y1) =∃u, v, w0, w1, w2, w3, z0, z1 (U(u) ∧ U(v) ∧ Rf(u, w0)

∧ Rf(v, w1) ∧ Rg(u, w2) ∧ Rg(v, w3) ∧RM(x0, w0, z0)

∧ RM(x1, w1, z0) ∧ RN(y0, w2, z1) ∧ RN(y1, w3, z1)).

From the proof of Proposition 3.2 it follows that M̃ and Ñ are defined by the formulas

(z0, z1) ∈ M̃ ⇐⇒ ∃x, u, v (M(x) ∧ U(u) ∧ U(v)∧
z0 + f(u) = x+ f(v) ∧ z1 + g(u) = g(v)),

(z0, z1) ∈ Ñ ⇐⇒ ∃y, u, v (N(y) ∧ U(u) ∧ U(v)∧
z0 + f(u) = f(v) ∧ z1 + g(u) = y + g(v)).

Therefore, M̃ and Ñ are FA recognizable submonoids.
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Theorem 4.2. Let A and B be abelian groups such that B is a subgroup of A and |A : B| is

finite. If B is FA presentable, then so is A.

Proof. Let r0, . . . , rk be representatives of the cosets of B in A. Then there are a function
g : {0, . . . , k}2 → {0, . . . , k} and elements bij ∈ B with the following property: for every i
and j,

ri + rj = rg(i,j) + bij .

We may assume that the FA presentation of B uses an alphabet Σ, such that 0, . . . , k /∈ Σ,
and that the domain of this presentation is D ⊆ Σ∗. Let the alphabet of the FA presentation
of A be Σ ∪ {0, . . . , k}. Each element of A has the unique form ri + b for some b ∈ B, and is
represented by the string iv, where v ∈ D represents b. Since A is abelian,

(ri + b1) + (rj + b2) = rg(i,j) + bij + b1 + b2.

Hence the graph of addition operation can be recognized by a finite automaton.

Example 4.3 (Two different presentations of R6). Consider the presentation of R6 described
in Section 2. We will show that R6 in this presentation does not have FA recognizable
subgroup isomorphic to R2. Suppose M is an FA recognizable subgroup of R6 and M ∼= R2.
Let M+ = {(x, 0) : (x, 0) ∈ M}; then M+ is FA recognizable and M+ ∼= R+

2 . Note that we
can identify the FA presentation of R+

6 and the FA recognizable submonoid of R6 with domain
{(x, 0) : (x, 0) ∈ R6}. This implies that R+

6 has an FA recognizable submonoid isomorphic to
R+

2 .
Now if M+ 6 R+

6 is isomorphic to R+
2 , then for some n0, k0 ∈ N

M+ =
n0

6k0

· R+
2 =

{
n0n3k

6k0+k
: k, n ∈ N

}
.

For each k and let αk be the smallest element of M+ of length k0 + k in this presentation.
Obviously, αk = n03

k6−(k0+k) and it has the form

0 0 · · · 0 0 · · · 0
0 0 · · · 0 rk

where

lim
k→∞

length(rk)

(k + k0)
= log6 3. (1)

Choosing sufficiently large k, we will have enough leading zeros in the presentation of αk to
pump this string. This will give us a contradiction with the formula (1). Therefore, M+ is
not FA recognizable, and M is not FA recognizable too.

On the other hand, R6 is isomorphic to R+
2 ⊕NR

+
3 . Indeed, R+

2 ⊕NR
+
3 = {〈x, y〉N : (x, y) ∈

R+
2 × R+

3 } and
〈x, y〉N = 〈x′, y′〉N if and only if x− y = x′ − y′.

Let z = m/6k ∈ R6; there are m0, m1 ∈ Z such that m = 3km0 − 2km1; then z = m0/2
k −

m1/3
k = (m0/2

k + l) − (m1/3
k + l) for any l ∈ Z. Choosing sufficiently large l we see that
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z = x − y, where x ∈ R+
2 , y ∈ R+

3 . Therefore, the mapping that sends 〈x, y〉N to x− y ∈ R6

gives us desired isomorphism.
Consider FA presentations for R+

2 and R+
3 described in Section 2. Recall that the inte-

gral part of every element is presented in base 2 both in R+
2 and R+

3 . Thus if we take FA
presentation of N in base 2, then the graphs of the identity embeddings f : N → R+

2 and
g : N → R+

3 will be FA recognizable. Therefore, by Theorem 4.1, R6 has an FA presentation
which contains FA recognizable submonoids isomorphic to R+

2 and R+
3 . Now if M+ ⊆ R6 is a

submonoid isomorphic to R+
2 then M = M+ ∪−M+ is a subgroup isomorphic to R2. Clearly,

M is definable in terms of M+ and addition. Therefore, this presentation of R6 contains FA
recognizable subgroups isomorphic to R2 and R3. It is different from the presentation given
in Section 2, in the sense that there is no automatic isomorphism between them.

5. Indecomposable FA presentable abelian groups

We describe rank n torsion-free abelian groups, Gn and Hn, which are indecomposable
and strongly indecomposable, respectively. We then show how to apply the methods from
the previous section to prove that they are FA presentable.

In what follows we will use expressions like p−∞a as an abbreviation for an infinite set
p−1a, p−2a, · · · . For every n > 2, let Gn be a subgroup of Qn generated by p−∞

1 e1, . . . , p
−∞
n en,

q−1(e1 + · · ·+en), where q, p1, . . . , pn are different primes and e1, . . . , en are linear independent
elements in Qn considered as a Q-vector space. An example of such a group can be found in
[5, vol. 2, §88, Exercise 2].

Theorem 5.1. The group Gn is indecomposable for all n > 2.

Proof. First, note that every x ∈ Gn has the form

x = (p−k1

1 m1 + q−1s)e1 + · · ·+ (p−kn

n mn + q−1s)en,

where m1, . . . , mn, s ∈ Z and k1, . . . , kn ∈ N. Let Ej = 〈p−∞
j ej〉 where 1 6 j 6 n. We show

that the groups Ej are fully invariant in Gn, i.e. ϕ(Ej) ⊆ Ej for any endomorphism ϕ of
Gn. Let x ∈ Ej and ϕ(x) =

∑
siei. In Gn, x is divisible by all powers of pj , and so is ϕ(x).

Hence, si = 0 for i 6= j and ϕ(x) = sjej .

Take any i 6= j. As mentioned above, sj has the form p
−kj

j mj + q−1s and si has the form

p−ki

i mi + q−1s. Since si = 0, q−1s must be an integer. Therefore, ϕ(x) = sjej belongs to Ej .
Now suppose that Gn = A⊕ B. If x ∈ Gn, then x has the unique form x = a + b, where

a ∈ A, b ∈ B. Define the following endomorphisms of Gn: ϕA(x) = a and ϕB(x) = b, where
x = a+b. Obviously, x = ϕA(x)+ϕB(x). If x ∈ Ej then ϕA(x) ∈ Ej ∩A and ϕB(x) ∈ Ej ∩B,
since Ej is fully invariant. This means that Ej = (Ej ∩ A) ⊕ (Ej ∩ B).

Note that Ej is indecomposable, because it has rank 1. Therefore, Ej ⊆ A or Ej ⊆
B. Assume there exists 1 6 k < n such that possibly after re-indexing E1, . . . , Ek ⊆ A
and Ek+1, . . . , En ⊆ B. Let q−1(e1 + · · · + en) = a + b, where a ∈ A and b ∈ B. Then
e1 + · · ·+ ek + ek+1 + · · ·+ en = qa+ qb. Since e1 + · · ·+ ek ∈ A and ek+1 + · · ·+ en ∈ B we
have that a = q−1(e1 + · · ·+ ek).

We show that this is impossible. Let a = (p−k1

1 m1 + q−1s)e1 + · · · + (p−kn
n mn + q−1s)en;

since p−kn
n mn + q−1s = 0, q−1s must be an integer. Hence p−k1

1 m1 + q−1s cannot be equal to
q−1.
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So we can assume that E1, . . . , En ⊆ A. If B 6= 0 then let b ∈ B be a nonzero element.
Then there exists m > 0 such that mb ∈ 〈e1, . . . , en〉 ⊆ E1 + · · ·+En ⊆ A, which is impossible
because mb 6= 0 and mb is an element of B. Therefore, B = 0.

Definition 5.2 ([2]). A torsion-free abelian group A is strongly indecomposable if whenever
0 6= k ∈ N and kA 6 B ⊕ C 6 A then B = 0 or C = 0.

The group Hn from the next theorem was introduced in [2, Example 2.4].

Theorem 5.3. The group Hn = 〈p−∞
1 e1, . . . , p

−∞
n en, q

−∞(e1 + · · ·+ en)〉 is strongly indecom-

posable for all n > 2.

Proof. First, we show that any endomorphism of Hn is the same as multiplication by an
integer. Let x ∈ Hn, by an argument similar to one at the beginning of the proof of Theorem
5.1, one can show that if x is divisible in Hn by all powers of pi, then x has the form mp−k

i ei.
Now let ê1 = −e1, . . . , ên−1 = −en−1, ên = e1 + · · · + en. Then en = ê1 + · · · + ên and we

can write
Hn = 〈p−∞

1 ê1, . . . , p
−∞
n−1ên−1, p

−∞
n (ê1 + · · ·+ ên), q−∞ên〉.

Therefore, if x is divisible in Hn by any power of q then it has the form mq−kên = mq−k(e1 +
· · ·+ en).

Let ϕ be an endomorphism of Hn; ϕ(ei) = riei where ri = mip
−ki

i , because ϕ(ei) is divisible
by any power of pi. Hence ϕ(e1 + · · ·+en) =

∑
riei. On the other hand, since ϕ(e1 + · · ·+en)

is divisible by all powers of q, it has the form mq−k(e1 + · · · + en). Therefore, each ri is
equal to an integer number r and ϕ(x) = rx. Since the group is torsion-free, every nonzero
endomorphism is one-to-one.

To conclude the proof we will show that if a torsion-free abelian group A has only one-
to-one nonzero endomorphisms then it is strongly indecomposable. Assume that there are
k 6= 0 and nonzero groups B and C such that kA 6 B ⊕C 6 A. Let ψ be an endomorphism
of B ⊕ C defined as follows: if x = b + c where b ∈ B, c ∈ C then ψ(x) = b. Then the
mapping ϕ defined by ϕ(x) = ψ(kx) is an endomorphism of A. Take any 0 6= c ∈ C, then
ϕ(c) = ψ(kc) = 0 and, therefore, ϕ is not one-to-one. Note that ϕ is also nonzero, since if
0 6= b ∈ B then ϕ(b) = kb 6= 0.

Theorem 5.4. The group Gn is FA presentable.

Proof. Since Rp is FA presentable by Theorem 2.2, the direct sum Rp1
⊕ · · · ⊕Rpn

is also FA
presentable. Note that Rp1

⊕· · ·⊕Rpn
is a subgroup of finite index in Gn. Hence, by Theorem

4.2, Gn is also FA presentable.

Remark 5.5. Note that unlike Gn, the group Hn is not an extension of finite index of any
known example of an FA presentable group. To show that it is FA presentable, we will use
the method of amalgamated products described in section 4.

Theorem 5.6. The group Hn is FA presentable.
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Proof. First, let us show that Hn is isomorphic to (R+
p1
× · · · ×R+

pn
)⊕N R

+
q , an amalgamated

product of monoids R+
p1
×· · ·×R+

pn
and R+

q over N, where the isomorphic embeddings f : N →
R+

p1
× · · ·×R+

pn
and g : N → R+

q are chosen as follows: for all m ∈ N, f(m) = (m, . . . ,m) and
g(m) = m. Note that our proof will show that the amalgamated product of these monoids is
actually a group.

Every element of (R+
p1
× · · ·×R+

pn
)⊕N R

+
q is of the form 〈(a1, . . . , an), b〉N, where ai ∈ R+

pi
,

for i = 1, . . . , n, and b ∈ R+
q . Suppose that

〈(a1, . . . , an), b〉N = 〈(a′1, . . . , a′n), b′〉N

then there are u, v ∈ N such that

{
(a1 + u, . . . , an + u) = (a′1 + v, . . . , a′n + v)

b+ u = b′ + v.

This implies that ai − b = a′i − b′ for all i = 1, . . . , n. Thus we can correctly define a function
h on (R+

p1
× · · · ×R+

pn
) ⊕N R

+
q such that

h(〈(a1, . . . , an), b〉N) = (a1 − b)e1 + · · ·+ (an − b)en.

As one can see, the range of h is a subset of Hn, and h is a homomorphism. To show that it
is one-to-one, assume that

h(〈(a1, . . . , an), b〉N) = h(〈(a′1, . . . , a′n), b′〉N);

then
(a1 − b)e1 + · · · + (an − b)en = (a′1 − b′)e1 + · · ·+ (a′n − b′)en.

Therefore, ai − a′i = b− b′ ∈ Rpi
∩Rq for i = 1, . . . , n. Since Rpi

∩Rq = Z there is w ∈ Z such
that {

(a1, . . . , an) = (a′1 + w, . . . , a′n + w)

b = b′ + w.

So 〈(a1, . . . , an), b〉N = 〈(a′1, . . . , a′n), b′〉N.
Now to prove that h is onto, consider an element z ∈ Hn; it must be of the form

z =
(m1

pk1

1

+
l

qr

)
e1 + · · ·+

(mn

pkn
n

+
l

qr

)
en.

for integers mi, l, and natural numbers ki, r. Obviously,

mi

pki

i

+
l

qr
=

(mi

pki

i

+ t
)
−

(
− l

qr
+ t

)

for any t ∈ Z. Choosing sufficiently large t, we can make all ai = mi/p
ki

i + t and b = −l/qr + t
to be positive. In this case, 〈(a1, . . . , an), b〉N is an element of (R+

p1
× · · · × R+

pn
) ⊕N R

+
q and

h(〈(a1, . . . , an), b〉N) = z. Therefore, the range of h is Hn, and hence it is an isomorphism.
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Consider FA presentations of monoids R+
p1
, . . . , R+

pn
, and R+

q described in Section 2. From
this we can easily construct an FA presentation of R+

p1
× · · · × R+

pn
by putting strings repre-

senting elements of R+
pi

one under another in a column using an extra padding symbol when
necessary. Recall that the integral part of an element of R+

pi
or R+

q is presented in base
2. Therefore, if we consider the presentation of N in base 2, then the graphs of isomorphic
embeddings f : N → R+

p1
× · · · × R+

pn
and g : N → R+

q will be FA recognizable. Now, by
Theorem 4.1, the structure (R+

p1
× · · · × R+

pn
) ⊕N R

+
q is FA presentable, and as shown above

it is isomorphic to Hn.

6. A new FA presentation of Z2

Let (Z,+) be the group of integers under addition. In this section, we will construct an
FA presentation of (Z,+)2 in which no nontrivial cyclic subgroup is FA recognizable.

Consider Z[x]/〈p3〉, the quotient of the polynomial ring Z[x] with respect to the ideal
generated by p3(x) = x2 + x − 3. We will use the notation p(x) ∼ q(x) to denote that p3(x)
divides p(x) − q(x).

Remark 6.1. In the construction described below, we can use any polynomial of the form
x2 + x− q, for a prime q > 3, instead of p3(x).

Let A = (Z[x]/〈p3〉,+) be the additive group of the ring Z[x]/〈p3〉. It is not hard to see
that A is isomorphic to Z2, since every polynomial in Z[x] is equivalent over 〈p3〉 to a linear
polynomial kx+ l, which can be identified with a pair (k, l) ∈ Z2.

We say that a polynomial anx
n + · · ·+ a0 ∈ Z[x] is in reduced form (or briefly reduced) if

|ai| 6 2 for all i 6 n.

Proposition 6.2. For every p(x) ∈ Z[x], there is a reduced polynomial p̃(x) equivalent to it.

Proof. This can be proved by induction: assume that p(x) is in reduced form and show that
p(x) ± xn is equivalent to a reduced polynomial. It is enough to consider the case p(x) ± 1
since p(x) ± xn can be rewritten as (q(x) ± 1)xn + r(x), where q(x) and r(x) are in reduced
form and deg(r) < n. Note that if p0(x) and p1(x) are in reduced form and have non-negative
coefficients then p0(x)−p1(x) is reduced. Moreover, any reduced p(x) is equal to the difference
of such p0(x) and p1(x). So, it is enough to consider the case when p(x) is reduced and has
non-negative coefficients and show that p(x) + 1 is equivalent to a reduced polynomial with
non-negative coefficients.

We will actually prove a stronger statement: if p(x) is a reduced polynomial with non-
negative coefficients then p(x)+(a1x+a0), where 0 6 a0, a1 6 2, is equivalent to a polynomial
of the same sort. The proof is now by induction on the degree of p(x).

Let us write p(x) as p(x) = p1(x)x
2 + (b1x + b0); now using the fact that 3 ∼ x2 + x we

have

p(x) + (a1x+ a0) = p1(x)x
2 + (a1 + b1)x+ (a0 + b0)

∼ (p1(x) + r1x+ (r0 + r1))x
2 + c1x+ c0,

11



where

c0 =

{
a0 + b0, if a0 + b0 < 3

a0 + b0 − 3, otherwise
r0 =

[a0 + b0
3

]
,

c1 =

{
a1 + b1 + r0, if a1 + b1 + r0 < 3

a1 + b1 + r0 − 3, otherwise
r1 =

[a1 + b1 + r0
3

]
.

Here [v] is the integral part of v, defined by

[v] =

{
max{k ∈ Z : k 6 v} if v > 0,

min{k ∈ Z : v 6 k} if v < 0.

For example, [1.5] = 1 and [−1.5] = −1. Note that 0 6 c0, c1 6 2 and 0 6 r0, r1 6 1. By
induction, p1(x) + r1x + (r0 + r1) is equivalent to a reduced polynomial with non-negative
coefficients; hence so is p(x).

We now give an automatic presentation for the group A. The alphabet of the presentation
is Σ = {−2,−1, 0, 1, 2}. Each reduced polynomial anx

n + · · · + a0 is represented by a word
a0 . . . an ∈ Σ∗. We say that two words a0 . . . an and b0 . . . bm from Σ∗ are equivalent if anx

n +
· · ·+ a0 ∼ bmx

m + · · ·+ b0.
This equivalence relation is FA recognizable. An algorithm for checking it is as follows.

Given two words a0 . . . an, b0 . . . bm; we can assume that n = m since one can always add extra
zeros to the right. The algorithm needs to remember two carries r0, r1; initially r0 = r1 = 0.
Note that since 3 ∼ x + x2, whenever we subtract 3 from any digit, we need to add 1 to the
next two digits in order to get an equivalent word. That is why we need two carries here.

Now for every i = 0, . . . , n do the following. Check if 3 divides ai − bi + r0. If ‘no,’ then
the words are not equivalent. If ‘yes,’ then let rold

0 = r0, r
old
1 = r1; redefine

r0 = rold
1 +

ai − bi + rold
0

3
, r1 =

ai − bi + rold
0

3
,

and go to step i+ 1. If we reach in this way step n then the words are equivalent if and only
if an − bn + r0 = 0 and r1 = 0.

Since at every step |r0| 6 4 and |r1| 6 2, this algorithm requires a constant amount of
memory. Now it is not hard to construct a finite automaton recognizing the equivalence.

Consider the following order on Σ: −2 < −1 < 0 < 1 < 2. It naturally extends to the
length-lexicographical order on Σ∗, denoted as <llex . Let the domain of the FA presentation
of A be

Dom(A) = {w ∈ Σ∗ : (∀u <llex w) u is not equivalent to w}.
This set is FA recognizable since <llex is an FA recognizable relation.

To define addition on Dom(A) consider the relation R(x, y, z) such that if x = a0 . . . ak,
y = b0 . . . bl then z = c0 . . . cn is obtained from x and y by applying the following algorithm.
Again, let r0, r1 be two carries that are initially zero. At every step i starting from 0, let ci
be such that |ci| < 3,

ci ≡ ai + bi + r0 (mod 3)
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and ci has the same sign as ai + bi + r0. Let rold
0 = r0, r

old
1 = r1. Now redefine

r0 = rold
1 +

[ai + bi + rold
0

3

]
, r1 =

[ai + bi + rold
0

3

]
,

and go to step i+ 1.
For example, if x = 2211 and y = 22, then this algorithm produces z = 120021. By

construction, if R(x, y, z) holds then the polynomial corresponding to z is equivalent over
〈p3〉 to the sum of polynomials represented by x and y. It is easy to see that at every step
|r0| 6 4 and |r1| 6 2. Thus, as before, R can be recognized by a finite automaton.

Let Add(x, y, z) be defined as

Add = {(x, y, z) : x, y, z ∈ Dom(A) and

∃w (R(x, y, w) ∧ w is equivalent to z)}.

Since Dom(A), R, and the equivalence relation are FA recognizable Add is also FA recogniz-
able. Obviously, Add is the graph of addition operation on Dom(A), and the FA presented
structure (Dom(A),Add) is isomorphic to A.

Our next goal is to show that no nontrivial cyclic subgroup in this presentation of Z2 is
FA recognizable.

Lemma 6.3. Let p(x) and q(x) be reduced polynomials such that p(x) ∼ q(x) and xk | p(x).
Then xk | q(x).

Proof. Suppose that xk - q(x); then p(x)−q(x) = xl(a0+a1x+· · · ), where l < k, |a0| 6 2, and
a0 6= 0. Since 3 - a0, p3(x) = x2 +x−3 cannot divide p(x)−q(x), which gives a contradiction.

For p(x) ∈ Z[x], consider the set of all words in Σ∗ that represent polynomials equivalent
to p(x). All these words start with the same number of zeros. So we say that p(x) starts with

k zeros in reduced form if there is w ∈ Σ∗ representing p(x) that starts with k zeros.
The following lemma will be used several times later on.

Lemma 6.4. Let n be an integer, then 3k | n if and only if n starts with k zeros in reduced

form.

Proof. Suppose that 3k | n; then n = 3km ∼ xk(x+1)km. Taking a reduced form for (x+1)km
and multiplying it by xk we obtain a reduced form for n that starts with k zeros; thus n starts
with k zeros in reduced form.

The other implication can be proved by induction on k. First, suppose that n starts with
0 in reduced form and n = 3m+ r, where 0 < r 6 2. Take any reduced form for 3m. Since
it starts with 0, n = 3m+ r has a reduced form that starts with r 6= 0. This contradicts our
assumption, and hence 3 | n.

It is not hard to see that if p(x) starts with exactly k zeros in reduced form, and q(x)
starts with exactly l zeros, then a reduced form for p(x)q(x) starts with exactly k + l zeros.
Now suppose that n starts with k + 1 zeros in reduced form; then n = 3m and m starts with
k zeros, because 3 ∼ 011 starts with one 0. By induction, 3k | m, and so we have 3k+1 | n.
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Let α = (
√

13 − 1)/2 be the positive root of p3(x) = x2 + x − 3. Consider a mapping
F : Z[x] → R such that F : p(x) 7→ p(α). Obviously,

(p+ q)(α) = p(α) + q(α) and (pq)(α) = p(α)q(α).

Furthermore, if p(x) ∼ q(x) then p(α) = q(α), since p(α) − q(α) = p3(α)r(α) = 0.
Consider an arbitrary nontrivial cyclic subgroup in our presentation of Z2. It has the form

〈w〉 = {n · w : n ∈ Z}

for some w ∈ Dom(A). Let q(x) be the polynomial that corresponds to w. Note that q(α) 6= 0
since w represents a nonzero element. Indeed, by applying the Euclidean algorithm one can
see that there are polynomials s, r with deg(r) < 2 such that q = s · p3 + r. Moreover, since
the leading coefficient of p3 is 1, s and r have integer coefficients. Now if q(α) = 0, then
r(α) = 0, which implies that r = 0 since α is irrational. So q = s · p3 is equivalent to 0.

Suppose that 〈w〉 is recognized by a finite automaton with d states. We know that 3d ·w ∈
〈w〉 starts with d zeros in reduced form. So let 3d · w be equivalent to 0dv ∈ Dom(A). By
pumping lemma, there are s0, s1, t ∈ N with t 6= 0 such that 0dv = 0s00t0s1v and wk =
0tk+s0+s1v ∈ 〈w〉 for all k > 0.

Let qk(x) be the polynomial that corresponds to wk. Since wk ∈ 〈w〉, we have that
wk ∼ nk·w for some nk ∈ Z. If w starts withm zeros, then nk starts with at least tk−m+s0+s1

zeros in reduced form; thus 3tk−m+s0+s1 | nk.
The fact that wk is equivalent to nk · w implies that qk(α) = nkq(α). Now, on the one

hand,

|qk(α)| 6 2(1 + α + · · ·+ α|wk|−1)

= 2
α|wk| − 1

α− 1
6 8α|wk| = 8αs0+s1+|v|αtk = C0α

tk.

On the other hand,

|qk(α)| = |nk||q(α)| > 3tk3s0+s1−m|q(α)| = C13
tk.

Thus
C13

tk 6 C0α
tk for all k > 0,

which is impossible because α < 3. Therefore, 〈w〉 is not FA recognizable.
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