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Abstract. The biinterpretability conjecture for the r.e. degrees asks whether,

for each sufficiently large k, the Σ0
k relations on the r.e. degrees are uniformly

definable from parameters. We solve a weaker version: for each k ≥ 7, the

Σ0
k relations bounded from below by a nonzero degree are uniformly definable.

As applications, we show that Low1 is parameter definable, and we provide a
new example of a ∅–definable ideal. Moreover, we prove that automorphisms
restricted to intervals [d,1], d 6= 0, are Σ0

7. We also show that, for each c 6= 0,
(N,+,×) can be interpreted in [0, c] without parameters.

1. Introduction

The study of structures based on recursively enumerable sets is an important area
of computability theory. Among the structures one studies are the lattice E of
recursively enumerable (r.e.) sets under inclusion and the degree structures RT and
Rm induced on the r.e. sets by Turing- and many-one reducibility. The structure
RT has been in the focus of interest for 50 over years, beginning with Post’s problem
whether there are r.e. Turing degrees besides the degree of a computable set and
the degree of the halting problem.
For all three structures, the approach of studying definability and coding with
first–order formulas has been very successful. Definability with parameters was
first used as a tool to prove that the theory of the structure is undecidable. For
instance, the first proof that Th(RT ) is undecidable, due to Harrington and Shelah
[4], proceeded by coding an arbitrary ∆0

2 partial ordering, using formulas involving
four parameters. In such proofs, r.e. sets which are values for the parameters are
constructed in order to encode very particular sets and relations. Here, we aim at
definability results of a more general kind. Given a class C of sets (or relations) on
RT , we want to find a formula with parameters which enables us, as the parameters
vary, to define all sets (or relations) in C. Such a class is called weakly uniformly
definable. If, in addition, we can specify a first–order condition α on parameters
so that the parameters satisfying α give precisely the elements of C, then we call C
uniformly definable.
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Uniform definability results have been proved for other structures, usually as a
tool to interpret Th(N,+,×) in the theory. For instance, in Rm, for sufficiently
large k, the Σ0

k relations which are contained in a proper initial interval are weakly
uniformly definable (Nies [8]). Harrington’s Ideal Definability Lemma for E (see
[3]) is another example. Finally, in [10], we show that, in the structure of r.e.
weak truth–table (wtt) degrees, the class of finite sets of low wtt–degrees which
have pairwise have as a supremum the greatest wtt–degree is weakly uniformly
definable.
A structure (A, R1, . . . , Rn) is called arithmetical if there is an onto map β : N 7→ A

such that the preimages under β of the relations Ri and of equality on A are
arithmetical. Furthermore, we say a given relation on A is Σ0

k (arithmetical) if
its preimage is Σ0

k (arithmetical). Clearly, all parameter definable relations are
arithmetical.
One of our principal results is that for all sufficiently large k (actually for all k ≥ 7),
the class of Σ0

k relations in an interval [d,1], d 6= 0, is uniformly definable. The
biinterpretability (BI, for short) conjecture for an arithmetical structure A asks
whether this holds for all for sufficiently large k and all Σ0

k relations, without further
restrictions. Since A is arithmetical, this property is equivalent to the usual model
theoretic notion of biinterpretability (see [5]) of N and the structure obtained from
extending A by finitely many constants. The property has interesting consequences
for A: the automorphisms are uniformly definable (and therefore there are only
countable many), and each orbit under the action of the automorphism group on
An is ∅-definable (in other words, A is a prime model of its theory). With our
approximation, we still obtain that the class of partial 1-1 functions {Φ ¹ [d,1] :
Φ ∈ Aut(RT ) & d 6= 0} is weakly uniformly definable, and that these functions are
Σ0
7.
We derive from the main result that an ideal of RT which is generated by a ∅–
definable set is itself ∅–definable. This leads to a new ∅–definable ideal, the ideal
generated by the nonbounding degrees, thereby answering [12, Question 2.8]. (The
recursion theoretic details will appear in [7].)
In [2], an interesting new example of a Π0

5–ideal was given, namely {x : ∀y ∈
Low1 [x ∨ y ∈ Low1]} . As a consequence of our result, this ideal is parameter
definable. Using this together with our uniform definability result, we prove that
Low1 is parameter definable. In [11] it was shown that all the jump classes except
possibly Low1 are ∅–definable.
We also prove that for k ≥ 7, the class of Σ0

k -ideals of RT is uniformly definable.
The lattice of all ideals of RT was studied for instance by Calhoun [1]. We show
that the lattice of Σ0

k–ideals, k ≥ 7, with an extra predicate for being principal, is
biinterpretable with RT .
To obtain our results, we introduce a more flexible construction of Slaman–Woodin
(SW) sets (see [11]). We use the lower bound e for SW sets as an “emergency
device” to correct the ∆–functionals of minimality requirements Mi (in [11], the
lower bound was used for a different purpose). We also guess at the outcomes of
those requirements in a tree construction. The greater flexibility in building SW
sets makes their construction compatible with permitting below a given nonzero
degree c. In this way, we are able to provide an interpretation without parameters
of (N,+,×) in [0, c].
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In [9], we announced a uniform definability result which was somewhat stronger
than the one given here. It would, for instance, imply that each u.r.e. set of nonzero
degrees is definable. The proof we had in mind was incorrect. However, the conse-
quences listed above all follow as well from the present result.
Acknowledgments. The author would like to thank R. Shore and T. Slaman for
many helpful discussions. He incorporated ideas from work of Shore and Slaman
(unpublished), who previously had obtained the main result in case d is noncap-
pable.

2. Main results

Throughout this article, “definable” means parameter definable, and “∅–definable”
means definable without parameters. All degrees will be r.e. Turing degrees. We
recall some concepts. See [11] for more details.

Definition 2.1. A scheme for coding in an L-structure A is given by a list of
L-formulas ϕ1, . . . , ϕn with a shared parameter list p, together with a correctness
condition α(p). If a scheme SX is given, X,X0, X1, . . . denote objects coded via SX
by a list of parameters satisfying the correctness condition. If necessary, we write
X(p) to indicate that X is coded by the list p.

Definition 2.2. A scheme SM for coding models of Robinson arithmetic Q (in the
language of arithmetic L(+,×)) is given by the formulas ϕnum(x, p), ϕ+(x, y, z; p),
ϕ×(x, y, z; p) and a correctness condition α0(p) which expresses that ϕ+ and ϕ×
define binary operations on the nonempty set {x : ϕnum(x; p)}, and that {x :
ϕnum(x; p)} with the corresponding operations satisfies the finitely many axioms
of Q.

All modelsM coded by such a scheme SM have a standard part isomorphic to N. If
this standard part equals M , we say that M is standard. Given k ∈ N, kM denotes
k, viewed as an element of M .

Definition 2.3. (i) A scheme Sg for coding a function g is given by a for-
mula ϕ1(x, y; p) defining the relation between arguments and values, and a
correctness condition α(p) which says (at least) that a function is defined
on the intended domain.

(ii) More generally, a scheme for defining n-ary relations on A is given by a
formula ϕ(x1, . . . , xn; p) and a correctness condition α(p).

(iii) A set C of n-ary relations on A is uniformly definable (u.d.)in A if, for
some scheme S for coding relations, C is the class of relations coded via
S as the parameters range over tuples in A which satisfy the correctness
condition.

(iv) C is weakly uniformly definable if C is contained in a uniformly definable
class.

We are now ready to state our main result, in the language of coding schemes.

Theorem 2.4. There is a scheme SM for coding a model of Q and a scheme Sh for
coding functions with the following property. For each d 6= 0, there is a standard
M and a map h such that h :M → [d,1] is onto.

The parameter list contains a parameter e 6= 0 such that e ≤ n for each n ∈M .
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If X ⊆ RT , let Ind(X) denote the index set {e : deg(We) ∈ X}, and similarly for
relations on RT . We say that X is Σ0

k if its index set is Σ
0
k. Before phrasing the

main result in the language of arithmetical sets, we need to analyze the connection
between the arithmetical complexity of Ind(X) and the complexity ofX as a relation
on M .

Lemma 2.5. Suppose SM is a scheme as in Example 2.2 and r is a number such
that for every standard M , there is a function α ≤T ∅

(r) such that ∀i ∈ N iM =
deg(Wα(i)).
Suppose M is standard and X is an n–ary relation on M .

(i) If k ≥ max(r+ 1, 4) and X is Σ0
k as a relation on M , then Ind(X) is Σ

0
k.

(ii) If k ≥ max(r + 1, 5) then, conversely, Ind(X) ∈ Σ0
k implies that X is Σ0

k

as a relation on M .

Proof. To simplify notation we assume that n = 1.
(i). Suppose the L(+,×)–formula ϕ(x) is Σk and defines X in M . Then

Ind(X) = {i : ∃n[ϕ(n) (Σ0
k) & Wα(n) ≡T Wi (Σ

0
max(4,r+1))]}.

(ii). Let g ≤T ∅
(4) be a function with range {i : ∀j < i Wj 6≡T Wi}, and let γ(n) =

deg(Wg(n)). Since k ≥ 5 and Ind(X) is Σ
0
k, γ

−1(X) is Σ0
k. Let γ̃ be γ viewed as a

function M → RT . Clearly, 〈i, j〉 ∈ Ind(X) ⇔ ∃n[Wα(n) ≡T Wi & Wg(n) ≡T Wj ],

so that Ind(γ̃) is Σ0
max(5,r+1). Hence γ̃(X) is Σ

0
k, and X = γ̃−1(γ̃(X)) is Σ0

k as a

subset of M . ♦

Corollary 2.6. For sufficiently large k (in fact, k ≥ 7), for each n the class
Dnk = {R : Ind(R) ∈ Σ

0
k & ∃d 6= 0 R ⊆ [d,1]n} is uniformly definable.

Proof. Let r be as in Lemma 2.5, and let m ≥ max(r + 1, 5) be a number such
that, for each function h (coded via Sh), Ind(h) is Σ

0
m. Given d 6= 0, choose M,h

as in Theorem 2.4. Suppose k ≥ m. Note that, for each R ⊆ [d,1]n,

Ind(R) ∈ Σ0
k ⇔ Ind(h−1(R)) ∈ Σ0

k ⇔ Ind(h−1(R)) Σ0
k on M

(for the second equivalence we used Lemma 2.5).
For notational simplicity, again assume that n = 1. We first show that each class
D1
k is weakly u.d., and use this to derive a (first order) correctness condition to
recognize parameters p such that M(p) is standard.
The scheme Sk via which D1

k is weakly u.d. involves a list of parameters q which
contains a lower bound d 6= 0 for the relation to be described, parameters to encode
M,h, and also an element i of M . Let ϕ(x, q) express that, for some n ∈M ,

M |= n ∈W ∅(k−1)

i & h(n) = x.

As a correctness condition for Sk, firstly, require that d 6= 0 and that h :M → [d,1]
is onto. Clearly, each Σ0

k set R can be obtained by this scheme, so that D
1
k is weakly

u.d. Conversely, ifM is standard, only Σ0
k-sets can be represented by (ii) of Lemma

2.5. Thus, to make sure that we do not include other relations, we only need to add
a correctness condition to SM which implies that each M is standard. But notice
that the index set of the standard part of anyM is Σ0

p for a fixed p, depending only
on SM . Then, because our particular scheme SM contains a nonzero lower bound
e for M , we can quantify over a class of subsets of any coded M which includes
the standard part. Hence we can express that M is standard by saying that the
only inductive subset coded in this way is M itself. In Section 5.3 we show that
the Corollary holds for each k ≥ 7, since one can choose r = 4 and m = 7. ♦
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An obvious modification of the proof shows:

Corollary 2.7. The class {F : F finite & ∃d 6= 0 F ⊆ [d,1]} is uniformly
definable.

Proposition 2.8. The class

{Φ ¹ [d,1] : Φ ∈ Aut(RT ) & d 6= 0}

is weakly uniformly definable. Each such function is Σ0
7.

By Corollary 2.6, it is sufficient to show that there is a number k ≥ 1 such that,
if Φ ∈ Aut(RT ) and d 6= 0, then Φ ¹ [d,1] is Σ0

k. Given Φ and d, choose M,h

for [d,1] by Theorem 2.4. Let M̃, h̃ be the standard model and map coded by

the images under Φ of the parameters coding M,h. Then h̃ : M̃ 7→ [Φ(d),1] is

onto. Thus for any x ≥ d, Φ(x) = y ⇔ ∃n ∈ N [h(nM ) = x & h̃(nM̃ ) = y], so
that Φ ¹ [d,1] is Σ0

k for some fixed k. From the remark at the end of the proof of
Corollary 2.6, in fact k = 7. ♦

Theorem 2.9. Low1 is parameter definable.

Proof. Cholak, Slaman and Groszek [2] proved that there is a degree d 6= 0 such
that ∀x [x ∈ Low1 ⇔ x ∨ d ∈ Low1]. The class [d,1] ∩ Low1 is Σ

0
4, and hence

definable by Corollary 2.6. ♦

3. Interpreting (N,+,×) in intervals [0, c]

We will develop a more flexible construction of SW-sets in the proof of the following.

Theorem 3.1. For each c 6= 0, (N,+,×) can be interpreted in [0, c] without pa-
rameters.

First, we confine ourselves to a proof that true arithmetic, i.e., Th(N,+,×) can
be interpreted in Th([0,b]) for low b (Theorem 3.3 below). This restricted result
had been announced by D. Seetapun. Thereafter we will prove the full result by an
extension of the coding methods used.
To obtain the desired interpretation of Th(N,+,×), we use a model theoretic
method which is of interest by itself. The method appears to be quite versatile,
and we expect it to work in arbitrary nontrivial intervals of RT as well. It is easy
to adapt the proof of Theorem 3.3 to prove that the theory of nontrivial intervals
[b0,b1], b1 low, interprets true arithmetic.

Theorem 3.2. Let A be a structure. Suppose schemes SM as in Example 2.2 and
Sg as in Example 2.3 are given such that some M is standard, and

∀M∀n ∈ N ∃M ′∃g ∀i ≤ n g(iM ) = iM
′

.

Then Th(N,+,×) can be interpreted in Th(A).

Proof. This version of the proof is due to T. Slaman. By recursion, for each k ≥ 0,
we determine a formula αk(p). If Ck is the class of models M(p) defined by a
parameter list p satisfying αk, then we ensure ∀M ∈ Ck M ≡k N (i.e., M satisfies
the same Σk sentences as N). We obtain the desired interpretation as follows: given
a sentence ϕ in the language of arithmetic, determine k such that ϕ is Σk. Then
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N |= ϕ ⇔ A |= ∃p [αk(p) & “M(p) |= ϕ”].

For α0 we can take the vacuous condition, since all models M satisfy Q, whence
M ≡0 N.
In the inductive step, we use the satisfaction predicate SatΣp

(n) (see [6]). Thus,
for each Σp sentence ϕ with code number nϕ, and each model M of Q, M |=
ϕ ⇔ M |= SatΣp

(nϕ). Inductively, suppose Ck has been defined via αk such that
∀M ∈ Ck M ≡k N. Then

(3.1) Σk+1 − Th(N) ⊆ Σk+1 − Th(M).

Let Ck+1 = {M ∈ Ck : ∀x ∈M ∀M ′ ∈ Ck ∀g
[g defines bijection [0, x]M 7→ [0, g(x)]M ′ & M |= SatΣk+1

(x)] ⇒
M ′ |= SatΣk+1

(g(x))].
Clearly there is a first-order condition αk+1(p) describing Ck+1. Moreover, if M is
standard, thenM ∈ Ck+1. For suppose x ∈M andM |= SatΣk+1

(x). Then x = nM

where n = nϕ for some Σk+1 sentence ϕ. Then M |= ϕ. Suppose M ′ ∈ Ck, then,
by (3.1), M ′ |= ϕ. Hence, if g is as above, M ′ |= SatΣk+1

(g(x)).
Finally, for any M ∈ Ck+1, Σk+1 − Th(M) ⊆ Σk+1 − Th(N): by the hypothesis of
the Theorem, for each n, there is a g and a standard M ′ such that g determines an
isomorphism [0, nM ] 7→ [0, g(nM

′

)]. Now suppose n = nϕ where ϕ a Σk+1 sentence.
By the definition of Ck+1, if M |= ϕ, then M ′ |= ϕ. ♦

Using a variant of Tennenbaum’s Theorem, one can show that, if A is arithmetical,
then in fact from some k on Ck consist only of standard models.
We now turn to the recursion theoretic constructions. Throughout we use the same
scheme SM , making use of Slaman-Woodin sets above a parameter e (defined in
[11, Definition 2.4.]). For any degrees q,p, e, r, the Slaman–Woodin set is

SW(q,p; e, r) = {x ∈ [e, r] : x is minimal in [e, r] s.t. q ≤ x ∨ p}.

To obtain copyM of N encoded in RT , first we build a u.r.e. sequence (gn)n∈N and
parameters so that

(3.2) {gn : n ∈ N} = SW(q,p; e, r)

To define +,×, we use a recursive p.o. (N,¹) encoding a copy L of (N,+,×) as
described in [11, p. 246]. We may assume that ¹ is chosen in a way that iL equals
2i (as an element of N), and that these elements of L are minimal elements of
(N,¹). We will ensure that

(3.3) gi ≤ gj ∨ l ⇔ i ¹ j.

In the following Theorem, (i) and (ii) serve to code a copy of N, while (iii) is needed
to satisfy the additional hypothesis of Theorem 3.2 for A = [0,b] when b 6= 0 is
low.

Theorem 3.3. (i). For each d 6= 0, there is a u.r.e. antichain (gn) in [0,d] such
that

{gn : n ∈ N} = SW(q,p; e, r)
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for some e ≤ d, p ≤ q ≤ d, r =
⊕

n gn. Moreover, r ≤ d.
(ii). If, in addition, a recursive partial ordering P = 〈ω,¹〉 is given, then we can
also construct l such that i ¹ j ⇔ gi ≤ l ∨ gj. Moreover, r, l ≤ d.
(iii). Suppose 0 < d < b, b is low and u0, . . . ,un ∈ [d,b]. Suppose further that the
even numbers ar minimal elements of P. Then there are degrees as above such that,
in addition, e 6= 0, l, r ≤ b and g2i ≤ uj ⇔ i = j, for 0 ≤ i, j ≤ n. Moreover,
r, l ≤ b.

To see that (iii) is sufficient for Theorem 3.2, first add as an additional correctness
condition in SM that the lower bound e be nonzero. Given M , let d be the lower
bound for M and let ui = iM . Obtain M ′ via (iii). In the scheme Sg, use two

further parameters u, ũ with the values nM and nM
′

. Then the following defines a
map g as desired (where ≤M ,≤M ′ denote the orderings on M,M ′):

g(x) = y ⇔ [x ≥ y & x ≤M u & y ≤M ′ ũ].

Proof. The proof is an extension of the construction of Slaman-Woodin sets given
in [11, Thms 4.1 and 4.7]. We review this construction here in order to explain our
extensions, but for more details, see [11, 4.2]. For each degree x (given or to be
constructed), the corresponding capital letter X denotes a r.e. set in this degree.
For (i), we construct r.e. sets E ≤T D and P ≤T Q such that Q ≤T D. Moreover we
build a u.r.e. sequence of sets (Ge) and will ensure that G∩2N = E for each n (i.e.,
only odd numbers go into a set Gn, unless they also go into E). Let R =

⊕
nGn.

We meet the requirements from [11, Thm 4.1]. The requirements

Ti : Gi ⊕ P ≥T Q

are met by building functionals Γi such that Γi(Gi ⊕ P ) = Q. To make the set of
degrees {gi : i ∈ N} a Slaman-Woodin set, we meet requirements

Mi: [Θi(R) =Wi & Φi(Wi ⊕ P ) = Q] ⇒ ∃j ≤ n(i) Gj ≤T Wi ⊕ E,

where n(i) is the number n such that T0, . . . , Tn have higher priority than Mi,
and (Wi,Φi,Θi) is an effective list of all triples consisting of a r.e. set Wi and two
functionals Φi,Θi, such that Wi ∩ 2N = E .
To make the degrees (gi) pairwise incomparable, we meet requirements

Di,j,e: Ψe(Gi) 6= Gj ,

where (Ψe) is a list of all functionals.
The basic idea for the Mi–strategy is as before: for ascending j ≤ n(i), attempt to
build a Turing reduction ∆i,j(Wi) = Gj (as an aid, in the notation ∆i,j , the index
i indicates which requirement Mi builds the functional, while j indicates the set
Gj being computed). If the last of them failed, we argue that we can diagonalize
against Φi(Wi ⊕ P ) = Q: there is y such that Φi(Wi ⊕ P ; y) = 0 and γj(y) > ϕ(y)
for each j ≤ n(i), so that when we put y into Q, the Γj correction of Tj , which
is via a P–enumeration, does not destroy our successful diagonalization. We first
define a length of agreement function:

l(i, u) = µz{¬[Φi(Wi ⊕ P ; z) ↓= Q(z) [u](3.4)

∧ (∀w ≤ ϕi(z))(Θi(R;w) ↓=Wi(w) [u] )] }.

Unlike before, an i–expansionary stage is now simply a stage where this length is
larger than at all previous stages.
The functionals ∆i,j are defined at stages s via numbers y < l(i, s) targeted for Q.
Each y has a “chit”, which is cancelled at a later stage if Φi(Wi⊕P ; y) changes, in
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which case y never goes into Q. Once l(i, s) > y and the chit for y is uncancelled
and has not yet been assigned to a ∆i,0 computation, define ∆i,0(Wi, x) = G0(x)
with use ϕi(y), assigning the chit for y to this ∆ computation, where x is least such
that x < y and ∆i,0(x) is undefined.
In the basic construction, if x is put into Gi (by some D-type requirement), then
by the next i–expansionary stage we see if Wi ¹ δi,0(x) changed (note that Wi can
only change in reaction to an R–change). If so we correct ∆i,0(x). If not, we say
the ∆(x) computation fails. We have made progress on a possible diagonalization
against Φi(Wi ⊕ P ) = Q, since now γ0(y) > ϕi(y). We next assign the chit for y
to a (newly defined) ∆i,1(Wi;x) computation with value G1(x) and the same use
ϕi(y), etc. Once the uncancelled chit for y has been a assigned to a ∆i,n(i)(Wi; z)
computation which failed, y is ready as a candidate for diagonalization. Meanwhile,
if one of the ∆i,j(x) computation is corrected (i.e., Wi ¹ ϕi(y) changes), we cancel
the chit for y.
Since we want Q ≤T D, Mi actually appoints a list of candidates y0 < y1 < . . ..
Each time a new candidate is appointed, Mi initializes lower priority requirements.
Once D ¹ p changes, yp is enumerated into Q.
The argument above depends on the preservation of a computation Φi(Wi⊕P ; y) =
0. Since we can make the ∆i,j(Wi;x) computation undefined when Wi ¹ ϕi(y)
changes (and later redefine it via a new y), we only need to be able to restrain
P ¹ ϕi(y). Suppose x is a candidate for a Gj–positive strategy U (say Dj,l,e) and
that Mi is a requirement of higher priority than U while j ≤ n(i). Suppose there
are infinitely many i–expansionary stages.
(1) Till x is enumerated, it is U’s responsibility to maintain the suitability of x for
enumeration into Gj , by restraining P ¹ δi,j(x). When this restraint is violated, x
is cancelled.
(2) Next we consider the P–restraint we need after an enumeration of x. If we
proceeded as in [11, 4.2], we would rely on the condition that the P–restraint
is not violated till the next i–expansionary stage, since only then we have new
computations of Wi from R and can make progress on a possible diagonaliza-
tion in case Wi ¹ δi,j(x) did not change. Thus, after the enumeration, till the
next i–expansionary stage, the P–restraint is maintained by the higher priority
requirementMi. This leads to the restraint on P with finite lim inf in [11], which
makes that construction incompatible with permitting by D.
Here, we enumerate into the lower bound E instead. Consider a P–positive strategy
Mk (necessarily k > i, else Mi is initialized for another time), which changes
P ¹ δi,j(x) before the next i–expansionary stage following the enumeration of x.
Then Mk has higher priority than U . The new idea is that Mk also enumerates
a ∆–correction number w into E. This number was chosen by U right after the
last time U was initialized, so that w < x. Since E is a part of Wi, we can now
immediately redefine ∆i,j(x) = 1 with use 0. We have to verify that enumerating w
does no harm to Mk itself. But, by the initialization of lower priority requirements
Mk carries out whenever it appoints a new candidate y, w is greater than l(k, s)
and hence any computation Mk is interested in. (The potential problem would be
that E is a part of R and Mk needs to preserve a certain part of Θk(R) = Wk in
order to preserve its diagonalization.) Clearly the enumeration of w into E needs
to initialize U , whose goal it was to preserve a set Gl. However, the diagonalization
action of Mk is finitary, so that U is only initialized finitely often.
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Note that a strategy at a single stage Mk puts numbers yp into Q, larger numbers
γj(y) into P and even larger ∆–correction numbers into E.
The situation above is similar to the problem of building infima below d. If, say,
d is nonbounding, a miminal pair type construction (which involves a restraint
with only finite lim inf) must fail. However, there is always some e < d which is
meet reducible within [0,d]. Like our M–type strategies, the infimum strategies
use correction numbers targeted for E.
We also meet lowness type requirements as in [11], but use Q instead of the set P ,
since in a later application we need R⊕Q to be low.
4. Ke,x: If there are infinitely many s such that Ξe(R ⊕ Q;x) ↓ [s], then Ξe(R ⊕
Q;x) ↓.
Here {Ξe} lists all partial recursive functionals and includes various ones appear-
ing in the construction with the approximations given in the construction. Their
purpose is to make the various functionals Γ, ∆ converge if they are defined often
enough, and to make sure there are enough numbers y with uncancelled chits. Since
P ≤T Q via permitting, we indirectly also preserve computations with oracle R⊕P .
The strategies are as before.
We now give the formal construction for (i). The same general comments apply as
in [11, Section 4.2]. We order the requirements in a priority list. We describe the
action at substage n of stage s according to the type of n–th requirement. Recall
that r is the last stage where such a requirement was initialized (all requirements
are initialized at stage 0). Comments in double brackets [[...]] are motivational
only.
1. Ti : Gi ⊕ P ≥T Q. As before, let y be least such that Γ(Gi ⊕ P ; y) is undefined
and define it with large use. Whenever later the oracle changes below the use, make
the computation undefined.
2. Di,j,e: Ψe(Gi) 6= Gj If this is the first stage at which we deal with this require-
ment since r, choose a large ∆–correction number w targeted for E. [[We will do
this for any R–positive strategy added in later extensions of the construction.]]
The Di,j,e–strategy builds a list of followers x0 < x1 < . . . targeted for Gj . A
follower x is realized when Ψe(Gi;x) = 0. Suppose Di,j,e is not yet satisfied. If
k > 0 and xk−1 has been defined and is realized or k = 0, then appoint a new large
follower, and initialize requirements of lower priority.
At every stage t ≥ s until a follower x is cancelled or enters Gj , Di,j,e imposes
restraint r(D, i, j, e, t) on P where

(3.5) r(D, i, j, e, t) = max{δk,j(Wk;x)[t]|Mk < Di,j,e & x follower of Di,j,e}.

If xk is defined and D ¹ k changes, then put xk into Gj . Initialize all lower priority
requirements.
3. Mi: [Θi(R) =Wi & Φi(Wi ⊕ P ) = Q] ⇒ ∃j ≤ n(i) Gj ≤T Wi ⊕ E,
Mi builds and protects a potentially infinite list y0 < y1 < . . . of numbers ready for
enumeration into Q. Suppose p > 0 and yp−1 has been defined, or p = 0. We now
proceed as in [11], possibly defining y = yp: if s is not i-expansionary or Mi has
put a number into Q since r, we go on to the next substage of stage s. Otherwise,
as before go through the procedure of defining computations ∆i,j(x) summarized
above and described in detail in [11, p. 263]. If we reach a point where there are
no appropriate chits to pass on to the next level of functionals, we terminate this
substage of stage s. Otherwise, if there is a number y such that y > yp−1, and
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there is a failure of ∆i,n(i) at some x and the uncancelled chit for y is assigned to
∆i,n(Wi;x) then define yp = y. Initialize requirements of lower priority.
At any s, if yp is defined and D ¹ p changes, then put yp into Q, γj(yp) into P for
each j ≤ n(i). [[ As before, the point to verify will be that γj(y) ≥ ϕi(y) for each
j ≤ n(i). Thus, if Mi is not initialized, we have now permanently diagonalized,
because we initialized lower priority requirements when we appointed yp.]] Also, for
each R–positive strategy U of lower priority than Mi with a ∆–correction number
w, we put w into B. [[We will verify that w > θi(ϕi(yp)) so that these enumerations
do not destroy the successful diagonalization of Mi.]]
4. Ke,x. The strategies are as before: if Ξe(R⊕Q;x) has just converged for another
time, then initialize the lower priority requirements.

3.1. Verifications. We refer to the verifications in [11]. Clearly, E ≤T D,
P ≤T Q ≤T D and R ≤T D by direct permitting. For the verification that
the strategies succeed, the same comments as in [11, 4.3] apply, but we interpret
“i–expansionary stage” in the way defined here and delete the remarks on the
restraint functions r(M, i, s) (since Mi no longer imposes restraint on P , except by
initialization after it diagonalizes).
The only changes are in the verification that the Mi–requirements succeed. How-
ever, Lemma 4.2 goes through unchanged, and so does the first half of the proof of
Lemma 4.3. Let x, y, s ≤ t be as in that Lemma, thus, ∆i,j(Wi;x) was defined at
stage s and x enters Gj at stage t ≥ s through the action of an R–positive require-
ment U . The change is in the argument that no number z < ϕi(y)[s] can enter P
at a stage v, t < v ≤ u, where u is the next i–expansionary (in our sense) stage
after t. Assume such a z enters P . Choose v minimal, suppose x is enumerated (at
stage t) into Gj by the strategy R while z is enumerated (at stage v) into P by an
Mk–strategy. By the initializations, necessarily Mi < Mk < U . Thus, by stage v,
the current ∆-correction number w of U has entered E. Since w < x, this allows us
to redefine ∆i,j(Wi;x) = 1, contrary to the assumption that x was a failure point
(i.e., ∆i,j(Wi;x) = 0).
The rest of the proof of Lemma 4.3 and the proof of Lemma 4.4. are as before.
The proof of Lemma 4.5 becomes simpler , since there is no minimal pair type P
restraint imposed by Mi. Recall that r is the last stage when Mi is initialized. The
argument is as follows, when taking into account the need for permitting by D.
Arguing by induction and using the above Lemmas, we see that ∆i,n(i) is defined
for every x > r. If there are infinitely many failures of ∆i,n(i), then Mi appoints
arbitrarily many yp. By initializing requirements of lower priority, the chit of such
a number yp remains uncancelled (hence permanently Φi(Wi; yp) = 0). Since D is
nonrecursive, Mi eventually enumerates a number yp into Q.
In the proof of Lemma 4.6 we add the following observation: when Mi puts a
number yp into Q at stage s > r, then the ∆–correction number w of a lower
priority R–positive strategy U (which is put into E at stage s) is greater than
θi(ϕi(yp)). For, the strategy U was initialized when yp was appointed at a stage
t ≤ s. Thus w was chosen after s, hence w > θi(ϕi(yp))[t]. Since the strategies of
lower priority than Mi were also initialized at t, θi(ϕi(yp))[t] = θi(ϕi(yp)[s]). As
before, we argue that, at stage s, γk(yp) > ϕi(yp) for each k ≤ n(i), and conclude
that the enumeration of yp diagonalizes against Φi(P ⊕Wi) = Q. This concludes
the proof of (i).
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We now consider the extensions for (ii) and (iii). For (ii), we want to ensure
Gj ≤T Gi ⊕ L⇔ j ¹ i. We proceed exactly as in [11, 4.4]: for the direction “⇐”,
we adjust the construction so that any number x put into Gj is also simultaneously
put into L, unless it is put in by one of the following N requirements discussed
next. These ensure the direction “⇒”:
5. Ni,j,e: If i ² j then Ψe(Gi ⊕ L) 6= Gj .
The strategy for Ni,j,e is similar to the strategy for Di,j,e. In particular, after an
initialization, first a new ∆–correction number is appointed. A follower x is realized
when Ψe(Gi ⊕ L;x) = 0. The restraint in (3.5) is replaced by

(3.6)
r(N, i, j, e, t) = max{δl,j(Wl;x)[t]|l º j & Ml < Ni,j,e & x follower of Ni,j,e}.

If xk is realized and D ¹ k changes, then we put xk into Gl for all l º j. For
l 6= k, we call this an indirect enumeration into Gl. We initialize all lower priority
requirements.
(iii). We choose sets in the given degrees u0, . . . ,un,d in a way that Uj ∩ 2N = D

for each j ≤ n. We ensure G2j ≤T Uj (j ≤ n) by direct permitting, using that
there is no indirect enumeration into G2j .
For G2i 6≤ Uj when i 6= j, i, j ≤ n, we meet the requirements
6. Zi,j,e : G2i 6= Ψe(Uj) (i, j ≤ n, Ui 6≤T Uj)
The strategy for Zi,j,e is almost exactly as the strategy for Zi,j,e in [11, p. 271],
exploiting the fact that each Uj , j ≤ n, is low. (We need to carry out two merely
notational changes: replace Gi in [11, p 271] by G2i, and Vi,j by Uj .) Thus, we ap-
point followers xp which are realized in the sense that Ψe(Uj ;xp) = 0. We maintain
the suitability of xp for G2i by imposing P–restraint. When Ui ¹ xp changes we
run a guessing procedure based on the lowness of Uj to see if we eventually have a
chance to diagonalize successfully. If so, we enumerate xp into G2i. See [11, p.272]
for details on the guessing procedure. (In the Proof of Theorem 2.4 below, we will
use a simplified guessing procedure which could be applied here as well.)
Note that, as for all R–positive strategies, after an initialization, the Zi,j,e–strategy
first appoints a large ∆–correction number.
The verification for the Z–type requirements is as before. In particular, if Ui 6≤T Uj
and infinitely many followers are realized, then from some stage on the guessing
procedure always answers yes, whence we diagonalize. The enumeration of ∆–
correction numbers into E is permitted by D. Thus g2i ≤ ui as required.
Note that R,L ≤T B, since D ≤T U0, . . . , Un ≤T B and an enumeration of y into
R or L depends on the change of one of those sets below y.
Finally, to make E nonrecursive, we add requirements
7. Sk : E 6= {k}.
The strategy, while unsatisfied, appoints followers x0 < x1 < . . . Once {k}(xp) = 0
and D ¹ p changes, we put xp into E and declare the strategy satisfied.
Note that this new enumeration of numbers into E will go into all the sets Gj . How-
ever, this enumeration is permitted by D, so that we can argue that G2i ≤T Ui.
Moreover the numbers xp do not need an associated P–restraint to ensure that the
minimality requirementsMi are satisfied, since they also go into the setWi, whence
the relevant ∆–computations of Mi (computing some set Gj from the oracle Wi)
become undefined. ♦
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Extending the underlying coding methods (and using a slight addition to (ii) of
Theorem 3.3) we obtain a proof of Theorem 3.1. As in [11], we use definable com-
parison maps, i.e., we ensure that certain isomorphisms between initial segments
of coded models M are uniformly definable. Also we have to pay special attention
to ensuring that all parameters are below c and all schemes are evaluated within
[0, c]. In the following, all degrees are in [0, c].
We say thatM is coded below b if all parameters involved are below b. We provide a
schemes for coding functions Sh such that each low b is good in the following sense:
there is an M∗ coded below b such that, for each M coded below b, there is an
isomorphism h between M∗ and an initial segment of M .
Note that by (ii) of Theorem 3.3, someM coded below b is standard, so thatM ∗ is
automatically standard. Moreover, the property “b is good via (parameters coding)
M∗” can be expressed in first–order logic. Now we already obtain an interpretation
of Th(N,+,×) in Th([0, c]) as follows: for each sentence ϕ in the language of
arithmetic,

N |= ϕ⇔ ∃b ≤ c[b good via some M∗ such that ϕ holds in M∗].

It remains to be shown:

Claim 3.4. Low degrees are good.

Proof. We actually show that a low b is good via any standardM0 coded below b. If
M1 is coded below b, we obtain a uniform definition of the embedding h :M0 7→M1

as a union of isomorphisms between finite initial segments of three interpolating
coded models. First, we make an addition to (ii) of Theorem 3.3, which will be
applied with d = b and er being the lower bound for the numbers of Mr (r = 0, 1),
which is part of the parameter list coding Mr.

Lemma 3.5. Suppose that, in addition to the hypotheses in (ii) of Theorem 3.3,
we are given nonzero degrees e0, e1 ≤ d. Then we can build parameters coding M
(including a lower bound e) such that, in addition to (ii), there are nonzero d0,d1
satisfying dr ≤ er, e (r = 0, 1). Moreover, the parameter r in the list coding M is
low.

We postpone the proof of the Lemma till the end of this Section. SupposeM is given
by the Lemma. We use an auxiliary scheme S∗f to define, for each m ∈ N, r = 0, 1,
the isomorphisms fr : [0, k]

Mr 7→ [0, k]M . Say r = 0. We apply (iii) of Theorem 3.3
with n = 2k, ui = iM0 (i < k) and ui = (i− k)

M (k ≤ i < 2k), so that (ui)i<k and
(uj)k≤i<2k form antichains. Since d0 ≤ e0, e the hypothesis of (iii) is satisfied via
d0, and applying (iii) we obtain a model M

′
0 . The map f0 is obtained by adding

within this model k. Beyond the parameters to code the three models involved, we
use the parameters k0 = kM0 ,k1 = kM

′

0 and k2 = kM . Let f0(x) = y ⇔

x ≤M0
k0 & y ≤M k2 & ∃z ≤M ′

0
k1[z ≤ x & z+M ′

0
k1 ≤ y.]

Since this definition can be expressed in first–order logic, we obtain the desired
scheme. The scheme Sh is now obtained by taking unions of isomorphisms of the
form f−11 ◦ f0: note that, for xr ∈Mr, h(x0) = x1 ⇔

∃M∃z ∈M∃f0, f1[fr is an isomorphism [0,xr]Mr
7→ [0, z]M (r = 0, 1)].

The latter property is first–order. ♦
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We conclude the proof of the model theoretic result for [0, c] Theorem 3.1 that
there is a parameterless interpretation of (N,+,×) in [0, c]. Recall that we work
within [0, c]. We extend the scheme SM to a scheme S∗M by adding an upper bound
(for all parameters) b to the list of parameters, and require as a further correctness
condition thatM be coded below b and b be good viaM . For the rest of the proof,
all models M are coded via S∗M . Then each such M is standard. It suffices (see
[11, proof of Thm. 2.7]) to give a first–order definition of the equivalence relation

p,xQq,y ⇔ x ∈M(p) & y ∈M(q) & ∃n ∈ N[x = nM(p) & y = nM(q)].

To do so, we introduce a scheme Sq to uniformly define the isomorphism between
any two M0,M1 coded below c. Let br be the upper bound included in the param-

eter list for Mr, and let M̃r be a model coded below br, with a low upper bound

b̃r ≤ br. Since br is good, the isomorphism hr : Mr 7→ M̃r is definable via Sh.

Since b̃r is low, by the same method as in the proof of Claim 3.4 (but with M̃r

in place of Mr), we can uniformly define the isomorphism M̃0 7→ M̃1. Thus, we
interpolate with a model M provided by Lemma 3.5, and further models between

M̃r and M provided by (iii). Unlike to the proof of Claim 3.4, here we need that r
in the parameter list for M is low in order to apply (iii). ♦
Proof of Lemma 3.5. We may suppose that Er = D ∩ (3N+ r). In addition to the
sets from (ii), we build sets Dr ≤T Er, E and meet the requirements
Sr,k : Dr 6= {k} (r = 0, 1).
The strategy is to similar to the strategy for the Sk requirements above. We appoint
even followers x0 < x1 < . . . targeted for Dr and E. Once {k}(xp) = 0 and Er ¹ p

changes, we put xp into Dr, E and declare the strategy satisfied.
As before, no extra P–restraint is needed. Moreover, by the success of the K–type
requirements, R is low. ♦

4. Proof of Theorem 2.4

Again we begin with a simpler result: for each interval [d,b], where d 6= 0 and b
is low, and each u.r.e. sequence of degrees (um)m∈N in [d,b], there is a uniformly
definable map from a coded standardM onto this sequence. Some easy adjustments
will then lead to the full result: given d 6= 0, one maps from a standard M onto
an appropriate u.r.e. sequence in [d,b0]∪ [d,b1], where b0,b1 are low degrees such
that each degree in [d,1] is the join of two degrees in that sequence.

Theorem 4.1. There is a scheme SM for coding a model of Q and a scheme Sf
for coding functions with the following property. Suppose 0 < d < b and b is low.
Suppose further that (um)m∈N is a u.r.e. sequence of degrees in [d,b]. Then there
is a standard M and a map f such that um = f(mM ) for each m.

We wish to construct a standard M which can distinguish a degree um from any
degree v ∈ [d,b] such that um 6≤ v, in the sense that there is an n ∈M below um
but not below v. Let (Vk,Υk) be a list of all r.e. sets and all Turing reductions to B
(with an additional property specified later on). For each m, k, we let j = 2〈m, k〉
(where 〈, 〉 is the standard pairing function on N). We introduce a set Gj ≤T Um
such that, if Vk = Υk(B), then Gj 6≤T Vk unless Um ≤T Vk. Thus

(4.1) um = sup[d,b]{d ∨ g2〈m,k〉 : k ∈ N}
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(where the supremum is taken in [d,b]). We build a standard model M such that
∀n ∈ N nM = g2n. Then the following map is as desired:

(4.2) f(mM ) = sup[d,b]{d ∨ 〈m, k〉
M ) : k ∈M}.

We satisfy the same requirements of type T,D,M,N and S as in Theorem 3.3.
For (4.1), we meet requirements Zj,e (j = 2〈m, k〉) corresponding to the Zi,j,e
requirements in the proof of (iii), as well as auxiliary requirements Yj . Let Φe be a
list of Turing functionals. Using the lowness of B, we let Υe be a list of functionals
such that ΦBe total⇒ ΥBe = Φ

B
e and, for each x, if Υ

B
e (x)[s] is defined for infinitely

many s, then the computation is stable from some s on. To do so, we employ the
Robinson certification procedure [13, p.225].
Let (Vk) be an effective list of all r.e. sets V such that D = V [0], and let (Ψe) be
an effective list of all Turing functionals which (for each oracle) are defined on an
initial segment of N and have use monotonic in the input and greater than twice
the input. Then we can assume the same properties hold for the approximations
ΨBe [s]. The requirements are
6. Yj : Gj ≤T Um (j = 2〈m, k〉)
7. Zj,e : [Υk(B) = Vk & Ψe(Vk) = Gj ] ⇒ Um ≤T Vk
Thus Um now plays the role of Ui before, and Vk plays the role of Uj . As before,
the basic idea for the Zj,e–strategy is to wait for an Um–permission of a realized
follower, namely of an x such that Ψe(Vk;x) = 0. However, in (iii) of Theorem 3.3
we knew in advance that Ui 6≤T Uj , guaranteeing the ability to diagonalize. In the
present situation, we may fail to diagonalize, in which case we show Um ≤T Vk. In
this case, the Zj,e–strategy appoints a potentially infinite list of realized followers
(xp), and thus may have an infinitary effect on the lower priority strategies. The
worst scenario would be an infinite enumeration of followers, where each potential
diagonalization is later destroyed by a Vk–change. This can be avoided exploiting
the lowness of Vk: we use a a ∆

0
2-guessing procedure to predict whether we ever

can diagonalize successfully (assuming by the Recursion Theorem that an index
for the construction is given), and only diagonalize if the answer seems to be yes.
Since we eventually will obtain the correct answer, only finitely many followers are
enumerated.
Note that we seem to need a lowness index for Vk to implement this, while Vk is
actually given only by a (possibly partial) reduction Υk(B). We will use a tree
construction in order to guess at whether Υk(B) = Vk (this is the actual purpose
of the Yj–strategies).
A more serious problem is that, since we allow the Zj,e– strategy to appoint an
infinite list of followers targeted for Gj , the overall P–restraint imposed by the
strategy to guarantee their suitability goes to infinity. It is here that we make use
of the fact that the lower bound D is nonrecursive. As in the proof of Theorem 3.3,
we change Q and P only upon D–permission. Roughly speaking, we will arrange
that the same D permission which allows us to change Q and P and destroys the
suitability of a Zj,e-candidate for enumeration into Gj lets us eliminate the candi-
date anyway, since D is part of Vk, so that we can redefine the (implicit) reduction
from Um to Vk. Clearly, it is important here that the M–type requirements do
not generate a minimal pair type restraint on P . As before, we use ∆–correction
numbers instead.
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We give more details on this after discussing the tree construction. We will need to
guess at the outcomes of the M–type strategies. In our tree construction, we use
standard notation as in [13]. Nodes are identified with strategies. A strategy β
has higher priority than γ if β ⊂ γ or β <L γ. We write α : R to indicate that the
strategy α works on the requirement R, and α : X to indicate that α works on an
unspecified X–type requirement.
We assign a priority ordering to the requirements so that Yj preceeds each Zj,e.
The strategies with an outcome other than “f” on the tree are the ones for M and
Y –type requirements. A Y –type strategy η has outcomes ∞ and f corresponding
to infinitely many Υk(B) = Vk–expansionary stages (in which case in fact Υk(B) =
Vk), or not. An Mi–strategy η has outcomes n(i) < n(i) − 1 < . . . < 0 < f . The
outcome j indicates that ∆η,j(Wi) = Gj , while f indicates that Φi(Wi ⊕ P ) = Q

fails.
The tree T and an effective assignment of nodes to requirements other than Tj
is defined inductively. We assign the empty node to the first requirement in our
list. If η ∈ T has been newly assigned to requirement U , put the nodes µ = η̂ o

on T , where o is a possible outcome of U . For each such µ, let R be the highest
priority requirement which has not yet been assigned to any ν ⊂ µ, and such that,
if R = Zj,e, then there is β̂∞ ⊆ µ such that β has been assigned to Yj . Assign µ
to R.
We explain the solution to the problem of a potentially infinite P–restraint in some
more detail. Consider the interaction of strategies for requirements Zj,e < Mh, such
Ψe(Vk) = Gj (j = 2〈m, k〉), and the strategy for Zj,e works in the environment
given by various higher priority Mi strategies such that there infinitely many i–
expansionary stages. Suppose β : Zj,e is on the true path, and β ⊂ µ where µ :Mh.
Then β appoints a list (xβp ) targeted for Gj , and µ appoints a list (y

µ
p ) targeted

for Q (note that xβp may be cancelled and later redefined with new value, due to
violation of its associated P–restraint).
The strategy β may disregard those α :Mi such that α̂ q ⊆ β for q 6= j, since they
build reductions of different sets Gq to Wi. However, we only allow β to define
x = xβp when all the computations ∆α,j(x), α̂ j ⊆ β, α : M , have been defined
(this will happen since β ⊆ TP ). Thus r(β, x) = max{δα,j(x) : α̂ j ⊆ β & α : M}
cannot increase due to the definition of new ∆α,j(x)–computations.
Now µ is allowed to appoint yµp only when x

β
p is defined, and chooses y

µ
p > r(β, xβp )

(where yµp is a number which already went through the process of clearing Φh(Wh⊕
P ; y) from Γ uses). At this point, µ initializes lower priority strategies, so that
r(β, xβp ) also cannot increase because of the cancellation of chits via which ∆α,j(x

β
p )–

computations are defined (which would make us later redefine those computations
with larger use). Thus at all later stages yµp > r(β, xβp ), unless µ itself is initialized.

This will imply that xβp is not cancelled (due to violation of its P–restraint by some
γ(yµa )) unless D ¹ p changes. Since D is part of Vk, this implies Um ≤T Vk (see the
proof of Lemma 4.13 for technical details).

4.1. The formal construction. A strategy η is initialized by making all its
parameters and restraints undefined, declaring it unsatisfied, cancelling any possible
test procedure involving η (see below), and making the functionals the strategy is
building totally undefined.
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At Phase 1 of stage s, we define an approximation δs to the truth path TP. A
β–stage is a stage s such that β ⊆ δs. At Phase 2, nodes which have been accessible
at Phase 1 of this or an earlier stage may act without delay, for instance when
they receive a D–permitting. When strategies act, they initialize the lower priority
strategies. Acting is always a finitary process for strategies on or to the left of the
true path. A strategy may do other things besides acting, like appointing followers
or continuing to build a functional.
We partition the odd numbers into recursive sets ω[α], α a strategy on the tree.
The strategy α only enumerates numbers from ω[α] into the sets Q and Gi. The
even numbers are reserved for E.
Stage s, Phase 1.
First, we work on Tj for each j < s. Define Γj(Gj ⊕ P ; y) with large use, where y
is least such that the functional is undefined.
Carry out Substage t for ascending t < s. Let η = δs ¹ t. Do one of the following,
according to the requirement η works on, and define δs ¹ t+ 1 = η̂ o, where o is
the outcome given by η.
Cases Di,j,e: Ψe(Gi) 6= Gj ,
Ni,j,e: i ² j ⇒ Ψe(Gi ⊕ L) 6= Gj .
As before, the strategy builds a list of followers xη0 < x

η
1 < . . . targeted for Gj . A

follower x is realized when Ψe(Gi;x) = 0. Suppose the strategy is not yet satisfied.
If p > 0 and xηp has been defined and is realized or p = 0, then appoint a large odd
number as a new follower and initialize requirements of lower priority.
At every stage t ≥ s, η imposes a restraint r(η, x, t) on P to preserve the suitability
of x for enumeration into Gj , which is defined as follows. If η : D,

r(η, t) = max{δα,j(Wk;x)[t]| : x follower of η & α̂ j ⊆ η & α :M}

while, if η : N ,

r(η, t) = max{δα,l(x)[t]| x follower of η & j ¹ l & α̂ l ⊆ η & α :M}

Case Sk : E 6= {k}.
If the strategy is still unsatisfied, appoint a new follower xηp.
Case Ke,x. If the strategy is not satisfied and not currently activated, declare it
activated.
Case Zj,e : Υk(B) = Vk & Ψe(Vk) = Gj ⇒ Um ≤T Vk (j = 2〈m, k〉). If η has
no ∆-correction number, appoint a large such number w ∈ 2N (targeted for E).
Initialize all strategies of lower priority.
Let p be such that either p = 0, or p > 0 and xηp−1 is defined. If there is z ∈ ω

[η]

such that z is greater than all previously appointed followers of η and

(4.3) ∀α[(α̂ j ⊆ η & α :M) ⇒ ∆α,j(z)[t] ↓ ]

then appoint z as a new follower xηp. [[Note that, for technical reasons, we don’t
require that the previous followers be realized, and we continue to appoint followers
even if it seems the strategy has diagonalized.]] The P– restraint imposed by η at
stage t to preserve the suitability of a follower x = xηq for enumeration into Gj is
given by

(4.4) r(η, x, t) = max{δα ĵ(x)[t]| α̂ j ⊆ η & α :M}
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Whenever this restraint is violated, then xηq′ is cancelled for all q
′ ≥ q [[but, unlike

the cases of D and N–type strategies, we do not initialize η]].
Case Yj : Gj ≤T Um (j = 2〈m, k〉). Outcomes: ∞, f . If the length of agreement
max{x : ∀y < x Υk(B, y) = Vk(y)[s] is not greater than at any previous η–stage,
then give outcome f and proceed to the next substage. Otherwise give outcome
∞, and proceed as follows.
By the Recursion Theorem and since B is low, we can choose a recursive function
g(β, r, s) such that lims→∞g(β, r, s) is 0 or 1 for every β, r, and, when β : Zj,e
and η ⊆ β is the corresponding Yj–strategy, lims→∞g(β, r, s) = 1 iff there is an
η̂ ∞-stage t > r of our construction and a realized follower x = xηp such that

(4.5)

• some number < p enters Um between t
′and t, where r ≤ t′ and t′ is the

greatest η̂ ∞–stage < t

• Ψe(Vk;x) = 0 [t] and Gj ¹ x ⊆ Ψe(Vk) ¹ x [t]
• there is an η̂ ∞–stage u ≥ t of our construction such that

Vk ¹ ψe(x)[t] = Vk ¹ ψe(x)[u] = Υk(B) ¹ ψe(x)[u]

via B–correct computations.

For each Zj,e–strategy β ⊇ η̂ ∞, let r ≤ s be the last stage where β was initialized,
and see if the conditions above appear to hold, namely there is p such that there
is follower x = xβp such that some number < p entered Um between s′ and s,
where r ≤ s′ and s′ is the greatest η̂ ∞–stage < s, Ψe(Vk;x) ↓= 0 [s] and Gj ¹

x ⊆ Ψe(Vk) ¹ x [s]. In that case, start a test procedure T (β, x, s) which will run
for finitely many η̂ ∞–stages, trying to collect evidence that Ψe(Vk;x) ↓= 0 [s] is
correct.
At each η̂ ∞–stage u ≥ s until stopped, the procedure checks whether

g(β, r, u) = 1 or Vk ¹ ψe(x) changed since s.

If so, it terminates, otherwise it keeps running. If it terminates and Vk ¹ ψe(x) did
not change, we enable β to diagonalize (which means it may enumerate x into Gj

and L in Phase 2).
[[For each β, several test procedures with different parameters x can be running
simultaneously. We will verify that, if η̂ ∞ is on the true path,
then each test procedure stops.]]
Case Mi. Outcomes: n(i), n(i)− 1, . . . , 0, f . Let

l(η, s) = max{y ∈ ω[η] : y < l(i, s)}

(l(i, s) was defined in (3.4)). Each number y ∈ ω[η] obtains a chit once y < l(i, s),
which is cancelled forever in case later Wi ⊕ P ¹ ϕi(y) changes.
If l(η, s) is less than or equal to its value at the last η̂ ∞–stage, then give out-
come f and proceed to the next substage. Otherwise let j ≤ n(i) be the greatest
number such that there is a number y ∈ ω[η] whose uncancelled chit has not yet
been associated with a ∆η,j–computation, and, if j > 0, there is a computation
∆η,j−1(Wi, z) = 0 associated with the chit for y such that z ∈ Gj−1 (called a
∆η,j−1 failure).
If j ≤ n(i), let x be least such that ∆η,j(Wi, x) is undefined, and define it with
large use, and associate the chit for y with this new computation. Give outcome j.
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If j = n(i) + 1, give outcome f , declare y η–cleared and attempt to use y as a new
follower to diagonalize: let p ≥ 0 be least such that yηp is undefined. If

(4.6) ∀β ⊆ η [β : Z ⇒ (xβp ↓ & y > r(β, xβp , s))]

then η acts by defining yηp = y, and initializing lower priority strategies. [[Such
followers yηp may be enumerated into Q in Phase 2.]]

Phase 2. Let η be the leftmost strategy which requires attention, let it carry out its
desired action and initialize strategies > η. Here, we define “η requires attention”
and the desired action according to the requirement η is a strategy for.
Case Di,j,e, Ni,j,e, Sk : The strategy is unsatisfied and there is a realized follower
x = xηp and Ds−1 ¹ p 6= Ds ¹ p.
Desired action: (D) Enumerate x into Gj and L. Declare the strategy satisfied.
(N) Enumerate x into Gl for every l º j. Declare the strategy satisfied.
(S) Put xηp into E and declare the strategy satisfied.
Case Zj,e : η has been enabled to diagonalize via x in the preceding Phase 1.
Desired action: Enumerate the minimal such x into Gj and L.
Case Ke,x : Ξe(R⊕Q;x)[s] ↓ and this is the first stage we see convergence after it
has been activated the last time.
Desired action: Initialize lower priority requirements, and declare the strategy sat-
isfied.
Case Mi: y

η
p is defined and D ¹ p changes.

Desired action: Enumerate yηp into Q, and γj(y
η
p) into P , for each j ≤ n(i).

Verifications

Note that E ≤T D and P ≤T Q ≤T D as in Theorem 3.3 (but R,L ≤T B may
fail).

Lemma 4.2. If n ¹ r, then Gn ≤T Gr ⊕ L.

Proof. The required Turing reductions are obtained by direct coding. ♦
The true path is defined by

TP =
⋃
{δ : ∃n[δ is <L–least s.t. |δ| = n & ∃∞s[δ ⊆ δs]}.

Lemma 4.3. Suppose α is a Yj–strategy such that α̂∞ ⊂ TP. Then each test
procedure T (β, x, t) started by α at a stage t terminates.

Proof. By the the definition of the functionals Υk and since α̂ ∞ ⊆ TP , ΥEk = Vk.
If β is initialized after t, the test procedure terminates at that stage. Otherwise,
we can suppose that Vk ¹ ψe(x) is stable from t on, else again the procedure
terminates. Then, at a stage u ≥ t of our construction, Vk ¹ ψe(x)[t] = Vk ¹

ψe(x)[u] = Υk(B) ¹ ψe(x)[u] via B–correct computations. Thus, the conditions
(4.5) hold, whence limsg(β, r, s) = 1, where r is the last stage before s when β was
initialized. Therefore, again, the procedure terminates. ♦

Lemma 4.4. Suppose the strategy η is initialized for the last time at stage r. Then
η acts at most finitely often after stage r.

Proof. It is clear that if η : K, then η acts at most once after stage r (in Phase
2). If η : D, η : N , or η : Z, η acts at most once at a stage > rη to appoint a new
∆-correction number.
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Suppose η : M,η : D or η : N . If η acts infinitely often, then η appoints infinitely
many followers xηp, which remain uncancelled since η is not initialized any more.
Since D is nonrecursive, eventually, for some p, D ¹ p changes after zηp has been
appointed. If η : D or η : N , it is clear that η is satisfied from now on. If η : Mi,
we need to verify that the enumeration of the follower into Q actually diagonalizes
against Φi(Wi ⊕ P ) = Q.

Claim 4.5. If η :Mi puts a number y into Q at a stage s > r, then Φi(Wi⊕P ; y) = 0
and hence lims l(i, s) <∞.

We extend the proof of [11, Lemma 4.6]. We first claim that no number used in
the computations associated with y at s can ever be put into R or P . As no higher
priority requirement ever puts a number into R ⊕ P at a stage > r and no lower
priority one puts one in which is used in the computations at s by initialization, it
suffices to prove that
(a) if w is the ∆–correction number of a

⊕
nGn–positive strategy β > η (so that

w is enumerated into E at stage s), then w > θi(ϕi(y))[s], and
(b) each γj(y)[s] put into P at s is larger than ϕi(Wi ⊕ P )(y)[s].
For (a), note that the strategy β was initialized when y was appointed at stage t,
r < t ≤ s. Thus w was chosen after t, hence w > θi(ϕi(yp))[t]. Since the M–type
strategies of lower priority than η were also initialized, θi(ϕi(y))[t] = θi(ϕi(y)[s]).
For (b), we argue exactly as in the proof of [11, Lemma 4.6]. In order for us to
put y into Q at s, we must have a chit for y which is uncancelled and associated
with failed computations ∆ηj(Wi;xj) = 0 6= Gj(x) for each j ≤ n(i). Consider the
stage sj < s at which xj was put into Gj by some Gj–positive strategy β > η (as
otherwise sj < r and so the chit for y would have been cancelled at r). Suppose
∆η,j(Wi;xj) was last defined before sj at the η-expansionary stage tj with a chit for
y and use ϕi(y)[tj ]. At the beginning of stage sj+1 we redefine Γj(Gj⊕P ; y) with a
large use and so one larger than ϕi(y)[tj ], tj . If there were any later η-expansionary
stage (including s) at which ϕi(y) increased above this Γ use, we would cancel the
chit for y by construction and so y could not later go into Q as assumed. Since
γj(y)[t] is nondecreasing in t, when we put y into Q, γj(y) > ϕi(y)[s] as required.
This proves the Claim and concludes the case η :M .

If η : Zj,e, suppose for the sake of a contradiction that infinitely often we put
a follower of η into Gj . By construction, this can happen at a stage s only if
there is a u ≥ s such that g(η, r, u) = 1. Thus it can happen infinitely often
only if limu g(η, r, u) = 1. In this case, the conditions (4.5) hold for some t > r

via some x = xηp. By Lemma 4.3, the procedure T (η, x, t) terminates at a stage
u and we would put x into Gj by construction (since Vk did not change), hence
Ψe(Vk;x) = 0. From stage u on, no new test procedures with followers > x will
be started by the second condition in (4.5), so no follower > x of η is enumerated
into Gj , contradiction. Note that this argument also shows that Zj,e is met in case
limu g(η, r, u) = 1, since Ψe(Vk) = Gj fails. ♦

Lemma 4.6. If η ⊆ TP, then there is a stage rη so that η is initialized for the last
time at rη.

Proof. Note that η is only initialized if some µ < η acts or some µ <L η is accessible
in Phase 1. Let s0 be a stage such that δs 6<L η for s ≥ s0. If there is a strategy
<L η which acts at a stage s ≥ s0, let µ be the <–least such (a strategy must have
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been accessible in Phase 1 before it can act). When µ acts at s, all the remaining
strategies <L η are initialized, so by Lemma 4.4, after finitely many stages there is
no more action to the left of η. By induction and Lemma 4.4 again, also strategies
⊂ η cease to act. ♦

Lemma 4.7. All the K, D, N and S–type requirements are met.

Proof. Suppose that η ⊂ TP is a strategy for the requirement in question.
Ke,x: The strategy η will be activated after stage rη. Then, if the relevant compu-
tation Ξe(R⊕Q;x) converges at a stage ≥ rη for the first time, it will be preserved
from then on.
Di,j,e, Ni,j,e, Sk: If the requirement is not met, then η appoints an infinite list of
followers xηp after stage rη, which remain uncancelled since otherwise η would be
initialized. As in the proof of Lemma 4.4, eventually D changes below p after xηp has
been appointed, and xηp is enumerated into Gj . For D and N–type requirements,
note that, since the relevant computations on input xηp have been protected by the
initialization of lower priority requirements when xηp was appointed, the requirement
is met. ♦

Lemma 4.8. Each requirement Tj is met.

Proof. For each y, Γj(Gj⊕P ; y) is defined infinitely often at the beginning of stage
s. As this corresponds to some Ξe(R ⊕ Q;x)[s] ↓ (using that P ≤T Q via direct
permitting), the success of the K–type requirements guarantees that Γj(Gj⊕P ; y) ↓.
Let η = TP ¹ j. Since the numbers put into Q by strategies 6⊇ η form a recursive
set, it suffices to show that Γj(Gj ⊕ P ; y) = Q(y) for each y ∈ ω[α], where α : Mi

for some i and η ⊆ α. But when such an α enumerates y into Q, then Γj(Gj⊕P ; y)
is made undefined since j ≤ n(i), so γj(y) is put into P . ♦
It remains to be shown that the M–, Y – and Z–type requirements are met. To do
so, we prove two Claims by a joint induction along the true path.

Claim 4.9. Suppose β ⊆ TP where β : Z. Then, for each p, lims xβp [s] and
lims r(β, x

η
p, s) exist.

Proof. Inductively, suppose that, for all q, 0 ≤ q < p, xβq [s] has come to its limit
by stage t. Since β ⊂ TP, by the inductive hypothesis for Claim 4.10 below, ∆α,j

is total for each α̂ j ⊆ β. Thus we will arbitrarily often at a stage ≥ t find a new
value x such that (4.3) holds, so that we can set xβp = x. Once defined, this value

can only be cancelled if the associated P–restraint r(β, xβp , t) is violated, because all
the relevant ∆α,j(x) computations in (4.4) are defined, so that the restraint cannot
go up due to the definition of more ∆–computations. Consider the functional
Ξe(R⊕Q) which becomes defined on input p at stage s when a new value for x

β
p is

appointed, so that its use is greater that r(β, xβp , s). By Lemma 4.7, Ξe(R⊕Q; p) is
permanently defined from some u on, so that R⊕P ¹ u is stable. So the P–restraint
associated with xp is stable from u on and hence respected.

Claim 4.10. Suppose α ⊆ TP and α :M . If there are infinitely many α–expansionary
stages, then there is a j ≤ n(i) such that α ĵ ⊆ TP . Moreover, ∆α,j(Wi) is total
and ∆α,j(Wi) =

∗ Gj.

Proof. By hypothesis, there is j ≤ n(i) + 1, which we choose maximal, such that,
in Phase 1, Case Mi, infinitely often we choose j (note that j = 0 is an option by
the definition of “α–expansionary”).
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Case 1. j ≤ n(i). Then, by definition, α̂ j ⊆ TP . Moreover, ∆α,j(Wi) is total:
otherwise, let x be least such that ∆α,j(x) is undefined, and let s be a stage by
which ∆α,j ; z) has settled down for every z < x. It is clear from the choice of j
that ∆α,j(Wi;x)[t] ↓ for infinitely many t > s. As this corresponds to some Ξe(R⊕
Q;x)[t] ↓, the success of the K–type requirements guarantees that ∆α,j(Wi;x) is
defined.
Suppose there are infinitely many x such that ∆α,j(Wi;x) 6= Gj(x). We will derive
a contradiction to the assumption that j is maximal. Let r be a stage after which no
strategy µ <L α̂ ∞ is accessible in Phase 1 or acts, and we no longer elect a number
> j in Phase 1, Case Mi. Choose x > r such that ∆α ĵ(Wi;x) 6= Gj(x). Then x
enters Gj at some stage t > r, and we do not newly define ∆α,j(Wi;x) at the first
α–expansionary stage u ≥ t. Thus ∆α,j(Wi;x) was already defined (with value 0)
at the beginning of t, whence we have a ∆α,j–failure at t. Suppose s < u is the
stage where ∆α,j(x) was defined last, via a chit for y (so that ϕi(y) ≤ δα,j(x))[s].
Then x < s < t and s is an α̂ j–stage. We claim that the chit for y is uncancelled
by stage u. Then, since y has not been assigned to a ∆α,j–computation so far, at
stage u, we would elect a number > j for another time, contrary to the choice of r.
To show that the chit for y is uncancelled by stage u, we consider a possible can-
cellation at a stage (a) before t and (b) at or after t. By the choice of u, the
cancellation is due to a change in P , not Wi, below ϕi(y).
(a) Since x < s, at stage s, x is already a follower of some Gj–positive strategy
β > α. Then in fact α̂ j ⊆ β by our choice of r. Thus by, (4.4), r(β, x, s) ≥
δα,j(x)[s] = ϕi(y)[s]. If P changes below this restraint before x enters Gj , x would
be cancelled: if η : D or η : N , then the restraint can only be violated when η is
initialized. If β : Z, then the individual follower x is cancelled. Thus when x enters
Gj at t ≥ s, P ¹ϕi(y)[s] has not changed since s.
(b) Now suppose a number z < ϕi(y)[s] enters P at a stage v, t ≤ v ≤ v. Choose
v minimal such that such a number is enumerated (at stage v) into P , by an Mi′–
strategy µ. By the initializations, necessarily α < µ < β. Thus, by the end of
stage v, the ∆-correction number w of β has entered E. Since w < x, this makes
∆α,j(Wi;x)[u− 1] undefined, contrary to our assumption on u.
Case 2. j = n(i) + 1. We claim that this case cannot occur. If j = n(i) + 1, then
in Phase 1, Case Mi, infinitely many numbers y are declared α–cleared. Then α
diagonalizes successfully against Φi(Wi ⊕ P ) = Q, contrary to the hypothesis that
there are infinitely many α–expansionary stages: Since D is nonrecursive, by Claim
4.5 it suffices to show that for each p, α eventually appoints a follower yηp at a stage
> rη (whose chit remains uncancelled from then on). Inductively, suppose p > 0
and yηp−1 has been appointed, or p = 0. By Claim 4.9, applied to each Z–type

strategy β ⊂ α, there is a stage where xβp [s] and r(β, x
β
p , s) have come to a limit.

Thus eventually some y is declared α–cleared such that (4.6) holds, and we define
yηp = y.

Lemma 4.11. The M–type requirements are met.

Proof. Immediate by Claim 4.10.

Lemma 4.12. Suppose j = 2〈m, k〉 for some k. Then Gj ≤T Um.

Proof. Let α ⊆ TP and α : Yj . If α̂ f ⊆ TP, then only finitely many Zj,e–strategies
act, so that Gj ≤T D (and hence Gj ≤T Um) by direct permitting.
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Now suppose α̂ ∞ is on the true path. To show Gj ≤T Um, given an input x,
suppose that, by stage x, x = xβp for some Gj–positive strategy β (otherwise,
x 6∈ Gj). We can assume that α̂ ∞ ⊆ β. Using the oracle, compute an α̂ ∞ stage s
such that Um ¹ p (and hence D ¹ p) is stable. Then, if β is a D–or N–type strategy,
β cannot enumerate x into Gj after stage s. Otherwise, β is a Z–type strategy.
If there is a test procedure T (β, x, s′) which was started at stage s′ ≤ s and has
not terminated yet, by Lemma 4.3, we can compute the stage t ≥ s by which the
procedure has terminated. Then x ∈ Gj iff x ∈ Gj [t].

Lemma 4.13. The Z–type requirements are met.

Suppose β ⊆ TP is a Zj,e-strategy. Then Vk = Υ(B), since α̂ ∞ is on the true
path where α̂ ⊆ TP is the corresponding Yj–strategy. If lims g(β, rβ , s) = 1,
then Zj,e is met, as noted at the end of the proof of Lemma 4.4. Now suppose
lims g(β, rβ , s) = 0 and Gj = Ψe(Vk). We show that Um ≤T Vk. Let

lZ(m, e, t) = µx{¬[Ψe(Vk;x) ↓= Gj(x)[t]]}.

We omit the superscript β in what follows. By Claim 4.9, for each p, lims xp[s]
exists. Let s0 be a stage by which g(β, rβ , s) has reached its limit and such that
Ψe(Vk;x) = 0 for every x = lims xp > s0. Recursively in Vk, we can compute
stages t = tp ≥ s0 where xp[t] is defined, lZ(m, e, t) > xp[t] and Ψe(Vk;xp) = 0[t]
via Vk–correct computations.

Claim 4.14. xp is not cancelled after stage tp.

Otherwise, suppose that p is least such that xp > s0 is cancelled at a stage s ≥ tp.
This cancellation of xp is caused by the enumeration of a number z into P at stage s
which violates the restraint r(β, xp, s−1). Then at a stage u, rβ ≤ u < s, a strategy
µ appointed a candidate y = yµa targeted for Q, and, for some n, z = γn(y

µ
a ) ≥ y.

By (4.6),

(4.7) w ≥ yµa > r(β, xa, u).

At stage u, µ initializes the lower priority strategies, so the P–restraint associated
with xa cannot increase unless µ itself is initialized (in which case y

µ
a is cancelled).

Therefore (4.7) still holds at stage s, whence p > a, because the enumeration of z
cancels xp. Since ya is enumerated into Q, a number < a enters D (and hence Vk)
at stage s, contrary to the assumption on tp. This proves the Claim.
If Um ¹ p ever changed at some stage t > tp we would contradict the assumption
that lims g(β, rβ , s) = 0 by providing a stage t which is a witness to (4.5). The
second condition in (4.5) holds by our choice of s0, and because lZ(e,m, t) > x and
Gj = Ψe(Vk). The third condition is true because Vk = Υ(B), so that at some
stage u ≥ t, Vk ¹ ψe(xp) is computed via B–correct computations. ♦

We now give the changes to obtain a Proof of Theorem 2.4. We may suppose that d
is low. By the proof of the Robinson Splitting Theorem in [13, Thm XI.3.2], there
are low b0,b1 > d and a u.r.e. sequence (ui) such that d ≤ u2i+q ≤ bq (q = 0, 1)
and {u2i ∨ u2i+1 : i ∈ N} = [d,1]. (Let B =

⊕
eWe, and obtain a set splitting

B = A0 ∪ A1 as in that proof, so that b
q = degT (D ⊕ Aq) is low. The sequence

u2i+q = degT (D ⊕ (Aq ∩ ω
[i])), i ∈ N, q = 0, 1, is as desired.)

The following Claim is an extension of Theorem 4.1, where the u.r.e. sequence is
now contained in the union of two low intervals [d,b0] and [d,b1].
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Claim 4.15. In a setting as above, there is a standard M such that

(4.8) um = sup[d,bq] {d ∨ 〈m, k〉
M : k ∈ N} (q = m mod 2).

Then, by the choice of the sequence (ui), the following map is as desired:

h(nM ) = sup[d,b0] {d∨ (〈2n, k〉)
M : k ∈ N}∨ sup[d,b1] {d∨ (〈2n+1, k〉)

M : k ∈ N}.

Claim 4.15 is proved by making a few adjustments to the proof of Theorem 4.1.
Only the Z-type requirements are affected. The modified requirements are
7’. Zj,e : [Υ

q
k(B

q) = Vk & Ψe(Vk) = Gj ] ⇒ Um ≤T Vk
(j = 2〈m, k〉, q = m mod 2), where, for q = 0, 1, (Υqe)e∈N is a list of functionals
such that Φqe(B

q) total ⇒ Υqe(B
q) = Φe(B

q), and Υqe(B
q) has the same stability

property as before.
The strategies and verifications are as before with some obvious modifications.
When j is given, j = 2〈m, k〉, let q = m mod 2. All symbols Υ, B, g obtain a
superscript q ∈ {0, 1}. Thus in the discussion of the Yj–strategy η, we now claim
that there are functions gq(η, r, s) approximating the properties in (4.5). To see
that these functions exist, as before, we apply the Recursion Theorem. Given an
index for a (possible partial) construction C, using the lowness of each Bq, q = 0, 1,
we effectively obtain functions gq(η, r, s) approximating the property (4.5), with
the appropriate superscripts q, of C. Based on these functions we carry out a total
construction C′. By the Recursion Theorem, there is a fixed point, i.e. a construction
C = C′, which builds the required sets since the information approximated by the
functions gq is correct.
Remark. One can give an alternative proof that an interpretation of Th(N,+,×)
in Th([0,b] exists for each b 6= 0, by removing the restriction ”b” low in (iii)
of Theorem 3.3, and applying Theorem 3.2. This is interesting since it might be
extended to all nontrivial intervals of RT . We meet the same requirements as in
the proof of (iii) except for the K–type requirements. The basic Z–type strategy
is as in the proof of (iii). Since Uj is no longer low, a Z–type strategy may now
infinitely often attempt to diagonalize, and each time a Uj change destroys the
diagionalization. However, since Ui 6≤T Uj , then it shows there is a least q such that
¬G2i(q) = Ψe(Uj ; q). We implement the strategies in a tree construction similar
to the one above, and guess at this outcome of a Z–type strategy η. Whenever q
is the approximation to the outcome of η, we cancel all followers xηp, p ≥ q. An
M–type strategy α ⊇ η̂ q only appoints new followers yαr when x

η
q is undefined, so it

only has to deal with the finite P–restraint imposed by the followers xηp, p < q. To
be sure this restraint is stable, the outcomes of higher priority M–type strategies
have to be put on the tree as in the proof of Theorem 2.4. To make sure that
the relevant ∆–functionals are total (in the absence of the lowness requirements of
type K), when appointing xηq , η has to wait till ∆α,k(q+ |η|+ l) is defined for each
α̂ k ⊆ η, α : M , where l is the number of times xηq has been defined so far, and
similarly for the Γ–functionals.

5. Ideals and ideal lattices

1. A new definable ideal. For a set D ⊆ RT , let [D]id be the ideal of the upper
semilattice RT generated by D.
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Theorem 5.1. [D]id is definable without parameters in the structure (RT , D).

Proof. We may suppose that D 6⊆ {0}. Then [D]id = {x : ∃d ∈ D−{0} ∃F ⊆ [d,1]
finite [x ≤ sup(F ) & ∀ y ∈ F ∃z ∈ D z ∨ d = y]}. By Theorem 2.4, this can be
expressed in first–order logic. ♦
Let CAP, be the ideal of capable degres, NB ⊆ CAP be the (definable) class of
nonbounding degrees, and let NCup be the ideal of noncuppable degrees. In a
forthcoming article [7] we prove:

Theorem 5.2. (i) [NB]id 6= CAP
(ii) [NB]id 6= NCup.

Then, since [NB]id is distinct from CAP and NCup, it is a new definable ideal of
RT .
Ideal lattices. Let H be the lattice of ideals of RT , and for k ≥ 4, let Lk be the
lattice of Σ0

k–ideals of RT . Note that RT is embedded into all those lattices via
a → [0,a]. Some more facts: RT is automorphism invariant in H as the set of
compact elements, but it is not known whether RT is automorphism invariant in
the lattices Lk. Moreover, in Lk, k ≥ 6 and H, NCup is intersection of all maximal
ideals (and hence NCup is a nontrivial definable element).

Theorem 5.3. For k ≥ 7, the class of Σ0
k -ideals of RT is uniformly definable.

Proof. We will use Corollary 2.6. First we establish that it holds in fact for each
k ≥ 7. By the success of the K–type requirements in the proof of Theorem 2.4,
R ⊕ Q is low. Since Low2 is definable by [11], we can assume as an additional
correctness condition in SM that r∨q is Low2. Since the construction in the proof
of Theorem 2.4 makes L ≤ R, the formulas in the scheme SM are evaluated in an
interval with Low2 top.
First we show that for r = 4, α ≤T ∅

(r) as in Lemma 2.5. The formulas ϕnum(x, p),
ϕ+(x, y, z; p), ϕ×(x, y, z; p) used in SM are Σ2. Let α(0) be an index for 0

N , and
let α(i+ 1) be some index e such that RT |= ϕ⊕(deg(Wα(i)), 1

K ,deg(We);p). The

recursive description of α(i + 1) is Σ0
5 since, with an appropriate indexing, T–

reducibility is Σ0
3 in any interval with Low2 top. Inspecting (4.1) it can be checked

that, for each function h (coded via Sh), Ind(h) is Σ
0
7. This establishes Corollary

2.6 for each k ≥ 7.
We describe a scheme SI for uniformly defining the Σ

0
k–ideals. It is sufficient to

consider the Σ0
k–ideals I containing a nonzero degree d. Recall that S

k is the
scheme from Corollary 2.6 which uniformly defines the class D1

k. It involves a list
of parameters q which contains a lower bound d 6= 0 for the relation to be described.
The scheme SI involves the same parameters. Since

x ∈ I ⇔ x ∨ d ∈ I,

we may use the scheme Sk to define I ∩ [d,1]. Then we add as an extra correctness
condition in SI that the set defined is an ideal.
Notice that there is a first–order condition on parameters in SI which holds if and
only if the parameters code a principal ideal. Thus

Proposition 5.4. For k ≥ 7, the structure Lk consisting of the lattice of Σ
0
k–ideals

of RT with an additional predicate for being principal, can be interpreted in RT

without parameters.
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Using the proposition one can show that each Lk, k ≥ 7, is biinterpretable with RT

without parameters in the sense of Hodges [5]. Then, if the BI-conjecture holds for
Lk, it also holds for RT .
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