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Abstract
In the same way as the quantum no-cloning theorem and quantum

key distribution in two preceding papers, entanglement-assisted quantum
teleportation and Grover’s search algorithm are generalized by transfer-
ring them to an abstract setting, including usual quantum mechanics as
a special case. This again shows that a much more general and abstract
access to these quantum mechanical features is possible than commonly
thought. A non-classical extension of conditional probability and, partic-
ularly, a very special type of state-independent conditional probability are
used instead of Hilbert spaces and wavefunctions.
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1. Introduction

In the past thirty years, quantum information has been a wide field of extensive
theoretical and experimental research. Important topics are the quantum no-
cloning theorem [12, 30], quantum cryptography including particularly quantum
key distribution [5, 13], entanglement-assisted quantum teleportation [6], and
quantum computing with its specific quantum algorithms like the Deutsch-Jozsa
algorithm [9, 10, 11], Grover’s search algorithm [15, 16] and Shor’s factoring
algorithm [28].

In two recent papers [25, 26], it has been demonstrated that the quantum no-
cloning theorem and quantum key distribution allow a much more general and
abstract access than commonly thought. This approach uses a non-classical
extension of conditional probability [19, 20] and, particularly, a very special
type of state-independent conditional probability instead of Hilbert spaces and
wavefunctions.

In the present paper, it is shown that the same approach is applicable to two
further topics of quantum information theory. Entanglement-assisted quantum
teleportation and Grover’s search algorithm are considered. It is shown that
these topics allow the same general and abstract access as the no-cloning theo-
rem and quantum key distribution. This time, however, it becomes necessary to
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go a little deeper into the theory of the non-classical conditional probabilities.
Sequential conditionalization and the representation of probability conditional-
ization by transformations on a certain order-unit space [21] must be considered.

A vast amount of papers on quantum teleportation and Grover’s algorithm,
concerning theoretical studies as well as experimental set-ups, is available by
now; the pioneering paper on quantum teleportation [6] has more than ten
thousand quotations, and each one of Grover’s two papers [15, 16] more than
three thousand. The present paper focuses on the theoretical foundations and
on the new general abstract access to these quantum mechanical features. Other
general and abstract studies of teleportation and the search algorithm [3, 18]
identify mathematical conditions or physical principles making these features
work in a Generalized Probabilistic Theory. The approach presented here differs
from them in the considered mathematical conditions or physical principles and,
particularly, in the central role played by the special type of state-independent
conditional probability.

The paper is organized as follows. Section 2 briefly restates some material
from Refs. [8, 19, 20, 21] as far as needed in the present paper; the particular
topics are: compatibility in quantum logics, the non-classical extension of con-
ditional probability and the representation of probability conditionalization by
transformations on a certain order-unit space. Section 3 presents two specific
assumptions which will play an important role in the rest of the paper; the sec-
ond one turns out to represent an interesting property of quantum mechanics
which has not been known so far. Sections 4 and 5 contain the main results con-
cerning the the new general and abstract access to quantum teleportation and
Grover’s algorithm. A lemma with a longish mathematical proof, concerning
the success probability of Grover’s algorithm, is shifted to the annex. The link
to the well-known Hilbert space versions of these quantum mechanical features
is elucidated is section 6.

2. Non-classical conditional probability

2.1 The quantum logic

In quantum mechanics, the measurable quantities of a physical system are re-
presented by observables. Most simple are those observables where only the two
values ‘true’ and ‘false’ (or ‘1’ and ‘0’) are possible as measurement outcome.
They are elements of a mathematical structure called quantum logic, are usually
called propositions, and they are called events in probabilistic approaches. The
elements of the quantum logic can also be understood as potential properties of
the system under consideration.

In this paper, the quantum logic shall be an orthomodular partially ordered
set E with the partial ordering ≤, the orthocomplementation ′, the smallest
element 0 and the largest element I [4, 7, 17, 27]. Two elements e, f ∈ E are
called orthogonal if e ≤ f ′ or, equivalently, f ≤ e′. An element e 6= 0 in E is
called an atom if there is no element f in E with f ≤ e and 0 6= f 6= e. The
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interpretation of this mathematical terminology is as follows: two orthogonal
elements represent mutually exclusive events, propositions or system properties,
and e′ represents the negation of e.

2.2 Compatibility

Classical probability theory uses Boolean algebras as mathematical structure
for the random events, and it can be expected that those subsets of E, which
are Boolean algebras, behave classically. Therefore, a subset E0 of E is called
compatible if there is a Boolean algebra B with E0 ⊆ B ⊆ E. Two elements
e and f in E are called compatible, if {e, f} forms a compatible subset. Note
that the supremum e∨ f and the infimum e∧ f exist for any compatible pair e
and f in E and that the distributivity law e ∧ (f ∨ g) = (e ∧ f) ∨ (e ∧ g) holds
for e, f, g in any compatible subset of E. Any subset with pairwise orthogonal
elements is compatible [8].

Two subsets E1 and E2 of E are called compatible with each other if the
union of any compatible subset of E1 with any compatible subset of E2 is a
compatible subset of E. Note that this does not imply that E1 or E2 themselves
are compatible subsets.

A subset of an orthomodular lattice (i.e., the supremum e∨f and the infimum
e ∧ f exist not only for the compatible, but for all pairs e and f in E) is
compatible if each pair of elements in this subset is compatible. However, the
pairwise compatibility of the elements of a subset of an orthomodular partially
ordered set does not any more imply the compatibility of this subset [8].

For compatible pairs, the supremum ∨ and the infimum ∧ represent the log-
ical or- and and-operations. For incompatible pairs, the supremum ∨ and the
infimum ∧ may exist as mathematical objects, but do not have any interpreta-
tion.

2.3 Conditional probability

The states on the orthomodular partially ordered set E are the analogue of the
probability measures in classical probability theory, and conditional probabili-
ties can be defined similar to their classical prototype.

A state ρ allocates the probability ρ(f) with 0 ≤ ρ(f) ≤ 1 to each element
f ∈ E, is additive for orthogonal elements, and ρ(I) = 1. It then follows that
ρ(f) ≤ ρ(e) for any two elements e, f ∈ E with f ≤ e.

The conditional probability of an element f ∈ E under another element e ∈ E
is the updated probability for f after the outcome of a first measurement has
been e; it is denoted by ρ(f |e). Mathematically, it is defined by the conditions
that the map E 3 f → ρ(f |e) is a state on E and that it coincides with the
classical conditional probability for those f which are compatible with e; this
means ρ(f |e) = ρ(e ∧ f)/ρ(e), if f is compatible with e. It must be assumed
that ρ(e) 6= 0.
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However, among the orthomodular partially ordered sets, there are many
where no states or no conditional probabilities exist, or where the conditional
probabilities are ambiguous. It shall now be assumed for the remaining part of
this paper that there is a state ρ on E with ρ(e) 6= 0 for each e ∈ E with e 6= 0,
that E possesses unique conditional probabilities, and that the state space of E is
strong (i.e., if {ρ | ρ is a state with ρ(f) = 1} ⊆ {ρ | ρ is a state with ρ(e) = 1}
holds for e, f ∈ E, then f ≤ e). Note that, if ρ is a state with ρ(e) = 1 for some
element e ∈ E, ρ(f |e) = ρ(f) for all f ∈ E.

For some pairs e and f in E, the conditional probability does not depend
on the underlying state; this means ρ1(f |e) = ρ2(f |e) for all states ρ1 and ρ2
with ρ1(e) 6= 0 6= ρ2(e). This special conditional probability is then denoted by
P(f |e). It results solely from the algebraic structure of the quantum logic and,
therefore, it is invariant under morphisms [25].

For e, f ∈ E, P(f |e) exists and P(f |e) = p if and only if ρ(e) = 1 implies
ρ(f) = p for the states ρ on E. Moreover, f ≤ e holds for two elements e and
f in E if and only if P(e|f) = 1, and e and f are orthogonal if and only if
P(e|f) = 0.

P(f |e) exists for all f ∈ E if and only if e is an atom (minimal element in
E), which results in the atomic state Pe defined by Pe(f) := P(f |e). This is the
unique state allocating the probability value 1 to the atom e.

The type of conditional probability, considered here, was introduced in Refs.
[19, 20], to which it is referred for more information.

2.4 The order-unit space

The quantum logic E generates an order-unit space A (partially ordered real
linear space with a specific norm; see [2]) and can be embedded in its unit
interval [0, I] := {a ∈ A : 0 ≤ a ≤ I} = {a ∈ A : 0 ≤ a and ‖a‖ ≤ 1}; I becomes
the order-unit, and e′ = I−e for e ∈ E. Each state µ on E has a unique positive
linear extension on A which is again denoted by µ.

As shown in [21, 23], for each element e in E, there is a positive linear oper-
ator Ue : A→ A with µ(f |e) µ(e) = µ(Uef) for all f ∈ E and all states µ. This
means that probability conditionalization is represented by the transformations
Ue on the order-unit space A. If µ(e) = 1, then µ(Uef) = µ(f) for all f ∈ E
(or briefly µUe = µ) and, if µ(e) = 0, then µ(Uef) = 0 for all f ∈ E (or briefly
µUe = 0).

These transformations satisfy U2
e = Ue. Moreover, with e, f ∈ E, P(f |e) = p

if and only if Uef = pe. Furtheremore, Uef = Ufe = e∧ f and UeUf = UfUe =
Ue∧f for any compatible pair e and f in E; this follows from Lemma 3 in [22].
Particularly, Uee = e = UeI, Uee′ = 0, and Uef = 0 if and only if e and f are
orthogonal.
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3. Two assumptions

3.1 The S-transformations

For each e ∈ E, a further linear operator Se on A can be defined by

Sex := 2Uex+ 2Ue′x− x, x ∈ A.

The above properties of Ue imply that S2
ex = x for all x in A. This means

that Se is its own inverse: Se = S−1e . Further important properties of Se are:
Se = Se′ , SeUe = Ue, SeUe′ = Ue′ and, for any compatible pair e, f ∈ E,
Sef = f , SeUf = UfSe = Uf , SeSf = SfSe.

Lemma 1: If P(f |e) = 1/2 = P(f |e′) for e, f ∈ E, then Sef = f ′ and Sef
′ = f .

Proof. Sef = 2Uef + 2Ue′f − f = 2P(f |e)e+ 2P(f |e′)e′ − f = e+ e′ − f = f ′.
The other identity follows by exchanging f with f ′. �

Quantum teleportation and Grover’s algorithm require some manipulations of
the physical system under consideration. In the usual Hilbert space setting,
these manipulations are represented by unitary transformations. In the setting
of this paper, the transformations Se shall take over their role. The trans-
formations Se are linear and invertible, but generally they lack positivity and
Se(f) ∈ A need not lie in E for f ∈ E. This shall be resolved by the following
assumption.

Assumption 1: SeE ⊆ E for each e in E.

Assumption 1 implies that each Se is a positive linear operator and thus be-
comes an automorphism of the order-unit space A. The restriction of Se to E
is an automorphism of the quantum logic E and P is invariant under Se.

The positivity of the linear operators Se (e ∈ E) was already studied earlier;
it is equivalent to a certain interesting property of the conditional probabilities
restricting their second-order interference [23] and has some further interesting
consequences [24].

3.2 Sequential conditionalization

For a state ρ and e1 ∈ E with ρ(e1) > 0, the process of probability condi-
tionalization can be repeated. The state ρ1, defined by ρ1(f) := ρ(f |e1) for
f ∈ E, can be conditionalized a second time by e2 ∈ E with ρ1(e2) = ρ(e2|e1) >
0. The doubly conditionalized state ρ1(f |e2) is denoted by ρ(f |e1, e2). Then
ρ(f |e1, e2) = ρ(Ue1Ue2f)/ρ(Ue1e2).

If this doubly conditionalized probability becomes independent of the state
ρ, it is again denoted by P(f |e1, e2). Then
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P(f |e1, e2) = p if and only if Ue1Ue2f = pUe1e2.

In physical terms, the following assumption concerns a series of three se-
quential measurements, where the first and the third measurement test the
same property e, while the second measurement tests another property f such
that P(f |e) exists. The assumption states that, after the previous outcomes e
and f in the first and second measurements, the probability for the outcome
e again in the third measurement shall be the same as the probability of the
outcome f in the second measurement after only the first measurement has been
performed and given the outcome f . It is hard to understand why nature should
behave like this, but it will later be seen that quantum mechanics satisfies this
assumption.

Assumption 2: If P(f |e) exists for e, f ∈ E, then P(e|e, f) exists and P(e|e, f) =
P(f |e).

In this case, it follows that: P(e′|e, f) = 1 − P(f |e), P(e|e, f ′) = P(f ′|e) =
1− P(f |e), and P(e′|e, f ′) = P(f |e).

For two atoms e and f , Assumption 1 implies that P(f |e) = P(e|f). Note
that P(a|e, f) = P(a|f) holds for any a and e, if f is an atom. This symmetry
property is one of the so-called pure state properties, which Alfsen and Shultz use
in their characterization of the state spaces of operator algebras [1]. Assumption
2 is a more general version of this property applicable also in cases when there
are no atoms or pure states.

Lemma 2: Suppose that Assumption 1 holds and that P(f |e) exists for e, f ∈ E.

(a) UeUfe = (P(f |e))2e, UeUf ′e = (1− P(f |e))2e and
UeUfe

′ = P(f |e)(1− P(f |e))e = UeUf ′e′.

(b) P(Sfe|e) = (2P(f |e)− 1)2

(c) If P(f |e) = 1/2, then Sfe and e are orthogonal.

Proof. (a) UeUfe = P(e|e, f)Ufe = P(e|e, f)P(f |e)e = P(f |e)2e. The next
identify follows from this one by exchanging f with f ′. Moreover, UeUfe

′ =
UeUf I−UeUfe = Uef −P(f |e)2e = P(f |e)e−P(f |e)2e. The last equality again
follows by exchanging f with f ′.
(b) Define p := P(f |e). Then, by (a), UeSfe = 2UeUfe + 2UeUf ′e − Uee =
2p2e+ 2(1− p)2e− e, and therefore P(Sfe|e) = 2p2 + 2(1− p)2 − 1 = (2p− 1)2.
(c) By (b), P(Sfe|e) = 0, which implies the orthogonality. �

In the remaining part of this paper, the quantum logic E shall always satisfy
the Assumptions 1 and 2.
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4. Entanglement-assisted quantum teleportation

The scenario for entanglement-assisted quantum teleportation consists of two
parties, named Alice and Bob, and three identical quantum systems with the
labels A,B,C. The system with label C is in Alice’s possession and she shall
‘teleport’ its unknown system property to Bob by sending some classical infor-
mation to him. The other two systems (labels A and B) are initially ‘entangled’
and the ‘entangled’ property is known to both Alice and Bob. The system with
label B is given to Bob, the one with label A to Alice. She then performs a mea-
surement on the combined system consisting of the two systems with the labels
A and C. The outcome determines the classical information she sends to Bob.
He can then manipulate the system with label B in such a way that it owns the
unknown initial property of the system with label C. This is consistent with
the no-cloning theorem, because Alice’s measurement on the combined system
destroys the initial property of the system with label C.

For this scenario, consider the quantum logic E, a further quantum logic
Eo, also possessing unique conditional probabilities, and two elements e, f ∈ Eo
with 1/2 = P(f |e) = P(f |e′) = P(e|f) = P(e|f ′). Then assume that E contains
three compatible copies of this quantum logic Eo. This means that there are
three morphisms πA : Eo → E, πB : Eo → E, πC : Eo → E and that the
subsets πA(Eo), πB(Eo), πC(Eo) of E are pairwise compatible with each other.
The subset πC(Eo) represents the system in Alice’s possession. The subsets
πA(Eo) and πB(Eo) represent the other two initially ‘entangled’ systems, the
first one is given to Alice and the second one to Bob.

Furthermore suppose that there are two elements dAB and dAC ∈ E satis-
fying the following four conditions:

(i) dAB is compatible with πCEo, and dAC is compatible with πBEo.

(ii) SπAeSπBedAB = dAB = SπAfSπBfdAB .

(iii) 1/2 = P(πAe|dAC) = P(πAf |dAC) and
1/2 = P(πAe ∧ πCe|dAC) = P(πAe

′ ∧ πCe′|dAC).

(iv) P(dAC ∧ πBx|dAB ∧ πCx) = P(dAC |dAB ∧ πCx) = 1/4 for all x in Eo.

Now define b1 := dAC , b2 := SπAedAC , b3 := SπAfdAC and b4 := SπAeSπAfdAC .

Lemma 3: The elements b1, b2, b3, b4 of the quantum logic E are pairwise or-
thogonal, and P(bk|dAB ∧ πCx) = 1/4 for all x ∈ Eo and k = 1, 2, 3, 4.

Proof. b1 and b2 are orthogonal by (iii) and Lemma 2 (c). In the same way, b3
and b4 are orthogonal, since

P(πAe|SπAfdAC) = P(SπAfπAe|dAC) = P(πAe
′|dAC) = 1/2,

where the invariance of P( | ) under morphisms has been used for the first
equality and a further time for the second equality to conclude that SπAfπAe =
πAe

′ from P(e|f) = P(e|f ′) = 1/2.
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Furthermore, (iii) implies P((πAe∧πCe)∨ (πAe
′∧πCe′)|dAC) = 1 and there-

fore b1 = dAC ≤ (πAe ∧ πCe) ∨ (πAe
′ ∧ πCe′). Then

b2 = SπAeb1 ≤ SπAe((πAe ∧ πCe) ∨ (πAe
′ ∧ πCe′))

= (πAe ∧ πCe) ∨ (πAe
′ ∧ πCe′)

b3 = SπAfb1 ≤ SπAf ((πAe ∧ πCe) ∨ (πAe
′ ∧ πCe′))

= (SπAfπAe ∧ SπAfπCe) ∨ (SπAfπAe
′ ∧ SπAfπCe

′)

= (πAe
′ ∧ πCe) ∨ (πAe ∧ πCe′)

b4 = SπAeb3 ≤ SπAe((πAe
′ ∧ πCe) ∨ (πAe ∧ πCe′))

= (πAe
′ ∧ πCe) ∨ (πAe ∧ πCe′)

Thus b1 and b2 are orthogonal to b3 and b4, since these two pairs lie below
different orthogonal elements of the quantum logic.

In the case k = 1, P(bk|dAB ∧ πCx) = 1/4 for x ∈ Eo is part of (iv). The
other cases then follow from this first one by using (ii) and the invariance of P
under SπAeSπBe and SπAfSπBf . For k = 2 apply SπAeSπBe, for k = 3 apply
SπAfSπBf , and for k = 4 apply both one after the other. In doing so, note
that the compatibility assumptions imply that S-transformations with different
labels A,B,C commute, that πCx is invariant under SπAe, SπAf , SπBe and SπBf

and that dAC is invariant under SπBe and SπBf . �

The element dAB in E represents the entangled property of the combined system
consisting of the two systems with the labels A and B, and x represents the
unknown property of the system with label C. Initially, the combination of all
three systems owns the property dAB ∧ πCx in E.

Alice’s measurement tests which one of the four orthogonal properties b1, b2,
b3 and b4 the combined system under her control (labels A and C) has; b1, b2,
b3 and b4 each occur with the same probability 1/4. If the outcome is bk, the
sequential conditional probability with the first condition dAB ∧ πCx and the
second condition bk is to be determined.

k = 1: This case is a consequence of (iv) in the following way:

P(πBx|dAB ∧ πCx, b1) = P(πBx|dAB ∧ πCx, dAC)

=
P(dAC ∧ πBx|dAB ∧ πCx)

P(dAC |dAB ∧ πCx)
= 1

k = 2: Apply SπAeSπBe to the identity for k = 1 and use the different invariances
as in the proof of Lemma 3:

1 = P(SπAeSπBeπBx|SπAeSπBedAB ∧ SπAeSπBeπCx, SπAeSπBeb1)

= P(SπBeSπAeπBx|dAB ∧ πCx, SπAeb1)

= P(SπBeπBx|dAB ∧ πCx, b2)

k = 3: Apply SπAfSπBf and proceed in the same way as in the last case:

1 = P(SπBfπBx|dAB ∧ πCx, b3)

8



k = 4: Apply both SπAfSπBf and SπAeSπBe one after the other and proceed in
the same way as in the last two cases:

1 = P(SπBeSπBfπBx|dAB ∧ πCx, b4)

Alice communicates to Bob, which one of the four cases bk, k = 1, 2, 3, 4, is her
measurement outcome; two classical bits are sufficient for this communication.
The sequential conditional probability, calculated above, shows that, in the
case k = 1, Bob’s system (label B) now has the property πBx with probability
1. This means that the initial unknown property of the system with label C
was successfully transferred to the system with label B. In the other cases, Bob
knows how to manipulate his system in order to achieve that it has the property
πBx: he performs the transformations SπBe in the case k = 2, SπBf in the case
k = 3, and SπBeSπBf in the case k = 4. Note that all these transformations are
their own inverse.

The link between this abstract setting and usual quantum teleportation may
not be immediately visible, but will be revealed later in section 6, where Hilbert
space quantum mechanics is considered.

5. Grover’s quantum search algorithm

5.1 A further assumption

A further assumption, which is needed for the treatment of Grover’s algorithm
in the following subsection, shall be introduced first. Again it is hard to under-
stand why nature should behave like this, but it will later be seen that quantum
mechanics satisfies this assumption.

Assumption 3: For the states ρ and elements f in E with ρ(f) = 0, the iden-
tity ρ(f |e)ρ(e) = ρ(f |e′)ρ(e′) shall hold for all e ∈ E.

Lemma 4: Assumption 3 is equivalent to the following condition: Uf ′Uef =
Uf ′Ue′f for all e, f in E.

Proof: For e, f ∈ E and a state ρ with ρ(f) 6= 1, first define ρf ′ by ρf ′(a) :=
ρ(Uf ′a)/ρ(f ′) for a ∈ E. Then ρf ′(f) = 0 and Assumption 3 yields ρf ′(f |e)ρf ′(e)
= ρf ′(f |e′)ρf ′(e′). Thus ρ(Uf ′Uef) = ρ(Uf ′Ue′f). This identity holds for all
states ρ(f) and also when ρ(f) = 1, since both sides then equal 0. Therefore
Uf ′Uef = Uf ′Ue′f .

Vice versa, assume Uf ′Uef = Uf ′Ue′f and ρ(f) = 0 with a state ρ and e, f
in E. Then ρ(f ′) = 1 and ρ = ρUf ′ . Therefore ρ(f |e)ρ(e) = ρUef = ρUf ′Uef =
ρUf ′Ue′f = ρUe′f = ρ(f |e′)ρ(e′). �

In the remaining part of section 5, the quantum logic E shall now satisfy As-
sumption 3 in addition to Assumptions 1 and 2.
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5.2 The algorithm

Suppose that an unsorted data base with n indexed entries contains one specific
entry satisfying a certain search criterion. The task of the algorithm is to find
the index of this entry. Assume that this index is ko.

Now consider n pairwise orthogonal elements fk in the quantum logic E and
a further element e ∈ E with P(fk|e) = 1/n = P(e|fk) for k = 1, 2, ..., n. The
initial property of the system is e. The system shall then be manipulated in
such a way that the probability of getting the outcome fko in a measurement of
the fk, k = 1, 2, ..., n, becomes close to 1.

This manipulation is a repeated application of the transformations Sfko
and

Se. After the r-th iteration step, the initial property has been transformed to
(SeSfko

)re, and P(fk|SeSfko
)re) is the probability of getting the outcome fk in

the measurement after the r-th iteration step. For the desired outcome fko , the
probability becomes

P
(
fko |(SeSfko

)re
)

= sin2
(

(2r + 1)arcsin(
1√
n

)
)

by Lemma 5 in the annex. This is exactly the well-known success probability
of Grover’s algorithm in the usual quantum mechanical realm, which has been
reproduced here in a much more abstract and general setting and under more
general assumptions. It is interesting to note that it becomes 1 in the case n = 4
and r = 1; this means that, if the data base consists of four entries only, the
algorithm outputs the correct result after the first step already and with 100%
certainty. In general, however, the algorithm is not deterministic. The required
number of iterations resulting from the above formula and the speed-up versus
classical search algorithms are well-known. For further information, it is referred
to the extensive literature concerning Grover’s algorithm.

Notwithstanding the differences between the two approaches and between
the used physical principles, the above result is in line with recent work by
C. M. Lee and J. H. Selby [18] who found out that, concerning the search
algorithm, post-quantum interference does not imply a computational speed-up
over quantum theory. Post-quantum interference means interference of third or
higher order in Sorkin’s hierarchy [29] and represents an interesting potential
property of the conditional probabilities [23], but the above result holds for
interference of second order (quantum interference) as well as for all higher
orders and is independent of the actual order.

In the following section, Grover’s algorithm will be reconsidered to elucidate
the link between the above version and its usual Hilbert space version.
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6. Usual quantum mechanics

6.1 The Hilbert quantum logic

Quantum mechanics uses a special quantum logic; it consists of the self-adjoint
projection operators e (i.e., e = e∗ and e = e2) on a Hilbert space H and
is an orthomodular lattice. The identity operator becomes the element I of
the quantum logic. Compatibility here means that the self-adjoint projection
operators commute. The unique conditional probabilities exist; it has been
shown in Ref. [19] that, with two self-adjoint projection operators e and f on
H, the conditional probability has the shape

ρ(f |e) =
trace(aefe)

trace(ae)
=
trace(eaef)

trace(ae)

for a state ρ defined by the statistical operator a (i.e., a is a self-adjoint operator
on H with non-negative spectrum and trace(a) = 1). This means that Uey =
eye for operators y on H. Here ae, efe, eye, and so on, denote the usual operator
product of the operators a, e, f, y.

The above identity reveals that conditionalization becomes identical with the
state transition of the Lüders - von Neumann measurement process. Therefore,
the conditional probabilities can be regarded as a generalized mathematical
model of projective quantum measurement.

P(f |e) exists with P(f |e) = p if and only if the operators e and f on H
satisfy the algebraic identity efe = pe. This transition probability between the
outcomes of two consecutive measurements is independent of any underlying
state. The algebraic identity efe = pe clearly demonstrates that the probability
p = P(f |e) results solely from the algebraic structure of the quantum logic.

The atoms are the self-adjoint projections on the one-dimensional subspaces
of H; if e is an atom and |ξ〉 a normalized vector in the corresponding one-
dimensional subspace, then P(f |e) = 〈ξ|fξ〉. The atomic states thus coincide
with the quantum mechanical pure states or vector states, which are often called
wavefunctions. If f is an atom, too, and |η〉 a normalized vector in the corre-

sponding one-dimensional subspace, then P(f |e) = |〈η|ξ〉|2.

6.2 Assumptions 1, 2 and 3 revisited

It shall now be checked whether the Hilbert space quantum logic satisfies the
assumptions 1, 2 and 3. For two elements e and f in this quantum logic,

Sef = 2Uef + 2Ue′f − f = 2efe+ 2(I− e)f(I− e)− f
= (2e− I)f(2e− I)
= (e− e′)f(e− e′).

The operator 2e−I = e−e′ is unitary. Therefore Sef is a self-adjoint projection
operator on H as f is. This means that Sef belongs to the quantum logic,
whenever f does, and Assumption 1 is satisfied.
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Note that Sef = (e−e′)f(e−e′) = (e′−e)f(e′−e), though the operators e−e′
and e′ − e = −(e− e′) act differently on the Hilbert space elements. The effect
are different signs. However, it is well-known that not the individual Hilbert
space element, but the ray or one-dimensional linear subspace it generates is
relevant in quantum mechanics. This ray or subspace is not affected by the sign
change.

Now suppose P(f |e) = p. Then efe = Uef = pe and UeUfe = efefe =
(efe)(efe) = (pe)(efe) = pefe = pUef . This means P(e|e, f) = p = P(f |e),
and Assumption 2 is satisfied.

Assumption 3 is checked using Lemma 4. Uf ′Ue′f = f ′(I − e)f(I − e)f ′ =
f ′ff ′ − f ′eff ′ − f ′fef ′ + f ′efef ′ = f ′efef ′ = Uf ′Uef . Thus Assumption 3 is
satisfied as well.

Assumption 1 is of a mathematical technical type, but the other two assump-
tions represent very interesting properties of the quantum mechanical probabil-
ities, though it is hard to understand why nature should possess these special
properties. The property forming Assumption 3 has been detected by T. Fritz
[14]. The property forming Assumption 2 appears for the first time in this
paper.

The results of sections 4 and 5 shall now be applied to the special Hilbert
space quantum logic in order to reveal the link to the well-known Hilbert space
versions of quantum teleportation and Grover’s algorithm. It is started with
Grover’s algorithm.

6.3 Grover’s algorithm revisited

Again assume that ko is the index of the data base entry it is searched for among
n entries in total. Let |k〉, k = 1, ..., n, be n pairwise orthogonal normalized
elements of the Hilbert space H. Define

ψ := 1√
n

∑n
k=1 |k〉, fk := |k〉〈k| and e := |ψ〉〈ψ|.

These are elements of the Hilbert space quantum logic and they satisfy P(fk|e) =
P(e|fk) = | 〈k|ψ〉 |2 = 1/n. As seen in 6.2, Se and Sfko

can be represented by
the unitary operators ue := 2e − I = e − e′ and uko := 2fko − I = fko − f ′ko .
These are the operators used in the Hilbert space version of Grover’s algorithm;
the first one is the so-called Grover diffusion operator. Then

(SeSfko
)re = |(ueuko)rψ〉〈(ueuko)rψ|

and the success probability of finding ko with a measurement after the r-th
iteration step becomes

|〈ko|(ueuko)rψ〉|2 = P
(
fko |(SeSfko

)re
)

= sin2
(

(2r + 1)arcsin(
1√
n

)
)
.

For the direct proof of this result in the Hilbert space setting, using the unitary
operators ue and uko , it is sufficient to consider a 2 × 2-matrix. The proof of
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the general Lemma 5 in the annex is more difficult, since the Jordan form of a
4× 4-matrix must be calculated.

Note that the version of Grover’s algorithm in 5.2 does not require that the
fk and e are atoms (i.e., projections on one-dimensional subspaces) and thus
becomes more general than the known version - even in usual quantum mechan-
ics.

6.4 Teleportation revisited

The usual setting of entanglement-assisted quantum teleportation consists of
three two-dimensional Hilbert spaces HA, HB , HC and their tensor product
HA ⊗ HB ⊗ HC . Each one of the two-dimensional Hilbert spaces has a ba-
sis denoted by |0〉 and |1〉 with the appropriate labels. Moreover, consider
|ϕ〉 := 1√

2
(|0〉+ |1〉) with the appropriate labels in each one of the three Hilbert

spaces HA, HB , HC . Furthermore, the following two Hilbert space elements
play an important role:

|ψAB〉 = 1√
2
(|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉) ∈ HA ⊗HB and

|ψAC〉 = 1√
2
(|0A〉 ⊗ |0C〉+ |1A〉 ⊗ |1C〉) ∈ HA ⊗HC .

The mapping to the situation of section 4 works as follows. Define e := |1〉〈1|
and f := |ϕ〉〈ϕ|. These elements of the quantum logic of the two-dimensional
Hilbert space have their corresponding copies in the quantum logic of HA ⊗
HB ⊗ HC , marked with the appropriate labels. Furthermore, define dAB :=
(|ψAB〉〈ψAB |) ⊗ IC and dAC := |(ψAC〉〈ψAC |) ⊗ IB in the quantum logic of
HA ⊗HB ⊗HC .

Now the conditions (i) - (iv) in section 4 shall be checked. The first one is
satisfied, since dAB commutes with all operators on HC and dAC commutes with
all operators on HB . Moreover, SeASeBdAB = dAB , since the unitary operators
eA−e′A and eB−e′B only change the sign of |0A〉 and |0B〉 in |ψAB〉, but together
leave |ψAB〉 invariant; SfASfBdAB = dAB , since the unitary operators fA − f ′A
and fB − f ′B exchange |0A〉 with |1A〉 and |0B〉 with |1B〉 in |ψAB〉 and thus
leave |ψAB〉 invariant. Therefore, (ii) is satisfied as well. Furthermore,

P(fA ⊗ IB ⊗ IC |dAC) = 〈ψAC |(|ϕA〉〈ϕA|)⊗ IC |ψAC〉

=
1

2
〈ψAC |(|0A〉+ |1A〉)(〈0A|+ 〈1A|)⊗ IC |ψAC〉 =

1

2
.

This is one of the identities of condition (iii), and similar calculations yield the
other ones. Note that yA ∧ yB ∧ yC is the same as yA ⊗ yB ⊗ yC here for any
elements yA, yB , yC in the quantum logics of the Hilbert spaces HA, HB , HC .

Concerning (iv), consider |ξB〉 = α|0B〉+ β|1B〉, |ξC〉 = α|0C〉+ β|1C〉, with
some complex numbers α, β such that |α|2 + |β|2 = 1, and xB = |ξB〉〈ξB |,
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xC = |ξC〉〈ξC |. Then

P(dAC ∧ xB |dAB ∧ xC) = |〈ψAC , ξB |ψAB , ξC〉|2 =

∣∣∣∣12(ᾱα+ β̄β)

∣∣∣∣2 =
1

4
.

Furthermore, the orthogonal complement of xB has the shape x′B = |ξ′B〉〈ξ′B |
with ξ′B = α′|0B〉+ β′|1B〉, |α′|2 + |β′|2 = 1 and ᾱ′α+ β̄′β = 0. Then

P(dAC ∧ x′B |dAB ∧ xC) = |〈ψAC , ξ′B |ψAB , ξC〉|
2

=

∣∣∣∣12(ᾱ′α+ β̄′β)

∣∣∣∣2 = 0

and

P(dAC |dAB ∧ xC) =
1

4
+ P(dAC ∧ x′B |dAB ∧ xC) =

1

4
.

Alice’s measurement tests which one of the four properties b1, b2, b3, b4 the
combined system under her control (labels A and C) has. The first one is b1 =
dAC ; this is the projection on the one-dimensional subspace of HA⊗HC , which
is generated by |ψAC〉. The other ones are projections on the one-dimensional
subspaces of HA ⊗HC which are generated by:

((eA − e′A)⊗ IC)|ψAC〉 =
1√
2

(|1A〉 ⊗ |1C〉 − |0A〉 ⊗ |0C〉)

((fA − f ′A)⊗ IC)|ψAC〉 =
1√
2

(|1A〉 ⊗ |0C〉+ |0A〉 ⊗ |1C〉)

((eA − e′A)(fA − f ′A)⊗ IC)|ψAC〉 =
1√
2

(|1A〉 ⊗ |0C〉 − |0A〉 ⊗ |1C〉)

These four elements form a so-called Bell basis of HA ⊗HC , which is used by
Alice in her local measurement in the usual Hilbert space treatment of quantum
teleportation. Depending on which one of these outcomes Alice’s measurement
provides and according to section 4, Bob uses one of the following unitary trans-
formations on HB :

- the identity in the first case,
- eB − e′B in the second case,
- fB − f ′B in the third case, and
- (eB − e′B)(fB − f ′B) in the last case.

These four transformations coincide with the unitary operations occurring as
Bob’s operations in the usual Hilbert space treatment of quantum teleporta-
tion. After the transformation, the initial property of the system with the label
C has successfully been transferred to Bob’s system (label B).

Note that the version of quantum teleportation considered in section 4 does
not require that e and f are atoms (i.e., projections on one-dimensional sub-
spaces) and does not need the tensor product. It thus becomes more general
than the known version - even in usual quantum mechanics - just as the version
of Grover’s algorithm considered in section 5.
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7. Conclusion

Some major features of quantum information theory are the no-cloning theo-
rem, quantum key distribution, entanglement-assisted quantum teleportation
and Grover’s search algorithm. In this paper and two earlier ones, these fea-
tures have been transferred to a general and abstract setting - a non-classical
extension of conditional probability -, which shows that they do not necessarily
require the usual Hilbert space quantum mechanics, but allow a much more
general and abstract access. Equally important may be that, even in usual
quantum mechanics, more cases are covered, since any system properties and
not only the atomic ones (or pure states) can be used.

The question now suggests itself, whether Shor’s factoring algorithm [28] - a
further important result in quantum information theory - can also be transferred
to the same setting. The transformations Se are available in this general setting
and are sufficient for quantum teleportation and Grover’s algorithm. Shor’s
factoring algorithm, however, seems to need more. It uses the so-called quantum
Fourier transformation which requires the complex numbers and appears to be
available only in the complex Hilbert space or von Neumann algebras. It does
not seem to be possible to gain such a transformation in the general setting. A
positive answer to the question above is therefore not expected.

Another famous quantum algorithm is due to D. Deutsch and R. Jozsa [9, 10,
11]. Although fundamental obstacles are not immediately obvious, it is currently
not clear whether it can be transferred to the general and abstract setting in
the same was as Grover’s algorithm. A first barrier is the implementation of the
so-called quantum oracle needed here.

Along the way, an interesting new property of quantum mechanics (Assump-
tion 2 in sections 3 and 6) has been detected in this paper. It concerns the se-
quential conditionalization or, in physical terms, three sequential measurements,
where the first and third measurement test the same system property while a
different incompatible property is tested in between in the second measurement.
Under certain conditions, the probabilities for the outcomes in the second and
third measurement must then be identical, although different and incompatible
system properties are measured.
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ANNEX

Lemma 5: Suppose that the quantum logic E satisfies the Assumptions 1, 2 and
3 and that P(f |e) = p = P(e|f) for some e, f ∈ E. Then, for r = 1, 2, 3, ...,

P
(
f |(SeSf )re

)
= P

(
(SfSe)

rf |e
)

= sin2
(

(2r + 1)arcsin(
√
p)
)
.

Proof. The first equality follows from the invariance of P( | ) under the automor-
phism (SfSe)

r, which is its own inverse. For the proof of the second equality,
consider the following four elements in the order-unit space A: b1 := e, b2 := f ,
b3 := Ue′f and b4 := Uf ′e. Note that Lemmas 2 (a) and 4 are repeatedly applied
in the following calculations.

SfSeb1 = SfSee = Sfe = 2Ufe+2Uf ′e−e = 2pf+2Uf ′e−e = −b1 +2pb2 +2b4

Then use the identity Sef = 2Uef + 2Ue′f − f = 2pe+ 2Ue′f − f to get

SfSeb2 = SfSef = 2pSfe+ 2SfUe′f − Sff
= 2p(2Ufe+ 2Uf ′e− e) + 2(2UfUe′f + 2Uf ′Ue′f − Ue′f)− f
= 2p(2pf + 2Uf ′e− e) + 2(2(1− p)2f + 2Uf ′Uef − Ue′f)− f
= 2p(2pf + 2Uf ′e− e) + 2(2(1− p)2f + 2pUf ′e− Ue′f)− f
= −2pe+ (8p2 − 8p+ 3)f − 2Ue′f + 8pUf ′e

= −2pb1 + (8p2 − 8p+ 3)b2 − 2b3 + 8pb4

SfSeb3 = SfSeUe′f = SfUe′f = 2UfUe′f + 2Uf ′Ue′f − Ue′f
= 2(1− p)2f + 2Uf ′Uef − Ue′f = 2(1− p)2f + 2pUf ′e− Ue′f
= 2(1− p)2b2 − b3 + 2pb4

SfSeb4 = SfSeUf ′e = 2SfUeUf ′e+ 2SfUe′Uf ′e− SfUf ′e

= 2(1− p)2Sfe+ 2SfUe′Ufe− Uf ′e = 2(1− p)2Sfe+ 2pSfUe′f − Uf ′e

= 2(1− p)2(2Ufe+ 2Uf ′e− e) + 2p(2UfUe′f + 2Uf ′Ue′f − Ue′f)− Uf ′e

= 2(1− p)2(2pf + 2Uf ′e− e) + 2p(2(1− p)2f + 2Uf ′Uef − Ue′f)− Uf ′e

= 2(1− p)2(2pf + 2Uf ′e− e) + 2p(2(1− p)2f + 2pUf ′e− Ue′f)− Uf ′e

= −2(1− p)2e+ 8p(1− p)2f − 2pUe′f + (8p2 − 8p+ 3)Uf ′e

= −2(1− p)2b1 + 8p(1− p)2b2 − 2pb3 + (8p2 − 8p+ 3)b4

The linear subspace in A, generated by b1, b2, b3, b4, is invariant under SfSe,
which follows from the above identities. With respect to this basis, the restric-
tion of SfSe to this subspace is represented by the following matrix:
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M :=



−1 −2p 0 −2(1− p)2

2p 8p2 − 8p+ 3 2(1− p)2 8p(1− p)2

0 −2 −1 −2p

2 8p 2p 8p2 − 8p+ 3


The Jordan form of this 4 × 4matrix is now computed in two steps, each one
basically dealing with the better manageable 2× 2-matrices. First consider the
following matrix N1

N1 =



1− p 0 1− p 0

0 1− p 0 1− p

−1 0 1 0

0 −1 0 1


and its inverse

N−11 =
1

2(1− p)



1 0 p− 1 0

0 1 0 p− 1

1 0 1− p 0

0 1 0 1− p


Then

N−11 MN1 =



−1 2− 4p 0 0

−2 + 4p (3− 4p)(1− 4p) 0 0

0 0 −1 −2

0 0 2 3


The Jordan forms of the two 2 × 2 submatrices top left and bottom right can
be calculated separately. With

N2 =



1 1 0 0

1− 2p+ 2
√
p(1− p) i 1− 2p− 2

√
p(1− p) i 0 0

0 0 1 −2

0 0 0 2


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and

N−12 =



1
2 + 1−2p

4
√
p(1−p)

i −1
4
√
p(1−p)

i 0 0

1
2 −

1−2p
4
√
p(1−p)

i 1

4
√
p(1−p)

i 0 0

0 0 1 1

0 0 0 1
2


the desired Jordan form of M is:

N−12 N−11 MN1N2 =



α1 0 0 0

0 α2 0 0

0 0 1 0

0 0 1 1


where

α1 = 8p2 − 8p+ 1 + 4(1− 2p)
√

1− p i,

α2 = 8p2 − 8p+ 1− 4(1− 2p)
√

1− p i

and 1 are the eigenvalues of M . This (almost diagonal) matrix can now easily
be raised to the r-th power, and Mr can be calculated:

Mr = N1N2



αr1 0 0 0

0 αr2 0 0

0 0 1 0

0 0 r 1


N−12 N−11

=



· · · −r + 1

4
√
p(1−p)

Im(αr1) · · · · · ·

· · · 1
2 (2r + 1 +Re(αr1) + 1−2p

2
√
p(1−p)

Im(αr1)) · · · · · ·

· · · · · · · · · · · ·

· · · 1
2(1−p) (2r + 1−Re(αr1)− 1−2p

2
√
p(1−p)

Im(αr1)) · · · · · ·


Since α2 is the complex conjugate of α1, it does not anymore appear in this
matrix. Note that only the second column is displayed, since only these entries
will be used for the following calculation of Ue(SfSe)

rb2 = Ue(SfSe)
rf . The

third entry in this column is not needed, since Ueb3 = UeUe′f = 0. Moreover,
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recall that Ueb1 = Uee = e, Ueb2 = Uef = pe and Ueb4 = UeUf ′e = (1− p)2e.

Ue(SfSe)
rf =

(
−r + 1

4
√
p(1−p)

Im(αr1)
)
Ue(b1)

+
(

1
2 (2r + 1 +Re(αr1) + 1−2p

2
√
p(1−p)

Im(αr1))
)
Ue(b2)

+
(

1
2(1−p) (2r + 1−Re(αr1)− 1−2p

2
√
p(1−p)

Im(αr1))
)
Ue(b4)

=
(
−r + 1

4
√
p(1−p)

Im(αr1)
)
e+

(
1
2 (2r + 1 +Re(αr1) + 1−2p

2
√
p(1−p)

Im(αr1))
)
pe

+
(

1
2(1−p) (2r+ 1−Re(αr1)− 1−2p

2
√
p(1−p)

Im(αr1))
)

(1−p)2e

=
(

1
2 −

1−2p
2 Re(αr1) +

√
p(1− p)Im(αr1)

)
e

Therefore

P((SfSe)
rf |e) =

1

2
− 1− 2p

2
Re(αr1) +

√
p(1− p)Im(αr1)

Since |α1| = 1, α1 = eit with t = arcsin(4(1 − 2p)
√
p(1− p)). Furthermore,

define s := arcsin(2
√
p(1− p). Then cos(s) = 1 − 2p, since (1 − 2p)2 +

(2
√
p(1− p))2 = 1, and

P(f |(SeSf )re) =
1

2
− 1

2
(cos(s)cos(rt)− sin(s)sin(rt))

=
1

2
− 1

2
cos(s+ rt)

= sin2(
s+ rt

2
)

= sin2((2r + 1)arcsin(
√
p)).

The second and the third equality follow from the trigonometric identities

cos(x) + cos(y) = cos(x)cos(y) − sin(x)sin(y) and sin2(x2 ) = 1−cos(x)
2 . The

last equality follows from the definitions of s and t and the following identity:

arcsin(2
√
x− x2) + r arcsin(4(1− 2x)

√
x− x2)− (4r + 2)arcsin(

√
x) = 0

by inserting x = p, which then gives s+ rt = (4r+ 2)arcsin(
√
p). This identity

can be proved by differentiation with respect to x: The derivative is constantly
zero and the function thus constant; checking the function for x = 0 yields that
it is constantly zero. �
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