Skip to main content
Log in

The $\mu$-measure as a tool for classifying computational complexity

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract.

Two simply typed term systems \(\sf {PR}_1\) and \(\sf {PR}_2\) are considered, both for representing algorithms computing primitive recursive functions. \(\sf {PR}_1\) is based on primitive recursion, \(\sf {PR}_2\) on recursion on notation. A purely syntactical method of determining the computational complexity of algorithms in \(\sf {PR}_i\), called $\mu$ -measure, is employed to uniformly integrate traditional results in subrecursion theory with resource-free characterisations of sub-elementary complexity classes. Extending the Schwichtenberg and Müller characterisation of the Grzegorczyk classes \({\mathcal{E}}_n\) for \(n\ge 3\), it is shown $\mathcal{E}_{n+1} = \mathcal{R}^n_1\( for \)n\ge 1\(, where \)\mathcal{R}^n_i$ denotes the \emph{\(n\)th modified Heinermann class} based on \(\mu\). The proof does not refer to any machine-based computation model, unlike the Schwichtenberg and Müller proofs. This is due to the notion of modified recursion lying on top of each other provided by \(\mu\). By Ritchie's result, \(\mathcal{R}^1_1\) characterises the linear-space computable functions. Using the same method, a short and straightforward proof is presented, showing that \(\mathcal{R}^1_2\) characterises the polynomial time computable functions. Furthermore, the classes \(\mathcal{R}^n_2\) and \(\mathcal{R}^n_1\) coincide at and above level 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 22 September 1997 / Revised version: 12 May 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niggl, KH. The $\mu$-measure as a tool for classifying computational complexity. Arch Math Logic 39, 515–539 (2000). https://doi.org/10.1007/s001530050163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001530050163

Navigation