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Outsourcing logistics operation to third-party logistics has attracted more attention in the past several years. However, very few
papers analyzed fuel consumption model in the context of outsourcing logistics. This problem involves more complexity than
traditional open vehicle routing problem (OVRP), because the calculation of fuel emissions depends on many factors, such as the
speed of vehicles, the road angle, the total load, the engine friction, and the engine displacement. Our paper proposed a green
open vehicle routing problem (GOVRP) model with fuel consumption constraints for outsourcing logistics operations. Moreover,
a hybrid tabu search algorithm was presented to deal with this problem. Experiments were conducted on instances based on
realistic road data of Beijing, China, considering that outsourcing logistics plays an increasingly important role in China’s freight
transportation. Open routes were compared with closed routes through statistical analysis of the cost components. Compared with
closed routes, open routes reduce the total cost by 18.5% with the fuel emissions cost down by nearly 29.1% and the diver cost down
by 13.8%.The effect of different vehicle types was also studied. Over all the 60- and 120-node instances, the mean total cost by using
the light-duty vehicles is the lowest.

1. Introduction

Many developing countries are confronted with two prob-
lems: how to reduce economic costs and how to develop
an environment-friendly society. As a result, researchers as
well as companies with integrated logistics expertise tend to
adopt new transportation models to counter these problems.
Outsourcing logistics operations to the third-party logistics
would reduce costs through better resource utilization and
operations efficiency in freight transportation. It plays an
increasingly important role in freight transportation. In that
case, a company can hire vehicles from other companies to
deliver its goods. Vehicles do not need return to the company
as usual. They are usually described as the open vehicle
routing problem (OVRP) [1]. Compared with the vehicle
routing problem (VRP), routes in the OVRPmodel are open;
see Figure 1.

TheOVRP is NP-hard [2], so heuristics or metaheuristics
methods are usually used to deal with it [3], such as the

tabu search [4], the neighborhood-based search [5], particle
swarm optimization [6], ant colony optimization [7], or evo-
lutionary computing [8]. Hybrid metaheuristic algorithms
were also designed to solve the OVRP [9]. Moreover, sev-
eral variants of the OVRP were studied to model specific
practical problems. OVRP with time windows (OVRPTW)
was presented by [10] to model the delivery of multiproduct
newspapers. The multidepot OVRP (MDOVRP) was first
proposed by [11] to model the distribution of fresh meat.
The open vehicle routing problem with decoupling points
(OVRP-DP) was introduced in [12] to describe open routes
performed by more than one carrier. The OVRP with uncer-
tain demands was investigated to deal with nondeterministic
customer demands and avoid unsatisfied demands or more
extra operation cost [13]. However, among models studied in
the past there are rare formulations considering the impact of
fuel and carbon emission [14]. This paper is a contribution to
this line of research.
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Figure 1: Open vehicle routing problem.

Carbon emissions along with freight transportation have
hazardous impacts on the environment.How tominimize the
fuel consumption becomes a hot topic. In [15], six fuel con-
sumptionmodels were compared with each other and several
factors affecting carbon emissions in road transportation
were analyzed. In [16], the pollution-routing problem (PRP)
was introduced to evaluate the greenhouse gas emissions
for the VRP. The total energy consumed on each road can
be directly translated into greenhouse gas emissions with
the PRP model. Reference [17] considered a heterogeneous
vehicle fleet and extended the PRP model. Reference [18]
presented a recent review of studies on green freight trans-
portation problems.

This study has been motivated by a real problem in
Beijing, China. As outsourcing logistics is playing a more
and more important role in China’s freight transportation,
many companies hire vehicles from the third-party logistics.
Vehicles do not need return to the depot after delivering
products to customers. Each route departs from the depot
and ends up with one of the customers. These companies are
facing the problem of minimizing the total cost, including
both fuel consumption cost and driver salaries.

The main contributions of our paper are summarized as
follows. (1) Fuel consumption was analyzed in the context
of the OVRP; and the green open vehicle routing problem
(GOVRP) model was constructed. With the purpose of opti-
mizing the fuel emissions cost in the model, we introduced
the comprehensive modal emission model (CMEM) into the
OVRP model and extend the OVRP with an objective that
accounts for the amount of greenhouse emissions. (2) A
hybrid tabu search algorithm involving several neighborhood
search strategies was proposed to solve the GOVRP. A mod-
ified nearest neighborhood heuristic (mNNH) was proposed
to get the initial solution. It considered two factors load
and distance when searching for a suitable initial solution.
And then four neighborhood search operators were designed
to produce the neighborhood of the current solution. (3)
Computational experiments were conducted on instances
derived from real geographical data of customers in Beijing,
China. Both the effect of open routes and the effect of vehicle
types were analyzed in respects of reducing total cost.

2. Mathematical Model of the GOVRP

The CMEM was developed by [19, 20] to calculate fuel
emissions. In this section, we introduced the CMEM to
the OVRP and formulated the mathematical model of the
GOVRP. The fuel consumption 𝐹ℎ (in liters) of vehicle typeℎ is given by [21]

𝐹ℎ = 𝜆(𝑘ℎ𝑁ℎ𝑉ℎ𝑑
V

+𝑀ℎ𝛾ℎ𝛼𝑑 + 𝛽ℎ𝛾ℎ𝑑V2) , (1)

where 𝜆 = 𝜉/𝜅𝜓, 𝛾ℎ = 1/1000𝑛𝑡𝑓𝜂, 𝛼 = 𝜏+𝑔 sin 𝜃+𝑔𝐶ℎ𝑟 cos 𝜃,
and 𝛽ℎ = 0.5𝐶𝑑𝐴ℎ𝜌 are constraints. 𝑀ℎ is the total vehicle
weight, 𝑑 is the distance, and V is the vehicle speed. Three
terms of 𝐹ℎ are referred to as the engine module, the weight
module, and the speed module, respectively. Notations and
their default values are listed in the following two tables
[17, 22]. Common parameters of vehicles are listed in Table 1.
Specific parameters for different vehicle types are listed in
Table 2.

Let𝑁 = {0, . . . , 𝑛} be the set of customers and the depot,
and let 𝐴 = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗, 𝑗 ̸= 0} be the set of arcs.
Node 0 denotes the depot, so the customer set is 𝑁0 = 𝑁 \{0}. 𝑄 represents the capacity of vehicles. Variables 𝑞𝑖 means
the demand of customer 𝑖. Variables 𝑑𝑖𝑗 is the distance from
node 𝑖 to node 𝑗. Variables 𝑓𝑖𝑗 are the total amount of flow
on arc (𝑖, 𝑗). The mathematical model of GOVRP is defined
as follows:

Minimize ∑
(𝑖,𝑗)∈𝐴

𝜆𝑓𝑐𝑘𝑁𝑉𝑑𝑖𝑗
𝑅∑
𝑟=1

𝑧𝑟𝑖𝑗
V𝑟 (2)

+ ∑
(𝑖,𝑗)∈𝐴

𝜆𝑓𝑐𝛾𝛼𝑖𝑗𝑑𝑖𝑗 (𝑤𝑥𝑖𝑗 + 𝑓𝑖𝑗) (3)

+ ∑
(𝑖,𝑗)∈𝐴

𝜆𝑓𝑐𝛽𝛾𝑑𝑖𝑗
𝑅∑
𝑟=1

(V𝑟)2 𝑧𝑟𝑖𝑗 (4)

+ ∑
𝑗∈𝑁0

𝑓𝑑𝑠𝑗 (5)

subject to ∑
𝑗∈𝑁0

𝑥0𝑗 ≤ 𝑁0 (6)

∑
𝑖∈𝑁

𝑥𝑖𝑗 = 1, ∀𝑗 ∈ 𝑁0 (7)

∑
𝑗∈𝑁

𝑥𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝑁0 (8)

𝑛∑
𝑖=1

𝑥𝑖0 = 0 (9)

𝑞𝑗𝑥𝑖𝑗 ≤ 𝑓𝑖𝑗 ≤ (𝑄 − 𝑞𝑖) 𝑥𝑖𝑗, ∀ (𝑖, 𝑗) ∈ 𝐴 (10)

∑
𝑗∈𝑁

𝑓𝑖𝑗 − ∑
𝑗∈𝑁

𝑓𝑗𝑖 = 𝑞𝑖, ∀𝑖 ∈ 𝑁0 (11)

𝑅∑
𝑟=1

𝑧𝑟𝑖𝑗 = 𝑥𝑖𝑗, ∀ (𝑖, 𝑗) ∈ 𝐴 (12)
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Table 1: Common parameters of vehicles.

Notation Description Typical values
𝜉 Fuel-to-air mass ratio 1
𝑔 Gravitational constant (m/s2) 9.81
𝜌 Air density (kg/m3) 1.2041
𝐶ℎ𝑟 Coefficient of rolling resistance 0.01
𝜂 Efficiency parameter for diesel engines 0.45
𝑓𝑐 Fuel and CO2 emissions cost (RMB/liter) 12.0165
𝑓𝑑 Driver wage (RMB/s) 0.0111
𝜅 Heating value of a typical diesel fuel (kj/g) 44
𝜓 Conversion factor (g/s to L/s) 737
𝑛𝑡𝑓 Vehicle drive train efficiency 0.45
V𝑙 Lower speed limit (m/s) 0
V𝑢 Upper speed limit (m/s) 27.8 (or 100 km/h)
𝜏 Acceleration (m/s2) 0

Table 2: Specific parameters for different vehicle types.

Notation Description Light duty Medium duty Heavy duty
𝑤 Curb weight (kg) 3500 5500 14,000
𝑄 Maximum payload (kg) 4000 12,500 26,000
𝑘 Engine friction factor (kj/rev/liter) 0.25 0.20 0.15
𝑁 Engine speed (rev/s) 38.34 36.67 30.0
𝑉 Engine displacement (liter) 4.5 6.9 10.5
𝐶𝑑 Coefficient of aerodynamics drag 0.6 0.7 0.9
𝐴 Frontal surface area (m2) 7.0 8.0 10.0

𝑥𝑖𝑗 ∈ {0, 1} , ∀ (𝑖, 𝑗) ∈ 𝐴 (13)

𝑧𝑟𝑖𝑗 ∈ {0, 1} , ∀ (𝑖, 𝑗) ∈ 𝐴 (14)

𝑓𝑖𝑗 ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝐴. (15)
Formula (2)–(5) describes the objective of the GOVRP,

where terms (2)–(4) calculate the total fuel consumption
cost and term (5) measures the total driver wages. More
specifically, 𝑓𝑐 is the fuel emissions cost per liter, and terms
(2)–(4) calculate the fuel consumption costs induced by the
engine module, the weight module, and the speed module,
respectively. 𝑠𝑗 denotes the total time spent on a route where𝑗 is the last served customer.

The binary variable 𝑥𝑖𝑗 is equal to 1 if there is a vehicle
traveling on arc (𝑖, 𝑗); otherwise, 𝑥𝑖𝑗 is equal to 0. Constraints
(6)–(9) ensure that each customer is served by one vehicle and
it is served only once. Vehicles do not return to the deport. If𝑖 is the last served customer, constraint (8) can be written as∑𝑗∈𝑁 𝑥𝑖𝑗 = 0. Otherwise, it can be written as ∑𝑗∈𝑁 𝑥𝑖𝑗 = 1.
Constraints (10) and (11) define flows. The binary variable 𝑧𝑟𝑖𝑗
is equal to 1 when a vehicle travels on arc (𝑖, 𝑗) at speed V𝑟.

3. Hybrid Tabu Search Algorithm for
the GOVRP

In this study, a hybrid tabu search algorithm including several
neighborhood search strategies was designed to solve the
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Figure 2: The flowchart of our algorithm.

GOVRP.The flowchart of this algorithm is shown in Figure 2.
The detailed steps are listed as follows.
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Step 1. The initial setup includes initializing an empty tabu
list and an empty candidate list, creating an initial solution,
setting that initial solution as the best solution to date. A
modified nearest neighborhood heuristic (mNNH) is used to
gain the initial solution. We will elaborate on it specifically in
Section 3.1.

Step 2. If the stopping condition is satisfied, the search
process stops, and the best solution is returned. Otherwise,
it turns to Step 3.

Step 3. The solution space is explored each step from a cur-
rent solution to the accepted solutions in the neighborhood
by using four efficient neighborhood search algorithms. For
each neighbor of the current solution 𝑋current, the optimal
speed on each arc of their routes is set by using the speed
optimization algorithm according to [23].

Step 4. The neighboring solutions are checked for tabu
elements. We search for the best solution and update the
candidate list.

Step 5. If the best local candidate is better than the current
best solution, update the current best solution. The local
optimal solution is added to the tabu list.Then, turn to Step 2.

In this paper, the stopping condition is the maximum
number of iterations 𝑋max. When our algorithm is iterated𝑋max times, the algorithm is terminated.

3.1. The Initial Solution. We use a modified nearest neigh-
borhood heuristic (mNNH) to obtain an initial solution.
The mNNH considers two factors load and distance when
searching for a suitable initial solution. In a delivery system,
a vehicle can reduce 𝑞𝑗 load after servicing customer 𝑗. We
define

Δ𝑓𝑖𝑗 = 𝑞𝑗
𝑑𝑖𝑗 , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁ucs, (16)

where𝑁unc is defined as the unrouted customer set.
The mNNH builds routes one by one according to the

following steps. The first route begins with an unrouted cus-
tomer 𝑟, which can be calculated by the following equation:

𝑟 = arg max
𝑗∈𝑁ucs

{Δ𝑓0𝑗} . (17)

Then, we calculate Δ𝑓𝑖𝑗 between the current node 𝑟 and the
other unrouted nodes. We choose the node with the greatest
current Δ𝑓𝑖𝑗 value as the next node if the current route does
not violate the vehicle capacity constraint. We update the
current node 𝑟 and search for the next node in the same way.
When no customer can be assigned to the route, a new route
is started. When all the customers are already routed, the
process stops. The algorithm is described as Algorithm 1.

3.2. The Neighborhood Search. The neighborhood of the cur-
rent solution 𝑋current is first obtained by four neighborhood
search operators. They cannot violate the capacity constraint

Input: 𝑄, 𝑞1, . . . , 𝑞𝑛
Output: 𝑝𝑎𝑡ℎ
(1) Set𝑁ucs = {1, . . . , 𝑛}, 𝑝𝑎𝑡ℎ = 0, 𝑟𝑜𝑢𝑡𝑒 = 0
(2) while 𝑁ucs ̸= 0 do
(3) Select a car
(4) Set 𝑞 ← 𝑄
(5) while 𝑞 − 𝑞𝑗 ≥ 0 and𝑁ucs ̸= 0 do
(6) Set 𝑟𝑜𝑢𝑡𝑒 ← 𝑟𝑜𝑢𝑡𝑒 ∪ {𝑟}, 𝑞 ← 𝑞 − 𝑞𝑗, 𝑖 ← 𝑗
(7) 𝑁ucs ← 𝑁ucs/{𝑗}, 𝑟 ← argmax𝑗∈𝑁ucs {|Δ𝑓𝑖𝑗|}
(8) Set 𝑝𝑎𝑡ℎ ← 𝑝𝑎𝑡ℎ ∪ {𝑟𝑜𝑢𝑡𝑒}, 𝑟𝑜𝑢𝑡𝑒 = 0
(9) return 𝑝𝑎𝑡ℎ

Algorithm 1: A modified nearest neighborhood heuristic.

Figure 3: High-cost-node improvement operator.

Table 3: Algorithmic parameters values.

Notation Description Typical values
𝑋max Themaximum iteration number 500
𝑙𝑡 The length of Tabu list 5
𝑛1 The number of RO in each step 40
𝑛2 The number of HCNIO in each step 5
𝑙 The threshold in SRIO in each step 3
𝑝 Each route has a chance 𝑝 to be improved 50%

during this process as before.Then, the optimal speed on each
route is set according to [23].

(1) RandomOperator (RO). It randomly selects one node from
the solution and then randomly finds a possible position for
it.

(2) High-Cost-Node Improvement Operator (HCNIO). As
illustrated in Figure 3, the operator tries to reassign the high
cost node 𝑢∗, because the total distance between its preceding
customer and its following customer is the longest. Customer𝑢∗ can be calculated as follows:

𝑢∗ = arg max
𝑢∈𝑁

{𝑑𝑖𝑢 + 𝑑𝑢𝑗} , (18)

where 𝑖 is the preceding customer and 𝑗 is the following
customer.

We compute the best possible position for node 𝑢 based
on

𝑐 (𝑖∗, 𝑢, 𝑗∗) = min [𝑐 (𝑖, 𝑢, 𝑗)] , 𝑖, 𝑗 ∈ 𝑁, 𝑖, 𝑗 ̸= 𝑁ucs, (19)
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Table 4: Cost components with Min TC.

Instances TD (m) ET (s) FEC (RMB) DC (RMB) TC (RMB) CE (kg)
BJ10 01 160000 1.52 641.04 1427.23 2068.27 123.77
BJ10 02 215400 1.21 860 1669.73 2529.73 166.04
BJ10 03 148200 1.43 598.82 1515.92 2114.74 115.61
BJ10 04 125700 1.32 512.95 1604.03 2116.98 99.03
BJ10 05 131600 1.39 527.49 1261.2 1788.69 101.84
BJ10 06 195700 1.28 800.49 1731.86 2532.35 154.55
BJ10 07 161200 1.51 629.72 1462.42 2092.15 121.58
BJ10 08 160500 1.46 643.06 1598.9 2241.96 124.15
BJ10 09 174300 1.29 708.01 1687.92 2395.93 136.69
BJ10 10 196900 1.32 794.67 1724.37 2519.03 153.42
BJ20 01 207050 1.78 847.71 2872.04 3719.75 163.67
BJ20 02 327870 1.89 1313.52 3411.58 4725.1 253.6
BJ20 03 214080 1.84 869.09 2954.44 3823.52 167.79
BJ20 04 255540 2.01 1012 2740.72 3752.73 195.39
BJ20 05 276920 1.88 1118.67 3355.55 4474.22 215.98
BJ20 06 289340 2.18 1144.59 3143.29 4287.89 220.98
BJ20 07 303290 1.74 1257.06 3656.81 4913.87 242.7
BJ20 08 272120 1.8 1118.93 2995.08 4114.01 216.03
BJ20 09 310000 1.93 1250.4 3023.52 4273.93 241.41
BJ20 10 273670 2.25 1086.06 2945.31 4031.37 209.68
BJ30 01 383030 2.52 1594.7 4489.58 6084.28 307.89
BJ30 02 413850 2.62 1653.91 4497.14 6151.06 319.32
BJ30 03 425160 2.27 1763.89 4932.42 6696.31 340.55
BJ30 04 422810 2.55 1735.05 4702.76 6437.8 334.98
BJ30 05 348850 2.82 1405.68 4627.92 6033.6 271.39
BJ30 06 459680 2.28 1907.54 4772.35 6679.89 368.28
BJ30 07 460900 2.51 1900.86 4826.39 6727.26 367
BJ30 08 423510 2.38 1742.33 4625.07 6367.4 336.39
BJ30 09 447060 2.35 1869.31 4768.26 6637.57 360.9
BJ30 10 281950 2.59 1141.17 4007.94 5149.11 220.32

where 𝑐(𝑖, 𝑢, 𝑗) = 𝑑𝑖𝑢 + 𝑑𝑢𝑗 − 𝑑𝑖𝑗 is the cost for inserting node𝑢 between customer 𝑖 and customer 𝑗 and𝑁ucs ⊆ 𝑁 is the set
of currently routed customers.

(3) Short-Route Improvement Operator (SRIO). The operator
tries to combine or delete short routes by reassigning nodes
belonging to those routes. A threshold 𝑙 is set to evaluate the
length of a route. Only if the length of a route is shorter than
the threshold 𝑙, the nodes in that route can be reassigned to
other positions. The process can be illustrated in Figure 4
(𝑙 = 2). First, arcs in the shorter routes are deleted and then
isolated nodes are assigned to other longer routes.

Thebest possible position for each unrouted node𝑢 is also
calculated by (19). By using (20), the most suitable customer
is selected to be inserted in the route repeatedly. Unrouted
nodes will be inserted to the current routes one by one.

𝑐 (𝑖∗, 𝑢∗, 𝑗∗) = min [𝑐 (𝑖∗, 𝑢, 𝑗∗)] . (20)

(4) Random-Route-Improvement Operator (RRIO). Each
route in the current solution has a chance 𝑝 of being

Figure 4: Short-route improvement operator.

destroyed. In that case, customers in that route should be
reassigned. The best possible position for each node 𝑢 is
calculated by (19). Then best customer to be inserted in the
route is selected by using (20) repeatedly. All other unrouted
customers will be inserted into the sequence one by one. As
shown in Figure 5, two routes included in the dotted oval are
destroyed; nodes in those routes are reassigned in possible
positions.
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Table 5: Cost components with Min FEC.

Instances TD (m) ET (s) FEC (RMB) DC (RMB) TC (RMB) CE (kg)
BJ10 01 160000 1.5 641.04 1427.23 2068.27 123.77
BJ10 02 215400 1.21 860 1669.73 2529.73 166.04
BJ10 03 148200 1.56 598.82 1515.92 2114.74 115.61
BJ10 04 126500 1.37 511.94 1607.36 2119.3 98.84
BJ10 05 132750 1.47 519.04 1265.98 1785.02 100.21
BJ10 06 195500 1.31 800.42 1731.02 2531.45 154.54
BJ10 07 161200 1.57 629.72 1462.42 2092.15 121.58
BJ10 08 161900 1.5 640.76 1604.72 2245.47 123.71
BJ10 09 174300 1.3 708.01 1687.92 2395.93 136.69
BJ10 10 196900 1.33 794.67 1724.37 2519.03 153.42
BJ20 01 207400 1.76 849.35 2873.49 3722.84 163.98
BJ20 02 328330 1.95 1309.37 3413.49 4722.86 252.8
BJ20 03 214900 1.97 872.32 2957.85 3830.17 168.42
BJ20 04 255610 2.18 1011.35 2741.01 3752.36 195.26
BJ20 05 277600 1.94 1120.84 3358.38 4479.21 216.4
BJ20 06 289930 2.25 1139.38 3145.75 4285.12 219.98
BJ20 07 304560 1.79 1262.84 3662.1 4924.93 243.81
BJ20 08 273430 1.88 1118.78 3000.53 4119.3 216
BJ20 09 309870 2.04 1247.69 3022.98 4270.67 240.89
BJ20 10 273750 2.25 1082.62 2945.65 4028.27 209.02
BJ30 01 382650 2.42 1589.04 4488 6077.04 306.79
BJ30 02 413260 2.74 1652.82 4494.69 6147.51 319.11
BJ30 03 421230 2.27 1747.69 4916.08 6663.77 337.42
BJ30 04 422830 2.43 1736.24 4702.84 6439.08 335.21
BJ30 05 352760 2.75 1417.82 4644.18 6062 273.74
BJ30 06 458930 2.19 1903.61 4769.23 6672.84 367.53
BJ30 07 458810 2.49 1884.59 4817.7 6702.3 363.86
BJ30 08 426290 2.32 1748.32 4636.63 6384.94 337.54
BJ30 09 452450 2.3 1890.76 4790.68 6681.44 365.05
BJ30 10 281430 2.6 1135.95 4005.78 5141.73 219.32

Figure 5: Random-route-improvement operator.

For each neighbor of the current solution 𝑋current, the
optimal speed on each route is set. According to [23], the
optimal speed is

V∗ = (𝑘𝑁𝑉2𝛽𝛾 + 𝑓𝑑2𝛽𝛾𝑓𝑐)
1/3 . (21)

4. Computational Analysis

Experiments are runwith data derived from real geographical
distances of customers in Beijing. Three smaller classes with
10, 20, and 30 customers and four larger classes with 60, 80,
100, and 120 customers are generated. Each class includes 10
instances. All the customers involved in this study are shown
in Figure 6. The algorithmic parameters values are given in
Table 3.

4.1. Effect of Objectives Min TD, Min FEC and Min DC.
Three different objectives, Min TD (total distance), Min FEC
(fuel emissions cost), and Min DC (driver cost), are used to
minimize the total distance, fuel emissions cost, and driver
cost, respectively. We obtained solutions with different cost
components on each performance measure and analyzed the
effect of different objectives. Experiments were conducted on
10-, 20-, and 30-node instances by using light-duty vehicles.
The mean result of each instance collected over ten runs
is reported; see Tables 4, 5, and 6. The columns display
total distance (TD), execution time (ET), fuel emissions cost
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Table 6: Cost component with Min DC.

Instances TD (m) ET (s) FEC (RMB) DC (RMB) TC (RMB) CE (kg)
BJ10 01 159400 1.44 644.62 1424.74 2069.36 124.46
BJ10 02 215400 1.21 860 1669.73 2529.73 166.04
BJ10 03 148200 1.47 598.82 1515.92 2114.74 115.61
BJ10 04 125200 1.39 518.15 1601.95 2120.11 100.04
BJ10 05 131600 1.39 530.81 1261.2 1792 102.48
BJ10 06 195620 1.3 800.46 1731.52 2531.99 154.54
BJ10 07 161200 1.45 629.72 1462.42 2092.15 121.58
BJ10 08 160400 1.48 646.39 1598.48 2244.87 124.8
BJ10 09 174300 1.29 709.63 1687.92 2397.55 137.01
BJ10 10 196900 1.32 794.67 1724.37 2519.03 153.42
BJ20 01 206800 1.74 846.78 2871 3717.78 163.49
BJ20 02 329150 1.82 1327.82 3416.9 4744.72 256.36
BJ20 03 215720 1.81 879.27 2961.26 3840.53 169.76
BJ20 04 256490 1.99 1018.96 2744.67 3763.63 196.73
BJ20 05 280140 1.85 1134.25 3368.94 4503.19 218.99
BJ20 06 292080 2.1 1158.64 3154.69 4313.33 223.7
BJ20 07 303580 1.7 1259.44 3658.02 4917.46 243.16
BJ20 08 272670 1.78 1123.32 2997.37 4120.69 216.88
BJ20 09 310710 1.89 1254.84 3026.47 4281.31 242.27
BJ20 10 271600 2.18 1076.31 2936.7 4013.01 207.8
BJ30 01 381430 2.35 1589.86 4482.93 6072.79 306.95
BJ30 02 420450 2.47 1689.85 4524.59 6214.44 326.26
BJ30 03 427000 2.15 1773.68 4940.07 6713.75 342.44
BJ30 04 422740 2.35 1748.59 4702.47 6451.05 337.6
BJ30 05 352590 2.57 1423.67 4643.47 6067.14 274.87
BJ30 06 458020 2.17 1904.47 4765.45 6669.91 367.69
BJ30 07 459540 2.33 1897.68 4820.74 6718.42 366.38
BJ30 08 430970 2.21 1784.59 4656.09 6440.68 344.55
BJ30 09 445190 2.18 1864.22 4760.49 6624.71 359.92
BJ30 10 282940 2.44 1146.82 4012.06 5158.88 221.42

Table 7: Cost components with different objectives.

Instances Objective TD (m) ET (s) FEC (RMB) DC (RMB) TC (RMB) CE (kg)

10-node
Min FEC 167265 1.41 670.44 1569.67 2240.11 129.44
Min DC 166822 1.37 673.33 1567.83 2241.15 130
Min TC 166950 1.37 671.63 1568.36 2239.98 129.67

20-node
Min FEC 273538 2 1101.45 3112.12 4213.57 212.66
Min DC 273894 1.89 1107.96 3113.6 4221.57 213.91
Min TC 272988 1.93 1101.8 3109.83 4211.64 212.72

30-node
Min FEC 407064 2.45 1670.68 4626.58 6297.27 322.56
Min DC 408087 2.32 1682.34 4630.84 6313.18 324.81
Min TC 406680 2.49 1671.44 4624.98 6296.43 322.7

(FEC), driver cost (DC), total cost (TC), and CO2 emissions
(CE). Table 7 presents the average results of each class.

On average of 10-node class, the fuel emissions cost repre-
sents about 30% of the total cost. For 20- and 30-node classes,
the fuel emissions cost accounts for approximately 26% of
the total cost. The carbon dioxide emissions increase with

the number of customers. Only considering the driver cost
in the objective leads to the most carbon dioxide emissions
and the poorest total cost performance. Only considering the
fuel emissions gets solutions with the lowest carbon dioxide
emissions, but a higher total cost. Min TC as an objective
yields the lowest total cost and the shortest total distance.
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Table 8: Cost components with closed routes.

Instances TD (m) ET (s) FEC (RMB) DC (RMB) TC (RMB) CE (kg)
BJ10 01 243300 1.35 973.42 1773.67 2747.08 187.94
BJ10 02 287900 1.23 1143.69 1971.25 3114.95 220.81
BJ10 03 233000 1.28 929.49 1868.6 2798.09 179.46
BJ10 04 193600 1.33 774.88 1886.42 2661.31 149.61
BJ10 05 190300 1.33 752.29 1505.32 2257.61 145.24
BJ10 06 306900 1.26 1216.62 2194.33 3410.94 234.89
BJ10 07 225500 1.19 914.3 1729.84 2644.14 176.52
BJ10 08 222400 1.33 883.91 1856.33 2740.24 170.65
BJ10 09 250200 1.29 1001.88 2003.58 3005.46 193.43
BJ10 10 285200 1.3 1133.7 2091.6 3225.3 218.88
BJ20 01 296880 1.75 1191.94 3245.63 4437.57 230.13
BJ20 02 432490 1.74 1733.98 3846.68 5580.66 334.78
BJ20 03 302470 1.93 1227.85 3322.04 4549.9 237.06
BJ20 04 350360 1.8 1408.36 3135.07 4543.43 271.91
BJ20 05 397350 1.75 1601.07 3856.4 5457.48 309.12
BJ20 06 404900 1.76 1627.02 3623.9 5250.92 314.13
BJ20 07 453910 1.79 1833.88 4283.23 6117.1 354.06
BJ20 08 377970 1.71 1526.82 3435.3 4962.12 294.78
BJ20 09 458430 1.79 1842.5 3640.83 5483.32 355.73
BJ20 10 380810 1.75 1533.55 3390.9 4924.45 296.08
BJ30 01 544130 2.53 2213.58 5159.58 7373.16 427.37
BJ30 02 602750 2.32 2434.58 5282.76 7717.34 470.04
BJ30 03 603420 2.25 2446.55 5673.79 8120.33 472.35
BJ30 04 574210 2.51 2328.31 5332.41 7660.72 449.52
BJ30 05 495510 2.46 2006.16 5237.86 7244.02 387.33
BJ30 06 636960 2.23 2584.8 5509.64 8094.44 499.04
BJ30 07 666890 2.43 2711.67 5683.09 8394.76 523.54
BJ30 08 588990 2.25 2385.82 5313.28 7699.1 460.63
BJ30 09 640480 2.22 2600.55 5572.68 8173.23 502.08
BJ30 10 394830 2.35 1599.07 4477.4 6076.47 308.73

Table 9: Cost components of different types of routes.

Instances Type of routes TD (m) ET (s) FEC (RMB) DC (RMB) TC (RMB) CE (kg)

10-node Open 166950 1.37 671.63 1568.36 2239.98 129.67
Closed 243830 1.29 972.42 1888.09 2860.51 187.74

20-node Open 272988 1.93 1101.8 3109.83 4211.64 212.72
Closed 385557 1.78 1552.7 3578 5130.7 299.78

30-node Open 406680 2.49 1671.44 4624.98 6296.43 322.7
Closed 574817 2.36 2331.11 5324.25 7655.36 450.06

4.2. Effect of Open Routes. In this subsection, we compared
the total cost of open routes with that of closed routes.
Experiments were also conducted on smaller instance classes
by using light-duty vehicles.Themean results of closed routes
collected over ten runs are listed in Table 8. The average
results of each class are reported in Table 9 to illustrate the
effect of open routes. As shown in Table 9, open routes reduce
the total cost by 18.5% with the fuel emissions cost down by

nearly 29.1% and the diver cost down by 13.8% over all the
instances.

4.3. Results for Larger Scale Instances. Experiments were also
conducted on the four largest sets with the objective Min TC.
The results collected over ten runs are reported in Table 10
by using light-duty vehicles. Notations BS, MS, WS, SD, and
ET in columns represent the best solution, mean solution,
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Table 10: Computational results on larger scale instances.

Instance BS (RMB) MS (RMB) WS (RMB) SD ET (s)
BJ60 01 11061.79 11254.42 11417.58 92.8 5.37
BJ60 02 10309.83 10393.21 10492.87 62.43 4.88
BJ60 03 11574.38 11790.03 11933.82 94.03 5.06
BJ60 04 12094.39 12212.64 12462.25 95.54 5.14
BJ60 05 11236.35 11320.09 11431.91 52.74 5.44
BJ60 06 11883.87 12040.48 12249.58 94.39 4.89
BJ60 07 12600.43 12745.03 12867.3 92.99 4.74
BJ60 08 11939.78 12060.86 12173.83 59.37 4.73
BJ60 09 11583.85 11727.88 11922.82 95.35 4.7
BJ60 10 12938.11 13121.2 13364.03 114.64 4.74
BJ80 01 14787.03 15036.55 15227.3 127.09 7.56
BJ80 02 14018.34 14220.78 14411.5 115.1 7.18
BJ80 03 14714.36 14964.93 15139.74 125.11 7.72
BJ80 04 13872.84 14065.74 14550.33 199.54 7.6
BJ80 05 14613.9 14788.56 15078.73 148.41 7.52
BJ80 06 16857.87 17148.49 17572.08 217.41 6.83
BJ80 07 15371.73 15632.16 15925.82 170.46 7.1
BJ80 08 14273.97 14484.07 14815.66 183.64 7.39
BJ80 09 14526.1 14743.32 14969.09 122.54 7.19
BJ80 10 14736.48 14942.92 15284.86 137.4 7.09
BJ100 01 19330.25 19617.94 20069.92 203.78 10.22
BJ100 02 20194.9 20701.34 21013.24 215.65 10.33
BJ100 03 20081.75 20286.97 20556.28 138.13 10.38
BJ100 04 18483.02 18689.28 18893.14 114.28 9.87
BJ100 05 18776.99 18983.5 19256.85 165.22 10.01
BJ100 06 17478.28 17764.38 18119.14 187.27 10.5
BJ100 07 18451.61 18775.37 18938.18 167.43 10.49
BJ100 08 18527.85 18762.86 18941.62 142.11 10.52
BJ100 09 17458.07 18048.33 18385.66 259.49 10.92
BJ100 10 20847 21099.27 21541.13 201.04 10
BJ120 01 21699.63 21954.27 22209.26 135.47 15.38
BJ120 02 22803.9 23135.32 23736.67 273.1 16.09
BJ120 03 22074.76 22569.41 22921.39 270.03 17.46
BJ120 04 22380.9 22560.26 22764.57 138.1 16.91
BJ120 05 22602.33 23308.71 23666.93 289.5 14.39
BJ120 06 22656.5 22975.25 23166.4 145.56 14.44
BJ120 07 21156.14 21711.99 22170.6 301.69 14.37
BJ120 08 20837.63 21069.17 21418.09 211.61 15.66
BJ120 09 21865.67 22195.93 22498.88 170.26 14.43
BJ120 10 22705.98 23054.33 23556.8 217.54 14.4

the worst solution, standard deviation, and execution time,
respectively. As shown in Table 10, the total cost increases
with the number of customers.

4.4. Results with Different Vehicle Types. Experiments were
conducted on the 60- and 120-node instances by using
different types of vehicles. In this subsection, the analysis
focuses on which type of vehicle is the most suitable to
minimize the total cost. The specific vehicle parameters are

listed in Table 2. Results with different vehicle types are listed
in Tables 11 and 12. Over all the instances in the two classes,
the mean total cost by using the light-duty vehicles is the
lowest. For 120-node instances, the mean total cost by using
medium-duty vehicles increases by 4.8% and the result by
using heavy-duty vehicles rises 23.6%. For 60-node instances,
the mean total cost by using medium-duty vehicles increases
by 7.7% and the value by using heavy-duty vehicles rises
28%.
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Table 11: Computational results on the 60-node instances by using different vehicles.

Type of vehicles Instance BS (RMB) MS (RMB) WS (RMB) SD ET (s)

Only light duty

BJ60 01 11061.79 11254.42 11417.58 92.8 5.37
BJ60 02 10309.83 10393.21 10492.87 62.43 4.88
BJ60 03 11574.38 11790.03 11933.82 94.03 5.06
BJ60 04 12094.39 12212.64 12462.25 95.54 5.14
BJ60 05 11236.35 11320.09 11431.91 52.74 5.44
BJ60 06 11883.87 12040.48 12249.58 94.39 4.89
BJ60 07 12600.43 12745.03 12867.3 92.99 4.74
BJ60 08 11939.78 12060.86 12173.83 59.37 4.73
BJ60 09 11583.85 11727.88 11922.82 95.35 4.7
BJ60 10 12938.11 13121.2 13364.03 114.64 4.74

Only medium duty

BJ60 01 12449.13 12616.53 12823.93 109.15 4.51
BJ60 02 11328.74 11557.08 11780.96 125.14 4.19
BJ60 03 12959.56 13222.5 13390.12 121.83 4.42
BJ60 04 13411.61 13630.23 13870.71 147.61 4.4
BJ60 05 12515.46 12678.95 12843.89 87.75 4.63
BJ60 06 13037.75 13302.09 13413.95 100.83 4.29
BJ60 07 12360.13 12425.3 12579.82 63.71 4.22
BJ60 08 12942.29 13064.34 13360.38 121.13 4.49
BJ60 09 12112.23 12348.68 12563.22 122.72 4.43
BJ60 10 12832.96 12974.52 13105.98 88.75 4.03

Only heavy duty

BJ60 01 14787.24 14995.59 15334.52 176.58 9.38
BJ60 02 13418.08 13700.42 13911.3 143.14 7.91
BJ60 03 15469.9 15746.78 16052.25 183.26 7.54
BJ60 04 16164.2 16411.77 16729.41 172.11 7.78
BJ60 05 14772.72 14937.7 15269.37 154.91 7.98
BJ60 06 15893.22 16093.82 16272.75 133.43 7.41
BJ60 07 14441.09 14606.23 14757.43 103.53 7.46
BJ60 08 15088.73 15473.2 15638.19 152.24 7.61
BJ60 09 14521.68 14811.72 14972.54 119.53 7.22
BJ60 10 14961.08 15164.55 15321.96 109.22 6.88

Figure 6: Customer nodes.

5. Conclusions

In this study, the GOVRP was introduced as a formulation
considering the impact of fuel emissions for the third-
party logistics. The problem was to construct open routes
for vehicles to visit all customers with the vehicle capacity
constraints. The objective was to minimize the total cost
composing of the fuel emissions cost and the driver cost.

A hybrid tabu search algorithmwas designed to deal with
the GOVRP instances. Experiments were conducted on 60
instances derived from real geographical data of customers
in Beijing. We analyzed the cost components with different
objectives and compared open routes with closed routes in
respects of reducing the total cost. A homogenous fleet was
considered in this paper. Computational results showed that
vehicle type influenced the total cost and it should be changed
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Table 12: Computational results on the 120-node instances by using different vehicles.

Type of vehicles Instance BS (RMB) MS (RMB) WS (RMB) SD ET (s)

Only light duty

BJ120 01 21699.63 21954.27 22209.26 135.47 15.38
BJ120 02 22803.9 23135.32 23736.67 273.1 16.09
BJ120 03 22074.76 22569.41 22921.39 270.03 17.46
BJ120 04 22380.9 22560.26 22764.57 138.1 16.91
BJ120 05 22602.33 23308.71 23666.93 289.5 14.39
BJ120 06 22656.5 22975.25 23166.4 145.56 14.44
BJ120 07 21156.14 21711.99 22170.6 301.69 14.37
BJ120 08 20837.63 21069.17 21418.09 211.61 15.66
BJ120 09 21865.67 22195.93 22498.88 170.26 14.43
BJ120 10 22705.98 23054.33 23556.8 217.54 14.4

Only medium duty

BJ120 01 23290.23 23541.68 23691.38 124.27 12.99
BJ120 02 23133.82 23473.76 23710.98 178.16 12.55
BJ120 03 23320.12 23573.14 23908.95 186.7 12.9
BJ120 04 23117.27 23545.71 23757.64 194.07 13.01
BJ120 05 23687.6 24099.96 24385.48 207.61 13.08
BJ120 06 23273.19 23621.69 23870.13 162.68 12.49
BJ120 07 23136.08 23257.6 23424.7 91.21 13.13
BJ120 08 22752.22 23085.88 23320.75 200.2 13.35
BJ120 09 23171.61 23279.47 23450.24 85.55 12.65
BJ120 10 23476.59 23845.67 24258.76 222.02 12.58

Only heavy duty

BJ120 01 27565.54 27974.16 28341.07 204.51 20.49
BJ120 02 27337.33 27628.98 28138.69 243.32 18.79
BJ120 03 26855.88 27379.48 27991.72 327.29 20.89
BJ120 04 27580.86 27834.25 28040.53 168.47 21.69
BJ120 05 28189.69 28500.43 28755.03 186.67 18.96
BJ120 06 27679.42 27933.79 28172.32 143.93 19.15
BJ120 07 26969.4 27668.76 28014.39 286.72 21.03
BJ120 08 26617.8 27268.75 27742.87 315.44 22.64
BJ120 09 27000.07 27382.75 27631.08 187.61 20.21
BJ120 10 27663.24 27887.53 28107.04 126.69 20.54

according to the instance’s size. In the future, a heterogeneous
fleet of vehicles can be used to minimize the total cost. Other
types of the OVRP, such as OVRPTW andMDOVRP, can be
solved by our algorithm with some changes.

Nowadays, several novel computing techniques are used
to deal with complex problems. Some of them are bioinspired
models, such as membrane-inspired evolutionary algorithms
[24–26] and probe machine [27]. Their nondeterministic
distributed parallel frameworks have been proved to improve
the performance of optimization algorithms [28]. Most of
them can be used to solve real-life problems [29]. We hope
that more competitive results for our GOVRP instances can
be obtained by using those algorithms in the future.
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