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Abstract

Linguists’ intuitions about language change can be captured
by a dynamical systems model derived from the dynamics of lan-
guage acquisition. Rather than having to posit a separate model
for diachronic change, as is typically done in the diachronic lit-
erature by drawing on assumptions from population biology (cf.
Kroch. 1989). this new model dispenses with the need for these
independent assumptions by showing how the behavior of in-
dividual language learners leads to emergent. global population
characteristics of linguistic communities over several generations.
As the simplest case, we formalize the example of two grammars
(languages) differing by exactly one binary parameter, and show
that even this situation leads directly to a nonlinear (quadratic)
dynamical svstem. We study this one parameter model in a va-
riety of situations for different kinds of acquisition algorithms,
maturational times and show how different learning theories can
have very different evolutionary consequences. We are thus able
to precisely formulate an evolutionary criterion for the adequacy
of linguistic and learning theories and by applying the compu-
tational model to the historical loss of Verb Second from Old
French to modern French we show that otherwise adequate gram-
matical theories can fail our new evolutionary criterion.



1 Introduction: Language Ontogeny & the Para-
dox of Language Change

Much research on language learning has focused on how children — individ-
uals — acquire the grammar of their caretakers from “impoverished” data
presented to them during childhood. Cast formally, the logical problem of
language acquisition requires a learner to converge to its correct target gram-
mar — the language of its caretakers, and presumably a member of the class
of possible natural language grammars. Posed this way, language acquisi-
tion mirrors the familiar case of biological ontogenesis — the development
of a mature individual biological faculty from its initial state.

Language scientists have also long been occupied with describing phono-
logical. syntactic. and semantic change, often appealing to a relation be-
tween language change and evolution. but rarely going beyond analogy. For
instance. Lightfoot (1991, chapter 7, pp. 163-65ff.) talks about language
change in this way: “Some general properties of language change are shared
by other dynamic systems in the natural world.”

The overall goal of this paper is to move from this analogy to formal
modeling. Just as in the biological sciences, we can logically move from
the analysis of individual biological development to population development
— that is, from description of language change at the individual level —
language acquisition — to description of language change at the ensemble
population level — a distribution of final attained states over time. In the
usual biological setting, this amounts to the sufficient logical requirements

for a model of evolution. leaving aside natural selection. as noted by Lewon-
tin (1978. 184):

A sufficient mechanism for evolution by natural selection is
contained in three propositions:

1. There is variation in...behavioral traits among members of
a species (the principle of variation);

2. The variation is in part heritable...in particular, offspring
resemble their parents (the principle of heredity);

3. Different variants leave different numbers of offspring ei-
ther in immediate or in remote generations (the principle
of differential fitness)



Clearly, the first two conditions are met in our case, where differing
grammars (languages) and language acquisition respectively serve as the
principles of variation and heredity.!

Since all the requirements for an evolutionary model are satisfied, we
have in place all the elements to formally model diachronic language change
— change in the ensemble properties of language populations — using the
formal armamentarium of evolutionary biology, and. furthermore, deriving
population changes over time from individual ontogenesis, just as in the
biological case. In brief, this is the aim of the current paper: to put the
study of language change on the same firn formal foundation as evolutionary
population biology, deriving a model of ensemble language change from a
model of individual language change, just as in the biological case.

Indeed. from at least one perspective. linguistics has a substantial ad-
vantage over traditional biological studies of genetic change (evolution): in
the case of ordinary biological evolutionary models. the mapping from an
individual's gene frequencies (their genotype) to a developed organism. or
ontogenesis, is essentially completely unknown, yet is required for a full
model of evolution. However, in the analogous case of language, we do
have a model of language ontogenesis — namely, the models of language
acquisition that have been a focus of language research for many years.? In
this strong sense, then, not only can we draw on evolutionary biology to
model language change, we can possibly : dvance beyond what is possible in
biological evolutionary modeling.

To begin. we note that Lewontin’s principle of variation requires that
individuals differ in their final attained “phenotvpes”, or grammars. Cast
in our terms. this comes to the following »aradox. The language acquisition
problem. if solved perfectly, would lead to language stasis: If generation
after generation children successfully atteined the grammar of their parents,
then languages would never change with time. Yet languages do change.

We can resolve this paradox by introducing an explicit, formal evolu-

'"We lcave aside the principle of differential fitness for now. though it might be easily
accommodated in the mathematical modeling that follows. example, the notion of “selec-
tion” may be readily and exactly incorporated in any number of ways, viz., as so-called
cultural effects. Similarly, so-called “least effort” effects. if they prove relevant, may be so
incorporated.

*This fact may be surprising to some readers. However, again as Lewontin (1978)
observes, biological evolution involves a mapping from genotype space to phenotype space
(the organism’s “external form” on which selection actually acts). In no case except the

most trivial sense i1s this mapping known: certainly not even for the simplest organism in
fuil.



tionary model for language change, grounded on language acquisition as the
source of slight variation that can arise from generation to generation. We
introduce a computational dynamical systems model for this purpose, to the
best of our knowledge, the first such model employed to describe diachronic
language processes, and investigate its consequences. Specifically, we show
that a computational population language change model emerges as a nat-
ural consequence of individual language learnability — as expected from
general evolutionary considerations. Our computational model establishes
the following:

1. Learnability is a well-known criterion for the adequacy of grammat-
ical theories. Qur model provides an evolutionary criterion: By comparing
the trajectories of dvnamical linguistic systems to historically observed tra-
jectories. one can determine the adequacy of linguistic theories or learning
algorithms.

2. We derive explicit dynamical systems corresponding to parameter-
ized linguistic theories (e.g. the Head First/[Final parameter in HPSG or
GB grammars) and memoryless language learning algorithms (e.g. gradient
ascent in parameter space).

3. In the simplest possible case of a 2-language (grammar) system differ-
ing by exactly | binary parameter, the system reduces to a quadratic map
with the possibility of the usual chaotic properties (dependent on initial con-
ditions). That such complexity can arise even in the simplest case suggests
that formally modeling language change may be quite mathematically rich.

4. We illustrate the use of dynamical systems as a research tool by
considering the loss of Verb Second position in Old French as compared to
Modern French. We demonstrate by computer modeling that one grammat-
ical parameterization advanced in the linguistics literature does not seem to
permit this historical change, while another does.

5. We can more accurately model the time course of language change. In
particular, in contrast to Kroch (1990) and others, who mimic population
biology models by imposing an S-shaped logistic change by assumption,
we explain the time course of language change, and show that it need not
be S-shaped. Rather, language-change envelopes are derivable from more
fundamental properties of dynamical systems: sometimes they are S-shaped,
but they can also be nonmonotonic.



2 The Acquisition-Based Model of Language Change

We show how a combination of a grammatical theory and alearning paradigm
leads directly to a formal dynamical systems model of language change.

First, informally, consider a linguistically homogeneous adult population
speaking a particular language. Individual children exposed to example sen-
tences attempt to attain their caretaker target grammar. After a finite num-
ber of examples. some are successful, but others may misconverge. The next
generation will therefore no longer be linguistically homogeneous. The third
generation of children will hear sentences produced by the second—a differ-
ent distribution—and they, in turn, will attain a different set of grammars.
Over generations. the misconvergences of individual learners will propagate
leading to the evolution of the linguistic composition of the population as
a dvnamical svstem. In the remainder of this paper we formalize this in-
tuition, showing the evolution of language types over successive generations
within a single community. We return to the details later, but let us first
formalize our intuitions.

2.1 Grammatical theory, Learning Algorithm, Sentence Dis-
tributions

Let us formally specify the following objects that will play a key role in
determining the nature of our dynamical system for language change.

L. Denote by G, a family of possible (target) grammars. Each grammar
g € G defines a language L(g) C £~ over some alphabet T in the usual way.

2. Denote by P, the distribution with which sentences of £* are presented
to the individual learner (child). More specifically, let P; be the distribution
with which sentences of the ith grammar g; € G are presented if there is
a speaker of g; in the adult population. Thus. if the adult population is
linguistically homogeneous (with grammar g;) then P = P;. If the adult
population speaks 50 percent L(g;) and 50 percent L(g;) then P = %P; +
%P2.

3. Denote by A the learning algorithm that children use to hypothesize
a grammar on the basis of input data. If d,, is a presentation sequence of n
randomly drawn examples, then learnability requires the learner to converge
to the target grammar in the limit (for every target grammar g, in the class),
ie.,

ProblA(d,) = gi] —n—oo 1



Learnability serves as an important criterion for the adequacy of lin-
guistic theories. Thus linguists attempt to characterize the class of possible
human languages by G in such a way that the class is learnable. Devel-
opmental psychologists attempt to characterize the learning algorithm by
means of which children actually choose grammars in this class on exposure
to primary linguistic data. By combining the results of each research en-
terprise, we attempt to derive the evolutionary consequences of particular
theories of language and associated theories of learning.

2.2 Dynamical System Model

We now define the resultant dvnamical svstem by providing its two necessary
components:
A State Space (S): a set of system states. Here. the state space is the
space of possible linguistic compositions of the population. Formally, a state
is described by a distribution P,,, on G. The distribution P,,, describes the
proportion of the population speaking each of the languages corresponding
to the grammars in G. The state space S is therefore the space of all possible
probability distributions on G. Note that the state space depends only upon
the grammatical theory and nothing else.
An Update Rule: how the system states change from one time step to
the next. Typically, this involves specifying a function. f, that maps s; €
S to si41. In our case the update rule can be derived directly from the
learning algorithm A in conjunction with the sentence distributions P;’s.
Learning is the key that changes the distribution of languages spoken from
one generation to the next.

Let us outline the procedure for obtaining the update rule. Given the
state at generation ¢, i.e., Py, we see that any w € I7 is presented to the
learner with probability

P(UJ) = Z € Pi(w)Ppop,t(hi)
hi€G

where P,op :(h;) is the proportion of the adult population who have internal-
ized the grammar h; and P; is distribution with which such speakers produce
sentences.

The learning algorithm A uses the linguistic data (n examples, indicated
by dp) and conjectures hypotheses (A(d,) € G). One can, in principle,
compute the probability with which the learner will develop an arbitrary
hypothesis, h;, after n examples:



Prob[A(dn) = h;] = pa(h;) (1)

Imagine that after n examples. maturation occurs. i.e., the child retains
for the rest of its life the hypothesis it has after n examples. Then, with
probability p.(h;), an arbitrary child will have internalized grammar h;.
Thus. in the next generation, a proportion p,(k;) of the population will
have grammar h;, i.e.. the linguistic composition of the next generation is
given by Pyop:+1(h;) = pnl(h;) for every h;j € G. In this fashion, we have an
update rule. Poop ¢ — Propet1-

Maturation is a psychologically plausiole theory that captures the notion
that there is a finite learning phase after which humans do not attempt
to change their grammars any further. In other words. humans are not
forever entertaining the possibility of changing their current grammatical
hypotheses with the availability of more data, but after a period of time,
thev "mature” and retain their mature hypothesis for the rest of their adult
lives. There might be some debate about when exactly this maturation
occurs but for our purposes we assume that there is some value n that
characterizes this. From a mathematical perspective. we could take the
limit of eq. 1 as n tends to infinity to derive the dynamical system in the
absence of any maturational theory. Such a limit is however not guaranteed
to exist and the maturational theory therefore aids us in making sure that
the update rule always exists.

Generality of the approach. Note that such a dynamical system ex-
ists for cvery choice of A. G, and P; (relitive to the constraints mentioned
earlier). In short then, we have outlined the procedure for the following
transformation

(G, A, {F;}) — D( dynamical system)

Importantly, this formulation does not assume any particular linguistic the-
ory, learning algorithm, or distribution over sentences. One can now inves-
tigate within this framework, the evolutionary implications of a variety of
learning theories and grammatical theories and compare the evolutionary
predictions against historical data.

-~



3 Language Change in Parametric Systems

We now instantiate our abstract system by modeling some specific cases.
Suppose we have a “parameterized” grammatical theory, such as HPSG or
GB (Chomsky, ‘81), with n boolean-valued parameters and a space G with 2"
different languages (in this case, equivalently, grammars). Further take the
assumptions of Gibson and Wexler (1994), regarding sentence distributions
and learning: P; is uniform on unembedded sentences generated by g; and A
is a local, online. error-driven learning algorithm called the TLA (Triggering
Learning Algorithm). For concreteness, we provide a formal description of
the TLA.

TLA (Triggering Learning Algorithm

e [Initialize] Step 1. Start at some random point in the (finite) space of
possible parameter settings, specifying a single hypothesized grammar
with its resuiting extension as a language:

¢ [Process input sentence] Step 2. Receive a positive example sentence s;
at time ¢; (examples drawn from the language of a single target gram-
mar. L(G})), from a uniform distribution on the degree-0 sentences of
the language (we relax this distributional constraint later on);

e [Learnability on error detection] Step 3. If the current grammar parses
; p g p
(generates) s;. then go to Step 2: otherwise. continue.

¢ [Single-step hill climbing] Step 4. Select a single parameter uniformly
at random. to flip from its current setting. and change it (0 mapped
to 1. 1 to 0) iff that change allows the current sentence to be analyzed:

Clearly. the TLA is a memoryless learning algorithm that updates its
grammatical hypothesis after every example sentence in an attempt to attain
the target grammar (parameter settings). There are variants of the TLA
that we will consider later in this paper.

To derive the relevant update rule for our dynamical system of language
change we need to be able to quantify eq. 1. To that end, we are helped by
the following results (the first straightforward: see Nivogi, 1994):

Claim 1 Any memoryless incremental learning algorithm that attempts to
set the values of the parameters on the basis of ezample sentences, can
be modeled ezactly by a Markov Chain. For an n-parameter system, this
Markov chain has 2" states with each state corresponding to a particular



grammar. The transition probabilities depend upon the distribution P with
which sentences are provided to the learner, and the manner in which the
learning algorithm A updates its hypothesis.

Ofcourse, it is hardly surprising that a memoryless learning algorithm
can be modeled by a first order Markov chain. The usefulness of the Markov
analysis however, is that it now allows us to characterize the probability
with which the learner will attain each of the possible parameter settings.
Specifically,

Lemma 1 The probability that the memoryless learner internalizes hypoth-
ests h; after m examples (solution to equation 1) is given by:

Prob[ Learner’s hypothesis = h; € G after m examples)

= (& (L. LYT™}]

Here, T is the transition matriz of the Markov chain characterizing the
hypothesis changes made by the memoryless learner, (1,....1) is a 2™- di-
mensional row vector with all ones, and the learner starts with an initial
hypothesis chosen uniformly at random.

The above lemma characterizes eq. 1 that we can now use to derive the
update rule. Thus, we obtain our reqnired dvnamical svstem for parameter-
based theories and memoryless acquisition algorithms. The evolution can
be characterized in the following manner.

1. Let Iy be the initial population mix. Assume P;’s as above. Com-
pute the distribution of primary linguistic data to the children (P)
accordingly from IIy, and F;’s.

2. Compute T (the transition matrix of the learner) according to the
claim.

3. Use the lemma to obtain the update rule, to get the population mix
IT,.

4. Repeat for the next generation.

Let us now apply this mathematical model to the simplest possible case:
two grammars (languages) differing by exactly one binary parameter. We



shall see that even here the mathematics becomes nontrivial. Following
the detailed analysis of the one parameter case, pursuing a more realistic
setting, we turn to a 3-parameter, 8 grammar model, concluding with an
application to a real case of diachronic syntax change, the loss of verb second
in the change from Old French to Modern French.

4 One Parameter Models of Language Change

Consider the following simple scenario.
G : Imagine that due to UG constraints there are only two possible gram-
mars (parameterized bv one boolean valued parameter) associated with two
languages in the world. L; and L,.
P : Suppose that speakers who have internalized grammar g; produce sen-
tences with a probability distribution P, (on the sentences of Ly). Similarly,
assume that speakers who have internalized grammar ¢, produce sentences
with P, (on sentences of Ly).

One can now define

a

P][Ll N LQ]Z l—a= Pg[[/l \ Lz]

and similarly
b = Pz[Ll N L-z]; 1 - b= Pz[LQ \ Ll]

A Assume that the learner uses the TLA to set parameters.

N ¢ Let the learner have just two example sentences before maturation
occurs, i.e.. after two example sentences. the grammatical hypothesis the
learner has will be retained for the rest of its life.

Given this framework, it is possible. as discussed, to characterize the be-
havior of the individual learner by a Markov chain (see Nivogi and Berwick.
1994) with two states, one corresponding to each grammar. If sentences were
provided according to distribution P;, the transition matrix would be T} and
if sentences were provided according to P, the transition matrix would be
T, as shown below:

T
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The TLA learner’s hypothesis would change from g¢; (corresponding to
language L) to g2 (correspondingly L,) from example to example according
to transition probabilities shown in the matrices above. Thus, if the learner
happens to pick L; as its random initial hypothesis. and the target gram-
mar happens to be L, then, with probability b the learner will retain its
hypothesis after one example, and with probability 1 — b, it will change it.

What happens when there is no single unique target grammar? It is
possible to show that if sentences are drawn with probability p from L,
and probability 1 — p from L, then the transition matrix characterizing the
learner’s hypotheses is provided by:

T=phh +(1-pT,

This would allow nus to characterize the evolving linguistic composition
of the population over time.

4.1 The Linguistic Population

At any given point in time, the population consists only of speakers of L,
and L,. Consequently, the linguistic composition can be represented by a
single variable, p: this will denote the fraction of the population speaking
L,. Clearly | — p will speak L,.

It is possible to show that the linguistic composition will evolve as:

Theorem 1 The linguistic composition in the (n + 1)th generation (pp41)
is related to the linguistic composition of the nth generation (p,) in the
following way:

Pn+1 = Api + Bpn +C

where A = %((l - —(1-a)); B=bl=-b)+(l—a)and C = %

A few points are in order:

1. When a = b. the system has exponential growth. When a # b the
dynamical system is a quadratic map (which can be reduced by a transforma-
tion of variables to the logistic, and shares the same dynamical properties).
See fig. 1

2. The scenario a # b is much more likely to occur in practice— con-
sequently, we are more likely to see logistic growth rather than exponential
ones. Crucially, the logistic form has now been derived rather than assumed
as in previous work (e.g., Kroch, 1990).
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3. We get a class of dynamical systems. The quadratic nature of our map
comes from the fact that NV = 2. If we choose other values for N we would
get cubic and higher order maps. We show the explicit derivation of some of
these. There are already an infinite number of maps in the simple one pa-
rameter case. For larger parametric systems and more complicated learning
algorithms, the mathematical situation is significantly more complex.

4. Logistic maps are known to be chaotic. In our system, it is possible
to show that:

Theorem 2 Due to the fact that a.b < 1, the dynamical system never enters
the chaotic regime.

This naturally raises the question—is this true for all grammatical dy-
namical systems. specifically the linguistically “natural” cases? Or are there
ones where chaos will manifest itself? (It would obviously be quite interest-
ing if all the natural grammatical system spaces were nonchaotic.) Further
research on this subject is planned.

4.2 Other Choices of \:

Let us now consider the case where the maturation time, N, is equal to
3. Everything else is just as before, i.e., there are two languages, and the
learning algorithm is the TLA. How does the population evolve?

As before, the state of the population at anv point in (generational) time
can be characterized by a single variable p taking values in [0, 1]. Thus, p
represents the proportion of the population speaking language L; (corre-
spondingly, having internalized grammar, g, ).

It is possible to prove:

Theorem 3 The evolution of p is given by the cubic mnap
Prnt1 = Api + Bp?z, +Cpn+ D

where A = (a - b)%(2—a—b); B = (a - b)(2 - 2a+4b— ab—3b2);C =
AL+ b)(1—a)+b%(2-3b+a); D =53

Interestingly enough, if @ # b, we get a cubic map. If a = b, however,
the system degenerates to a first order map again. Note, however, that this
first order map is different from that obtained when .V = 2 and a = b. The
cubic nature of this map arises clearly due to our choice of N = 3.

12



As the value of V increases, we will get higher order maps. However,
the coefficients of the map (indicated by A, B,C, D in the above cubic case)
depend in nontrivial ways upon the parameters (¢ and b). Consequently,
the coefficients are not independent of each other. Furthermore they are
not able to take on all possible values since 0 < a.b < 1.

Now consider the case where .V = oo. In other words, the child has
infinite amount of time to mature and attain its linguistic hypothesis. It is
possible to prove

Theorem 4 The proportion of L, speakers evolves according to the update
rule

pn(l - a)
(L=b)+ pulb - a)

Pn+1 =

A number of observations are worthwhile. First, notice that if a = b, we
find that p,4; = p, for all n. In other words. the population never changes
its linguistic characteristics from generation to generation. If, ¢ < b it can
be shown that p, tends to 1 as n tends to infinity from all initial conditions.
This makes sense for a < b implies that language L is easier to learn than
L, because there are less ambiguous (in the sense of being analyzable by
both grammars) sentences in L; and consequently over generations we find
that all speakers tend to acquire L,. The reverse is true when a > b when
it is possible to show that p, tends to 0 as n tends to infinity.

In summary, if the maturation time is NV = oo. we find that populations
either remain stable all the time with no change at all (a = ) or one language
type is completely eliminated from existence over time.

Thus we see that the number of examples the child is given in order for it
to form its mature. adult. hypothesis might significantly affect the dynamics
of the evolutionary systems that result. One could. therefore. in principle.
concretely quantify the evolutionary effect of different maturational theories
and use this to judge the adequacy of such theories for human language
acquisition.

4.3 Other Choices of A :

Let us now return to the situation where N = 2. As we discussed, we get
a variety of quadratic maps when this happens. How this map will depend
upon the parameters a.b depend upon the details of the learning algorithm.
The learning algorithm is just a mapping from the data to grammatical
hypotheses. This mapping might be deterministic or it might be stochastic

13



corresponding to randomized learning algorithms. We examine below a few
simple variations in the learning algorithms and the corresponding language
change models that correspond to these.

Consider the following variations in algorithms:
Algorithm 1 (A;) : Start with a default parameter setting of L,. Now
follow the TLA. In other words:

1. Let Initial Hypothesis be g;.
2. Receive new example sentence.

3. Flip hypothesis if and only if the new example sentence is not analyz-
able by the current hypothesis.

4. Go to 2.

The above algorithm is an online, memoryless one that differs from the
TLA only in that it chooses g; as a default initial hypothesis rather than
randomly choosing one. Its behavior can easily be analyzed by the Markov
chain method, eq. 1 can be characterized and the language change model
derived. In contrast. consider the following two algorithms that operate in
batch mode. In other words. the learner makes a hypothesis after analyzing
both the examples it receives. Of course, one could have batch algorithms
for arbitrary NV in which case the learner would make its hypothesis after all
N examples have been received. We have considered only the case of ¥V =2
for simplicity. The first algorithm (A;) is one that is biased to prefer g; as
a hypothesis. The second algorithm (A3) is a stochastic version of the first.
Algorithm 2 (A;):

1. Collect two example sentences.

2. Choose g, unless both examples are not analyzable by g,. Otherwise,
choose ¢;.

Algorithm 3 (A3):
1. Run algorithm A,.

2. Flip the output of A3 with probability  and output the result as the
grammatical hypothesis.

It is possible to show:

14



Theorem 5 The linguistic population evolves according to the following
rules in each of the three cases:

(1) pog1 = (@ = b)(1 = b)p2 + (1 = b)(2b+ 1 — a)pn + b°

(2) prar = (1 = a)?p]

(3) pnyr =1+ (L = 2n)pi

With this analysis in hand, we can make some summary observations.
The form of the update rule, though quadratic, differs in the three cases.
In case 1, we get a logistic update only if a # b. In case 2, it is easy to
show that the the population always moves to a fixed stable point of a
completely homogeneous L, speaking community, i.e., p, tends to 0 in all
cases except where a = 0. This makes sense as the learning algorithm is
hiased towards gy and it becomes difficult for L; speakers to survive for
very long. Interestingly, case | and case 2 correspond to two situations where
the learning algorithm is biased but with drastically different evolutionary
consequences. While one language tvpe is entirely climinated in case 2, both
language types are usually always present in the evolutionary trajectories
corresponding to case 1. In this fashion, one could concretely determine
the evolutionary implications of different kinds of learning algorithms. Case
3 corresponds to a randomized learner ard here we get a quadratic map if
n > 0. As a point of interest, we note that when = 1, we actually get period
doubling behavior and in the limit, the populations are always homogeneous
except that generations alternately speak [, and L,. Of course, n = 1
corresponds to a learner that returns a hypothesis that is the exact opposite
of Ay. Needless to say, this latter algorithm is not a very good learner.

5 Example 2: A Three Parameter System

Turning next from the simplest situation to a more realistic setting, let
us consider a specific example to illusirate the derivation of the previ-
ous section: the 3-parameter syntactic subsystem described in Gibson and
Wexler (1994). Specifically, posit 3 Boolean parameters, Specifier first/final;
Head first/final; Verb second allowed or not, leading to 8 possible gram-
mars/languages ( English and French, SVO-Verb second; Bengali and Hindi,
SOV —Verb second; German and Dutch. SOV+Verb second; and so forth).
The learning algorithm is the TLA. For the moment, take P; to be a uniform
distribution on unembedded sentences in the language. The key results we
obtain by computer simulation of the resulting dynamical systems are as
follows:
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1. All +Verb second populations remain stable over time. Non-
verb second populations tend to gain Verb second over time (e.g., English-
type languages change to a more German type) contrary to historically ob-
served phenomena (loss of Verb second in both Irench and English) and
linguistic intuition (Lightfoot, 1991). This evolutionary behavior suggests
that either the grammatical theory or the learning algorithm are incorrect,
or both.

2. Rates of change can vary from gradual S-shaped curves to
more sudden changes (fig. 5).

3. Diachronic envelopes are often logistic, but not always. Note
that in some alternative models of language change. the logistic shape has
sometimes been assumed as a starting point. see. e.g.. Kroch (1990). How-
ever. Kroch concedes that “unlike in the population biology case. no mech-
anism of change has been proposed from which the logistic form can be
deduced.” On the contrary, we propose that language learning (or mislearn-
ing due to misconvergence) could be the engine driving language change.
The nature of evolutionary behavior need not be logistic. Rather, it arises
from more fundamental assumptions about the grammatical theory, acqui-
sition algorithm, and sentence distributions. Sometimes the trajectories are
S-shaped (often associated with logistic growths): sometimes not as in fig. 5.

4. In many cases a homogeneous population splits into stable
linguistic groups.

5. Varying maturation time affects evolutionary trajectories.
See fig. 5.

6. Different initial population mixes lead to phase space plots
with possible fixed points. In the previous simulations, we always ini-
tialized the dvnamical system with a homogeneous poulation. Instead of
starting with homogeneous populations, one could. of course, consider any
nonhomogeneous initial condition. e.g. a mixture of English and German
speakers. Each such initial condition results in a grammatical trajectory.
One typically characterizes dynamical systems by their phase-space plots.
These contain all the trajectories corresponding to different initial condi-
tions, exhibited in fig. 5.

It remains to precisely characterize the fixed points in such settings and
for different parameterizations. Note, though, that the possibility of fixed
points for different initial language mixtures gives rise to the following (per-
haps important) possiblility, which we again leave for future work:

7. The existence of fixed points for language mixtures offers
a potentially novel alternative account of the “universality” of
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creole languages. Bickerton (1981, 1990) has argued that since geograph-
ically distinct creole languages — languages relatively rapidly and diachron-
ically evolved from different contact languages — all seem to share the same
distinctive svntactic/morphological properties despite their disparate geo-
graphic origins, it must be the case that all creoles mirror a common “uni-
versal grammar”. In other words, the explanation for the commonality of
creole structure lies in an apparent reversion to an underlying universal
grammar. However, the dynamical systems model suggests another logically
possible explanation: common creole characteristics are a by-product of the
common fixed point for the initial language mixes.?

6 The Case of Modern French

We next briefly consider a different parametric system (studied by Clark
and Roberts, 1993) as a test of our model’s ability to impose a diachronic
criterion on grammatical theories. The historical context is the evolution of
Modern French from Old French, in particular, the loss of “Verb second,” the
appearance of a verbal element in exactly the second position of a sentence.
Loss of Verb-Second (from Clark and Roberts, 1993)

Mod. *Puis entendirent-ils un coup de tonerre.
then they heard a clap of thunder.
Ol1d Lors oirent ils venir un escoiz de tonoire.
then they heard come a clap of thunder
Recall that simulations in the previous section indicated an (historically
incorrect) tendency to gain Verb second over time. We now consider Clark
and Roberts’ (1993) alternative 5-parameter grammatical theory. These pa-
rameters include: (1) Null subjects or not; (2) Verb second: and three other
binary parameters having to do with case theory that we need not detail
here, yielding 32 possible languages (grammars). It has been generally ar-
gued that in the middle French period, word forms like Adv(erb) V(erb)
S(ubject) decreased in frequency, while others like Adv S V increased; even-
tually bringing about a loss of Verb second. We can now test this hypothesis
with the model, varying initial conditions about population mixtures, for-

30f course, this possibility does not exclude Bickerton’s account of creole’s universality
— from another point of view, it strengthens his conclusion, but it does so for another
reason. However, in our view the fixed point possibility does weaken the argument of
universality from observed common convergence.
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eign speakers. etc.

Starting from just Old French, our model shows that, even without for-
eign intrusion, eventually speakers of Old French die out altogether, and
within 20 generations. 15 percent of the speakers have lost Verb second com-
pletely. However, note that this is not sufficient to attain Modern French,
and the change is too slow. In order to more closely duplicate the histor-
ically observed trajectory, we consider an initial condition consisting more
like that actually found: a mix of Old French and data from Modern French
(reproducing the intrusion of foreign speakers and reproducing data similar
to that obtained from the Middle French period, see Clark and Roberts,
1993 for justification).

Given this new initial condition, fig. 6 shows the proportion of speakers
losing Verb second after one generation as a function of the proportion
of sentences from the “foreign” Modern French source. Surprisingly small
proportions of Modern French cause a disproportionate number of speakers
to lose Verb second. corresponding closely to the historically observed rapid
change.

7 Conclusions

Learning theory attempts to account for how individual children solve the
problem of language acquisition. By considering a population of such indi-
vidual “child” learners. we arrive at a model of emergent, global, population
language behavior. Consequently, whenever a linguist proposes a new gram-
matical or learning theory, they are also implicitly proposing a particular
theory of language change, one whose consequences need to be examined. In
particular. we saw the gain of Verb second in the 3-parameter case did not
match historically observed patterns, but the 53-parameter system did. In
this way the dynamical systems model supports the 5-parameter linguistic
system to explain some changes in French. We have also greatly sharpened
the informal notions of the time course of linguistic change and grammatical
stability, indeed, showing that the rich results of population biology theory
can be directly drawn on to study language change. Such evolutionary sys-
tems are, we believe, useful for testing grammatical theories and explicitly
modeling historical language change.

While the computational study of language acquisition has become well
established, the computational study of language change has not been as far
advanced. Our aim here is to take a step in this direction and arrive at a
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research program for the computational study of language change. Such a
research program requires that one fix (a) the relevant components of the
grammatical theory that capture the variations across languages: (b) a com-
putational account of language acquisition: and (c) the relevant historical
data that is to be captured by the evolutionary theory.

In deriving the evolutionary consequences in this paper, several simpli-
fying assumptions were made. First, it was assumed that all children in a
community receive example sentences drawn from the same linguistic dis-
tribution. This ignores (geographic and cultural) neighborhood effects. but
in a way that may be easily remedied in the future. For example. although
the total adult population might be half Spanish speaking and half English
speaking, the speakers might live in neighborhoods that are entirely Spanish
and entirely English speaking. The children living in these neighborhoods
are exposed to different distributions of primary linguistic data from the
Spanish and English sources. A second simplifying assumption made was
that of non-overlapping generations. In other words. the entire population
was divided into adults and children. Children received primary linguistic
data only from adults and not from other children. Such a clean genera-
tional division of sources is not strictly true in practice. Again, this more
complex mathematical case of age structured populations could covered by
existing results from population biology. Finally, we have not entertained
the possibility of children acquiring morc than one grammar simultaneously
and the consequences of that for language change. Finally, we assumed that
the analog of “selection” in biological models was the identity mapping; this
could be altered in obvious ways to accommodate models of “least effort”
principles; cultural and sociological charge. and the like.

In short, as with all mathematical modeling, especially initial steps like
the one presented here, we have made certain simplifying assumptions in
order to highlight the basic properties of the dynamical logic: the move
from individuals to population thinking in language. In the best case, these
simplifying assumptions themselves can, and will be, systematically altered
as our principled approach to studying language change advances.
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Figure 1: Evolution of linguistic populations whose speakers differ only in
the V2 parameter setting. This reduces to a one parameter model as dis-
cussed. Note the exponential growth when a = b. The different exponential
curves are obtained by varying the value a = b. When a is not equal to b,
the system has a qualitatively different (logistic) growth. By varying the
values of a and b we get the different logistic curves.
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Figure 2: Left: Percentage of the population speaking languages of the
basic forms V(erb) O(bject) S(ubject) with and without Verb second. The
evolution has been shown upto 20 generations, as the proportions do not
vary significantly thereafter. Right: Percentage of the population speaking
languages S V O —Verb second (English) and V O S (4Verb second) as it
evolves over the number of generations. Notice the sudden shift over a space
of 3-4 generations.
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Figure 3: Time evolution of linguistic composition for the situations where
the learning algorithm used is gradient as:ent. Only the percentage of people
speaking V(erb) O(bject) S(ubject) (+Verb second) is shown. The initial
population is homogeneous and speaks V O S (-V2). The maturational
time (number of sentences the child hears before internalizing a grammar)
is varied through 8, 16, 32, 64, 128, 256, giving rise to six curves. The
curve with the highest initial rate of change corresponds to the situation
where only 8 examples were allowed to the learner to develop its mature
hypothesis. The initial rate of change decreases as the maturation time N
increases.

23



10

VOS+V2
oe o8

o4

02

o0

LX) 0.2 0.4 os LX] 10

Figure 4: Subspace of a Phase-space plot. The plot shows the number of
speakers of V(erb) O(bject) S(ubject) (—Verb second and +Verb second)
as t varies. The learning algorithm was single step, gradient ascent. The
different curves correspond to grammatical trajectories for different initial
conditions.
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Figure 5: Tendency to lose Verb second as a result of new word orders
introduced by Modern French sources in the dynamical systems model.
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