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ABSTRACT 
An ongoing mystery in sensory science is how sensation magnitude 𝑭𝑭(𝑰𝑰), such as loudness, 
increases with increasing stimulus intensity 𝑰𝑰. No credible, direct experimental measures exist. 
Nonetheless, 𝑭𝑭(𝑰𝑰) can be inferred algebraically. Differences in sensation have empirical (but 
non-quantifiable) minimum sizes called just-noticeable sensation differences, ∆𝑭𝑭 , which 
correspond to empirically-measurable just-noticeable intensity differences, ∆𝑰𝑰 . The ∆𝑰𝑰 s 
presumably cumulate from an empirical stimulus-detection threshold 𝑰𝑰𝒕𝒕𝒕𝒕 up to the intensity of 
interest, 𝑰𝑰. Likewise, corresponding ∆𝑭𝑭s cumulate from the sensation at the stimulus-detection 
threshold, 𝑭𝑭(𝑰𝑰𝒕𝒕𝒕𝒕), up to 𝑭𝑭(𝑰𝑰). Regarding the ∆𝑰𝑰s, however, it is unlikely that all of them will be 
known experimentally; the procedures are too lengthy. The customary approach, then, is to 
find ∆𝑰𝑰 at a few widely-spaced intensities, and then use those ∆𝑰𝑰s to interpolate all ∆𝑰𝑰s using 
some smooth continuous function. The most popular of those functions is Weber’s Law, ∆𝑰𝑰 𝑰𝑰⁄ =
𝑲𝑲. But that is often not even a credible approximation to the data. However, there are other 
equations for ∆𝑰𝑰 𝑰𝑰⁄ . Any such equation for ∆𝑰𝑰 𝑰𝑰⁄  can be combined with any equation for ∆𝑭𝑭, 
through calculus, to altogether obtain 𝑭𝑭(𝑰𝑰). Here, two assumptions for ∆𝑭𝑭 are considered: 
∆𝑭𝑭 = 𝑩𝑩 (Fechner’s Law) and (∆𝑭𝑭 𝑭𝑭⁄ ) = 𝒈𝒈 (Ekman’s Law). The respective integrals involve 
lower bounds 𝑰𝑰𝒕𝒕𝒕𝒕 and 𝑭𝑭(𝑰𝑰𝒕𝒕𝒕𝒕). This stands in broad contrast to the literature, which heavily 
favors non-bounded integrals. We, hence, obtain 24 new, alternative equations for sensation 
magnitude 𝑭𝑭(𝑰𝑰) (12 equations for (∆𝑰𝑰 𝑰𝑰⁄ ) × 2 equations for ∆𝑭𝑭). 
 
 
1. INTRODUCTION 
 
A sensory stimulus of physical intensity 𝐼𝐼 , however that is measured, produces a sensation of 
magnitude 𝐹𝐹(𝐼𝐼). How that magnitude grows with intensity continues to be a major topic in sensory 
science, having been of keen interest to psychologists and philosophers for nearly a century and a 
half, and continuing to engross a broad constituency of readers. Nevertheless, determining 𝐹𝐹(𝐼𝐼) has 
proven far more contentious than might have been imagined. First, there are no credible empirical 
measures of sensation magnitude; the evidence against existing “sensory scaling” practices is 
voluminous, and need not be cited here. Second, there are conceptual restrictions on algebraic 
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derivations of possible 𝐹𝐹(𝐼𝐼)s. Those restrictions are what this paper will explore, for perception in 
human subjects. 

Before proceeding, it is necessary to note that the literature contains a number of pervasive 
assumptions. The first (but typically unmentioned) assumption is based on intuition: namely, that 
sensation 𝐹𝐹 is a monotonically increasing function of stimulus intensity I. Another typically unstated 
assumption is that, when inferring 𝐹𝐹(𝐼𝐼), we may ignore any changing aspect of sensation that is not 
caused primarily by intensity change, for example, a heard change in a sound-waveform’s “pitch”, 
primarily correlated with waveform frequency. Yet another assumption, based again upon intuition, 
is that differences in sensation have minimum sizes; that is, they cannot become infinitely small, 
which would represent infinite sensitivity to changes in stimulus intensity. A further assumption is 
that the actual minimal differences in sensation, the sensation chunks (so-to-speak), can be added 
together to produce the intensity-dependent sensation magnitude. This assumption follows Fechner1,2, 
and represents the notion that sensation growth with intensity follows a ratio scale. As an example of 
a ratio scale, consider the following non-sensory example from Reber and Reber3, the scale of 
measured weight (not its ensuing sensation). Whether measured in kilograms or in any other weight 
unit, weight has a true zero-point. That is, the scale of weight has no negative values, and the bottom 
of the weight scale is “zero”, representing the lack of an object to weigh. Any two weights can form 
a meaningful ratio, and any such ratio has the same meaning under multiplication of numerator and 
denominator by a given positive constant (e.g., a weight ratio of ½ has the same meaning as one of 
8/16, and a weight ratio of 2/1 has the same meaning as 6/3). 

Quantities describable using ratio scales can be added together to make proportionately greater 
quantities. Besides sensation, physical intensity is one such quantity. For a positive integer 𝑗𝑗 labeling 
an intensity 𝐼𝐼𝑗𝑗 that evokes a corresponding sensation 𝐹𝐹𝑗𝑗, let us denote an empirical just-noticeable 
sensation difference ∆𝐹𝐹 𝑎𝑎𝑎𝑎 𝐹𝐹𝑗𝑗  that specifies a corresponding just-noticeable intensity difference 
∆𝐼𝐼 𝑎𝑎𝑎𝑎 𝐼𝐼𝑗𝑗 as follows: 
 
∆𝐼𝐼 𝑎𝑎𝑎𝑎 𝐼𝐼𝑗𝑗 =  (∆𝐼𝐼)𝑗𝑗    (1𝑎𝑎), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑡𝑡𝑡𝑡  ∆𝐹𝐹 𝑎𝑎𝑎𝑎 𝐹𝐹𝑗𝑗 = (∆𝐹𝐹)𝑗𝑗    (1𝑏𝑏) 
 
For any detectable stimulus there is an empirical stimulus-detection threshold 𝐼𝐼𝑡𝑡ℎ = 𝐼𝐼1. Hence, the 
increments ∆�𝐼𝐼𝑗𝑗� accumulate from 𝐼𝐼𝑡𝑡ℎ = 𝐼𝐼1 where ∆(𝐼𝐼𝑡𝑡ℎ) = ∆(𝐼𝐼1), up to the desired intensity 𝐼𝐼𝑚𝑚+1, 
reached from the lesser intensity 𝐼𝐼𝑚𝑚  by the increment ∆(𝐼𝐼𝑚𝑚) . Correspondingly, the sensation 
increments (∆𝐹𝐹)𝑗𝑗  accumulate from the sensation at the stimulus-detection threshold 𝐼𝐼𝑡𝑡ℎ , 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) =
𝐹𝐹(𝐼𝐼1), to the sensation 𝐹𝐹(𝐼𝐼𝑚𝑚+1), reached from 𝐹𝐹(𝐼𝐼𝑚𝑚) by the increment ∆𝐹𝐹(𝐼𝐼𝑚𝑚). 

Of course, it is unlikely that the sizes of the intensity increments will be known experimentally 
for sufficient numbers of 𝐼𝐼𝑗𝑗 to provide a convincing empirical curve of (∆𝐼𝐼)𝑗𝑗 versus 𝐼𝐼𝑗𝑗; the laboratory 
procedures simply prove too lengthy. To obtain laboratory just-noticeable intensity changes, 
therefore, the usual approach is to find ∆𝐼𝐼 empirically at a few widely-spaced values of 𝐼𝐼, and then 
infer its value in-between, by using some smooth continuous equation to to approximate the course 
of the graphed data points {𝑥𝑥,𝑦𝑦} = �𝐼𝐼𝑗𝑗 ,∆�𝐼𝐼𝑗𝑗��. Of the candidate equations, the one that has proven 
most popular was proposed by Weber4. Fechner1 dubbed it Weber’s Law, and described it as follows: 
“The magnitude of the stimulus increment must increase in precise proportion to the stimulus already 
present, in order to bring about an equal increase in sensation [i.e., a constant ∆𝐹𝐹(𝐼𝐼)]” (Ref. 1, p. 54). 
Note Fechner’s added condition: that ∆𝐹𝐹(𝐼𝐼) be constant, a relation now called Fechner’s Law. That 
particular stipulation will be explored further below. Meanwhile, Weber’s Law can be written as an 
equation by introducing a unitless constant, 𝐾𝐾: 
 
∆𝐼𝐼
𝐼𝐼

= 𝐾𝐾     (2) 
 
Fechner1 described a lot of evidence for Weber’s Law, some of which (according to Ref. 1, p. 125) 
dates at least back to Bouguer5, whose stimulus was candle-light. The quantity ∆𝐼𝐼 𝐼𝐼⁄  itself is called 



the Weber Fraction and continues to be employed into the 21st Century to quantify human 
discriminability in vision6-10, in hearing11-17, and in flavor18-20 (formerly called “taste”). There has 
been special interest in the pressure senses (touch, vibration, weight)10, 21-40. The Weber Fraction has 
also been used to quantify sensory discriminability in animals (citations omitted). Yet, the notion of 
the Weber Fraction being a constant (for a given kind of stimulus), that is Weber’s Law, has been 
considered debatable for decades41,42, despite ongoing claims of re-confirmation. Indeed, measuring 
∆𝐼𝐼 𝐼𝐼⁄  is confounded by the experimental context (see, for example, Ross43). Masin42 summarized 
experimental data for various senses in man, and concluded that, in many cases, Weber’s Law may 
not even be a credible approximation to the plot of discriminability change versus intensity. Certainly, 
systematic deviations from Weber’s Law are easily found in the literature, for example in audition44-

47. All told, a close fit of Weber’s Law to the empirical change of the just-noticeable intensity 
difference may be the exception rather than the rule. However, as Masin42 remarked, one might not 
realize this after reading some published analyses, including those that Masin cites. 
 
2 THE MATH: FECHNERIAN INTEGRATION 
 

There have long existed other equations for the Weber Fraction ∆𝐼𝐼 𝐼𝐼⁄ , besides Weber’s Law. 
Following Weber4, Fechner (Ref. 2, pp. 16-41) listed various alternative equations for the Weber 
Fraction, and combined them with Fechner’s Law through calculus, in order to obtain equations for 
the putative dependence of sensation magnitude on stimulus intensity, 𝐹𝐹(𝐼𝐼). We can explore an even 
greater range of choices than Fechner did. Let us first explicate the most-general case of the algebra. 

To begin, let us assume that there exist smooth, continuous relations 𝛼𝛼(𝐼𝐼) and 𝛽𝛽(𝐹𝐹) such that 
 
(∆𝐼𝐼)𝑗𝑗 = 𝛼𝛼�𝐼𝐼𝑗𝑗�   (3a)      and      (∆𝐹𝐹)𝑗𝑗 = 𝛽𝛽�𝐹𝐹𝑗𝑗�   (3𝑏𝑏)        𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ≥ 1, 𝑗𝑗 ∈ 𝕀𝕀+ 
 
Clearly (∆𝐼𝐼)𝑗𝑗 𝛼𝛼�𝐼𝐼𝑗𝑗�⁄ = 1. Let 𝑚𝑚 be the cumulative number of just-noticeable intensity changes ∆𝐼𝐼 
between 𝐼𝐼1 (which equals 𝐼𝐼𝑡𝑡ℎ) and 𝐼𝐼𝑚𝑚+1. Hence 
 

𝑚𝑚 = �
(∆𝐼𝐼)𝑗𝑗
𝛼𝛼�𝐼𝐼𝑗𝑗�

         (4)
𝑗𝑗=𝑚𝑚

𝑗𝑗=1

 

 
Likewise, (∆𝐹𝐹)𝑗𝑗 𝛽𝛽�𝐹𝐹𝑗𝑗�⁄ = 1 and the cumulative number of sensation changes ∆𝐹𝐹 between 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) =
𝐹𝐹(𝐼𝐼1) and 𝐹𝐹(𝐼𝐼𝑚𝑚+1) is 
 

𝑚𝑚 = �
(∆𝐹𝐹)𝑗𝑗
𝛽𝛽�𝐹𝐹𝑗𝑗�

𝑗𝑗=𝑚𝑚

𝑗𝑗=1

      (5) 

 
We can express the sensation increment (∆𝐹𝐹)𝑗𝑗 as 𝐹𝐹�𝐼𝐼𝑗𝑗 + (∆𝐼𝐼)𝑗𝑗� − 𝐹𝐹�𝐼𝐼𝑗𝑗�, allowing a Taylor series 
 

(∆𝐹𝐹)𝑗𝑗 = 𝐹𝐹�𝐼𝐼𝑗𝑗 + (∆𝐼𝐼)𝑗𝑗� − 𝐹𝐹�𝐼𝐼𝑗𝑗� = �
𝑑𝑑𝑑𝑑(𝐼𝐼)
𝑑𝑑𝑑𝑑

�
𝑗𝑗

(∆𝐼𝐼)𝑗𝑗 + �
𝑑𝑑2𝐹𝐹(𝐼𝐼)
𝑑𝑑𝐼𝐼2

�
𝑗𝑗

(∆𝐼𝐼)𝑗𝑗
2 + 𝑂𝑂�(∆𝐼𝐼)𝑗𝑗

3�        (6) 

 
where 𝑂𝑂�(∆𝐼𝐼)𝑗𝑗

3� refers to terms of third-and-higher order. Substituting (∆𝐹𝐹)𝑗𝑗 into the right-hand-
side of Eq. (5), 
 

�
(∆𝐹𝐹)𝑗𝑗
𝛽𝛽�𝐹𝐹𝑗𝑗�

𝑗𝑗=𝑚𝑚

𝑗𝑗=1

 = ��
(∆𝐼𝐼)𝑗𝑗
𝛽𝛽�𝐹𝐹𝑗𝑗�

∙ �
𝑑𝑑𝑑𝑑(𝐼𝐼)
𝑑𝑑𝑑𝑑

�
𝑗𝑗
�

𝑗𝑗=𝑚𝑚

𝑗𝑗=1

+ ��
(∆𝐼𝐼)𝑗𝑗

2

𝛽𝛽�𝐹𝐹𝑗𝑗�
∙ �
𝑑𝑑2𝐹𝐹(𝐼𝐼)
𝑑𝑑𝐼𝐼2

�
𝑗𝑗
�

𝑗𝑗=𝑚𝑚

𝑗𝑗=1

+ �
𝑂𝑂�(∆𝐼𝐼)𝑗𝑗

3�
𝛽𝛽�𝐹𝐹𝑗𝑗�

           (7)
𝑗𝑗=𝑚𝑚

𝑗𝑗=1

 



 
From Eqs. (4) and (5), and taking the limit in which each just-noticeable intensity difference becomes 
infinitely small, we have, for 𝐼𝐼1 = 𝐼𝐼𝑡𝑡ℎ, 
 

lim
(∆𝐼𝐼)𝑗𝑗→𝑑𝑑𝑑𝑑

�
(∆𝐼𝐼)𝑗𝑗
𝛼𝛼�𝐼𝐼𝑗𝑗�

𝐼𝐼𝑗𝑗,𝑗𝑗=𝑚𝑚

𝐼𝐼𝑗𝑗,𝑗𝑗=1

 = lim
(∆𝐼𝐼)𝑗𝑗→𝑑𝑑𝑑𝑑

�
(∆𝐹𝐹)𝑗𝑗
𝛽𝛽�𝐹𝐹𝑗𝑗�

𝐹𝐹𝑗𝑗,𝑗𝑗=𝑚𝑚

𝐹𝐹𝑗𝑗,𝑗𝑗=1

,   ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑑𝑑𝑑𝑑
𝛼𝛼(𝐼𝐼)

𝐼𝐼𝑚𝑚+1

𝐼𝐼1
 =  lim

(∆𝐼𝐼)𝑗𝑗→𝑑𝑑𝑑𝑑
�

(∆𝐹𝐹)𝑗𝑗
𝛽𝛽�𝐹𝐹𝑗𝑗�

𝐹𝐹𝑗𝑗,𝑗𝑗=𝑚𝑚

𝐹𝐹𝑗𝑗,𝑗𝑗=1

      (8) 

 
Further, denoting 𝐹𝐹1 = 𝐹𝐹(𝐼𝐼1) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ), we recognize that 
 

 lim
(∆𝐼𝐼)𝑗𝑗→𝑑𝑑𝑑𝑑

� �
(∆𝐼𝐼)𝑗𝑗
𝛽𝛽�𝐹𝐹𝑗𝑗�

∙ �
𝑑𝑑𝑑𝑑(𝐼𝐼)
𝑑𝑑𝑑𝑑

�
𝑗𝑗
�

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=𝑚𝑚

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=1

= �
𝑑𝑑𝑑𝑑
𝛽𝛽(𝐹𝐹)

𝐹𝐹𝑚𝑚+1

𝐹𝐹1
    (9) 

 
Altogether, from Eqs. (7), (8), and (9), 
 

�
𝑑𝑑𝑑𝑑
𝛼𝛼(𝐼𝐼)

𝐼𝐼𝑚𝑚+1

𝐼𝐼1
 = �

𝑑𝑑𝑑𝑑
𝛽𝛽(𝐹𝐹)

𝐹𝐹𝑚𝑚+1

𝐹𝐹1
 + lim

(∆𝐼𝐼)𝑗𝑗→𝑑𝑑𝑑𝑑
� �

(∆𝐼𝐼)𝑗𝑗
2

𝛽𝛽�𝐹𝐹𝑗𝑗�
∙ �
𝑑𝑑2𝐹𝐹(𝐼𝐼)
𝑑𝑑𝐼𝐼2

�
𝑗𝑗
�

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=𝑚𝑚

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=1

+ lim
(∆𝐼𝐼)𝑗𝑗→𝑑𝑑𝑑𝑑

�
𝑂𝑂�(∆𝐼𝐼)𝑗𝑗

3�
𝛽𝛽�𝐹𝐹𝑗𝑗�

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=𝑚𝑚

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=1

    (10) 

 
Note well that, despite the equals sign, Eq. (10) is already an approximation, due to the limit (∆𝐼𝐼)𝑗𝑗 →
𝑑𝑑𝑑𝑑; real just-noticeable intensity differences never tend towards the indefinitely small, which (for 
present convenience) might be defined as “below the resolution of contemporary instruments”. 
Regardless, let us maintain an “equals” sign, as often found in the literature; to some degree of 
approximation, then, we have 
 

�
𝑑𝑑𝑑𝑑
𝛼𝛼(𝐼𝐼)

 
𝐼𝐼𝑚𝑚+1

𝐼𝐼1
= �

𝑑𝑑𝑑𝑑
𝛽𝛽(𝐹𝐹)

𝐹𝐹𝑚𝑚+1

𝐹𝐹1
      (11) 

 
This will be referred to henceforth as “bounded Fechnerian integration”. The Taylor series expansion 
in Eq. (10) will have some region of validity, which must be established separately for each 𝛼𝛼(𝐼𝐼) and 
𝛽𝛽(𝐹𝐹). The relevant method is available in advanced textbooks, but the present author has never seen 
it used in the psychophysics literature. It will not be employed here either, because other 
considerations become paramount, as will be explained. 
 
3 UNBOUNDED INTEGRATION VERSUS BOUNDED INTEGRATION 
 

Remarkably, Fechner1 ignored the fact that Eq. (11) was approximate. He and his 
contemporaries also ignored the bounds of integration, namely {𝐼𝐼𝑡𝑡ℎ = 𝐼𝐼1,  𝐼𝐼𝑚𝑚+1}  and {𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) =
𝐹𝐹(𝐼𝐼1),𝐹𝐹(𝐼𝐼𝑚𝑚+1)}. Introducing the shorthand ∆𝐼𝐼 = 𝛼𝛼(𝐼𝐼) and ∆𝐹𝐹 = 𝛽𝛽(𝐹𝐹), what Fechner used were 
indefinite integrals of the form 

 

�
𝑑𝑑𝑑𝑑
∆𝐼𝐼

 = �
𝑑𝑑𝑑𝑑
∆𝐹𝐹

     (12) 

 
Let us call this the “Fechnerian indefinite integral”. Using indefinite integration avoids a difficult 
problem, a problem described as follows. The true minimum of sensation is zero, which can only be 



guaranteed by a stimulus intensity of zero, i.e. by removing the stimulus. So far, so good, for 
quantities that follow ratio scales. But it has been suggested that for human hearing, at least, the 
stimulus-detection threshold 𝐼𝐼𝑡𝑡ℎ  is empirically associated48,49 with nonzero loudness, 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ≠ 0 . 
This result should not be surprising, given that stimulus-detection thresholds in psychophysics are 
defined statistically; loudnesses “near threshold”, for example, are sometimes heard and sometimes 
not50,51, and we should expect the same for the other senses. Certainly, there seems to be no literature 
to the contrary. Stimulus-detection thresholds are based upon experiencing sensation. Therefore, let 
us assume that in humans, at least, the threshold sensation 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) is nonzero, bearing in mind that the 
assignment of a particular value for 𝐼𝐼𝑡𝑡ℎ would be arbitrary due to threshold’s statistical nature. Note 
well that 𝐼𝐼𝑡𝑡ℎ itself has sometimes been imagined to represent a just-noticeable sensation change, i.e. 
the very first. 

In order to preserve intensity as a ratio scale, 𝐼𝐼𝑡𝑡ℎ  will be assumed small compared to the 
available range of intensity that can evoke a change of sensation, the organism’s dynamic range52,53. 
Threshold intensity now becomes the “effective zero” of the intensity scale. Otherwise, with threshold 
determined statistically, the lowest detectable intensity could be infinitely small, making 𝐼𝐼𝑡𝑡ℎ = 0 the 
bottom of the scale of detectable intensities. An infinitely small threshold has been advocated 
elsewhere54, but the evidence is hardly compelling55,56. As Hellman and Zwislocki (Ref. 57, p. 687) 
state for hearing, “The threshold of audibility is a natural boundary condition which cannot be 
eliminated”. Regardless, the quantum nature of stimuli sets a non-zero lower limit to stimulus 
intensity. Given a non-zero detection threshold, the “effective zero” of the sensation scale will be 
presumed to be the non-zero “sensation at threshold”, 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ), which will be assumed small compared 
to the range of sensation that corresponds to the organism’s dynamic sensation range. 

Assigning non-zero bounds to Eq. (12) yields 
 

�
𝑑𝑑𝑑𝑑
∆𝐼𝐼

𝐼𝐼

𝐼𝐼𝑡𝑡ℎ
= �  

𝑑𝑑𝑑𝑑
∆𝐹𝐹

𝐹𝐹

𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)
    (13) 

 
Let us assume that 1 ∆𝐼𝐼⁄  is finite, smooth, and continuous, having no zeroes (presently, let us avoid 
the limits 𝐼𝐼 → 0 and 𝐼𝐼 → ∞). Let us likewise postulate some finite, smooth, and continuous function 
𝐺𝐺(𝐼𝐼) such that 
 

�
𝑑𝑑𝑑𝑑
∆𝐼𝐼

 = 𝐺𝐺(𝐼𝐼) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,     (14𝑎𝑎)           �
𝑑𝑑𝑑𝑑
∆𝐼𝐼

𝐼𝐼

𝐼𝐼𝑡𝑡ℎ
 = 𝐺𝐺(𝐼𝐼) − 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ)     (14𝑏𝑏) 

 
Recall now Fechner’s Law1: ∆𝐹𝐹 is unchanging with F. Let us write this as ∆𝐹𝐹 = 𝐵𝐵, where B is a 
constant. Fechner’s Law continues to be of interest from both experimental and theoretical 
viewpoints58-62. From Eqs. (13) and (14b), and assuming Fechner’s Law, ∆𝐹𝐹 = 𝐵𝐵, we obtain 
 

𝐺𝐺(𝐼𝐼) − 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = �  
𝑑𝑑𝑑𝑑
𝐵𝐵

𝐹𝐹

𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)
    (15) 

 
Altogether then, 
 
𝐹𝐹(𝐼𝐼)𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐵𝐵 ∙ �𝐺𝐺(𝐼𝐼) − 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ)� + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ), 𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼 ≥ 𝐼𝐼𝑡𝑡ℎ      (16) 
 
When 𝐼𝐼 = 𝐼𝐼𝑡𝑡ℎ , then 𝐹𝐹 = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ), as appropriate. Equation (16) can be expressed in another form, 
which proves useful. The Weber Fraction ∆𝐼𝐼 𝐼𝐼⁄  can have many forms, and therefore so do 1 ∆𝐼𝐼⁄  and 
𝐺𝐺(𝐼𝐼). Therefore, let 𝐵𝐵 ∙ 𝐺𝐺(𝐼𝐼) = 𝐾𝐾1𝒢𝒢(𝐼𝐼) where 𝐾𝐾1 is a composite of other constants that may arise 
from the literature equations for the Weber Fraction, so that 
 



𝐹𝐹(𝐼𝐼)𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾1𝒢𝒢(𝐼𝐼) + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) − 𝐾𝐾1𝒢𝒢(𝐼𝐼𝑡𝑡ℎ)    (17) 
 

Having considered Fechner’s Law, ∆𝐹𝐹 = 𝐵𝐵 , a historically-popular relation for the just-
noticeable sensation difference ∆𝐹𝐹 corresponding to the just-noticeable intensity difference ∆𝐼𝐼, let us 
now consider an alternative relation,  

 
∆𝐹𝐹
𝐹𝐹

= 𝑔𝑔     (18) 
 
where 𝑔𝑔 is a constant. Stevens63 describes this as “Ekman’s Law”, after Ekman64, but it was used by 
Plateau (Ref. 65, p. 384). Nonetheless, let us follow the trend in the literature, and call it Ekman’s 
Law. Under Ekman’s Law, 
 

𝐺𝐺(𝐼𝐼) − 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = �  
𝑑𝑑𝑑𝑑
𝑔𝑔𝑔𝑔

𝐹𝐹

𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)
    (19) 

 
from which 
 

𝐹𝐹(𝐼𝐼)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)
𝐻𝐻(𝐼𝐼)
𝐻𝐻(𝐼𝐼𝑡𝑡ℎ)  𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼 ≥ 𝐼𝐼𝑡𝑡ℎ      (20)               𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝐻𝐻(𝐼𝐼) = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑔𝑔 ⋅ 𝐺𝐺(𝐼𝐼)� 

 
When 𝐼𝐼 = 𝐼𝐼𝑡𝑡ℎ , then 𝐹𝐹 = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) , as appropriate. Equation (20) can be transformed into a more 
revelatory form under the substitution 𝑔𝑔 ∙ 𝐺𝐺(𝐼𝐼) = 𝐾𝐾2𝒢𝒢(𝐼𝐼) , from which 𝐾𝐾2 = 𝐾𝐾1𝑔𝑔 𝐵𝐵⁄  and 𝐻𝐻(𝐼𝐼) =
𝑒𝑒𝑒𝑒𝑒𝑒�𝐾𝐾2𝒢𝒢(𝐼𝐼)�. Note well that the role of 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) as a multiplier cannot be well-discerned from the way 
that sensation-growth equations derived from Ekman’s Law are used in the experimental-
psychophysics literature. 
 
4 RELATIONS FOR THE JUST-NOTICEABLE INTENSITY DIFFERENCE, AND THE 
CONSEQUENT SENSATION-GROWTH EQUATIONS 
 

Up to this point, we have specified no function for ∆𝐼𝐼 besides Weber’s Law, ∆𝐼𝐼 = 𝐾𝐾𝐾𝐾. It is now 
time to consider a variety of functions, that are chosen from the psychophysics literature because of 
their apparent utility. Consider those of Mayer66 (cited by Grüsser67), Aubert68, Langer69, Nutting70, 
von Helmholtz71, Hecht72, Luce and Edwards73, Krantz74, and Pierrel-Sorrentino and Raslear75. Table 
1 lists those Weber Fractions, ∆𝐼𝐼 𝐼𝐼⁄ , along with the resulting algebraic components needed to 
concatenate 𝐹𝐹(𝐼𝐼). The left-hand column (the first column) lists the actual Weber Fractions. The 
second column identifies the source of each one, listed in a Footnote to the Table. The Footnote is 
necessary because the Weber Fractions are often incorrectly attributed in the literature, their sources 
sometimes not being stated at all; here, some care was taken to trace the sources. The Footnotes also 
offer some details about the resulting 𝐹𝐹(𝐼𝐼). The Table’s third column shows the term 𝐾𝐾1 (for Eq. 17) 
as a function of the constants that appear in the respective Weber Fractions. The fourth column 
expresses 𝒢𝒢(𝐼𝐼) 𝐵𝐵⁄ . The fifth (right-most) column shows the limiting values of  𝒢𝒢(𝐼𝐼𝑡𝑡ℎ) 𝐵𝐵⁄  as the 
stimulus-detection threshold 𝐼𝐼𝑡𝑡ℎ becomes infinitely small, as explained in Section 5, below.  

For illustrative cases, consider first a relatively simple case, the so-called “near-miss to Weber’s 
Law” (Table 1, row c). Then, consider a relatively complicated case, Hecht’s relation (row j). Now, 
under the “near-miss”65,66,76,77, evaluating Fechner’s Law using Eq. (17) yields 

 

𝐹𝐹(𝐼𝐼)𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑛𝑛𝑛𝑛𝑛𝑛 =
𝐵𝐵
𝐾𝐾𝐾𝐾

(𝐼𝐼𝜈𝜈−𝐼𝐼𝑡𝑡ℎ𝜈𝜈 ) + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)    (21) 
 
Evaluating Ekman’s Law using Eq. (20) yields 



 
𝐹𝐹(𝐼𝐼)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑔𝑔
𝐾𝐾𝐾𝐾

(𝐼𝐼𝜈𝜈−𝐼𝐼𝑡𝑡ℎ𝜈𝜈 )�      (22) 
 
Note that these two equations are linked as 
 
𝐹𝐹(𝐼𝐼)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑔𝑔
𝐵𝐵
�𝐹𝐹(𝐼𝐼)𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)��      (23) 

 
This is a general relation of 𝐹𝐹(𝐼𝐼)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 to 𝐹𝐹(𝐼𝐼)𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑛𝑛𝑛𝑛𝑛𝑛, that arises from Eqs. (16) and (20) under 
all of the present assumptions. Consider now Hecht’s relation72 for the Weber Fraction (Table 1, row 
j). Under Fechner’s Law, we obtain 
 

𝐹𝐹(𝐼𝐼)𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑛𝑛𝑛𝑛𝑛𝑛 =
𝐵𝐵
𝐾𝐾
�
𝐶𝐶2

2
𝑙𝑙𝑙𝑙 �

√𝐼𝐼 + √𝐼𝐼 + 𝐶𝐶
�𝐼𝐼𝑡𝑡ℎ + �𝐼𝐼𝑡𝑡ℎ + 𝐶𝐶

� + √𝐼𝐼√𝐼𝐼 + 𝐶𝐶 �√𝐼𝐼√𝐼𝐼 + 𝐶𝐶 −
𝐶𝐶
2
− 𝐼𝐼�

− �𝐼𝐼𝑡𝑡ℎ�𝐼𝐼𝑡𝑡ℎ + 𝐶𝐶 ��𝐼𝐼𝑡𝑡ℎ�𝐼𝐼𝑡𝑡ℎ + 𝐶𝐶 −
𝐶𝐶
2
− 𝐼𝐼𝑡𝑡ℎ�� + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)    (24) 

 
𝐹𝐹(𝐼𝐼) under Ekman’s Law is then evaluated according to Eq. (23). 

Consider now an unusual case, Aubert’s relation68 (row b). Under Fechner’s Law, 
 

𝐹𝐹(𝐼𝐼)𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑛𝑛𝑛𝑛𝑛𝑛 =
𝐵𝐵

2𝐾𝐾
∙ �(𝑙𝑙𝑙𝑙(𝐼𝐼 ∙ 𝐼𝐼𝑡𝑡ℎ)) 𝑙𝑙𝑙𝑙 �

𝐼𝐼
𝐼𝐼𝑡𝑡ℎ
�� + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)    (25) 

 
Observe the term 𝑙𝑙𝑙𝑙(𝐼𝐼 ∙ 𝐼𝐼𝑡𝑡ℎ). Recall that, contrary to popular misconceptions, taking logarithms does 
not remove units. The term 𝑙𝑙𝑙𝑙(𝐼𝐼 ∙ 𝐼𝐼𝑡𝑡ℎ) has units of natural logarithm of [the intensity units]2. The 
latter, thanks to the properties of logarithms, is equivalent to twice the natural logarithm of the 
intensity units. Hence, Aubert’s Weber Fraction, (𝛥𝛥𝛥𝛥 𝐼𝐼⁄ ) = 𝐾𝐾 𝑙𝑙𝑙𝑙 𝐼𝐼⁄ , will not possess an expected 
property of Weber Fractions – namely, unitlessness – unless 𝐾𝐾 has units of natural logarithm of the 
intensity units. 
 
5 EXAMINING THE LOWER LIMITS OF THRESHOLD AND SENSATION  
 

Recall the earlier assumptions that 1 ∆𝐼𝐼⁄  and 𝐺𝐺(𝐼𝐼) are finite, smooth, and continuous, having no 
zeroes or infinities. Consider what happens now if, at the statistically-determined stimulus-detection 
threshold 𝐼𝐼𝑡𝑡ℎ, the respective sensation becomes vanishingly small: 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) → 0. Looking at the 𝐹𝐹(𝐼𝐼) 
derived under Fechner’s Law (Eq. 16), this would cause no concern, because 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) is an added term. 
But when Ekman’s Law underlies 𝐹𝐹(𝐼𝐼) (Eq. 20), 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) is a multiplicative term, such that 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) →
0 mandates 𝐹𝐹(𝐼𝐼) → 0 for all 𝐼𝐼, rendering 𝐹𝐹(𝐼𝐼) meaningless. If any 𝐹𝐹(𝐼𝐼) derived under Ekman’s Law 
are to be meaningful, then, we cannot have 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) → 0 as 𝐼𝐼 → 𝐼𝐼𝑡𝑡ℎ. (Note well that no a priori value 
has yet been stipulated for 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ).) This agrees with the notion from auditory psychophysics48,49 that 
loudness is nonzero at the stimulus-detection threshold: 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ≠ 0. On the other hand, if 𝐼𝐼𝑡𝑡ℎ is made 
vanishingly small, we would expect sensation to likewise become vanishingly small; once the 
stimulus is effectively removed, the evoked sensation should always disappear. Clearly, there is a 
limits conundrum here50. The conundrum was historically avoided by using unbounded Fechnerian 
integration, for example, by combining Weber’s Law with Ekman’s Law without lower bounds, 
resulting in the generic power function since known as Stevens’ Law63. In contrast, row a in Table 1 
yields the bounded Fechnerian version under Ekman’s Law. 

Consider now an infinitely low detection threshold, as advocated elsewhere54. That is, imagine 
a threshold that can still be determined as stimulus intensity becomes smaller and smaller. Bearing in 
mind that stimulus-detection thresholds are based upon experiencing sensation, this means that 



sensation itself cannot become vanishingly small. The stimulus must still be seen or heard, i.e. 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) 
does not approach zero, even as 𝐼𝐼𝑡𝑡ℎ → 0. This, in turn, prompts an examination of what happens to 
the other threshold-dependent component of the derived 𝐹𝐹(𝐼𝐼), namely 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ), as 𝐼𝐼𝑡𝑡ℎ → 0. In theory, 
for the 𝐹𝐹(𝐼𝐼)  derived under Fechner’s Law, we would obtain 𝐹𝐹(𝐼𝐼) → 𝐵𝐵 ∙ 𝐺𝐺(𝐼𝐼) + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)  as 
lim
𝐼𝐼𝑡𝑡ℎ→0

𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = 0 , whereas 𝐹𝐹(𝐼𝐼) → −∞  as lim
𝐼𝐼𝑡𝑡ℎ→0

𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = ∞ , and 𝐹𝐹(𝐼𝐼) → ∞  as lim
𝐼𝐼𝑡𝑡ℎ→0

𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = −∞ . 

For the 𝐹𝐹(𝐼𝐼) derived under Ekman’s Law, we would obtain 𝐹𝐹(𝐼𝐼) → 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ∙ 𝐻𝐻(𝐼𝐼) as lim
𝐼𝐼𝑡𝑡ℎ→0

𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) =

0, whereas 𝐹𝐹(𝐼𝐼) → 0 as lim
𝐼𝐼𝑡𝑡ℎ→0

𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = ∞ and 𝐹𝐹(𝐼𝐼) → ∞ as lim
𝐼𝐼𝑡𝑡ℎ→0

𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = −∞. In short, if 𝐼𝐼𝑡𝑡ℎ → 0 

and also lim
𝐼𝐼𝑡𝑡ℎ→0

𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = 0, then there is a workable general form for sensation magnitude under either 

Fechner’s Law or Ekman’s Law. 
Now, 𝒢𝒢(𝐼𝐼𝑡𝑡ℎ) 𝐵𝐵⁄ = 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) 𝐾𝐾1⁄  (or equivalently, 𝒢𝒢(𝐼𝐼𝑡𝑡ℎ) 𝑔𝑔⁄ = 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) 𝐾𝐾2⁄ ), so that examining 

𝒢𝒢(𝐼𝐼𝑡𝑡ℎ) 𝐵𝐵⁄  informs us about 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ). Let us now examine what actually happens to 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) as 𝐼𝐼𝑡𝑡ℎ → 0 
for the 𝐹𝐹(𝐼𝐼) whose components 𝒢𝒢(𝐼𝐼) 𝐵𝐵⁄  are listed in Table 1. The outcomes lim

𝐼𝐼𝑡𝑡ℎ→0
𝒢𝒢(𝐼𝐼𝑡𝑡ℎ) 𝐵𝐵⁄  are in the 

rightmost column of Table 1. For cases a and b, i.e. the Weber Fractions of Weber4 and Aubert68, the 
respective limits are −∞ and ∞. Evidently, an infinitely low threshold does not result in meaningful 
sensation-growth functions for these cases. For case c, the “near-miss to Weber’s Law”, the limit is 
0, allowing a viable 𝐹𝐹(𝐼𝐼). The limit is likewise 0 for case k, the Weber Fraction of Luce and 
Edwards73, under the restriction 0 < 𝑏𝑏 < 1; however, for the restriction 𝑏𝑏 > 1, the limit is 𝑙𝑙𝑙𝑙(−∞), 
an impossibility. This limitation, that 𝑏𝑏 ≯ 1 if 𝐼𝐼𝑡𝑡ℎ → 0, is not mentioned by Luce and Edwards. 

For the eight other Weber Fractions dealt with in Table 1, 𝒢𝒢(𝐼𝐼𝑡𝑡ℎ) 𝐵𝐵⁄  approaches a constant. This 
poses no problem, because as 𝐼𝐼 → (𝐼𝐼𝑡𝑡ℎ)  under either Fechner’s Law or Ekman’s Law we have 
(𝒢𝒢(𝐼𝐼) 𝐵𝐵⁄ ) → (𝒢𝒢(𝐼𝐼𝑡𝑡ℎ) 𝐵𝐵⁄ ) and hence 𝐹𝐹(𝐼𝐼) → 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ).  

In sum: neither an infinitely low stimulus-detection threshold, nor a sensation of zero at any 
stimulus-detection threshold, are compatible with the present approach to determining sensation 
growth. 
 
6 SUMMARY 
 

A sensory stimulus of physical intensity 𝐼𝐼 produces a sensation 𝐹𝐹(𝐼𝐼). There are no credible 
empirical measures of 𝐹𝐹(𝐼𝐼), and equations for 𝐹𝐹(𝐼𝐼) are conceptually restricted. Some significant 
examples of those restrictions are explored in this manuscript, for perception in human subjects. 

Differences in sensation have empirical minimum sizes, ∆𝐹𝐹. Each ∆𝐹𝐹 defines a just-noticeable 
intensity difference, ∆𝐼𝐼. Further, for any detectable stimulus there is an empirical stimulus-detection 
threshold 𝐼𝐼𝑡𝑡ℎ, from which the ∆𝐼𝐼 hypothetically cumulate upwards with increasing intensity 𝐼𝐼 as the 
just-noticeable sensation differences ∆𝐹𝐹  hypothetically cumulate upwards from the threshold 
sensation, 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) . In contrast to the literature, 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)  is assumed to be non-zero. However, the 
empirical sizes of the intensity increments ∆𝐼𝐼 will not be known in sufficient numbers to provide a 
convincing empirical plot of ∆𝐼𝐼 versus 𝐼𝐼. The latter is therefore inferred from fewer data points, fitted 
to some smooth continuous function, usually expressed as ∆𝐼𝐼 𝐼𝐼⁄ , the Weber Fraction. The most 
popular Weber Fraction is that which is constant, a relation called Weber’s Law. However, systematic 
deviations from Weber’s Law are the empirical norm. For those non-constant Weber Fractions, there 
have consequently existed alternative equations. 

Any Weber Fraction can be combined, through calculus, with ∆𝐹𝐹 (expressed as an equation) in 
order to obtain sensation growth 𝐹𝐹(𝐼𝐼) . This is Fechnerian integration. One equation for ∆𝐹𝐹  is 
Fechner’s Law, ∆𝐹𝐹 = 𝐵𝐵, where 𝐵𝐵 is constant. Another is Ekman’s Law, (∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔, where 𝑔𝑔 is 
constant. Traditionally, lower bounds such as the stimulus-detection threshold 𝐼𝐼𝑡𝑡ℎ  and the 
corresponding sensation 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) are ignored. That tradition of unbounded integration is replaced here 
by non-traditional, bounded integration. The foundational calculus remains straightforward. Here, 
twelve Weber Fractions were chosen, all having historical utility. The Weber Fractions were 
combined with either Fechner’s Law or with Ekman’s Law to derive the sensation growth, 𝐹𝐹(𝐼𝐼). The 



result is 24 reimagined sensation-growth equations as alternatives to the status quo. The 𝐹𝐹(𝐼𝐼)s have 
unique features. Notably, the threshold sensation 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) is always additive for 𝐹𝐹(𝐼𝐼) found using 
Fechner’s Law, and always multiplicative for 𝐹𝐹(𝐼𝐼) found using Ekman’s Law. The latter agrees with 
the notion that sensation at the stimulus-detection threshold is nonzero. 

Hopefully, the sensation-growth equations will prove useful; as Weiss82 (p. 432) notes, “surely 
a loudness scale is valuable to a manufacturer of audio equipment”. Finally, the new equations are 
examined in the limit as the stimulus-detection threshold 𝐼𝐼𝑡𝑡ℎ approaches zero, a limit that is important 
but, remarkably, is usually ignored in the literature. It transpires that neither an infinitely low 
stimulus-detection threshold, nor a sensation of zero at any value deemed to be the stimulus-detection 
threshold, are compatible with the present approach to determining sensation growth. Such outdated 
assumptions need to be abandoned. 
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Table 1. Weber Fractions ∆𝐼𝐼 𝐼𝐼⁄  and the components 𝒢𝒢(𝐼𝐼) of the respective derived equations for sensation growth: 𝐹𝐹(𝐼𝐼) = 𝐾𝐾1𝒢𝒢(𝐼𝐼) + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) −
𝐾𝐾1𝒢𝒢(𝐼𝐼𝑡𝑡ℎ)  when assuming ∆𝐹𝐹 = 𝐵𝐵  (Fechner’s Law), and 𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ⋅ 𝐻𝐻(𝐼𝐼) 𝐻𝐻(𝐼𝐼𝑡𝑡ℎ)⁄  when assuming (∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔  (Ekman’s Law), where 
𝐻𝐻(𝐼𝐼) = 𝑒𝑒𝑒𝑒𝑒𝑒�𝐾𝐾2 ⋅ 𝒢𝒢(𝐼𝐼)� and 𝐾𝐾2 = 𝐾𝐾1𝑔𝑔 𝐵𝐵⁄ . The constants 𝐾𝐾, 𝐵𝐵, 𝐶𝐶, 𝑐𝑐, 𝐾𝐾1, and 𝐾𝐾2 all exceed zero. The value of 𝐾𝐾 need not be the same from one 
Weber Fraction to another; the same symbol is used merely for convenience. 
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a. Weber4. b. Fechner (Ref. 2, p. 19), reproduced from Aubert (Ref. 68, p. 69). c. Uncertain provenance, but old; allegedly used by Mayer66 for 
visual acuity (cited in Grüsser67). Fechner (Ref. 2, p. 21) notes that it can be derived from Plateau (Ref. 65, p. 384). It is also found in Guilford 
(Ref. 76, p. 79). In auditory research, it is often attributed to McGill and Goldberg77. d. Nutting (Ref. 70, p. 292), under the following changes 
from Nutting’s notation to the present notation: “𝑃𝑃𝑚𝑚” = 𝐶𝐶, “𝑛𝑛” = 𝜈𝜈, and “(1 − 𝑃𝑃𝑚𝑚)𝐼𝐼0𝑛𝑛” = 𝐾𝐾. Note well that a popular Weber fraction of Riesz78, 
 ∆𝐼𝐼
𝐼𝐼

= 𝑆𝑆∞ + (𝑆𝑆0 − 𝑆𝑆∞) � 𝐼𝐼
𝐼𝐼0
�
− 𝑟𝑟

 where 0 < 𝑟𝑟 < 0.5, is a variation on Nutting’s (as acknowledged by Riesz). Riesz performed hearing experiments 
and used energy as his variable rather than intensity, but in that case, energy (per meter-squared of area) equals intensity multiplied by the stimulus 
duration (Ref. 79, p. 31); using stimuli of fixed duration, the duration divides out of the Weber fraction. e. Fechner (Ref. 2, p. 35), reproduced 
from Delboeuf (Ref. 80, pp. 21, 54). Delboeuf himself named von Helmholtz as the actual source, but provided no references; the equation can, 
in fact, be found in the later English translation of von Helmholtz (Ref. 71, p. 177). f. Fechner (Ref. 2, p. 17), credited there (incompletely) to 
von Helmholtz. The equation can be found in the later English translation of von Helmholtz (Ref. 71, p. 180). g. Fechner (Ref. 2, p. 41), 

reproduced from Langer (Ref. 69, p. 62). h. Hecht (Ref. 72, p. 772). This is equivalent to the equation ∆𝐼𝐼
𝐼𝐼

= 𝑐𝑐 �1 + �1 𝐾𝐾𝐾𝐾⁄ �
2
common to papers 

of Hecht and co-authors from that era. i. Pierrel-Sorrentino and Raslear (Ref. 75, p. 765), for the case n = 0.5. Also written as ∆𝐼𝐼
𝐼𝐼

= 𝐶𝐶�2√𝐼𝐼+𝐶𝐶�
𝐼𝐼

. j. 
Hecht (Ref. 72, p. 772). k. Luce and Edwards (Ref. 73, p. 228). The integral is solved through the substitution 𝑡𝑡 = 𝐼𝐼𝑏𝑏−1, resulting in a well-
known form of the integrand, found in Gradshteyn and Ryzhik81. l. Krantz (Ref. 74, p. 595). 


