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A Quantum Mechanical Supertask

John D. Norton
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That quantum mechanical measurement processes are indeterministic is widely
known. The time evolution governed by the differential SchroÈ dinger equation can
also be indeterministic under the extreme conditions of a quantum supertask,
the quantum analogue of a classical supertask. Determinism can be restored by
requiring normalizability of the supertask state vector, but it must be imposed as
an additional constraint on the differential SchroÈ dinger equation.

1. INTRODUCTION

It is known that systems of infinitely many particles in classical mechanics
can display pathologies such as indeterminism and failure of energy and
momentum conservation. The recent supertask literature has presented
some simple and vivid illustrations ( e.g., see Ref. 1). Following a query by
John Earman, the present project is to determine whether analogous
systems in quantum mechanics exhibit pathologies. We will see that trans-
lating the classical supertasks into the quantum context is not so straight-
forward but certainly achievable as long as one recalls that the simplest
cases in classical mechanics might not correspond to the simplest in quan-
tum theory. The resulting systems are interesting in their own right, display-
ing pathologies according to how we choose to define quantum systems.
The principal conclusions are as follows.

· In the context of the supertask system we investigate, the differential form
of the SchroÈ dinger equation2 i(d/dt) Y = HY allows indeterminism
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and is not equivalent to the integral form. The latter specifies a
quantum state time evolution operator U( t) = exp( 2 iHt) and does
not admit indeterminism, even with unnormalizable initial states.
The differential form must be supplemented by a weak condition,
such as the requirement that state vectors be normalizable at all
times,3 in order to recover the integral form and expel the
pathologies.

The indeterminism arising here is not the indeterminism of the quantum
measurement process. In standard applications of quantum mechanics, the
time evolution governed by the SchroÈ dinger equation is deterministic. It is
the latter time evolution that now also becomes indeterministic.

· The indeterminism arises through a mechanism directly connected
with the infinite degrees of freedom of the supertask system. For
example, if all its degrees of freedom are in their lowest-energy
ground states, they can be spontaneously excited by a simple
mechanism that begins at time t = 0: the first degree of freedom is
excited by a faster excitation of the second, the second by a faster
excitation of the third, and so on indefinitely, without any particular
excitation being responsible for initiating the process. This
mechanism would fail if there were only finitely many degrees of
freedom, for then there would be a last degree of freedom which
must initiate the process, but there would be no means to excite this
last degree of freedom spontaneously. This hindrance does not arise
in the infinite system since it has no last degree of freedom.

This mechanism arises from the structure of the infinite systems of equa-
tions that govern the supertask system. The differential SchroÈ dinger equa-
tion can be written in an iterative form [see ( 17) below] in which the time
dependence of each degree of freedom is given fully as a function of that of
the lower-order degrees of freedom. Thus one can specify any, arbitrarily
chosen, spontaneous excitation of the first degree of freedom. The behavior
of the remaining degrees of freedom needed to enforce it is then just read
off by iterating through the equation set.

Conservation of state vector norm is usually deduced from the
SchroÈ dinger equation, so it is surprising that we are free to derive it from
an additional, independent assumption. It will be helpful to indicate briefly
how the usual proof of conservation of state vector norm fails for quantum
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supertasks. In a familiar two-line proof, one usually shows that the differen-
tial SchroÈ dinger equation entails that the time derivative of the square of
the norm d/dt( á Y | Y ñ ) vanishes: 4

i
d
dt

á Y | Y ñ = i á Y |
d
dt

( |Y ñ ) + i
d
dt

( á Y | ) |Y ñ

= i á Y | H |Y ñ 2 i á Y | H |Y ñ = 0 (1)

But these last two terms sum to zero only as long as the quantity
á Y | H |Y ñ is well defined. We shall see in Sec. 5.5 [ see Eq. ( 34) ] that the
supertask Hamiltonian H proves to be unbounded and the quantity
á Y | H |Y ñ can be divergent so that the sum i á Y | H |Y ñ 2 i á Y | H |Y ñ
is undefined. Thus it will turn out that the time evolution governed by the
differential SchroÈ dinger equation need not conserve the norm. We will see
cases in which a normed state develops to an unnormalizable state.

In Sec. 1 below, I review some classical supertasks, which will be the
models for the quantum version. I introduce a new classical supertask± ±
`̀masses and springs’’± ± whose formal structure is closer to those investi-
gated in quantum theory. In Secs. 2 and 3, I set up the vector state space
for the quantum supertask that accommodates infinite degrees of freedom
and define a simple Hamiltonian capable of sustaining interaction between
these degrees of freedom. Section 4 briefly reviews the behavior of the
system in the case in which the degrees of freedom are kept finite. This is
to assure us that the pathologies to come derive directly from the transition
to infinite degrees of freedom. In Sec. 5, I turn to the quantum supertask
associated with infinitely many particles. In Sec. 5.1, I state and prove six
propositions that govern the behavior of the system. In Secs. 5.2± 5.4, I lay
out a series of particular solutions that instantiate the various possibilities
for types of solutions. The principal results that emerge in Secs. 5.1± 5.4 are
collected and described in Sec. 5.5. In Sec. 6, I consider an accelerated
version of the quantum supertask which one might suppose would exhibit
more pathological behavior. I give my reasons for believing that this
accelerated quantum supertask introduces no qualitatively new effects.
Section 7 contains some concluding remarks.

1.1. Classical Supertasks

In the simplest classical supertasks, infinitely many bodies complete an
interaction in finite time. One would already suspect that conservation of
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energy and momentum cannot be realized for such a system in exactly the
same way as they can for systems of finitely many bodies. If all the bodies
are alike and share the same motion, for example, then the system’s energy
and momentum will be infinite. In such cases, the requirement of conserva-
tion of energy and momentum, if it makes any sense at all, imposes far
fewer restrictions: a system of infinite bodies of unit mass each moving with
unit velocity has the same energy as the same system with each mass
moving with two units of velocity. In each case, the total energy is infinite.
With only a little further thought, one can see that such supertask systems
can spontaneously acquire energy and momentum and sustain indeter-
ministic time developments.

Laraudogoitia( 2) describes one of the simplest classical supertasks that
illustrates this. In it, one arrays a countable infinity of elastic bodies of
equal mass along the interval ( 0, 1). The bodies need to decrease in size in
order that they may all be accommodated. Therefore their density increases
without bound. All the bodies are initially at rest. A new elastic body of
equal mass approaches the first body at unit velocity as shown in Fig. 1.
The familiar series of collisions ensues. The new body strikes the first body
and comes to rest, while the first body is set into motion at unit velocity
toward the second. The first strikes the second, the first comes to rest, and
the second moves off at unit velocity toward the third. The chain of colli-
sion proceeds through all the bodies and the infinitely many collisions are
completed in unit time since the effect propagates through the system of
bodies at unit velocity. What is the final state after unit time? One’s first
reaction is to say that the last body is projected out at unit velocity. That
conclusion would be correct if there were only finitely many bodies. In this
case, there is no last body to be expelled. The final state is that all bodies
are once again at rest: the first body came to rest after the second collision,
the second after the third, the n th after the (n + 1)th, and so on for all n.

Classical mechanics is time reversible. So we now consider the time
reverse of this supertask. In it, infinitely many elastic bodies of equal mass
are arrayed in the interval (0, 1) and all at rest. Spontaneously, without
any apparent cause, a disturbance propagates from the end where infinitely
many bodies are accumulated and ends up with the ejection of the first

Fig. 1. A classical supertask.
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Fig. 2. Masses and springs.

body. This is a violation of determinism and, under natural definitions,
a violation of energy and momentum conservation.

This simple supertask is not so simple to translate into quantum
theory since the initial state requires us to locate masses at rest ( zero
momentum) in arbitrarily small regions of space, in violation of the uncer-
tainty relations. A related supertask± ± described here for the first time in the
literature± ± is less problematic in this regard and closer in structure to the
quantum case we will consider. In it, one sets up an infinite, linear array
of unit masses with neighboring masses connected by a spring with spring
constant k . See Fig. 2. A straightforward analysis shows that this system of
masses and springs is indeterministic: it can be in an equilibrium state with
all masses at rest and no springs stretched, but it can then spontaneously
set its masses into motion. Let the masses be all of unit size and the spring
constant k for each spring. Also, numbering the masses 1, 2,..., n,..., we
define xn as the deviation in position of the n th mass from its position in
the equilibrium state, that is, the state in which all masses are at rest and
the springs neither extended nor compressed. We have immediately from
Newton’s second law of motion and the Hooke spring law that

d 2x2

dt2 = k(x2 2 x1 ) , for n = 1

(1 ¢ )
d 2xn

dt2 = k(xn + 1 2 xn ) 2 k(xn 2 xn 2 1) , for n > 1

where t is the time coordinate. We can reorganize the terms to allow an
iterative method of solution,

x2 =
1
k

d 2x1

dt2 + x1 , for n = 1

(2)

xn + 1 =
1
k

d 2xn

dt2 + 2xn 2 xn 2 1 , for n > 1

We solve this system of equations for the case of the system initially at t = 0
in its equilibrium state, that is,

xn(0) = 0,
dxn( 0)

dt
= 0, for n > 1 (3)
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Systems (1 ¢ ) and (3) will be satisfied by any function x1( t) for which5

x1( 0) = 0,
d nx1(0)

dtn = 0, for n > 1 (4)

(This function cannot be analytic, of course, unless it is everywhere zero.)
With a suitable function x1( t) selected, the remaining functions x2( t ) ,
x3( t) ,... are computed iteratively from the system of Eqs. (2).

The indeterminism arises in this freedom to choose x1( t) and the
resulting failure of conditions (3) to force a unique set of functions
x1( t) , x2( t) ,.... This failure depends essentially on the infinity of the system.
If there were only N masses, then equation system (2) would not be infinite
but would terminate in the final condition,

0 =
1
k

d 2xN

dt2 + xN 2 xN 2 1 (2 ¢ )

This extra condition would prevent the iterative recovery of the functions
x2( t) , x3( t) ,... from an essentially arbitrary x1( t) . The function x1( t) is
further constrained in this case of finitely many masses by the additional
condition that the functions generated iteratively via ( 2) from it must also
yield function xN 2 1( t ) and xN ( t) that satisfy (2 ¢ ) .

We can develop a sense of the physical mechanism that allows indeter-
minism in the infinite case if we choose a particular function for x1( t) .
A suitable choice is the nonanalytic function

x1( t) =
1
t

exp 1 2
1
t 2 ( 5)

which satisfies conditions ( 4). We may compute the remaining functions
x2( t) , x3( t) ,... by proceeding iteratively through the system of functions (2).
The first three of these functions, for the case of k = 100, can be represented
graphically as shown in Fig. 3.

The masses are all unenergized for t < 0 and become spontaneously
energized at t > 0. The mechanism is as follows.

1270 Norton

5 Proof sketch: First note that the following are easily proved by induction from (1 ¢ ): ( a) xn

is a linear sum of terms in x1 , d 2x1 /dt2,..., d 2n 2 2x1 /dt2n 2 2, and (b) dxn /dt is a linear sum of
terms in dx1 /dt, d 3x1 /dt3,..., d 2n 2 1x1 /dt2n 2 1, for all n > 2. A second proof by induction
readily shows that the boundary condition (3) leads via these last results to (4) as the sole
constraint placed on x1(t) by the boundary condition.



Fig. 3. Spontaneous energization of masses and springs.

The first mass is energized by a faster energization of the second
mass. The second mass is energized by a faster energization of the
third mass. The third mass is energized by a faster energization of
the fourth mass, etc. ( 6)

This mechanism could not induce spontaneous energization of the entire
system if there were only finitely many masses, for then there would be a
last mass that would need to be energized by interacting with something
outside the system in order to initiate the process. With infinitely many
masses, however, there simply is no such last mass upon which to place this
demand. Each mass is energized by the next and the result is a spontaneous
energization of the entire system.

Note that this mechanism depends on the assumption that the springs
communicate forces instantaneously. This assumption is built into the
equations of motion via Hooke’s law, for it is assumed that any change of
position of the Nth body is manifested immediately as forces acting on the
(N 2 1)th and (N+ 1)th bodies.

Mechanism (6) is essentially similar to the one that allows the system
of masses in Fig. 1 spontaneously to expel a body. The first body is set in
motion by impact from the second, the second is set in motion by impact
from the third, and so on for all masses. Since there is no last mass in this
sequence, the process can arise spontaneously.
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2. ON DEVISING A QUANTUM SUPERTASK

Is it possible to reproduce these sorts of supertasks in the context of
quantum theory? Will they exhibit the same sorts of pathologies as they do
in the classical context? In principle, it is always possible to take a classical
system and construct another closely analogous to it in quantum theory.
Thus we can take a system of infinitely many classical particles that inter-
act by elastic collisions and model it as a system of infinitely many quan-
tum particles interacting by means of very strong, short-range repulsive
forces. Or we can model the masses and springs as a system of coupled
harmonic oscillators. The analysis threatens to be complicated, however.
Modeling action by contact, for example, requires spatial localization of
the interacting particles; the interaction is `̀ turned on’’ when the particles
are sufficiently close spatially. But exactly this spatial localization forces the
momentum of the particles to be poorly defined; that is, the particle states
must be superpositions of momentum eigenstates, with the associated
momenta spread over a very wide range. In pursuing the exchanges of
momentum and energy in the interactions, we are forced from the start to
deal with a complicated superposition of the simple case, the momentum
eigenstates. Similar problems remain with the masses and springs, since the
interaction potential will depend on position. So we may well wonder if it
is really necessary to treat such close analogs in order to determine whether
quantum theory admits pathological supertasks.

What is essential in the classical supertasks are three features.

( a) The systems have infinitely many particles.
( b) The interaction of the particles, when considered pairwise, is not

pathological.

( c) The interactions are sufficiently accelerated so that infinitely
many particles are embroiled in the interaction in finite time.

The interest in supertasks lies in the emergence of pathological behavior,
such as indeterminism and lack of energy and momentum conservation, in
the transition from the interaction of finitely many particles to infinitely
many.

In the quantum context, we can retain these essential features of the
supertasks and avoid the inessential complications of position dependent
interactions if we restrict our attention directly to the energy eigenstates or
momentum eigenstates of some Hamiltonian. If we add terms to the
Hamiltonian that represent generic interactions without consideration of
the effect of spatial separation, we need not even consider the spatial dis-
position of the systems. To this end, we will represent the infinitely many
particles of ( a) within an infinite-dimensioned vector space that is the
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tensor product of the Hilbert spaces of the infinitely many component par-
ticles. We represent (b), the pairwise well-behaved interaction, by writing
the interaction Hamiltonian for the entire system of particles as a sum of
well-behaved pieces. It will turn out that there is no special need to
accelerate the interactions as in ( c) in order to allow the infinitely many
particles to interact in finite time. Since we no longer allow spatial separa-
tion to switch off the interaction between particles, supertask-like behavior
and pathology will emerge automatically. The system constructed will be
conceptually and formally very similar to the masses and springs supertask,
excepting that considerations of spatial position are eradicated.

3. THE SETUP OF A QUANTUM SUPERTASK

3.1. Particle States

We consider infinitely many particles, each with its own Hilbert space
H1 , H2 , H3 ,... . The state vectors of particles in space Hn for n = 1, 2,..., will
be written as |Y ñ n . To keep the analysis as simple as possible, we will
assume that each particle admits just two energy eigenstates |0 ñ n and |1 ñ n

of the `̀ particle Hamiltonian’’ H part
n that act in space Hn . They have unit

norm n á 0 | 0 ñ n = n á 1 | 1 ñ n = 1. These eigenstates have eigenvalues 0 and 1,
respectively, so that we have

H part
n |0 ñ n = 0 |0 ñ n = 0, H part

n |1 ñ n = 1 |1 ñ n = |1 ñ n ( 7)

for n = 1, 2, 3,... . We consider states of infinitely many particles as given by
vectors in the infinite-dimensioned product space

H1 Ä H2 Ä H3 Ä . . . ( 8)

This space is not a Hilbert space since it admits vectors that cannot be nor-
malized. In order to discern the effect of the transition to infinitely many
particles, we also consider a system of N particles whose states are given
by vectors in the finite-dimensioned product space

H1 Ä H2 Ä H3 Ä . . . Ä HN ( 9)

The natural basis vectors of the infinite-dimensioned space H1 Ä H2 Ä
H3 Ä . . . are

|a1 ñ 1 Ä |a2 ñ 2 Ä |a3 ñ 3 . . .

where a1 = 0 or 1, a2 = 0 or 1, a3 = 0 or 1,... ( 10)
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In the infinite-dimensioned space (8) there are 2 À 0 binary decisions to be
taken to fix each basis vector. Thus the set is uncountable.

3.2. The Interaction Hamiltonian

To mimic the interactions of the classical supertasks, we want an inter-
action Hamiltonian that allows particle 1 to interact with particle 2, par-
ticle 2 with particle 3, and so on. The simplest such interaction is one that
creates excited state |1 ñ 2 of particle 2 while, at the same time, destroying
excited state |1 ñ 1 of particle 1, and similarly for the rest. The disadvantage
of this simplicity is that, over time, the interaction can raise states that are
a superposition of any of the basis vectors of (10). That is, in the case of
the infinite space (8) , the state vector will visit within a space spanned by
an uncountable basis. A simple modification of the interaction can restrict
the space to a subspace with an infinite but countable basis. To describe it,
we define vectors in the infinite vector space

|0 ñ = |0 ñ 1 Ä |0 ñ 2 Ä |0 ñ 3 Ä |0 ñ 4 Ä . . .

|1 ñ = |1 ñ 1 Ä |0 ñ 2 Ä |0 ñ 3 Ä |0 ñ 4 Ä . . .

|2 ñ = |0 ñ 1 Ä |1 ñ 2 Ä |0 ñ 3 Ä |0 ñ 4 Ä . . .

|3 ñ = |0 ñ 1 Ä |0 ñ 2 Ä |1 ñ 3 Ä |0 ñ 4 Ä . . .

etc.
The interaction will6

destroy |1 ñ and create |2 ñ ; destroy |2 ñ and create |1 ñ

destroy |2 ñ and create |3 ñ ; destroy |3 ñ and create |2 ñ

a

destroy |n ñ and create |n + 1 ñ ; destroy |n + 1 ñ and create |n ñ

a

and leave the ground state |0 ñ unaffected.
These interactions have a nonlocal character in the sense that each

involves all particle states. For example, the destruction of |1 ñ and creation
of |2 ñ does not just affect the states of particles 1 and 2, but also involves

1274 Norton

6 If the interaction destroys |1 ñ and creates |2 ñ , then it follows from the Hermiticity of the
Hamiltonian that it must also destroy |2 ñ and create |1 ñ .



Fig. 4. Transition amplitudes for supertask Hamiltonian.

the creation of states |0 ñ 3 , |0 ñ 4 ,... entangled with the state |1 ñ 2 created for
particle 2. While this sort of entanglement is common in quantum theory,
if it troubles the reader, the reader is encouraged to think of the states
|0 ñ , |1 ñ , |2 ñ ,... as the fundamental states with the individual particle states
|0 ñ 1 , |1 ñ 1 ,... merely an intermediate used to define them.

The total Hamiltonian is then given as

H = H part + H int ( 11)

where

H part = +
¥ or N

n = 1

|n ñ á n| ( 12)

H int = +
¥ or N 2 1

n = 1

ia |n + 1 ñ á n | 2 ia |n ñ á n + 1 | ( 13)

The two ranges of summations in (12) and (13) are for the case of infinitely
many particles and for N particles.7 The real, positive constant a is set
arbitrarily and measures the strength of the interaction. The states
|0 ñ , |1 ñ , |2 ñ ,... form a countable basis that spans an infinite dimensioned
subspace of the original infinite vector space (8). The Hamiltonian is so
constructed as to map vectors in that subspace to vectors in that subspace,
so that the time development it generates will remain in the subspace if it
starts there. The Hamiltonian (11) is Hermitian.8

The transition amplitudes of this Hamiltonian are represented
figuratively in Fig. 4. The transition amplitude |n ñ ® |m ñ is defined as
á m | U(dt) |n ñ where U(dt) = exp( 2 iHdt) f 1 2 iHdt is the time evolution
operator for small dt.
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3.3. The SchroÈ dinger Equation

The SchroÈ dinger equation requires

i
d
dt

|Y ( t) ñ = H |Y ( t) ñ ( 14)

for a state vector |Y ( t) ñ = å ¥ or N
n = 0 Cn( t) |n ñ . Substituting this expression

for |Y( t) ñ into (14) and invoking expressions ( 12) and (13) for the
Hamiltonian, we recover a set of equations for Cn( t) , where the prime
denotes d/dt.

iC ¢0 = 0

iC ¢1 = C1 2 iaC2

iC ¢2 = C2 + ia(C1 2 C3 )
( 15)

a

iC ¢n = Cn + ia(Cn 2 1 2 Cn + 1)

a

For the infinite case, this set of equations continues indefinitely. For the
case of N particles, it terminates with

iC ¢N = CN + iaCN 2 1 ( 15 ¢ )

Since the |0 ñ mode interacts with no others, (15) requires

C0( t) = C0( 0) ( 16)

in all solutions. I typically suppress this equation in the systems and discus-
sion to follow.

This system of Eqs. (15), ( 15 ¢ ) can be put into a simpler and more use-
ful form by defining f n( t) = e itCn( t) for n > 0 and rearranging terms:

f 2 = 2 ( 1/a) f ¢1

f 3 = f 1 2 (1/a) f ¢2

a ( 17)

f n = f n 2 2 2 (1/a) f ¢n 2 1

a

1276 Norton



For the case of N particles only, the set terminates with

0 = f N 2 1 2 ( 1/a) f ¢N ( 17 ¢ )

In the form (17), (17 ¢ ) , one can already see immediately how indeter-
minism will arise in the infinite case. One can use the set as an iterative
prescription for generating solutions to the SchroÈ dinger equation. One
starts with some function f 1( t) and then uses each equation in turn to
determine f 2( t) , f 3( t) ,... . The result will be a full set of coefficients
Cn( t) = e 2 itf n( t) for n = 1, 2,... . These coefficients in turn fully specify the
state |Y( t) ñ and its time development. In the finite case, the final equation
(17 ¢ ) places a restriction on the choice of f 1( t); we cannot insert any f 1( t )
into the scheme for it will most likely fail to generate functions f N 2 1 and
fN that satisfy ( 17 ¢ ) . But in the infinite case, there is no such restriction. The
broad freedom to choose the function f 1( t) , tempered only by the need to
satisfy initial conditions, is translated below into an indeterminism.

4. THE CASE OF N PARTICLES IS WELL BEHAVED

Before proceeding with the pathologies of the case of infinitely many
particles, it will be helpful to ascertain that the system described is well
behaved as long as we restrict ourselves to finitely many particles. This is
already suggested by a crude count of the component equations (15) , (15 ¢ )
or (17), ( 17¢ ) that comprise the SchroÈ dinger equation. We are solving for
N functions of times, C1( t) ,..., CN ( t) , and we have a system of N first-order
differential equations to solve. This suggests that all we need are N initial
conditions to fix these N functions completely. These N initial conditions
are supplied by setting the N values of C1( 0),..., CN ( 0). That is, the state of
the system at time t = 0, |Y (0) ñ , determines its future time development.
Impatient readers may be satisfied with this observation. They are urged
to jump ahead to the discussion of the case of infinitely many particles.
Others are invited to review the behavior of the system for N = 2 and
N= 3.9
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4.1. N = 2: The Case of Two Particles

For N = 2, the SchroÈ dinger equation (17), (17 ¢ ) reduces to

f 2 = 2 (1/a) f ¢1, 0 = f 1 2 ( 1/a) f ¢2

This is solved easily to give

f ²2 + a2f 2 = 0, f 1 = (1/a) f ¢2

These two differential equations admit the general solution

f 1( t) = A cos at + B sin at, f 2( t) = 2 B cos at + A sin at

where A and B are arbitrary complex-valued constants. This solution
corresponds to

C1( t) = e 2 it(A cos at + B sin at) , C2( t) = e 2 it( 2 B cos at + A sin at) ( 18)

As a concrete illustration we take the case in which the first particle only
is energized and communicates its energy to the remaining particles. This
corresponds to the case of the initial condition |Y( 0) ñ = |1 ñ = |1 ñ 1 Ä |0 ñ 2 .
The corresponding initial values for (18) are C1( 0) = 1 and C2( 0) = 0. This
yields a time development C1( t) = e 2 it cos at, C2( t) = e 2 it sin at so that the
state evolves as

|Y ( t) ñ = e 2 it( cos at |1 ñ + sin at |2 ñ ) ( 19)

In this time development, the excitation is communicated from particle 1 to
particle 2. It then continues to oscillate back and forth between the two
states |1 ñ , in which the first particle only is energized, and |2 ñ , in which
the second particle only is energized. Measuring the degree of excitation as
|C1( t) | and |C2( t) | , this process is represented graphically in Fig. 5.

Fig. 5. Dynamics of a two-particle system.
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4.2. N = 3: The Case of Three Particles

For N = 3, the SchroÈ dinger equation (17), (17 ¢ ) reduces to

f 2 = 2 (1/a) f ¢1, f 3 = f 1 2 (1/a) f ¢2, 0 = f 2 2 ( 1/a) f ¢3

The set can be reduced to a single equation in f 1 and its derivatives only,

f 1¢ ¢ ¢ = +2 a2f ¢1 = 0

This equation can be solved for f 1( t) and the reduced form (17) of the
SchroÈ dinger equation used to recover expressions for f 2( t) and f 3( t). The
general solution is

f 1( t) = A cos vt + B sin vt + D , f 2( t ) = Ï 2 (A sin vt 2 B cos vt ) ,

f 3( t) = 2 A cos vt 2 B sin vt + D

where v = a Ï 2 and A, B, and D are arbitrary complex-valued constants.
This solution corresponds to

C1( t) = e 2 it(A cos vt + B sin vt + D )

C2( t) = e 2 it Ï 2 (A sin vt 2 B cos vt ) ( 20)

C3( t) = e 2 it( 2 A cos vt 2 B sin vt + D )

As an initial state, consider the system in which the first particle only is
energized so that we have |Y( 0) ñ = |1 ñ = |1 ñ 1 Ä |0 ñ 2 Ä |0 ñ 3 . This state
fixes A = D = 1

2 and B = 0 so that the state evolves as

|Y( t) ñ = 1
2 e 2 it( ( 1 + cos vt ) |1 ñ + Ï 2 sin vt |2 ñ + (1 2 cos vt ) |3 ñ ) ( 21)

In this time development, the excitation is communicated from particle 1 to
particle 2 and then to particle 3 and then continues to oscillate among the
three excitations. Measuring the degree of excitation as |C1( t) |, |C 2( t) |, and
|C3( t) | , this process is represented graphically in Fig. 6.

5. INDETERMINISM IN THE CASE OF INFINITELY MANY

PARTICLES

The results of the last section indicate that the system of particles
behaves standardly as long as we consider only finitely many particles. We
now show that, in the case of infinitely many particles and for a particular
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Fig. 6. Dynamics of a three-particle system.

supertask system, the time development specified by the SchroÈ dinger equa-
tion is indeterministic as long as we require only that the system obey the
SchroÈ dinger equation in its differential form (14). That is, a fixed initial
state |Y (0) ñ can evolve into more than one future state |Y ( t) ñ at time t.
The integral form of the SchroÈ dinger equation specifies a time evolution
given by |Y ( t) ñ = U( t) |Y ( 0) ñ , where

U( t) = exp( 2 iHt ) ( 14 ¢ )

This time development will prove to be deterministic, even with unnor-
malizable initial states. The indeterminism of the time evolution of the
SchroÈ dinger equation in differential form (14) reverts to the deterministic
evolution of (14 ¢ ) if we supplement the differential condition with the
requirement that the state vector always be normalizable.

5.1. Propositions

The demonstration of these results will depend upon propositions
about the supertask system derived in this section.

Proposition 1: No Unique Solution. If |Y( t) ñ satisfies the
differential form of the SchroÈ dinger equation (14) with
Hamiltonian H ( 11) for infinitely many particles and initial con-
dition |Y (0) ñ , then there exists arbitrarily many more distinct10

solutions |W( t) ñ with the same initial condition, |W(0) ñ = |Y(0) ñ .
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The proof of this proposition depends upon a special property of the solu-
tions of the differential SchroÈ dinger equation with Hamiltonian (11) : each
of the f n( t) of the equation set ( 17) are linear functions of f 1( t) and its
derivatives. To see this, one merely iterates through the equation set
sequentially computing expressions for each f n( t) from the expressions
computed for f n 2 1( t) and f n 2 2( t) . One recovers

f 1 = f 1

f 2 = 2 (1/a) f ¢1

f 3 = f 1 + (1/a2 ) f ²1

f 4 = 2 (2/a) f ¢1 2 (1/a3 ) f 1¢ ¢ ¢
( 22)

f 5 = f 1 + (3/a2 ) f ²1 + (1/a4 ) f ( 4)
1

f 6 = 2 (3/a) f ¢1 2 (4/a3 ) f 1¢ ¢ ¢ 2 ( 1/a5 ) f ( 5)
1

f 7 = f 1 + (6/a2 ) f ²1 + (5/a4 ) f ( 4)
1 + (1/a6 ) f ( 6)

1

a

The exact expressions for the dependence of the f n on f 1 and its derivatives
turn out to be unimportant for the proposition.11 All that matters is that
the relationship is linear and that can be represented by writing

f n( t) = +
k = 1, n 2 1

Bn , k f (k 2 1)
1 ( 23)

for some set of real constants Bn , k , where n = 1, 2,... and k = 1,..., n 2 1.
Now assume that we have a solution |Y( t ) ñ = å n = 0, ¥ Cn( t) |n ñ of

the differential SchroÈ dinger equation. The associated functions f n( t) =
e itCn( t) , for n = 1, 2,..., will solve the set of Eqs. ( 17). Now let G( t) be a
real-valued C ¥ function that is not everywhere zero but which satisfies the
conditions

G(0) = 0, G ¢ ( 0) = 0, G ² ( 0) = 0, G (3 )(0) = 0,... ( 24)
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f2n = +
k = 1, n

2
1

a2k 2 1 1 n 2 1+ k
2k 2 1 2 f ( 2k 2 1 )

1 , f 2n + 1 = +
k = 0, n

1
a2k 1 n+ k

2k 2 f ( 2k )
1

where ( n
k ) = n!/(k!(n 2 k )! ) . These expressions can be proved by mathematical induction

using the recursion relation ( n 2 1
k 2 1 ) + ( n 2 1

k ) = ( n
k ) .



and so on for all orders of differentiation.12 Define g1( t) = f 1( t) + G( t) . This
new function g1( t) can be inserted into the set of equations ( 17) in place
of f 1( t) and used to generate an infinite set of functions g2( t) , g3( t) ,..., where
g2 = (1/a) g¢1 , g3 = g1 2 (1/a) g ¢2 ,... . This set of functions, by construction,
satisfies the set of equations ( 17) that is equivalent to the SchroÈ dinger
equation. Therefore if we define a new time-dependent state vector
|W( t) ñ = å n = 0, ¥ D n |n ñ , where D n( t) = e 2 itgn( t) for all n, then |W( t ) ñ will
also satisfy the differential SchroÈ dinger equation.

The initial condition |W( 0) ñ is specified by the values of D n( 0) for all
n and these are in turn specified by the values of gn( 0). For each n we have
from (23) that

gn(0) = +
k = 1, n 2 1

Bn , k g (n 2 1)
1 ( 0)

= +
k = 1, n 2 1

Bn , k f (n 2 1)
1 ( 0) + +

k = 1, n 2 1

Bn , k G (n 2 1)( 0)

= +
k = 1, n 2 1

Bn , k f (n 2 1)
1 ( 0) = f n(0)

where the term in G vanishes because of condition (24). For all n, if
f n( 0) = g n( 0), then Cn( 0) = D n( 0), so that |Y( 0) ñ = |W(0 ) ñ . The proof of
the proposition is now complete. If |Y( t) ñ is a solution of the SchroÈ dinger
equation, then we have constructed a second solution that has the same
state at t = 0. Since there are arbitrarily many nonzero functions G( t) that
satisfy conditions ( 24), there are arbitrarily many such alternative solutions.

Note that the proof of the proposition depends essentially of the
infinity of the system. If the number of particles were finite, then, in addi-
tion to (17), the new solution would also need to satisfy the condition
(17 ¢ ) . This would preclude insertion of an arbitrary g1( t) into scheme (17)
and block the proof.

Proposition 2: Unique Analytic Solution. If |Y ( t) ñ satisfies
the differential form of the SchroÈ dinger equation (14) with
Hamiltonian H (11) for infinitely many particles and some
chosen initial condition |Y (0) ñ and, if it is analytic, then |Y( t) ñ
is unique.
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The proof of this proposition follows readily from the set of equations ( 23).
The boundary condition fixes |Y (0) ñ , so that all values of f 1(0), f 2( 0),
f 3( 0),... are fixed. We now iterate through the equation set ( 23) . The second
equation ( f 2 = 2 (1/a) f ¢1 ) fixes the value of f ¢1(0) , the third equation the
value of f ²1(0) , and so on. That is, the values of f (n )

1 ( 0) for all n are fixed.
Since we assume the solution is analytic, it follows that the function f 1( t )
is fixed. But once f 1( t ) is fixed, we can solve for all the remaining functions
f 2( t) , f 3( t) ,... since, according to (23), each of these functions is expressible
as a finite sum of terms in f 1( t ) and its derivatives.

Proposition 3. The unique analytic |Y ( t ) ñ of Proposition 2
( if it exists) satisfies the integral form of the SchroÈ dinger equa-
tion (14¢ ) , |Y( t) ñ = exp( 2 iHt) |Y (0) ñ .

Proof. Since the solution is analytic it can be written as a power
series in t

|Y( t) ñ = |Y ( 0) ñ + (d/dt) |Y(0 ) ñ t + . . . + (1/n! )(d n/dtn) |Y( 0) ñ tn + . . .

We can use the SchroÈ dinger equation in form (14) to reexpress each time
derivative in terms of the Hamiltonian so that we have

|Y( t) ñ = |Y ( 0) ñ + ( 2 iHt) |Y (0 ) ñ + . . . + (1/n! )( 2 iHt) n |Y (0) ñ + . . .

But this series is just |Y( t) ñ = exp( 2 iHt) |Y( 0) ñ .

Proposition 4: Constancy of Finite Norm . If |Y ñ satisfies
the differential SchroÈ dinger equation (14) for the infinite particle
system and its norm is finite over some time interval, then the
norm is constant over this time interval.

To see this, consider the first n equations of the SchroÈ dinger equation in
form (17), multiply them by f 1*, f 2*,..., f n*, respectively, and sum. We
recover

f ¢1 f 1* + f ¢2 f 2* + . . . + f ¢n f n*

= 2 af 1*f 2 + (af 1 f 2* 2 af 2*f 3) + . . . + (af n 2 1 f n* 2 af n*f n + 1)

Its complex conjugate form is

f 1 f 1* ¢ + f 2 f 2*¢ + . . . + f n f n* ¢

= 2 af 1 f 2* + (af 1*f 2 2 af 2 f 3* ) + . . . + (af *n 2 1 f n 2 af n f *n + 1)
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Most terms on the right-hand side cancel when we sum these two equa-
tions to recover

d
dt

( f 1*f 1 + . . . + f n*f n ) = 2 af n f *n + 1 2 af n*f n + 1

But for a quantum state |Y ( t) ñ = å n = 0, ¥ Cn( t) |n ñ , we have for the
square of its norm that á Y | Y ñ = å n = 0, ¥ Cn* Cn = C0* C 0 + å n = 1, ¥ f n*f n .
Since C 0* C0 is constant with time from Eq. ( 16), we have

d
dt

á Y ( t) | Y ( t) ñ = 2 Lim
n ® ¥

(af n f *n + 1 + af n*f n + 1 ) ( 25)

If the norm of the state vector is finite over some time interval, then the sum
å n = 1, ¥ f n*f n converges so that Lim n ® ¥ f n = 0. Hence Limn ® ¥ (af n f *n + 1 +
af n*f n + 1 ) = 0 and the norm of |Y ( t) ñ is constant over the interval.

Proposition 5: Determinism for Normalizable State Vectors.
If |Y ( t) ñ satisfies the differential SchroÈ dinger equation and we

also require that it be normalizable at all times t, then its time
development is deterministic; that is, there is a unique |Y( t) ñ
associated with each initial state |Y(0 ) ñ .

Proof. First consider the case in which |Y ( 0) ñ = |0 ñ . Its (norm) 2 is
á 0 | 0 ñ = 1. It is easy to see that the unique |Y( t) ñ that preserves this norm
is |Y ( t) ñ = |0 ñ . Any other time development yields a state vector
|Y ( t) ñ = å n = 0, ¥ C n( t) |n ñ , for which Cn( t) Þ 0 for some n > 0 and for
some t > 0. But we have from (16) that C0*( t) C0( t) = 1 for all t. Thus
these other nonzero coefficients Cn( t ) will lead to a norm greater than unity
at some t > 0; that is, the norm of |Y ( t) ñ will not be constant with time.
But we have from Proposition 4 that such nonconstancy of norm arises
only if the state vector has become unnormalizable. Therefore the only nor-
malizable time development is |Y ( t) ñ = |0 ñ .

Now consider an arbitrary normalizable initial state |Y ( 0) ñ . Assume,
contrary to the proposition, for reductio purposes that there are two dis-
tinct, normalizable solutions of the differential SchroÈ dinger equation
|Y ( t) ñ and |W( t) ñ that agree on this initial condition, that is, for which
|Y (0) ñ = |W( 0) ñ but |Y( t) ñ Þ |W( t) ñ for some t > 0. Consider their dif-
ference, |Y( t) ñ 2 |W( t) ñ . Since |Y ( t) ñ and |W( t) ñ are normalizable
individually, it follows that their difference is normalizable too.13 Similarly
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the sum of normalizable solutions |H ñ = |0 ñ + |Y( t) ñ 2 |W( t) ñ is nor-
malizable. Since the SchroÈ dinger equation is a linear equation and |H ñ is
a linear combination of solutions, |H ñ is also a solution of the SchroÈ dinger
equation. But now |H ñ has impossible properties. Its initial state is
|H (0) ñ = |0 ñ + |Y( 0) ñ 2 |W( 0) ñ = |0 ñ . But |H( t) ñ is not |0 ñ , the only
normalizable solution with this initial condition since we have by supposi-
tion that |Y ( t) ñ Þ |W( t) ñ for some t > 0. Therefore we must reject this sup-
position and conclude that there is only one |Y ( t) ñ for each initial state
|Y (0) ñ .

Proposition 6: Determinism of the Integral Form of the

SchroÈ dinger Equation . If |Y ( t) ñ satisfies the integral form of the
SchroÈ dinger equation (14 ¢ ) , then its time development is deter-
ministic; that is, there is a unique |Y ( t) ñ associated with each
initial state |Y( 0) ñ , whether |Y( 0) ñ is normalizable or not.

Proof. This integral form of the SchroÈ dinger equation preserves the
state vector norm since

á Y ( t) | Y( t) ñ = á Y (0) | exp( iHt ) exp( 2 iHt) |Y ( 0) ñ = á Y (0) | Y ( 0) ñ
( 26)

That is, if the state vector norm is finite at any time, it will retain this same
value at all times. If it diverges at any time, it will diverge at all times. First,
if the initial state vector is |Y (0) ñ = |0 ñ , it has unit norm at t = 0. It is easy
to see that the unique time development that preserves this norm is
|Y ( t) ñ = |0 ñ . Any other time development yields a state vector |Y ( t) ñ =
å n = 0, ¥ Cn( t) |n ñ for which Cn( t) Þ 0 for some n > 0 and for some t > 0.
Any solution of the integral SchroÈ dinger ( 14¢ ) equation must also satisfy
the differential SchroÈ dinger equation (14). But we have from the differential
SchroÈ dinger equation via ( 16) that C0*( t) C0( t) = 1 for all t. Therefore, if
the time development is to preserve unit norm, all Cn( t) = 0 for n > 0. That
is, |Y ( t) ñ = |0 ñ .

Now consider an arbitrary initial state |Y(0 ) ñ , which may or may not
be normalizable. Assume, contrary to the proposition, for reductio purposes
that there are two distinct, solutions of the differential SchroÈ dinger equa-
tion |Y ( t) ñ and |W( t) ñ that agree on this initial condition, that is, for
which |Y ( 0) ñ = |W( 0) ñ but |Y ( t) ñ Þ |W( t) ñ for some t > 0. Consider
|H ñ = |0 ñ + |Y ( t) ñ 2 |W( t) ñ . Since it is a linear combination of solutions
of the integral SchroÈ dinger equation and this equation is linear, |H ñ is also
a solution. But this solution has impossible properties. Its initial state is
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|H (0) ñ = |0 ñ + |Y( 0) ñ 2 |W( 0) ñ = |0 ñ . But |H( t) ñ is not |0 ñ , the only
solution with this initial condition that preserves unit norm, since we have
by supposition that |Y ( t) ñ Þ |W( t) ñ for some t > 0. Therefore we must
reject this supposition and conclude that there is only one |Y ( t) ñ for each
initial state |Y( 0) ñ .

These propositions do not yet establish the final results sought.
Proposition 1, for example, cannot demonstrate indeterminism non-
vacuously until it is shown that there are any solutions at all. Proposition 2
cannot show that determinism is preserved nonvacuously with a restriction
to analytic solutions until we show that there are analytic solutions. To
show that the propositions are not just vacuously or trivially true, in the
sections following we display several nontrivial14 solutions.

5.2. A Well-Behaved Solution

The indeterminism of the differential form of the SchroÈ dinger equation
allows the supertask system to exhibit unexpected behaviors. The analytic
solution developed in this section exhibits the sort of behavior one
intuitively expects. It is the quantum analogue of a classical supertask in
which a single excited particle communicates its excitation to an infinite
collection of initially unexcited particles. The excitation propagates through
the infinitely many particles and dissipates.

The system’s initial state is |Y( 0) ñ = |1 ñ = |1 ñ 1 Ä |0 ñ 2 Ä |0 ñ 3 Ä
|0 ñ 4 . . . , in which all but the first particle are in these ground states. This
initial state admits a solution in terms of Jn(x) , the Bessel functions of the
first kind, and is

|Y ( t) ñ = +
n = 1, ¥

e 2 it(Jn 2 1( 2at) + Jn + 1(2at) ) |n ñ ( 27)

This solution is analytic since these Bessel functions are analytic. That
this is a solution of the SchroÈ dinger equation follows directly from the
recursion relation satisfied by these Bessel functions of the first kind. That
relation is

2
d
dx

Jn(x) = Jn 2 1(x) 2 Jn + 1(x)
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Setting x = 2at and forming a sum of two Bessel functions, we recover

1
a

d
dt

(Jn 2 1(2at) + Jn + 1(2at ) ) = (Jn 2 2( 2at ) + Jn( 2at) ) 2 (Jn( 2at) + Jn + 2(2at) )

( 28)

Taking

f n( t ) = Jn 2 1(2at) + Jn + 1( 2at ) ( 29)

this expression (28) becomes

f n + 1( t) = f n 2 1( t) 2 ( 1/a) f ¢n( t) ( 30)

for n > 1. For the case of n = 1, expression (28) reduces to

f 2( t) = 2 ( 1/a) f ¢1( t) ( 31)

What makes the case n = 1 exceptional is that the first term on the right-
hand side of (28) reduces to J 2 1 ( 2at) + J1( 2at) and this vanishes because
of the symmetry property of Bessel functions of the first kind: for all n,
J2 n(x) = ( 2 1 ) n Jn(x) . Expressions ( 30) and (31) are equivalent to form
(17) of the SchroÈ dinger equation and this shows that the identification for
f n( t) in ( 29) satisfies the SchroÈ dinger equation, so that the state vector ( 27)
also satisfies the SchroÈ dinger equation.

Since Bessel functions satisfy the identity Jn 2 1(x) + Jn+ 1(x) =
(2n/x) Jn(x) , there is an alternate expression for f n( t) ,

f n( t) = (n/at) Jn( 2at) ( 29 ¢ )

To complete the demonstration that ( 27) is a solution of the
SchroÈ dinger equation for the initial condition |Y( 0) ñ = |1 ñ , we need only
show that ( 27) is compatible with this initial condition. This compatibility
follows directly from the properties of the Bessel function of the first kind.
For the Cn( 0) = e 2 i 0f n(0) = f n(0) corresponding to the f n( t) of (29), we
have

C1( 0) = J0( 0) + J2(0) = 1, Cn(0) = Jn 2 1( 0) + Jn + 1( 0) = 0, for n > 1

since J0( 0) = 1 and Jn( 0) = 0 for n > 0.
The initial state of this solution is |Y(0 ) ñ = |1 ñ , so its initial state has

unit norm. We can quickly see that the system will retain this unit norm
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Fig. 7. A well-behaved solution.

throughout its time development. It is a standard property of the Bessel
functions that, for fixed t, Limn ® ¥ Jn(at) = 0, so that Lim n ® ¥ f n = 0.
It now follows from (25) of Proposition 4 that the time derivative of the
norm vanishes for all t. Thus, if the state vector has unit norm at t = 0,
it retains it for all time.

It is interesting to represent this solution (27) graphically. Measuring
the degree of excitation of the particles as f n( t ) , we represent it in Fig. 7.
The initial excitation of particle 1 drops asymptotically to zero. That
excitation propagates through the remaining particles.

5.3. An Unnormalizable Solution

In the case of infinitely many particles, the energy eigenvector equa-
tion H |E ñ = E |E ñ admits solutions for all values of E, positive, zero, and
negative, so that the system has a continuous energy spectrum. The sim-
plest energy eigenvector is for eigenvalue E = 1 and is

|E = 1 ñ = |1 ñ + |3 ñ + |5 ñ + . . . ( 32)
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up to constant phase factor. This vector cannot be normalized. But aside
from this and the resultant complications for a theory of measurement, 15 its
behavior seems as respectable as the normalizable states of the previous
section.

If we set the initial state of |Y ( t) ñ = å n = 1, ¥ Cn |n ñ to |Y(0) ñ = |E = 1 ñ ,
we can find a set of coefficients Cn( t) = e 2 itf n( t) that satisfy the differential
SchroÈ dinger equation by noting that form (17) of the SchroÈ dinger equation
is solved by

f 1( t) = f 3( t ) = f 5( t) = . . . = 1, f 2( t) = f 4( t) = f 6( t) = . . . = 0

This set of functions corresponds to a time evolution

|Y( t) ñ = e 2 it( |1 ñ + |3 ñ + |5 ñ + . . . ) = e 2 it |E = 1 ñ ( 33)

That is, the state remains an E = 1 energy eigenstate. This is the unique
analytic solution corresponding to this initial state. This time dependence
is also compatible with the integral form (14 ¢ ) of the SchroÈ dinger equation
since it be written16

|Y( t) ñ = exp( 2 iHt) |E = 1 ñ ( 33 ¢ )

5.4. Spontaneous Excitation of the Ground State

We can illustrate the physical mechanism underlying the indeter-
minism allowed by Proposition 1 in the case of the differential form of the
SchroÈ dinger equation with a simple example. We take the first solution to
be the ground state |0 ñ so that C0 = 1 and Cn( t ) = f n( t) = 0 for all n > 0.
We form arbitrarily many further solutions by adding the function G( t) to
f 1( t) as in the proof of Proposition 1 above, where

G( t) = 0, t < 0

G( t) = K( 1/t) e 2 1 /t, t > 0
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Fig. 8. Spontaneous energization of an infinite-particle system.

and K is an arbitrary constant. This yields new solutions of the differential
SchroÈ dinger equation with the same initial condition |0 ñ in accord with the
methods in Sec. 5.1. A plot of the excitations for K= 1 shows that the
mechanism of the indeterminism is the same as the one that yielded
indeterminism in the case of the classical supertask of the masses and
springs. See Fig. 8. After t = 0, the first particle is excited by a faster excita-
tion of the second particle, the second particle is excited by a faster excita-
tion of the third, and so on.

These solutions are not analytic since the function G( t) is not analytic.
The solutions also fail to preserve the state vector norm. At t = 0, the norm
is just (C0* C0 ) 1/2 = 1. At times t > 0, the norm is greater than 1, since C0* C0

remains constant at unity [see Eq. (16) ], but nonzero coefficients C 1 , C2 ,...
also appear.

We can infer that the norm diverges immediately with t > 0. Otherwise
the norm would be finite for some interval of time beginning with t = 0. But
if it is finite, we have from Proposition 4 that it is constant in this interval,
so that it would have to be unity throughout the interval. But we know it
is greater than unity for t > 0.

These solutions fail to satisfy the integral form (14 ¢ ) of the SchroÈ dinger
equation. This integral form of the SchroÈ dinger equation preserves the state
vector norm if it is at any time finite, since, from (26), we have
á Y ( t) | Y ( t) ñ = á Y (0) | Y (0) ñ . These solutions cannot satisfy this integral
form of the equation since their initial ( norm) 2 is á Y ( 0) | Y( 0) ñ = 1 but
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they immediately develop to states at t > 0 with divergent (norms) 2,
á Y ( t) | Y ( t) ñ = ¥ .

Finally, these solutions manifest indeterminism since the effect of dif-
ferent values of K is not just to multiply the same solution by a phase
factor. All coefficients Cn( t) for n > 0 contain K as a multiplicative phase
factor. But C0( t) is independent of K. Thus different values of K alter the
ratio between C0( t) and the remaining coefficients, thereby producing dis-
tinct solutions, all of which agree on the initial state |0 ñ .

5.5. Collection of Principal Results

We can now combine the propositions in Sec. 5.1 with the particular
solutions in Secs. 5.2 to 5.4 to generate the following results for the case of
infinitely many particles. The particular solutions in Secs. 5.2± 5.4 instan-
tiate the possibilities listed in Table I.

If the time development of the state vector is governed solely by the dif-
ferential SchroÈ dinger equation, then it is indeterministic. This restates
Proposition 1. The indeterminism is illustrated most vividly by the spon-
taneous excitation in Sec. 5.4.

If the time development of the state vector is governed by (a) the dif-
ferential SchroÈ dinger equation and (b) the requirement that the state vector
is always normalizable , then the time development is deterministic. This
restates Proposition 5. Thus the well-behaved solution (27) of Sec. 5.2 is
the unique, normalizable solution of the differential SchroÈ dinger equation
for the initial state |Y (0) ñ = |1 ñ .

If the time development is governed by the differential SchroÈ dinger equa-
tion and it is also analytic, then it is deterministic and satisfies the integral
SchroÈ dinger equation. This restates Propositions 2 and 3. It assures us that
the well-behaved solution (27) is the unique analytic solution for the initial

Table I. Properties of the Particular Solutions

Analytic Normalizable

Indeter-
ministic
class of

solutions

Solves
differential

SchroÈ dinger
equation

Solves
integral

SchroÈ dinger
equation

Well-behaved solution
in Sec. 5.2

Yes Yes No Yes Yes

Unnormalizable
solution in Sec. 5.3

Yes No No Yes Yes

Spontaneous
excitation in Sec. 5.4

No No Yes Yes No
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state |Y( 0) ñ = |1 ñ . It also assures us that the unnormalizable solution (33)
is the unique analytic solution for the initial state |Y( 0) ñ = |E = 1 ñ .

There are unnormalizable solutions that satisfy both the differential form
(14) and the integral form (14 ¢ ) of the SchroÈ dinger equation. The unnormal-
izable solution (33) in Sec. 5.3 illustrates this result. Relation (26) is usually
taken to show that the integral form of the SchroÈ dinger equation assures us
of a constant state vector norm. It assures us of a little less. If the state
vector norm is at any time finite, ( 26) assures us that it must be the same
finite value at all times. If the norm diverges at any time, however, ( 26)
assures us that it must diverge at all times± ± as is the case with (33).

If the time development of the state vector is governed by the integral
SchroÈ dinger equation (14 ¢ ), then it is deterministic. This is a restatement of
Proposition 6.

For any normalizable initial state vector |Y( 0) ñ , the unique time develop-
ment satisfying the integral SchroÈ dinger equation is the same as the unique,
normalizable time development satisfying the differential SchroÈ dinger equa-
tion. This follows immediately from the earlier results and the fact that solu-
tions of the integral SchroÈ dinger equation are both normalizable, if the initial
state is normalizable, and solutions of the differential SchroÈ dinger equa-
tion.17

The Hamiltonian H is unbounded. That is, there is no finite upper
bound for á HY | HY ñ , for the space of all state vectors |Y ñ . In addition,
we have that á Y | H |Y ñ diverges for some states |Y ñ . While this result
may be proved for a large class of states, it is sufficient to display one state
for which both á HY | HY ñ and á Y | H |Y ñ diverge. That is the eigenstate
|E = 1 ñ in Sec. 5.3. We have

á HY | HY ñ = á Y | H |Y ñ = á Y | Y ñ = ¥ ( 34)

for |Y ñ = |E = 1 ñ since H |E = 1 ñ = |E = 1 ñ and á E = 1 | E = 1 ñ = ¥ .

6. AN ACCELERATED QUANTUM SUPERTASK

In the quantum supertask described so far, the worst pathology is a
loss of determinism and a failure to preserve normalizability in the time
development of the state vector. Both can be restored either by reverting to
the integral form of the SchroÈ dinger equation or by merely stipulating nor-
malizability of the state vector. Might we find a variant form of the super-
task for a which neither strategy succeeds? So far we have assumed that the
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strength of the interaction between successive particles remains constant, as
indicated by the invariability of the coupling constant a. What would
happen, we might wonder, if we allow the strength of this interaction to
increase without bound for successive particle interactions? This type of
acceleration is familiar from classical supertasks. It is realized in a way, for
example, in the case of the classical supertask in Fig. 1 by allowing the
bodies to be successively closer. In the quantum case, the effect of this
acceleration would be that lower numbered excitations would arouse
higher numbered excitations more rapidly± ± or so it would seem. Since the
acceleration may be supposed to grow without bound with increasing
excitation number, might it allow new pathological effects such as a nor-
malizable initial state developing only into unnormalizable states? If this
were to happen, neither of the above remedies of indeterminism could be
applied and indeterminism becomes inescapable.

The purpose of this section is to review the structure of these accelerated
supertasks. I conjecture that they produce no effects qualitatively different
from those of the unaccelerated supertask, although I do not have a complete
set of result analogous to those in Sec. 5 that would make the case. However,
we shall see that the accelerated supertasks are more, not less, hospitable
to normalizable solutions of the differential SchroÈ dinger equation.

6.1. The Hamiltonian and the SchroÈ dinger Equation

The vector spaces and Hamiltonian are as in the unaccelerated case,
except that we replace the single coupling constant a with a family of real,
positive coupling constants an , n = 1, 2, 3,..., where the an increase without
bound with n, so that the interaction Hamiltonian becomes

H int = +
¥

n = 1

ian |n + 1 ñ á n| 2 ian |n ñ á n + 1 | ( 13 ¢ )

The transition amplitudes of the resulting Hamiltonian (11) can be
represented figuratively as in Fig. 9.

Fig. 9. Transition amplitudes for accelerated supertask Hamiltonian.
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The differential SchroÈ dinger equation (14) is now in component form

iC ¢0 = 0

iC ¢1 = C1 2 ia1C2

iC ¢2 = C2 + ia1C1 2 ia2 C 3
( 15² )

a

iC ¢n = Cn + ian 2 1C n 2 1 2 ian Cn + 1

a

Defining f n = e itCn for n > 0, we recover in place of ( 17)

f 2 = 2
1
a1

f 1 ¢

f 3 =
a1

a2

f 1 2
1
a2

f 2 ¢
( 17² )

a

f n =
an 2 2

an 2 1
f n 2 2 2

1
an 2 1

f n 2 1 ¢

a

6.2. Properties

The accelerated supertask is very similar in structure to the unac-
celerated supertask and shares many of its properties. Indeed a review of
the demonstrations of Propositions 1, 2, 3, and 6 in Sec. 5 shows that their
demonstrations still succeed and they obtain for the accelerated case as
well. Thus we have that the differential SchroÈ dinger equation yields an
indeterministic time development (Proposition 1). Any analytic solution for
a given initial state is unique (Proposition 2) and satisfies the integral
SchroÈ dinger equation (Proposition 3). The time development of the
integral form is deterministic (Proposition 6).

The demonstration of Proposition 4 does not carry over, so that of
Proposition 5 fails as well. Thus I have no demonstration that adding the
requirement of normalizability at all times to the state vector restores
deterministic time development for the differential SchroÈ dinger equation.
I do conjecture, however, that this result still does obtain.
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The failure of the demonstration of Proposition 4 derives from the
modification of result (25) in the accelerated case. As a brief review of its
derivation shows, in the accelerated case it is replaced by

d
dt

á Y( t) | Y( t) ñ = 2 Lim
n ® ¥

(an f n f *n + 1 + an f n*f n + 1) ( 25 ¢ )

While normalizability of the state vector |Y ( t) ñ still implies that
Limn ® ¥ f n = 0, the latter limit is no longer sufficient to ensure the vanishing
of the limit in Eq. (25¢ ) . The difficulty is that we have supposed
Limn ® ¥ an = ¥ , so that a value for or even existence of the limit in (25 ¢ )
cannot be determined from normalizability of the state vector without
further analysis.

6.3. Properties of Some Particular Solutions

The Initial State |W(0)w= |1w. This initial state corresponds to the
initial state of the well-behaved solution in Sec. 5.2. Because of the unbounded
growth of the coupling constants an , one would expect that the higher
numbered excitations would be aroused more rapidly than in the unac-
celerated case. Compatible with this expectation is a computation of the
time derivatives at t = 0 of f n , where, as before, |Y ( t) ñ = å n = 0, ¥ C n( t) |n ñ
= å n = 0, ¥ e 2 itf n( t) |n ñ . A straightforward calculation using (17 ² ) shows
that the first nonzero time derivatives at t = 0 for f n , where n > 1, are

f ¢2( 0) = a1 , f ²3(0) = a1 a2 , f ( 3)
4 (0) = a1a2a3 , ...,

f ( n 2 1)
n (0) = a1a2 . . . an 2 1 , ...

With an growing without bound, these initial accelerations are arbitrarily
greater with increasing n than the corresponding values for the unac-
celerated case. If an analytic solution exists, the expression for f n( t) will be
given by a Taylor series,

f n( t) =
1

(n 2 1)!
a1 a2 . . . an 2 1 tn 2 1 + terms in higher powers of t

If an grows faster than n, then, for some fixed t, this first term will diverge
with increasing n. This suggests but does not show that normalizability
might be hard to sustain in the case of accelerated supertasks. It does not
show it since any divergence of this first term might be canceled by the
behavior of the remaining terms of the sum. That precisely this is likely to
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happen is strongly suggested by the remaining cases considered here. They
will suggest that normalizability or even just solutions with Limn ® ¥ f n = 0
arise more easily than in the unaccelerated case.

The E = 1 Eigenstate. A short calculation shows that

|E = 1 ñ = |1 ñ +
a1

a2
|3 ñ +

a1a3

a2 a4
|5 ñ + . . . +

a1 a3 . . . a2n 2 1

a2a4 . . . a2n
|2n + 1 ñ + . . .

( 35)

is an energy eigenstate with unit eigenvalue. Thus |Y( t) ñ = e 2 it |E = 1 ñ is
a solution of both differential and integral SchroÈ dinger equations. Most
important, if an grows rapidly enough with n ( e.g., exponentially) , the state
vector |E = 1 ñ will have a finite norm. Thus normalizability is achieved in
the accelerated case where is was not achieved in the corresponding unac-
celerated case of Sec. 5.3.

Spontaneous Excitation of the Ground State. The generation of this
case proceeds analogously with that in Sec. 5.4 for the unaccelerated case.
The resulting family of time developments is not analytic and solves the
differential SchroÈ dinger equation only. The principal qualitative difference
between this family of solutions in the accelerated and unaccelerated cases
concerns the behavior of the coefficients f n in the limit of large n. For the
unaccelerated case, since the solutions do not preserve the state vector
norm, we have from (25) that Lim n ® ¥ f n Þ 0. In the accelerated case, since
( 25) has been replaced by (25 ¢ ) , solutions with Limn ® ¥ f n = 0 no longer
force constancy of the norm and thus are compatible with the unnormal-
izability of spontaneous excitations. Moreover, we see in the Appendix that
this compatibility is realized in a large class of spontaneous excitations.

As we have seen, the mechanism of spontaneous excitation is that each
excitation is aroused by a faster arousal of higher-numbered excitations.
In the unaccelerated case, this arousal from infinity can be sustained only
by nonzero excitations in the limit of large n. In the accelerated case, it can
be sustained by excitations that vanish in the limit of large n.

The latter two examples suggest that the accelerated supertasks are
more, not less, hospitable to normalizable solutions or at least solutions
with lower magnitude excitations.18 For this reason I conjecture that no
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worse pathologies will arise in the accelerated case than have already arisen
in the unaccelerated case.

7. CONCLUSION

Classical supertasks have shown us that we cannot automatically
assume that classical theory is the locus of benign behavior for physical
systems. If we wish to ensure such behavior, we must be ready to restrict
our classical systems in ways we may not have anticipated. We may have
a classical interaction of finitely many bodies that retains determinism and
the conservation of energy and momentum, no matter how many bodies
we consider. But both can be lost in the passage from arbitrarily many
bodies to infinitely many. If we are to preserve determinism and these
conservation laws, we shall have to forgo that infinite limit.

Quantum mechanical supertasks carry a similar moral. A many-par-
ticle quantum interaction may be well behaved for any finite number of
particles. But when we make the passage from arbitrarily many particles to
infinitely many, we may lose the deterministic time development of the
differential SchroÈ dinger equation and find that normalized states evolve into
unnormalizable states under a Hamiltonian that has become unbounded.
In one sense, however, these quantum supertasks are better behaved than
their classical counterparts. A natural added condition, that we require
normalizability of the state vector, restores determinism and precludes
those time evolutions that fail to preserve the state vector norm.19 Or we
may secure determinism even for unnormalizable initial states if we require
that the time development satisfy the integral form of the SchroÈ dinger
equation.

The pathologies of the quantum supertasks appear to be quite generic.
They do not seem to depend upon some peculiarity of the system but upon
the system’s infinite degrees of freedom. We may construct supertasks
based on more realistic interactions. For example, we can write down a
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finite. In the classical supertask in Fig. 1, in which infinitely many bodies at rest are struck
by one moving with unit velocity, what final state can there be that preserves energy and
momentum and respects the dynamics of the pairwise collisions?



Hamiltonian that governs the quantum analog of the classical masses and
springs supertask. It seems reasonable to expect that the associated quan-
tum system will be governed by an infinite system of equations qualitatively
similar in structure to that governing the quantum supertask examined
here and that it will exhibit indeterminism in analogous ways.

APPENDIX: SOLVING THE SCHROÈ DINGER EQUATION

Solving the differential SchroÈ dinger equation amounts to finding
solutions of the infinite set of differential equations ( 17)/(17² ) , which can
be quite challenging in nontrivial cases.20 In the technique outlined here,
I replace the functions f n( t) by their Laplace transforms

L ( f n( t) ) = Fn(s) = #
¥

0
f n( t) e 2 st dt ( 36)

The set of equations (17)/(17 ² ) is reduced to an infinite set of algebraic
equations in Fn( s) which is far easier to solve. Laplace transforms are
defined and invertible only for a narrow class of functions. But since this
class includes bounded, C ¥ , real-valued functions, it contains just the sort
of functions we seek as solutions. In the following we assume that all our
functions f n( t ) are bounded, C ¥ and real valued.

Recalling that L ( f ¢n( t) ) = sFn( s) 2 f n(0) , the Laplace transform of
( 17 ² ) is

F2(s ) =
1
a1

( 2 sF1(s) + f 1(0) ) , F3( s) =
a1

a2
F1(s) 2

1
a2

sF2( s) , ...,

Fn(s ) =
an 2 2

an 2 1
Fn 2 2(s ) 2

1
an 2 1

sFn 2 1(s ) , ... ( 37)

for the special case in which f 1(0) is left undetermined and all remaining
f n( 0) = 0 for n > 1. The set of Eqs. ( 37) admits a solution of the form

Fn(s) =
An F1(s) + Bn

a1 a2 . . . an 2 1
( 38)
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for n > 0, where the coefficients An and Bn for n > 2 are defined recursively
by the relations

An = (an 2 2 ) 2 A n 2 2 2 sAn 2 1 , Bn = (an 2 2 ) 2 Bn 2 2 2 sBn 2 1 ( 39)

The initial values of these coefficients are

A1 = 1, A2 = s, B1 = 0, B2 = f 1(0) ( 40)

We can apply this equation set to two special cases.

A1. The Well-Behaved Solution for the Unaccelerated Supertask

We can use the equation set to generate solution (27). As it happens
I did not find the solution originally by this procedure but by fortuitously
noting the similarity between the equation system (17) and the standard
recursion relations for Bessel functions of the first kind. Since we now use
the equation set (38), ( 39), (40) as a heuristic aid to find solution (27), we
can simply assume that such a well-behaved solution exists along with the
existence of whatever limits are needed to proceed to a final result. We can
then confirm later that it does indeed have all the well-behaved properties
we assumed. For this case, we have an = a, for all n. We assume that the
solution sought is normalizable. Therefore Limn ® ¥ f n = 0. That is,

Lim
n ® ¥

Fn( s) = Lim
n ® ¥

An F1(s ) + Bn

a . a2 . . . an 2 1 = 0

We can be assured that the latter result obtains if F1(s ) = Limn ® ¥

( 2 Bn /An) . For the initial state |1 ñ , we have f 1( 0) = 1, so that B2 = 1.
Inserting this value along with (40) into (39), we find that Bn = An 2 1 for
n > 1. Therefore we have F1( s) = Limn ® ¥ ( 2 An 2 1 /An ) = Limn ® ¥ [1/(s 2
a2(An 2 2 /An 2 1 ) ) ], where the second equality derives from substituting for
An using (39). If the Limn ® ¥ ( 2 An 2 1 /An ) exists, it is F1( s) and from this
second equality it satisfies F1(s ) = 1/( s + a2F1(s) ) . The latter equation is a
simple quadratic equation in F1( s) . Solving, choosing the root that
corresponds to a positive value of F1( s) , we recover

F1(s) =
2

s + Ï s2 + 4a2

Consulting a standard table of Laplace transforms (Ref. 3, p. 131), we
invert the Laplace transform to recover f 1( t) = (1/at) J1( 2at) , which is just
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the expression for f 1( t) in ( 29 ¢ ) above. Once this expression for f 1( t) is
determined, the remaining expressions for f n( t) are recovered recursively
from (17), and we can then confirm at our convenience that the solution
has all the well-behaved properties assumed.

A2. Spontaneous Excitation for the Accelerated Supertask

We can now use the equation set (38) , ( 39) , ( 40) to affirm that there
are many spontaneous excitations of the ground state for the accelerated
supertask that satisfy the condition Lim n ® ¥ f n = 0. For this case, we have
|0 ñ as the initial state at t = 0 so that B2 = f 1( 0) = 0. Since now both
B1 = B2 = 0, it follows from (39) that Bn = 0 for all n. Therefore we have

Fn( s) =
An F1( s)

a1 a2 . . . an 2 1

( 38 ¢ )

The condition Limn ® ¥ f n = 0 is just

Lim
n ® ¥

Fn( s) = Lim
n ® ¥

An F1( s)
a1a2 . . . an 2 1

= 0

For simplicity, we now consider the case of an growing rapidly with n,
that is, at least exponentially with n. In this case we find that

Lim
n ® ¥

An

a1 a2 . . . an 2 1

= 0 (41)

To see this, note that it follows from (39) and (40) that An alternates in
sign such that ( 2 1 ) n + 1 An is always positive. Thus a form of the first equa-
tion of (39) is

Xn =
an 2 2

an 2 1
Xn 2 2 +

s
an 2 1

Xn 2 1 ( 42)

where Xn = ( ( 2 1 ) n + 1 An /a1 a2 . . . an 2 1 ) and we have for all n that Xn > 0.
For each fixed value of s, there will be a value of n [call it N(s) ] such that
for all n > N( s) , an will have grown sufficiently large to ensure that
[ (an 2 2 /an 2 1 ) + ( s/an 2 1 ) ] < 1. Hence for all n > N( s) , Xn will be bounded
from above by M = max(XN( s) 2 1 , XN( s ) 2 2 ) . From here it is straightforward
but tedious to prove that Limn ® ¥ Xn = 0. Informally, the result follows
because the second term (s/an 2 1 ) Xn 2 1 < ( s/an 2 1 ) M becomes arbitrarily
small in the limit of large n, so that Xn must approach (an 2 2 /an 2 1) Xn 2 1

in this limit. But since an grows at least exponentially with n, the ratio
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(an 2 2 /an 2 1) is always less than 1 and cannot approach 1 in the limit of
large n. Thus Xn can approach (an 2 2 /an 2 1 ) Xn 2 1 in the limit of large n
only if Lim n ® ¥ Xn = 0, which is equivalent to (41).

In view of the limit ( 41) , it would seem that any everywhere finite
transform F1(s) can be inserted into (38 ¢ ) to recover a spontaneous excita-
tion that satisfies Lim n ® ¥ f n = 0. This appearance is almost correct. The
freedom to choose F1(s) is large. The qualification is this. The SchroÈ dinger
equation (17 ² ) with boundary conditions f n( 0) = 0 for n > 1 entails the
system (38) , (39), ( 40) , but not conversely. It is this converse entailment
that we need to assure us that solutions of (38), (39), (40) are also solu-
tions of the original system (17² ) with the appropriate boundary condi-
tions. The converse entailment fails since (38), (39), ( 40) do not entail
f n( 0) = 0 for n > 1, even though these conditions were used in the deriva-
tion of (38), (39), (40). Therefore we need to stipulate these conditions
again, along with setting f 1( 0) = 0 as a supplement to (38) , ( 39), (40) , so
that the combined set becomes equivalent to the original equation (17 ² )
with the corresponding boundary conditions. We have for Laplace trans-
forms of functions with bounded derivatives that f n( 0) = Lim s ® ¥ sFn(s) .
Therefore we require that

Lim
s ® ¥

sFn( s) = Lim
s ® ¥

An sF1( s)
a1a2 . . . an 2 1

= 0 all n > 0 (43)

Any function F1( s) that satisfies condition (43) will generate a spontaneous
excitation of the accelerated supertask for which Limn ® ¥ f n = 0 in this
case of an growing at least exponentially with n.

It follows from the recursive definition (39) of An and the initial values
( 40) that An s is a polynomial in s with the highest power sn. Thus the limit
( 43) will obtain if F1(s) satisfies

Lim
s ® ¥

snF1( s) = 0 all n > 0 (44)

That is, F1(s) must drop to zero with increasing s faster than any 1/sn. This
condition is actually a familiar one. We have for Laplace transforms that

L ( f (n )
1 ( t) ) = snF1( s) 2 sn 2 1f 1( 0) 2 sn 2 2f ¢1( 0) 2 . . . 2 f (n 2 1)( 0)

and for all bounded function f (n )
1 ( t) that Lim s ® ¥ L ( f (n )

1 ( t) ) = 0. So (44) is
equivalent to

f 1(0) = 0, f ¢1(0) = 0, f ²1(0) = 0, ..., f (n )
1 (0) = 0, ... ( 44 ¢ )

We see immediately from (44¢ ) that a nontrivial f 1( t) cannot be analytic.
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It is easy to find functions F1( s) satisfying (44). It is assured if they
decay exponentially with increasing s, for example. Here is one instance for
which the inverse Laplace transformation is simple. Set F1( s) =
Ï (p/s ) e 2 2 Ï s for which (Ref. 3, p. 128) , the inverse Laplace transform
yields f 1( t ) = (e 2 1 /t/Ï t). This choice of f 1( t) generates the remaining f n( t )
by means of ( 17 ² ) . For accelerated supertasks in which an grow at least
exponentially with n, it constitutes a spontaneous excitation analogous to
that in Sec. 5.4 but for which Limn ® ¥ f n = 0.

Presumably, a similar analysis will return many solutions with
Limn ® ¥ f n = 0 for the initial condition |Y (0) ñ = |1 ñ . Unlike the case of
the unaccelerated supertask, the latter limit condition does not ensure
the preservation through time of the finite norm of the initial state,
since condition (25) no longer obtains. To be assured that the solution
found preserves the norm of the initial state through time, we need to
invoke the stronger limit condition of ( 25 ¢ ) , that is Limn ® ¥ (an f n f *n + 1 +
an f n*f n + 1 ) = 0. But since this stronger limit condition is not linear in the
functions f n , it does not admit a simple Laplace transform.
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