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In eternally inflating cosmology, infinitely many pocket universes are seeded. 

Attempts to show that universes like our observable universe are probable amongst 

them have failed, since no unique probability measure is recoverable. This lack of 

definite probabilities is taken to reveal a complete predictive failure. Inductive 

inference over the pocket universes, it would seem, is impossible. I argue that this 

conclusion of impossibility mistakes the nature of the problem. It confuses the case 

in which no inductive inference is possible, with another in which a weaker 

inductive logic applies. The alternative, applicable inductive logic is determined by 

background conditions and is the same, non-probabilistic logic as applies to an 

infinite lottery. This inductive logic does not preclude all predictions, but does 

affirm that predictions useful to deciding for or against eternal inflation are 

precluded.  

1.	Introduction	
 There is a widespread presumption in physics: when we are faced with an indefiniteness 

in some physical process, that indefiniteness is to be represented probabilistically. For otherwise, 

it is thought, we shall be unable to make predictions concerning the process. This presumption 

has remained mostly tacit, largely, I believe, because it has been applied with great success in 

many domains. All of statistical physics depends on the presumption that the random behavior of 

systems of very many components can be represented probabilistically. 

 With such success it is easy to lose sight of the fact it is an empirical question whether 

probability theory is applicable to a given physical systems. This truism is surely widely 
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recognized, but almost never expressed. A rare exception is Marc Kac (1959, p. 5), who put it 

this way:1 

 To me there is no methodological distinction between the applicability of 

differential equations to astronomy and of probability to thermodynamics or 

quantum mechanics. 

 It works! And brutally pragmatic as this point of view is, no better substitute has 

been found. 

And, we might add, as long as it works, we should continue using probability theory; and not ask 

too many troublesome questions. When it fails, however, we need not collapse in despair. It is 

time to ask troublesome questions. If the applicability of probabilities is an empirical question 

determined by the facts of the physical system, then is it not an empirical question whether some 

other formal representation will succeed where probabilities have failed? 

 My purpose here is to review a case in which probabilities fail but another formal 

representation of the indefiniteness succeeds. It arises in recent cosmology in the context of the 

“measure problem.” The version of the problem to be described here arises in so-called “eternal 

inflation.” According to this theory, the universe persists indefinitely in a state of very rapid, 

inflationary expansion, driven, in the simplest versions, by the exotic matter of a single inflaton 

field. During the inflationary expansion, it spins off infinitely many pocket universes in which 

the exotic matter of the inflaton field reverts to ordinary matter. Some of these pocket universes 

may well be like our observable universe. Others may be unlike our observable universe. 

 The prospects of inflationary cosmology as a viable theory would be greatly advanced if 

it could be established that pocket universes very much like ours are not just possible, but are to 

be expected. Otherwise the existence of our observable universe would be merely a fortuitous 

coincidence in the theory. The standard approach to demonstrating this expectation is to seek a 

probability measure over the different properties observers will find in the pocket universes. The 

measure problem is that there is no natural measure recoverable. Many measures may be 

imposed on the pocket universes. All face difficulties. None has proven to be uniquely successful. 

                                                
1 While I believe that Kac’s view is widely held, a quite extensive search in the literature has 

failed to find similar, clear statements of the empirical character of the applicability of 

probability theory to physical problems, beyond remarks by Bohm quoted in Section 5 below. 
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 To see the particular difficulty addressed in this paper, we simplify the problem by 

dividing the pocket universes into those like ours (“like”) and those unlike ours (“unlike”). 

Eternal inflation provides a countable infinity of each. Computing the ratio of probabilities of 

like to unlike requires us to compute the ratio of an infinity to an infinity, without any of the 

normal means of regularizing such a computation. Recognition of this difficulty has now divided 

those who work on inflationary cosmology into a majority that continues to search fruitlessly for 

a serviceable measure; and a minority that portrays the failure of the search for a measure as a 

blanket failure of the power of the theory of eternal inflation to make predictions. 

 Where both sides agree, however, is on the tacit assumption that the indefiniteness of the 

pocket universes has to be represented probabilistically. It is, they agree, either that or the theory 

has failed. The proposal of this paper is that this assumption fails in this case and should be 

discarded for eternal inflation. I will argue that we can still reason inductively about the 

prospects for universes like ours. However the natural inductive logic—the “infinite lottery” 

logic—is predictively weaker than a probabilistic logic and quite foreign to intuitions that have 

been tutored by schooling in probabilistic thinking. It is, however, the logic that the problem 

specification delineates. To resist it makes about as much sense as resisting the logic of 

probabilistic inferences over coin tosses and die throws. 

 My proposal is not that the predictive problems of eternal inflation are resolved by 

adopting this logic. They are not. The new logic affirms them. We must distinguish between the 

narrower case in which the prospects for useful prediction are limited and the broader case in 

which no inductive logic is applicable at all. Here, an inductive logic is applicable, but one of its 

positive consequences is that the prospects for useful prediction are limited. 

 My principal point concerns inductive logic, not prediction. For too long, in both science 

and philosophy of science, too many of us have tacitly accepted a false dilemma: either an 

indefiniteness can be treated probabilistically or it cannot be treated at all. Eternal inflation 

provides a clear example in present science in which there is a third option. A different, non-

probabilistic logic is applicable to its indefinitenesses. 

 Section 2 below will review how the measure problem arises in eternal inflationary 

cosmology through the need to form ill-defined ratios of infinities. It has become standard in the 

inflationary cosmology literature to illustrate the problem with what I call the “counting 

argument.” It uses a simple reordering of a sequence of numbers and will be described in Section 
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3. The following Section 4 will recount the widespread view amongst cosmologists that the 

failure of probability theory in this case threatens to bring a complete failure of the overall theory 

of eternal inflation, for, they fear, such a theory is deprived of its predictive powers. To help 

support an alternative diagnosis, Section 5 will review claims that probabilistic representation 

requires specific hospitable background conditions. Section 6 will invert those claims: if such 

background conditions do not favor probabilistic representation, then, I will argue there, it is an 

empirical matter to determine which inductive logic is favored by them. Section 7 will 

reconfigure the counting argument to derive core behaviors of the applicable, non-probabilistic 

logic. The next Section 8 recalls that the logic so identified is the same logic as governs drawings 

from a fair, infinite lottery.  While this logic is weaker predictively than a probabilistic logic, 

Section 9 reports inferences that can be made using it. The most important consequence for 

eternal inflation is a positive result that affirms its predictive woes: virtually all distributions of 

like and unlike across a countable infinity of pocket universes are assigned equal chances. Hence 

the logic cannot discriminate among them.  Section 10 has conclusions. An appendix develops 

the essential, pertinent content of the theory of eternally inflating cosmology. 

2.	The	Measure	Problem	
 In an eternally inflating cosmology, the bulk of the universe undergoes a never-ending, 

rapidly accelerating expansion that is unlike what we see in the observable portion of the 

universe. During this process, pocket universes are spun off continually by probabilistic 

processes described in the Appendix. These pocket universes are no longer inflating and may be 

or may not be like our observable universe. One of them, it is supposed, is our observable 

universe. These pocket universes, together with the inflating regions, form a multiverse. It would 

be better for the empirical grounding of inflationary cosmology if pocket universes like our 

observable universes are to be expected. Otherwise the existence of our observable universe 

would merely be a fortuitous coincidence in a multiverse of pocket universes. A long-standing 

goal of eternal inflation theorists has been to assess the probability of pocket universes like our 

observable universe and, it is hoped, to show them probable. 
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 In spite of two decades of attention, determining the appropriate probability measure has 

proven very troublesome. It is now known as the “measure problem.” Vilenkin (2007, p. 6777; 

his emphasis) gives a typical definition: 

The key problem is then to calculate the probability distribution for the constants [in 

the laws governing the pocket universes]. It is often referred to as the measure 

problem. 

 The probability Pj of observing vacuum j can be expressed as a product 

   Pj =Pj(prior) fj,                 [(1)] 

where the prior probability Pj(prior) is determined by the geography of the landscape 

and by the dynamics of eternal inflation, and the selection factor fj characterizes the 

chances for an observer to evolve in vacuum j. The distribution [(1)] gives the 

probability for a randomly picked observer to be in a given vacuum. 

Note that the probability sought is the probability that an observer finds the designated vacuum 

state, not merely that such a state arises. 

 Many measures have been proposed. Winitski (2007, §5.3.2; 2009, §6.1) divides them 

into two types. The “volume-based” measures are derived from the ensemble of all observers at 

all events in spacetime. The “world-line based” measures employ a smaller ensemble of 

observers in the vicinity of one cosmically co-moving worldline or even one arbitrarily chosen 

timelike geodesic. 

 The difficulty is that none of these measures is unproblematic and no uniquely defined, 

natural measure has been found that solves the problem adequately. A volume measure might 

need to slice the spacetime into spacelike surfaces of simultaneous events. In the “gauge 

problem” (as described by Winitzki, 2007, p. 179; 2009, p. 88), there prove to be many ways to 

effect this slicing without any being naturally preferred. However, the differences make a 

difference to the resulting measures. This is just the first of many problems.2 For example, a 

measure can be recovered by considering a volume of spacetime that grows indefinitely towards 

the future. Since eternal inflation creates new pocket universes at an accelerating rate3 as the 
                                                
2 For more details of the difficulties, see Smeenk (2014), which is a recent survey of the measure 

problem in the philosophy of science literature. 
3 When counted by the protocol Guth (2000, §7) describes. 
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universe evolves, the sampling of this scheme is heavily weighted towards young, newly created 

pocket universes. This creates what Guth (2000, §7) calls the “youngness problem”: an older 

universe like our own is extremely unlikely, even in relation to one that is only slightly younger. 

 The most enduring problem, however, is mentioned most frequently: the measure 

requires taking the ratios of infinities; and these ratios are not well defined. Freivogel (2011, p.2) 

puts it most simply. If observation of A occurs NA times and observation of B occurs NB times, 

then the ratio of the probabilities of A to B is 

pA
pB

= NA

NB

                                                                               (2) 

Freivogel continues: 

The major obstacle of principle to implementing the program of making predictions 

by counting observations in the multiverse is the existence of divergences. Eternal 

inflation produces not just a very large universe, but an infinite universe containing 

an infinite number of pocket universes, each of which is itself infinite. Therefore, 

both the numerator and the denominator of [(2)] are infinite. We can define the ratio 

by regulating the infinite volume, but it turns out that the result is highly regulator-

dependent. 

Several notions are invoked here. First, the idea that observation counts directly yield 

probabilities tacitly or explicitly (e.g. Winitzki, 2007, p. 163; 2009, p.28) relies on something 

like Vilenkin’s (1995, p.847) “principle of mediocrity”: 

The principle of mediocrity suggests that we think of ourselves as a civilization 

randomly picked in the metauniverse. 

Second, the measure problem involves two distinct notions of probability. One derives from the 

physics of the probabilistic dynamics of the inflating universe. The other arises from distributing 

uncertainty uniformly over pocket universes through the principle of mediocrity. It is this latter 

probability that is the ultimate source of the problem. 

 A simple analogy illustrates the difference. Consider an array of fair coins, all laid out 

with no particular order. The coins are tossed.4 The physics of coin tossing will give a definite 

                                                
4 At the risk of laboring the obvious: each coin corresponds to a pocket universe and heads or 

tails corresponds to the observed property. 
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probability of heads for each coin of 0.5. One of these coins, we know not which, is “our coin.” 

We ask for the probability of it showing heads. We employ the principle of mediocrity to assure 

us that any of these coins is equally likely to be ours, so that the probability of heads is 

proportional to the number of heads in the array; and the same for tails. 

 In the unproblematic case, we have a large but finite number of coins. We infer from the 

coin tossing dynamics of a fair coin that very likely the numbers of heads and tails in the array 

will be nearly equal. The probability ratio of heads to tails in then well-estimated by the ratio of 

the numbers of heads to the numbers of tails, as (2) requires. This result is inferred without using 

the principle of mediocrity. It agrees with what an application of the principle would deliver, 

reaffirming the principle. 

 The problematic case arises when the array is infinite. Then there will be infinitely many 

heads and infinitely many tails. Equation (2) asks us to take the ratio of an infinite to an infinity, 

which is not well defined. 

 The third notion in Freivogel’s statement is the use of a regulator to recover a well-

defined ratio in (2). In the analogy, it works by taking some finite set of the coins, computing the 

ratio of heads to tails in it and then letting the selected set grow infinitely large, until all the coins 

are included. The ratio sought is the limit of the ratios computed for the finite sets. 

 The difficulty with this approach is that there is no restriction on how we select the set 

and how we add to it in the approach to infinite inclusion. Different regulators employ different 

protocols and can produce different limiting ratios. We might add two heads to the set for every 

tail until all the coins are included and recover a two to one ratio in the limit. Or we might 

reverse the protocol and add one head for every two tails, so that we recover a one to two ratio in 

the limit. Since we have no way to decide which is the correct regulator, even with a regulator, 

the probability ratio corresponding to (2) will have no definite value. We shall see more of this 

problem below in the “counting argument.” 

 A caution: the coin analogy oversimplifies in the following aspect. Once we know that 

the probability of a head on each coin is 0.5, it does not matter that there are infinitely many of 

them. We know that the probability of a head on our coin is 0.5. Determining the probability this 

way corresponds to using a “world-line based” measure, mentioned above, for we are tracking 

the history of one coin or, correspondingly, one small set of observers. The disanalogy is that 

these worldline based measures exhibit an objectionable sensitivity to initial conditions. Winitzki 
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(2007, p. 179-80; 2009, p. 89) notes that the “volume-based” measures do not have this problem 

and are therefore preferred by him. 

 Finally, this analogy brings to the fore an enduring difficulty in this entire analysis. There 

is nothing wrong with the idea that we are equally uncertain—that is, indifferent—as to which of 

the many supposed civilizations of the multiverse is ours. The problems start when we assume 

that this indifference is to be represented by equality of probability. As was argued in Norton 

(2008), the tacit transformation of indifference to equality of probability has led generations 

falsely to impugn what is otherwise a fundamental truism of evidence, the principle of 

indifference. This same transformation, sometimes in the guise of the “self-sampling 

assumption,” is responsible for what looks initially like perplexing paradoxes in cosmology. 

Further examination, such as given in Norton (2010), shows them merely to be simple fallacies, 

engendered directly by the presumption that indifference must be represented as equality of 

probability. 

 These papers are just a part of a flourishing literature that seeks better representations of 

indifference. See Benétreau-Dupin (2015, 2015a). Elkin (manuscript) and Eva (manuscript) for 

various proposals. 

3.	The	Counting	Argument	
There is a vivid and simple way of presenting the core difficulty of the measure problem. Its 

formulation will prove helpful in the analysis to be given later. The earliest presentation I found 

in the literature is Guth (2000, §6); and it is reproduced in Guth (2007, §4): 

 To understand the nature of the problem, it is useful to think about the integers as 

a model system with an infinite number of entities. We can ask, for example, what 

fraction of the integers are odd. Most people would presumably say that the answer 

is 1/2, since the integers alternate between odd and even. That is, if the string of 

integers is truncated after the Nth, then the fraction of odd integers in the string is 

exactly 1/2 if N is even, and is (N+1)/2N if N is odd. In any case, the fraction 

approaches 1/2 as N approaches infinity. 

 However, the ambiguity of the answer can be seen if one imagines other orderings 

for the integers. One could, if one wished, order the integers as 
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  1, 3, 2, 5, 7, 4, 9, 11, 6, … ,                                           [(3)] 

always writing two odd integers followed by one even integer. This series includes 

each integer exactly once, just like the usual sequence (1, 2, 3, 4, …). The integers 

are just arranged in an unusual order. However, if we truncate the sequence shown 

in Eq. [(3)] after the Nth entry, and then take the limit N à ∞, we would conclude 

that 2/3 of the integers are odd. Thus, we find that the definition of probability on 

an infinite set requires some method of truncation, and that the answer can depend 

nontrivially on the method that is used. 

This counting argument uses the integers to implement an alternative regulator such as described 

in the last section. Guth’s set grows by adding two odd numbers for every even number and thus 

arrives at a limiting probability of 2/3 for odd numbers. Correspondingly, we grew the set of 

coins so that there were two heads added for every tail and arrived at a probability of heads of 

2/3. 

 This counting argument reappears in almost exactly the same form in the subsequent 

literature on eternal inflation. We find forms of it in Tegmark (2005, p. 16; 2007, p. 122) and 

Vilenkin (2007, p. 6779); and a more formal version in Hollands and Wald (2002b, p. 5). 

Steinhardt (2011, p. 42) gives a version with coins: 

As an analogy, suppose you have a sack containing a known finite number of 

quarters and pennies. If you reach in and pick a coin randomly, you can make a firm 

prediction about which coin you are most likely to choose. If the sack contains an 

infinite number of quarter and pennies, though, you cannot. To try to assess the 

probabilities, you sort the coins into piles. You start by putting one quarter into the 

pile, then one penny, then a second quarter, then a second penny, and so on. This 

procedure gives you the impression that there is an equal number of each 

denomination. But then you try a different system, first piling 10 quarters, then one 

penny, then 10 quarters, then another penny, and so on. Now you have the 

impression that there are 10 quarters for every penny.  

 Which method of counting out the coins is right? The answer is neither. For an 

infinite collection of coins, there are an infinite number of ways of sorting that 

produce an infinite range of probabilities. So there is no legitimate way to judge 
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which coin is more likely. By the same reasoning, there is no way to judge which 

kind of island is more likely in an eternally inflating universe.  

4.	When	Can	We	Make	Predictions?	
 These presentations of the counting argument are surrounded by air of urgency, unusual 

in the physics literature. For it is assumed that if there are no probabilities assignable to different 

outcomes, then the theory cannot make predictions at all. Hence Guth (2000, §6; 2007, §4) 

introduces the above counting argument with a sobering counsel (my emphasis): 

 In an eternally inflating universe, anything that can happen will happen; in fact, it 

will happen an infinite number of times. Thus, the question of what is possible 

becomes trivial -- anything is possible, unless it violates some absolute conservation 

law. To extract predictions from the theory, we must therefore learn to distinguish 

the probable from the improbable. 

Responding to Guth’s remark above and perhaps reflecting more broadly on the problems raised 

in his article, Steinhardt (2011, p. 42) concurs that the situation is dire. He continues his 

recounting of the coin counting analogy with: 

Now you should be disturbed. What does it mean to say that inflation makes certain 

predictions—that, for example, the universe is uniform or has scale-invariant 

fluctuations—if anything that can happen will happen an infinite number of times? 

And if the theory does not make testable predictions, how can cosmologists claim 

that the theory agrees with observations, as they routinely do? 

While Guth and Steinhardt agree on the threat to prediction from the counting argument, they do 

not agree on its ultimate import. Guth, such as in Guth, Kaiser and Nomura (2014, §4-5), along 

with a mainstream of inflationary cosmologists, regard the problem of finding the right regulator 

as no more serious than problems routinely faced at one time or another by all physical theories. 

Tegmark (2005, p.13) expressed this view quite succinctly: 

On an optimistic note, the measure problem (how to compute probabilities) plagued 

both statistical mechanics and quantum physics early on, so there is real hope that 

inflation too can overcome its birth pains and become a testable theory whose 

probability predictions are unique. 
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Steinhardt and his co-authors, Anna Ijjas and Abraham Loeb, see it otherwise. The predictive 

difficulty, encapsulated in the counting argument, is symptomatic of a deeper failure by 

inflationary cosmology overall to make definite predictions. 

 The tensions between the two positions has escalated into a public debate that has been 

aired in the more popular scientific press. See Ijjas, Steinhardt and Loeb (2013, 2014, 2017) and 

responses in Guth, Kaiser and Nomura (2014). Guth et al. (2017) is a strong rejoinder to Ijjas, 

Steinhardt and Loeb (2017) in a letter to the editor of Scientific American. It is co-signed by 32 

of the leading figures in modern cosmology. Ijjas, Steinhardt and Loeb seem undeterred by this 

display of the might of the authorities. In their response,5 appended to the text of the letter, they 

reaffirm the failure of prediction (my emphasis): 

And if inflation produces a multiverse in which, to quote a previous statement from 

one of the responding authors (Guth), “anything that can happen will happen”—it 

makes no sense whatsoever to talk about predictions. Unlike the Standard Model, 

even after fixing all the parameters, any inflationary model gives an infinite 

diversity of outcomes with none preferred over any other. This makes inflation 

immune from any observational test. 

5.	When	Probabilities	are	Warranted	
 Where both sides of this dispute agree is that the uncertainty expressed by the principle of 

mediocrity is to be expressed by an equality of probabilities. But no probability can do this when 

the uncertainty is distributed over infinitely many possibilities without a unique regulator. 

 The central contention of this paper is that one cannot assume by default that all 

uncertainties are to be expressed by probabilities. Rather their expression by probabilities will, in 

each case, require background conditions that specifically favor it. It is routine for there to be 

such background conditions. In physical applications these conditions are commonly supplied by 

the chances of a physical theory. If there is a one in two chance of a head on the toss of a fair 

coin, or of a thermal or quantum fluctuation raising the energy of system, then our uncertainty 

over whether each happens is well represented by a probability of one half. 
                                                
5 For an extended version of their response, see 

http://physics.princeton.edu/~cosmo/sciam/index.html#faq 
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 There are, however, physical systems conceivable to whose indefinite behaviors no 

probabilities can be adapted. Norton (manuscript b) describes several. When such physical 

chances are not present, there is a temptation to introduce them in a convenient fable. 

Inflationary cosmology illustrates the temptation. It was motivated by Guth (1981) as a solution 

to the cosmic horizon and flatness problem. These problems arose because very specific initial 

conditions are needed in standard cosmology to return the present day near Euclidian spatial 

geometry and near homogeneous matter distribution. The temptation arises when we judge these 

specific initial conditions improbable and ask how such improbable conditions could come about. 

 Wald and Hollands (2002a, p. 2044) criticize the question as depending on a fable: 

An image that seems to underlie the posing of these questions is that of a 

blindfolded Creator throwing a dart towards a board of initial conditions for the 

universe. It is then quite puzzling how the dart managed to land on such special 

initial conditions of Robertson-Walker symmetry and spatial flatness. If the 

“blindfolded Creator” view of the origin of the universe were correct, then the only 

way the symmetry (and perhaps flatness) of the universe could be explained would 

be via dynamical evolution arguments. 

In a later defense of this paper, Hollands and Wald (2002b, p.5) reinforce their criticism: 

 First, probabilistic arguments can be used reliably when one completely 

understands both the nature of the underlying dynamics of the system and the 

source of its “randomness”. Thus, for example, probabilistic arguments are very 

successful in predicting the (likely) outcomes of a series of coin tosses. Conversely, 

probabilistic arguments are notoriously unreliable when one does not understand 

the underlying nature of the system and/or the source of its randomness. 

 The idea that probabilistic inference in each circumstance requires some definite, positive 

condition to favor it, seems undeniable. It is foundational to a more general approach to 

inductive inference that I call the “material theory of induction.” However one finds the point 

rarely made in the physics literature. In a context different from that of cosmology, David Bohm 

gives a sharp, clear and extended statement of it. His target (1957, pp. 17-18) is the “subjective 

interpretation of probability” in which “it is supposed that probabilities represent, in some sense, 

an incomplete degree of knowledge or information concerning the events, objects, or conditions 

under discussion.” His analysis drives towards the conclusion: 
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Evidently, then, the applicability of the theory of probability to scientific and other 

statistical problems has no essential relationship either to our knowledge or to our 

ignorance. Rather, it depends only on the objective existence of certain regularities 

that are characteristic of the systems and processes under discussion, regularities 

which imply that the long run or average behaviour in a large aggregate of objects 

or events is approximately independent of the precise details that determine exactly 

what will happen in each individual case. 

This conclusion is quite right to ground the applicability of probabilistic reasoning in factual 

properties of the systems and processes. The only qualification needed is that the existence of 

stable long run frequencies may be only one type of factual property that can ground this 

applicability. 

6.	Recovering	an	Inductive	Logic	from	Background	Conditions	
 If the background conditions do not favor the representation of uncertainties by 

probabilities, we should ask whether these conditions favor some other representation. To do so 

is to allow that this representation is an empirical matter, just as is the content of each physical 

theory. We would not demand that electrons must be bosons when all the evidence speaks 

against it. Why demand that uncertainties must be represented probabilistically when the 

background conditions speak against it? Why not ask if those background conditions determine a 

different representation? Let us call that new representation the “chance” of some configuration, 

where we leave open just what that notion is, until its properties are fixed by the background 

conditions. 

 The properties of this notion of chance are controlled by two facts among the background 

conditions. The first is the principle of mediocrity,6 now extended to apply to pocket universes 

rather than civilizations as in Vilenkin’s original formulation in Section 2 above. The second is 

the fact that there is a countable infinity of pocket universes over which the principle is applied. 
                                                
6 The principle of mediocrity is really just a version of the familiar principle of indifference, as 

discussed in Norton (2008). It is less epistemic than the traditional cases of indifference, for it 

rests in part on the empirical assumption that observers will arise in all pocket universes that are 

like ours. 
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To see their import, consider some labeling of the pocket universes by numbers 1, 2, 3, … The 

principle of mediocrity tells us that we should be indifferent among the pocket universes in 

identifying which is our own. That is, we have no preference among the label numbers; and this 

indifference remains no matter how we permute7 the labels. Consider universe number 5 in some 

labeling; and the new universe to which the number 5 is attached after any permutation of the 

labels. According to the principle of mediocrity, we should judge both universes to have the 

same chance. More formally, our assignments of chance are invariant under any permutation of 

the labels.  

 The same holds not just for individual pocket universes, but for sets of them. Consider 

some set with label numbers {3, 27, 589, …} in the first labeling; and the set of universes 

identified by these label numbers after the permutation. We must judge both sets of universes to 

have the same chance. This can be expressed as an invariance condition: 

Two sets of pocket universe have the same chance, if a permutation of labels maps 

one to the other. 

The condition for a permutation to map one set to another is that each set has the same 

cardinality and that the complements of each set have the same cardinality. That means that sets 

with equal chances can be divided into three general types. 

 First are finite sets: 

finiten: a set with n members, where n=1, 2, 3, … . 

So sets of type finite3 with labels {1, 2, 3} and {4, 5, 6} are mapped onto each other by a 

permutation that includes: 

1 à 4, 2 à 5 and 3 à 6 

The complements of each set are {4, 5, 6, 7, 8, …} and {1, 2, 3, 7, 8, …}. To be a permutation, 

the relabeling must also map the first complement set onto the second. This is achieved if the 

remainder of the permutation is 

4 à 1, 5à2, 6à3 and 7à7, 8à8, 9à9, … 

Hence we conclude the sets with labels {1, 2, 3} and {4, 5, 6} have equal chances. 

                                                
7 A permutation is a one to one mapping of the numbers. That is, number labels are redistributed 

over the pocket universe so that, every universe receives a number, no universe receives more 

than one and all numbers are used. 
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 A second type are infinite sets whose complements are finite: 

infiniteco-finite-n: an infinite set whose complement is finite of size n. 

The sets with labels  {4, 5, 6, 7, 8, …} and {1, 2, 3, 7, 8, …} of the above example are 

infiniteco-finite-3. The above permutation maps the first to the second. Hence we conclude the sets 

with labels {4, 5, 6, 7, 8, …} and {1, 2, 3, 7, 8, …} have equal chances. 

 The third type is the most interesting: 

infiniteco-infinite: an infinite set whose complement is also infinite.  

The set odd numbered universes {1, 3, 5, …} is an example, since the complement is the set of 

even numbered universes {2, 4, 6, …}, which is also infinite. 

 To restate the key result, all sets of the same type have the same chance. 

 Now consider binary properties distributed over these pocket universes. We will use 

“like,” which means the pocket universe is like ours; or it negation “unlike.” We could have 

chosen many other properties: the inhomogeneities in the matter distribution is above some 

threshold or not; the matter density is above critical or not; the cosmological constant (if we add 

it into the model) is in such and such a range, or outside it; and so on. However the analysis will 

be the same for all. 

 It will be convenient to specify two forms of the “like” property: a broader one, “like1”; 

and a narrower one, “like2.” Possessing like2 entails possessing like1, but not conversely. There 

are many ways to instantiate these properties. Since the measured density parameter Ω is very 

close to one, we might associate like1 with 0.8< Ω <1.2 and like2 with 0.9< Ω <1.1. 

 There is a map from binary properties to sets: the set corresponding to “like” is just the 

set of universes that carry the property. Hence we can now associate set types with properties. 

For example, the property like is infiniteco-infinite just in case the property like is instantiated by 

infinitely many universes and the property unlike by infinitely many universes. So now we have: 

All binary properties of the same type have the same chance. 

We determine that two properties are of the same type just if there is a permutation of the labels 

of the pocket universes that maps the set with the first property onto the set with the second.  
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7.	The	Counting	Argument	Again	
 We can now reconfigure the counting argument of Section 3 as a means of developing 

the behavior of the chance function in the case of properties that are infiniteco-infinite. Assume 

that properties like1 and like2 are infiniteco-infinite. We can always select a permutation of labels 

so that the like2 universes are odd numbered: 

 

1-like2 3-like2 5-like2 7-like2 9-like2 … 

2-unlike2 4-unlike2 6-unlike2 8-unlike2 10-unlike2 … 

Table 1. Numbering suggests half of universes are like2 

 

This leaves the impression that like2 and unlike2 are each 50% of the universes. 

 Since universes with property like1 are a superset of those with like2 we might represent 

the two sets in a different table with a different numbering: 

 

1-like1, like2 4-like1, like2 7-like1, like2 10-like1, like2 … 

2-like1 , unlike2 5-like1 , unlike2 8-like1 , unlike2 11-like1 , unlike2 … 

3-unlike1, unlike2 6-unlike1, unlike2 9-unlike1, unlike2 12-unlike1, unlike2 … 

Table 2. Numbering suggests two thirds of universes are like1 and one third are like2. 

 

Since the first two rows are like1 but only the first like2, this table leaves the impression that 66% 

of universes are like1 and only 33% are like2. A permutation of the labeling yields a new table: 

 

1-like1, like2 5-like1, like2 9-like1, like2 13-like1, like2 … 

3-like1 , unlike2 7-like1 , unlike2 11-like1 , unlike2 15-like1 , unlike2 … 

2-unlike1, unlike2 4-unlike1, unlike2 6-unlike1, unlike2 8-unlike1, unlike2 … 

Table 3. Renumbering of universes in Table 2. 
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If we consider only the like1 universes in Table 3 and, leaving the assignments of labels 

unchanged, merely rearrange the cells in the table, so the display is different visually, we end up 

with: 

 

1-like1 3-like1 5-like1 7-like1 9-like1 … 

2-unlike1 4-unlike1 6-unlike1 8-unlike1 10-like1 … 

Table 4. Renumbering of universes from Table 3 suggests that half of universes are like1. 

 

It now seems that 50% of the universes are the larger set of universes of with property like1.  

 We can draw two conclusions from this exercise in relabeling. First, for the case of 

infiniteco-infinite universes, impressions of the size of sets as a percentage of the total set of 

universes cannot be reflected in the chances. For those percentages are not invariant under a 

permutation of labels. Second, the permutation of labels from Table 2 to Tables 3 and 4 maps the 

set of universes with property like1 to the set with property like2. Hence the two sets have the 

same chance, even though the second set is a proper subset of the first. 

 Of course the relabeling from Table 2 to Tables 3 and 4 is just the same as the reordering 

(2) described by Guth above in the counting argument, where it is used to come to the same 

conclusion that percentage counts are not uniquely defined among the various types of universes. 

8.	The	Infinite	Lottery	Inductive	Logic	
 The last two sections developed the essential content of the inductive logic warranted by 

background conditions in eternal inflation cosmology. It turns out to be a familiar logic that has 

been investigated already. It is the logic warranted for a fair, infinite lottery, in which a natural 

number is drawn from all the natural numbers without favoring any. This logic has been 

developed in greater detail in Norton (manuscript a). Unexpected physical issues involved in 

building an infinite lottery machine are described in Norton (2018), with a correction in Norton 

and Pruss (2018). 

 The essential content of the infinite lottery logic is given by assigning unique chance “V” 

values to each type of outcome, so as to define a chance function “Ch”: 
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Ch(finiten) = Vn = “unlikely”, where n = 1, 2, 3, …   

Ch(infiniteco-infinite) = V∞ = “as likely as not.” 

Ch(infiniteco-finite-n) = V-n = “likely”, where n = 1, 2, 3, … 

For completeness, we have the two special cases 

Ch(empty-set) = V0 = “certain not to happen”  

Ch(all-outcomes) = V-0 = “certain to happen”  

The label invariances described in Section 6 have only enabled us to assign equalities of chances. 

 It seems natural to add inequalities as follows: 

V0 <	V1 < V2 < V3 <	…<	V∞ <	…	<	V-3 < V-2 <	V-1 < V-0 

for some antisymmetric, transitive and irreflexive order relation “<.” Chance value Vn is assigned 

to sets with finitely many members n, which makes it natural to assume that Vn increases with n. 

Since all cases of Vn arise with sets of finite size, they all should be significantly less in value 

that the value assigned to infinite-co-infinite sets, V∞. Hence the two are given the informal 

interpretations “unlikely” and “as likely as not.” Similar considerations make it natural to assign 

V-n a value greater than V∞ since V-n is associated with infinite sets that omit only finitely many 

universes. 

 The term “natural” is used repeatedly in the last paragraph with some trepidation. There 

is a long history of ideas that once seemed natural but later prove dubious. In a fuller analysis, all 

justifications using naturalness would have to be replaced with proper grounding in background 

conditions.8 

9.	Prediction	
 The concern of the counting argument is that it precludes the possibility of prediction in 

eternal inflation. My response is that it precludes the possibility of probabilistic predictions, 

because it precludes a probabilistic inductive logic. It does not preclude a different inductive 

                                                
8 What can such grounding look like? It would arise in an infinite lottery machine so constructed 

that, if we know the outcome is in some finite set of numbers, then the chances are probabilistic. 

The design details of the machine provides a grounding that replaces naturalness. 
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logic warranted by the background conditions, the infinite lottery logic. The difficulty for 

cosmologists, however, is that this infinite lottery logic is weaker in its discriminations and its 

predictive powers are correspondingly lessened. The new logic affirms the predictive problems 

of inflationary cosmology. It does it by going beyond a negative, the mere absence probabilities. 

It does it by showing a positive, that these problems are a consequence of the inductive logic 

applicable. 

 That an inductive logic can preclude some predictions is familiar in probabilistic logics in 

the form of the gambler’s fallacy. If successive outcomes of a spin of roulette wheel are 

probabilistically independent, then the probabilistic logic applicable precludes predictions based 

on past performance. A long run of successive red outcomes, no matter how many, is 

predictively inert. It is no more or less likely that the next outcome will be red than it was before 

the long run of red. 

 The predictive weakness of the infinite lottery machine logic lies in a large increase in the 

outcomes to which equal chances are ascribed and which, as a result, cannot be discriminated in 

predictions. That is, the logic assigns the same chance value V∞ to any universe in which there 

are infinitely many like pocket universes and infinitely many unlike pocket universes. That is, 

virtually all possible distributions of the properties like and unlike are assigned equal chance. 

This “virtually all” can be made precise through set cardinalities. There is an uncountable 

infinity of ways of distributing these two properties over a countable infinity of pocket universes. 

The case just considered almost completely exhausts this uncountable infinity. The only 

exceptions are the two cases of finitely many like universes and finitely many unlike universes.9 

These exceptions comprise only a countable infinity of the distributions. 

 The predictions of this new logic are counterintuitive to someone whose intuitions are 

trained by a probabilistic logic. The infinite lottery logic will tell us that universes with 

properties like1 and like2 have equal chances,10 even though the second is a proper subset of the 

                                                
9 Proof sketch: Arbitrarily number the pocket universes 1, 2, 3, … and assign a unique natural 

number to each specific distribution of finitely many like pocket universes by the following 

scheme. If like appears in pocket universes 2, 3 and 5, then assign the binary number 10110 to its 

universe; and so on. The totality is countable since there are countably many binary numbers. 
10 Here I assume that both properties are of type infiniteco-infinite. 
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first. But it is precisely this fact that expands the set of universes with equal chances and thereby 

reduces the discriminating powers of prediction of eternal inflation. 

 The infinite lottery logic does admit some predictions. Consider a third property, 

“likenarrow”, which we have somehow contrived so that we can expect it to be instantiated at 

most finitely often in our infinite set of pocket universes. For example, it might apply to a 

universe much like ours, but with a single, definite, favored value for the density parameter Ω, 

such as unity, or perhaps just any rational number value for it close to unity. The chance of a 

universe with the property likenarrow will be Vn for some finite value of n. Its chance, we are 

assured, will be less than that for universes with properties like1 and like2, for these have chance 

value V∞. 

 More interesting predictions arise with repeated, independent trials. Before explaining 

how something like such repeated trials might be conceived in inflationary cosmology, let us 

review briefly how such repeated trials are treated in an infinite lottery machine, drawing on the 

more extensive analysis in Norton (manuscript a). Imagine for example that we have 1000 

independent trials, where each trial is a drawing of a number from an infinite lottery machine. 

We might ask, what is the chance that all 1000 outcomes are less than N, where N is some very 

large number. We might compare that with the chance that all 1000 numbers drawn are the same. 

It turns out that the first has less chance than the second. The first has a chance Vn, specifically, 

VN1000. The second has a chance V∞. 

 The most interesting prediction concerns frequencies. It is tempting to think that one can 

always recover something like a probability merely from counting the frequencies of actual 

outcomes of many, repeated trials. In ordinary probabilistic systems, that is correct. The 

frequency of success will eventually stabilize, most likely, and provide a good estimate of the 

unknown probability of success. In systems governed by the infinite lottery logic, this strategy 

fails. For the logic entails that we can expect no stabilization of the relative frequencies of 

success. 

 To make this concrete, consider a large number N of drawings from N infinite lottery 

machines, one from each. What is the chance that exactly n of them are even? If these drawings 

behave like coin tosses, the laws of large numbers in probability theory would tell us to expect 
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that the number n of even outcomes will mass around N/2 and that extreme values like n=0 and 

n=N will be very improbable in comparison. 

 This result is not returned by the infinite lottery logic. Each outcome is an N-tuple of 

numbers, so the full set is countably infinite. We are indifferent over them all, so the infinite 

lottery logic applies to this larger set. A fairly simple analysis in Norton (manuscript a) shows 

that, for any 0 ≤	n ≤	N, infinitely many of them will have exactly n even numbers; and the 

complement set of N-tuples with different numbers of even outcomes will also be infinite. It 

follows that the chance of drawing exactly n even numbers among the N drawings is V∞. This is 

true for all values 0 ≤	n ≤	N. That is, the chance of 0, 1, 2, …, N even outcomes is the same, no 

matter how large N. There is no massing of the chance around N/2. The relative frequencies do 

not stabilize. 

 These results can be applied to eternal inflation in the following way. One might accept 

that the counting argument precludes the assignment of probabilities to properties of the pocket 

universes. However one might imagine that nonetheless something can be recovered from the 

actual frequencies of a property in an infinite ensemble of pocket universes. One way to do that 

is to divide up the infinitely many pocket universes into N subsets, each of equal size, and pick 

without favor11 just one universe in each. We must arrive at some number between 0 and N for 

the number of universes with the property. Surely, we might expect, this number reveals 

something about the predictive possibilities in an eternal universe. If the number is close to N/2, 

for example, then we would expect predictive possibilities not so different from that of 

predictions governed by a probability half of success. The above analysis shows that these 

expectations fail. All frequencies for the property between 0 and N are possible and have equal 

chance, no matter how large N is. So recovering this number can reveal nothing further about the 

predictive possibilities in eternal inflation than has already been delivered by the inductive logic 

itself.12 

                                                
11 That is, the chance of selection of each universe in each subset is the same in the infinite 

lottery logic and will have the chance value V1. 

12 Of course direct recovery of this number would require access to all pocket universe, which is 

beyond our observational powers. We might imagine assistance from a super-being in 
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 The strategy is reminiscent of the gambler’s fallacy mentioned above. A gambler may 

know that sequential outcomes of a roulette wheel are independent. Nonetheless, the gambler 

hopes that a careful recording and analysis of the frequencies of red and black will somehow 

reveal a pattern that would be predictively useful. We know that as long as probabilistic 

independence prevails, no such pattern, no matter how suggestive, is of any use predictively. 

10.	Conclusion	
  The counting argument shows us that we cannot make probabilistic predictions 

concerning the chance properties of pocket universes in an eternally inflating cosmology. It does 

not follow that we cannot make predictions. All that follows is that a probabilistic logic fails as 

an instrument of prediction. The background conditions of an eternally inflating universe lead us 

to a different logic that is the same as the one that applies to a fair, infinite lottery. This new logic 

does, however, positively affirm the predictive problems of eternal inflation. For it assigns equal 

chance to all universes that have infinitely many like and infinitely many unlike pocket 

universes; and thus it cannot discriminate among these universes. 

 Two ideas lead us to this logic. First is the idea that the selection of the appropriate 

inductive logic is an empirical matter to be decided by the physical facts and background 

conditions of an eternally inflating cosmology. Second, among these conditions, the main 

instrument used to arrive at the logic is the suitably adapted principle of mediocrity. It translates 

into an invariance principle: the distribution of chances over the infinite set of pocket universes 

is invariant under a permutation of the numbers used to label the pocket universes. This 

invariance principle then determines the character of the logic all but completely. In this regard, 

the analysis is quite like much of what happens in physics. The requirement of Lorentz 

covariance of special relativity is a powerful invariance principle that conditions almost all our 

present theories. 

 Finally there is the counterintuitive character of the infinite lottery logic. It assigns the 

same chance to all infinite-co-infinite sets of pocket universes, even if one is a proper subset of 

another. This non-additivity will be discomforting to someone whose intuitions have been 
                                                                                                                                                       
undertaking the selection procedure. Its possibility in principle is all that is needed here, since the 

inductive logic applies to the process whether or not we human observers can carry it out. 
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trained by probability theory. To attain some comfort, it is helpful to remember that the basic 

conceptions of probability theory are not immediately intelligible.  Just what does it mean, a 

novice may ask, when we say that some outcome has probability 0.637? Games of chance have 

proven to be invaluable in training probabilistic intuitions. We start simply. What does is mean 

to say that some outcome has probability one half? We answer: it is the same as a fair coin toss. 

The outcome has the same probability as heads. 

 We can use this same technique with the inductive logic appropriate to an eternally 

inflating cosmology. What is the chance of a universe like our own? It is the same as the chance 

of drawing an even number from a fair, infinite lottery. 

Appendix:	The	Physics	of	Eternal	Inflation	
 This appendix presents a brief synopsis of the physics underlying eternal inflation, 

drawing on Liddle (1999, 2003) and Weinberg (2008). The Friedman-Lemaitre-Robertson-

Walker spacetimes represent all homogeneous and isotropic cosmologies. Its spacetime interval s 

is given in coordinates (t, r, θ, φ) as 

ds2 = dt 2 − a2 (t)dσ 2 = dt 2 − a2 (t) dr2

1− kr2
+ r2 (dθ 2 + sin2θ dφ 2 )⎡

⎣
⎢

⎤

⎦
⎥                               (A1) 

where the speed of light c = 1, k = -1, 0 or 1 according to whether the spatial geometry is 

hyperbolic, flat or spherical and dσ is the line element of corresponding geometries.  In an 

expanding universe, where a(t) increases with t, these spacetime coordinates define a cosmic rest 

frame. That is, all events with the same time coordinate t form an ordinary space with 

coordinates (r, θ, φ) that expands as t increases. Ordinary matter, such as a galaxy or a particle of 

dust, that are at rest in the cosmic frame and are thereby carried with the expansion, retain fixed 

coordinates (r, θ, φ) through time t. The spatial distance between two such galaxies, separated by 

constant coordinate difference13 Δr, grows with t as a(t) Δr. For small time intervals, Hubble’s 

law says that the relative velocity of recession of the two galaxies (d/dt)(a(t) Δr) is proportional 

                                                
13 Because of the isotropy of the space, without loss of generality, the angular coordinate 

differences have been set to zero: Δθ = Δφ = 0. 
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to the distance a(t) Δr between them, with Hubble’s constant H the constant of proportionality. 

Hence we have 

 
!a(t) = da(t)

dt
= H (t)a(t)   or equivalently 

 
H (t) = !a(t)

a(t)
                          (A2) 

where Hubble’s “constant” is written as a function of t to remind us that it varies with cosmic 

epoch. It is, in general, a constant only for short time intervals. 

 The fundamental equations governing the expansion are Einstein’s gravitational field 

equations of 1915. Solving them for a homogeneous, isotropic matter distribution of energy 

density ρ and pressure p with no cosmological constant term, we recover two equations: 

 
H 2 (t) = !a

a
⎛
⎝⎜

⎞
⎠⎟
2

= 8πG
3

ρ − k
a2

        (“Friedman equation”)                   (A3) 

 

!!a
a
= − 4πG

3
ρ + 3p( )      (“acceleration equation”)                    (A4) 

where G is the universal constant of gravitation. 

 Setting aside the pressure term 3p, the acceleration equation (A4) is fully recoverable in 

Newtonian gravitation theory. There it merely relates the deceleration of cosmic expansion  !!a  

due to the mutual gravitational attractions among different parts of the matter distribution. The 

3p term augments this self-attraction driven deceleration in an effect that has no Newtonian 

counterpart. It arises because stresses, such as an isotropic pressure p, have gravitational effects 

in general relativity. A familiar positive pressure, such as found in ordinary matter, decelerates 

the expansion in the same way as a positive energy density. Classically pressures alone do not 

accelerate or decelerate matter. Only pressure differences have this effect; and there are none in 

this homogeneous isotropic cosmology.14 

 Taking the time derivative of the Friedman equation and rearranging, these two equations 

entail an expression for the conservation of energy: 

 !ρ + 3H (ρ + p) = 0               (“fluid equation”)                   (A5) 

                                                
14 Liddle (2003, Section 3.4) gives the 3p term a hybrid classical-relativistic derivation. During 

the expansion, a co-moving volume V of space changes its energy by dE = -p dV because of the 

work done by the pressure p. The 3p term in the acceleration equation is recovered if we use the 

relativistic “E=mc2” to assign a gravitating Newtonian mass m to the energy. 
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 Different cosmologies are generated by choosing specific forms of matter for ρ and p; 

and different initial conditions. Inflationary cosmology was introduced by Guth (1981) as a way 

of solving particular problems in cosmology that need not detain us here: the horizon and 

flatness problems. Its central idea is that there was an era of rapidly accelerating expansion in the 

early universe. Inflation requires that the acceleration  !!a  is greater than zero. However ordinary 

matter has non-negative values for the energy density ρ and pressure p. The acceleration 

equation (A4) entails that, for such matter, the cosmic expansion is constant or decelerating:  !!a ≤0. 

Since negative energy densities are discounted, inflationary cosmology depends on positing a 

form of matter with a negative pressure. Through the relativistic effect mentioned above, a 

negative pressure accelerates the cosmic expansion; that is, it will do so as long as the combined 

term (ρ +3p) in the acceleration equation is negative. 

 Originally, it was hoped that explorations in particle physics might supply a matter field 

with the requisite negative pressure. When these hopes faded, a scalar “inflaton” field ϕ was 

posited. It is given generic properties, most notably, that there is a potential V that associates an 

added energy density V(ϕ) to the field ϕ. In the inflationary scenario, the inflaton field is 

supposed to be constant across space. It varies only as a function of t.  If a generic Lagrangian is 

used to characterize the field, as shown in Weinberg (2008, pp. 526-27), we arrive at a canonical 

energy momentum tensor; and then, for the homogeneous isotropic case, the energy density and 

pressure for the inflaton field as given in Liddle (1999, p. 14) : 

 ρϕ = 1
2 !ϕ

2 +V (ϕ )                                                       (A6) 

 pϕ = 1
2 !ϕ

2 −V (ϕ )                                                       (A7) 

The pressure pϕ can become negative as long as V(ϕ) is sufficiently great in relation to  !ϕ
2 . More 

specifically, the acceleration equation (A4) provides positive acceleration  !!a >0 when (ρϕ +3pϕ) 

= 2( !ϕ
2  - V(ϕ) ) < 0. That is:  

 !ϕ
2  < V(ϕ)                                                        (A8) 

 Whether this condition (A8) can be secured depends on the choice of the potential V(ϕ) 

and the associated dynamics of the inflaton field ϕ. We recover these dynamics by substitution 

the expressions for the inflaton field energy density (A6) and pressure (A7) into the fluid 

equation (A5), from which we recover 
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 !!ϕ + 3H !ϕ +V '(ϕ ) = 0                                                    (A9) 

where V’(ϕ) = dV(ϕ)/dϕ. In a simple case, the potential is set as  

V (ϕ ) = 1
2 m

2ϕ 2                                                        (A10) 

so that the time evolution of the field ϕ in (A9) corresponds to that of a spinless particle of mass 

m in quantum mechanics.  

 Inflationary cosmologies of this type are called “chaotic inflation.” The term was 

introduced by Linde (1983) to reflect the capacity of this inflationary dynamic to smooth out 

arbitrarily jumbled initial conditions. Subsequently the term was specialized to cosmologies like 

Linde’s. “We adopt the modern usage of chaotic inflation to refer to any model in which 

inflation is driven by a single scalar field slow rolling from a regime of extremely high potential 

energy,” Lidsey et al (1997, p. 377) report. 

 The dynamics provided by (A9) has a familiar analog in classical physics. If ϕ were a 

position in ordinary space, (A9) is similar to the equation governing a ball rolling into a potential 

well V(ϕ), where its motion is impeded by a friction term 3H !ϕ  linear in the velocity  !ϕ . This 

analogy has controlled the descriptions of chaotic inflation. When the potential is similar in form 

to (A10), it has a minimum at the origin ϕ =0 and grows larger as we move away from it. If the 

initial field state is far from this minimum, we have the analog of ball starting high up on the 

walls of the potential well and rolling down toward the minimum. 

 Without the friction term 3H !ϕ  the ball would accelerate rapidly and fall into the well; 

that is, the field would quickly move to its minimum value of ϕ=0. The Friedman equation (A3), 

however, tells us that H =  !a / a  is large whenever the energy density ρ is large; and (A6) tells us 

the energy of the inflaton field will be large whenever the potential V(ϕ)  is large. Thus the 

changes in time of an inflaton field with large ϕ will be heavily damped by friction on its way to 

the minimum. It will move very slowly, securing the condition (A8) needed for acceleration of 

the cosmic expansion. It is, in the mechanical analogy, undergoing “slow roll inflation.” 

 In slow roll inflation, the governing equations are simplified by assuming that the field 

acceleration  !!ϕ  is negligible, that  !ϕ  is very small in relation to V(ϕ) and that k=0, reflecting the 

inflationary dynamic that rapidly drives the spatial geometry towards flatness. Accordingly, the 

Friedman and acceleration equations (A3) and (A4) are simplified to 
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H 2 (t) = 8πG
3

V (ϕ )                                                      (A11) 

 

!!a
a
= 8πG

3
V (ϕ )                                                         (A12) 

To get a sense of the dynamics, recall that we have from (A2) that  !a(t) = da(t) dt = H (t)a(t) . In 

the special case in which H(t) is a constant, this equation is solved to yield an exponential growth 

in the scale factor a(t):15 

a(t) = a(0) exp (Ht)                                                         (A13) 

Of course the Hubble constant H is not constant, but, by equation (A11), is slowly diminishing as 

the field rolls downhill and V diminishes. However (A13) provides a serviceable approximation 

of the dynamics during the slow roll phase.16 With each “Hubble time” 1/H, the scale factor is 

increased by a multiplicative factor of exp (H.1/H) = e ≈ 2.718. The volume of space increases 

by a favor of e3 ≈ 20.086. Since the Hubble time 1/H is very small in this slow roll phase, the 

expansion is extremely rapid, the signature dynamic of inflation. 

 As inflation proceeds, the inflaton field moves slowly towards the bottom of the potential 

well V(ϕ). When it nears the bottom, V(ϕ) becomes small and, as a result of (A11), the friction 

term in H(t) in equation (A9) becomes small. The dynamics (A9) of the inflaton field now 

reverts to that of an oscillation at bottom of the potential well. What is not shown in equation 

(A9) are couplings between the inflaton field and ordinary forms of matter in spacetime. 

Through these couplings, the oscillating inflaton field transfers its energy to ordinary matter. The 

disorderly character of the process produces ordinary matter in a thermal state. This closing 

phase of inflation is knows as “reheating.” After reheating, the universe is filled with ordinary 

matter and reverts to the normal dynamics of big bang cosmology.  

 So far, these processes yield an assured end to inflation with no large-scale 

inhomogeneities. To recover the pocket universes of eternal inflation, we need to allow that the 

inflaton field, like all matter fields, is a quantum field. As a result, it manifests quantum 

fluctuations. At any stage of the inflationary process, these fluctuations in the inflaton field ϕ are 

                                                

15 We get a comparable result by eliminating V(ϕ) from (A11): 
 
!!a(t) = d

2a(t)
dt 2

= H 2 (t)a(t) . 

16 For more careful treatment of this approximation, see Weinberg (2008, §4.2). 
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added to the changes due to the classical dynamics of equation (A9). These quantum fluctuations 

may either increase or diminish the inflaton field. While both may occur, their effects are very 

different. An increase in the inflaton field takes some region of space to a higher potential V(ϕ) 

and thus, through (A11), to a higher Hubble constant and more rapid expansion. Correspondingly, 

a decrease in the inflaton field yields a region with slower expansion. The more rapidly 

expanding regions grow to fill spacetime more quickly than the more slowly expanding regions. 

 These two effects combine to yield a dynamics in which most of the spacetime is 

returned to regions of high inflaton potential where slow roll inflation persists. That is, inflation 

persists indefinitely in most parts of the spacetime. We have “eternal inflation.” The inflaton 

field only drops to small values in smaller pockets of spacetime, where the matter of the inflaton 

field is converted to ordinary matter by the processes of reheating. These small pockets become 

the pocket universes of eternal inflation. 

 The formal treatment of quantum fluctuations in the inflaton field (see for example, Linde, 

2005, §7.3, and Lidsey, et al, 1997) is so elaborate that it is quite difficult to find any simplified, 

quantitative account that is still informative. Perhaps the best of these is Guth’s (2000, §4.2), and 

Linde (2007, §1.4). Linde (2005, §1.7-1.8) is more detailed but still accessible.  

 Quantum fluctuations in the inflaton field exist as components in a quantum 

superposition of field states. A delicate issue concerns the probabilistic collapse, or effective 

collapse, of this superposition into one of its components, so that we recover a classical field 

compatible with the non-quantum parts of the analysis. 

 The process is driven by the existence of a horizon in spacetime in the inflationary phase 

that is spatial distance R = 1/H from us. No process occurring outside this horizon can ever affect 

us. Since such effects propagate at or less than the speed of light, the trajectory of the fastest such 

effect is given from (A1) as 0 = ds2 = dt2 – a2(t) dσ2. If we set the coordinates of an event here 

and now at t = r = 0, an effect from the most distant event at the horizon will depart at t=0 from 

an event with σ value σ(R) and arrive at t=∞. The distance R to this event is: 

R = a(0)σ (R) = a(0) dσ = a(0) dt
a(t)0

∞

∫0

σ (R)

∫ = a(0) dt
a(0)exp(Ht)0

∞

∫ = a(0)
a(0)

−1
H
exp(−Ht) 0

∞ = 1
H

. 

where the constancy of H in equation (A13) is assumed. 

 Quantum fluctuations in the inflaton field produce deviations in the mean field of all 

spatial sizes. Those that are smaller than this horizon are evanescent and do not persist. 
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Following Linde (2005, §1.7-1.8), fluctuations whose spatial extent are linearly of the order of 

this horizon 1/H are stretched by the rapid inflationary expansion, so that they extend beyond the 

horizon. The stretched portion within the horizon, however, will be of roughly constant 

magnitude thoroughout the space within the horizon. As a result of the heavily damped 

inflationary dynamics (A9) for an inflaton field of constant magnitude in space, the field 

oscillations are halted and its amplitude is “frozen in,” to use Linde’s (2005, p. 38, p. 118) 

expression. This, Linde continues, “may be interpreted … as the creation of an inhomogeneous 

(quasi)classical field.” Later, Linde pp. (113-14) draws an analogy to the Hawking radiation 

produced by a black hole when portions of quantized fields pass the black hole’s event horizon 

and we “trace out” those portions, so that a superposition of field states reverts to a more 

classical mixed state. Linde proposes an analogous cosmological “averaging over states beyond 

the horizon.” 
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