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I. INTRODUCTION

In a celebrated critique, Einstein used entangled systems
in an attempt to show that the quantum state gives an incom-
plete description of the properties possessed by a quantum
system.1 In a celebrated rejoinder, Bell,2 and those who de-
veloped his approach, showed that no theory employing hid-
den states that are spatially separate and local could recover
the same predictions as quantum theory.

Most workers have developed Bell’s ideas in terms of the
internal degrees of freedom associated with spin because
spins are simpler theoretically and lend themselves to experi-
mental tests.3 These analyses preclude hidden spin proper-
ties. What of the spatial degrees of freedom discussed early
in the development of quantum theory that are associated
with the spread of the wavefunction?

This paper will show how the same analysis can be ap-
plied directly to spatial degrees of freedom and that they
preclude hidden position properties. In so far as possible, the
analysis will employ only the ideas that a quantum system
can be represented by a wavefunction and that measurement
collapses the wavefunction. In particular, the analysis will
adapt Bernstein’s4 simplified analysis of a Greenberger,
Horne, and Zeilinger �GHZ�-type construction to spatial de-
grees of freedom.

The spatial degrees of freedom will be introduced through
an example that Einstein communicated to Schrödinger
shortly after the well known Einstein, Podolsky, and Rosen
�EPR� paper was written.1 While discussing the essential
ideas of the EPR paper, Einstein illustrated the notion of
incompleteness with the idea of a ball that will assuredly
appear in one of two boxes. Because the ball’s wavefunction
is spread over the two boxes, Einstein suggested that the
wavefunction provides an incomplete description of the ball.
Einstein’s account will be given in Sec. II. An example, a
two-chambered box with a particle, will be described in Sec.
III. The division into two chambers will give the added spa-
tial degrees of freedom used to implement the GHZ con-
struction. A realistic implementation of the system is found
in molecular orbital chemistry through the singly ionized hy-
drogen molecule, H2

+. This implementation precludes the
concern that the highly idealized system of two-chambered
boxes might introduce spurious idealizations that are respon-
sible for the effects.

Einstein’s attempt to show incompleteness depends on the
properties of entangled systems. These properties will be de-
scribed briefly in Sec. IV. The EPR analysis, sketched in Sec.

V, uses measurements of the properties of one system to
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discern the properties possessed by another spatially distant
system that is entangled with it. Section VI describes a sys-
tem of three entangled particles that are spread over three
two-chambered boxes. The hidden position property sought
by Einstein’s methods is whether each of the boxes’ particles
is in the left or the right chamber.

In Sec. VII, we shall see how possible measurements on
any two of the boxes enable the remote determination of the
position properties of the third. The totality of such measure-
ments constrains the position properties that must be pos-
sessed by the particles. Two sorts of measurements will be
described. One is the straightforward position measurement
of which chamber hosts the particle. The other is the deter-
mination of whether the particle’s wavefunction is spread
over the two chambers in a “bonding” or “antibonding” state,
drawing on a notion from molecular orbital theory. The two
sets of measurements lead to contradictory ascriptions of the
hidden position properties, which establishes the failure of
Einstein’s attempt to show the incompleteness of quantum
theory.

II. EINSTEIN’S BOXES

The EPR paper was received by Physical Review on
March 25, 1935 and published on May 15, 1935. In a letter
of June 19, 1935, Einstein expressed his dissatisfaction with
the exposition.5 “For reasons of language,” Einstein ex-
plained to Schrödinger, “�it� was written by Podolosky after
many discussions. But still it has not come out as well as I
really wanted; on the contrary, the main point was, so to
speak, buried by the erudition.”6 He then identified the real
problem as residing in the meaning of the assertions that a
description of reality is complete or incomplete. To explain
the difference, Einstein introduced the following
illustration.7

“… I want to explain the �se assertions� through
the following illustration: In front of me are two
boxes with hinged lids, into which I can see when
the lids are opened; the latter is called ‘making an
observation. There is also a ball there that will al-
ways be found in one or other of the boxes, if one
makes an observation.”

Einstein then distinguished his view of the incompleteness
of quantum description �“no”� from the standard view of

completeness �“yes”�:
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“I now describe a state as follows: The probability
that the ball is in the first box is 1/2.—Is this a
complete description?

No: A complete statement is the ball is in the first
box �or is not�. That, therefore, is how the charac-
terization of the state must appear in a complete
description.

Yes. Before I open the box, the ball is by no means
in one of the two boxes. Being in a definite box
only comes about when I lift the lid….”

III. A PARTICLE CONFINED TO A TWO-
CHAMBERED BOX

In the following, we will base the analysis on Einstein’s
example of a ball that is spread over two boxes. To keep the
analysis tractable, Einstein’s two boxes will be joined to-
gether as two spatially separated compartments or chambers
L �left� and R �right� of one larger box, as shown in Fig. 1.
Einstein’s ball will be a single particle.

The simplest quantum mechanical implementation of this
system is a single particle confined by two infinitely deep
square potential wells.8 Figure 2 shows one of many possible
wavefunctions.

The two quantum wavefunctions �L and �R are normal-
ized solutions of the Schrödinger equation for each potential
well individually. The combined wavefunction is their nor-
malized sum

�� = �1/�2���L + ��R� , �1�

where � is a relative internal phase factor of unit norm, such
as 1, �1, i, �i.

A more realistic implementation of the system is a singly
ionized hydrogen molecule, H2

+. This molecule consists of
two protons, whose positive charges create a potential well

Fig. 1. A two-chambered box.

ΨL

L

ΨR

R

Fig. 2. Particle in two infinitely deep square potential wells.
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with two chambers centered on each proton. The single elec-
tron of the ionized molecule is spread across these two cham-
bers. In the standard linear combination of atomic orbital
�LCAO� approximation of molecular orbital theory,9 the
molecule is approximated by a linear superposition of two 1s
electron orbitals of the ordinary hydrogen atom �see Fig. 3�.

The bond that joins the two atoms results from the over-
lapping of these two orbitals. It will be important for the
following analysis that the compartments be disjoint spa-
tially. Therefore, the relevant system consists of an H2

+ mol-
ecule in which the two nuclei have been separated suffi-
ciently in space so that the two 1s orbitals no longer overlap,
as shown in Fig. 4.

Overlapping is avoided almost completely by separating
the two nuclei by about 10 bohr radii.10 If the two 1s orbitals
of the separated H2

+ molecule are �L and �R, then the
wavefunction of the molecule’s single electron is given by
Eq. �1�.

Almost all of the details of the particle wavefunction in a
two-chambered box are immaterial to the following analysis.
All that is important is that there is a particle whose wave-
function is nonvanishing only in two disjoint regions of
spaces L and R. The wavefunctions of the particle, if it were
confined to each region individually, are �L and �R. Many
possible wavefunctions are admissible for �L and �R. For a
potential well, they correspond to the different energy eigen-
states of a particle trapped in such a potential, and for a
separated H2

+ they correspond to the various orbitals of a
hydrogen atom. All that matters is that we fix on a particular
pair of wavefunctions �L and �R and use them for the re-
mainder of the analysis.

IV. ENTANGLEMENT AND THE MEASUREMENT
OF DISTANT PARTICLE STATES

The EPR analysis depends essentially on the entanglement
of systems. The way entanglement of spatial degrees of free-
dom affects quantum measurement is readily recovered from
examining the spatial collapse of the wavepacket under a
measurement.

Fig. 3. Singly ionized hydrogen molecule, H2
+.

+
Fig. 4. Separated singly ionized H2 molecule.
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The simplest case arises when we have two two-
chambered boxes, A and B �see Fig. 5�, which are widely
separated in space. The particles of each of these boxes may
be entangled in different ways. One simple way is that the
presence of A in its L chamber is associated with B’s pres-
ence in its L chamber, and similarly for the R chambers. The
wavefunction of the resulting entangled state is

�AB = �1/�2���A,L�B,L + �A,R�B,R� . �2�

Here, �A,L and �A,R are wavefunctions in the position space
of particle A, and �B,L and �B,R are wavefunctions in the
position space of particle B. �AB is not a wavefunction in a
three-dimensional space, but is a wavefunction in the six-
dimensional configuration space formed by the product of
the two spaces of particles A and B.

The wavefunction �AB is shown in Fig. 6 in its configu-
ration space; one spatial dimension for each of the A and B
particles is shown and the remaining four dimensions are
suppressed. The wavefunction is nonzero only in two regions
of configuration space. One coincides with the L regions of
both A and B spaces, LL, and corresponds to the product
�A,L�B,L of Eq. �2�. The other coincides with the R regions
of both A and B spaces, RR, and corresponds to the product
�A,R�B,R of Eq. �2�.

Suppose that we perform a measurement on particle A that
determines whether the particle is in the L or the R chamber.
In the standard interpretation of quantum theory, the effect of
this measurement is to collapse the wavefunction to one that
is nonzero only in one of the L or R regions of A’s space.
That is, the measurement will collapse �AB to one of the
regions LL or RR of the configuration space. If the outcome
of the measurement on the A particle is L, then the wave-
function would collapse to the LL region. This collapse

Fig. 5. Two two-chambered boxes.
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Fig. 6. Configuration space of two correlated particles of boxes A and B.
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would alter the wavefunction of B, which would now only be
nonzero in its L region. That is, the wavefunction of Eq. �2�
has collapsed to just one of its terms

�AB = �A,L�B,L. �3�

As a result, we can now be certain that any subsequent mea-
surement of the position of the B particle will reveal it to be
in its L region.

This correlation among measurement outcomes is the im-
portant fact about entanglement for our purposes. Even
though we have measured the A particle only, we are now
certain about the outcome of measurements were they to be
performed on the B particle, light years away.

V. THE EPR ANALYSIS

Einstein’s objection to quantum theory was that its stan-
dard interpretation was incomplete. That is, specifying the
wavefunction associated with a particle does not fix all the
physical properties of the particle. If the particle’s wavefunc-
tion is spread over the two chambers of the box, then stan-
dard quantum theory tells us that the particle is neither prop-
erly in one or other of the chambers. Einstein suggested that
the particle has further factual properties, not captured in the
wavefunction, which correspond to its localization in one or
other of the chambers.

Einstein’s strategy for establishing this incompleteness
was first advanced in the EPR paper and then by himself in
some of Einstein’s later publications.1 The analysis depended
on the behavior of entangled systems under measurement, as
sketched in Sec. IV. Measurement of the position of A en-
ables us to know what a position measurement of B would
yield, even though B is so remote from A that the physical
process of our measurement of A could have no effect on B.
This fact establishes that the B particle had a definite posi-
tion property all along, even though the original wavefunc-
tion did not express it.

This analysis depends on an inference from our being able
to predict assuredly the outcome of a measurement on the B
particle to the possession by the B particle of a property. The
assumption that justified that inference is of central impor-
tance to the EPR analysis and stated in italics on the first
page of the EPR paper, “If, without in any way disturbing a
system, we can predict with certainty �i.e. with probability
equal to unity� the value of a physical quantity, then there
exists an element of physical reality corresponding to this
physical quantity.” We will refer to this assumption as the
“EPR reality criterion.”

There is an important counterfactual element in the EPR
analysis.11 It does not require that we perform the measure-
ments on the A particle to infer the possession of position
properties by the B particle. All that matters is that we know
what would happen if we were to perform the measurement,
even when, counter to the facts, we do not perform it. If we
could predict assuredly that there would be some definite
position measured on the remote B particle, then we could
infer that the remote particle possesses some definite position
property. All we lose by not performing a measurement on
the A particle is that we do not know which position property
is possessed by the remote B particle. Because we need not
actually perform the measurements, analogous reflections on
the possibility of measurements on the B particle lead to the
corresponding conclusion for the A particle: It too possesses

a definite position property not expressed completely by its
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wavefunction. The counterfactual aspect is essential if we are
to infer that both A and B particles possess more position
properties than expressed by their wavefunctions. Because
we can perform the measurement on at most one of the two
entangled particles, then under the standard theory, measure-
ment on one alters the combined system.12

Howard5 traced the presence of two important assump-
tions. First is separability: The assumption that the two spa-
tially remote systems have independent existences. Second is
locality: The assumption that effects between the systems
propagate at luminal speeds or less. The first assumption
affirms that the remote particle has properties independent of
the local particle being measured, and the second assures us
that whatever disturbances are introduced by measurement
will initially affect only the local particle.

VI. THREE TWO-CHAMBERED BOXES,
ENTANGLED

The failure of the EPR attempt to show the incompleteness
of quantum theory was demonstrated by Bell2 and others.
The failure is demonstrated by showing that no physical
theory, constrained by separability and locality, can repro-
duce the empirical predictions of quantum theory. Most
analyses follow Bell in considering two entangled systems,
such as two spin half particles in a singlet state. In that case,
the empirical failure of separable local theories is their fail-
ure to reproduce the correlations between measurement out-
comes predicted by quantum theory.

A significant conceptual simplification was achieved by
Greenberger, Horne, and Zeilinger.13 If we consider just two
entangled systems, the demonstration of the failure of the
EPR analysis works indirectly by showing that a local sepa-
rable theory cannot return the statistical correlations among
measurements predicted by quantum theory. In the GHZ ap-
proach, more than two entangled systems are considered.
This approach enables the EPR reality criterion to be applied
directly. From it and the predictions of quantum theory, we
can infer the properties a spatially remote system must pos-
sess and note that the ensuing requirements are contradictory.

The entangled system to be developed here is a version of
a GHZ system. It is the one described in Ref. 14 and simpli-
fied by Bernstein.4 The analysis has been modified by sub-
stituting spatial degrees of freedom for the spin degrees of
freedom.15 The system consists of three spatially remote two-
chambered boxes, A, B, and C, with one particle in each box,
as shown in Fig. 7.

To display the failure of the EPR analysis, the entangle-

C

Fig. 7. Three two-chambered boxes.
ment of the particles in the three boxes is a little more com-

185 Am. J. Phys., Vol. 79, No. 2, February 2011
plicated than that of the two particle system of Eq. �2�. Each
particle is spread over the two chambers of its box. For ex-
ample, there are two ways the A particle is spread:

�A,+i = �1/�2���A,L + i�A,R� , �4a�

�A,−i = �1/�2���A,L − i�A,R� . �4b�

Equation �4a� has a relative internal phase factor � of +i, and
Eq. �4b� has a relative internal phase factor of −i. Wavefunc-
tions for the B and C boxes are defined analogously. The
three particles are entangled in the state

�ABC = �1/�2���A,+i�B,+i�C,+i − �A,−i�B,−i�C,−i� . �5�

In the remainder of the paper, we will apply the EPR reality
criterion to this state to determine the properties this criterion
attributes to it �its “elements of physical reality”� and then
show that the resulting requirements are self-contradictory.

VII. MEASUREMENT OF POSSESSED
PROPERTIES

We shall ascertain the position properties of the three par-
ticles of the entangled state �ABC by considering the out-
comes of two sorts of measurements: Position measurements
and “bonding/antibonding” measurements. These measure-
ments on two of the particles will enable us to predict the
outcome of a position measurement on the third remote par-
ticle. Using the EPR reality criterion, we shall thereby learn
a property possessed by the remote particle. The totality of
all possible measurements will place strong restrictions on
the position properties that may be possessed by the three
particles. It will turn out that the two different sorts of mea-
surement lead to contradictory restrictions.

A. First procedure: Position measurement

The form in which �ABC is written in Eq. �5� is not con-
ducive to reading off these predictions. We can obtain an
equivalent expression for �ABC if we substitute for each term
in Eq. �5� expressions for �A,+i ,�A,−i ,�B,+i , . . . from Eq.
�4�. Multiplying out the terms leads to an unwieldy expres-
sion with 16 terms, most of which cancel, leaving

�ABC = �i/2���A,L�B,L�C,R + �A,L�B,R�C,L

+ �A,R�B,L�C,L − �A,R�B,R�C,R� . �6�

We can read off from Eq. �6� how position measurements on
two particles enable us to predict the outcome of a position
measurement on the other particle. For example, if position
measurements of the A and B particles both yield L, then the
state collapses to the first term

�ABC = �A,L�B,L�C,R, �7�

and we know that the C particle must return the position R
on measurement. These four terms correspond to four re-
gions in the configuration space of particles A, B, and C, as
shown in Fig. 8. The measurement described in Eq. �7�
would collapse the wavefunction to the one marked LLR.

A measurement of the positions of any two particles will
collapse the wavefunction to one of the four regions LLR,
LRL, RLL, and RRR, where LLR indicates A position L, B
position L, C position R, etc. We read the following rule

from these four possibilities:
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Rule: Same — R, Different — L. �8�

If we measure two particles to have the same position,
then the remaining particle will return position R on mea-
surement. If we measure two particles to have different po-
sitions, then the remaining particle will return position L on
measurement. Here, “same” means both L or both R, and
“different” means one L and one R.

B. Applying the EPR reality criterion

We now apply the EPR reality criterion to these results
that, so far, only concern measurement. When the rule pre-
dicts assuredly which position property would be measured
for a remote particle, we infer that the particle possesses it as
a hidden position property.

We could choose to measure the particle positions of any
pair of systems: The pair BC, the pair AC, or the pair AB.
Then, the rule16 in Eq. �8� would enable to us predict with
certainty what we would measure for the position of the par-
ticle of the third system. Recall that the EPR analysis allows
us to assemble conclusions that are derived from considering
many different measurements that, counterfactually, are not
performed. Hence, we can pool all these outcomes and con-
clude that each of the A, B, and C particles really possess the
property of L/R position.

If we consider the possible position measurements of the
three possible pairings of the particle, we may ask if the
members of each pair are the same or different. There are
only two cases: �a� All three pairs have the same position. �b�
One pair has the same position and the remaining two pairs
have different positions. The position properties of these two
cases must conform to the rule in Eq. �8� Applying it to case
�a� tells us that all three position properties must all be R.
Applying the rule to case �b� tells us that two position prop-
erties are L and one is R. That is, there are only four possible
distributions of position properties

LLR, LRL, RLL, and RRR. �9�

C. Second procedure: Bonding/antibonding measurement

A position measurement determines whether a particle in
the two-chambered box is in the left or right chamber, that is,

L

LRL

RRR
LLR

RLL

L R
R

R

A space

C
sp

ac
e

B space

Fig. 8. Configuration space of the three entangled particles of �ABC.
whether the particle manifests itself as �L or �R on mea-
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surement. A second measurement determines whether the
particle manifests as �+1 or �−1, that is, as the normalized
sum or difference of �L and �R,

�+1 = �1/�2���L + �R�, �−1 = �1/�2���L − �R� .

�10�

The wavefunctions corresponding to the two cases are shown
in Fig. 9 for a particle spread over two square wave potential
wells. �+1 is on the left and �−1 on the right.

Formally, determining whether the particle is in state �+1
or �−1 is a measurement because the two states are eigen-
states of a self-adjoint operator.17 Merely satisfying this for-
mal property might raise doubts as to whether this measure-
ment is the sort of measurement that could actually be
performed. The states �+1 or �−1 differ only in a relative
internal phase factor. Is this a difference that measurement
can reveal, or is it merely an unphysical gauge freedom?

We can put these doubts to rest. Recall that one instantia-
tion of the two-chambered box is a separated singly ionized
hydrogen molecule H2

+. In this context, the two states have
distinct physical meanings. For the ionized hydrogen mol-
ecule, the wavefunctions �L and �R correspond to 1s elec-
tron orbitals of the hydrogen atom. For �+1, the two parts of
the electron wavefunction are the same 1s orbitals in phase.
If the two hydrogen nuclei are allowed to approach, then
molecular orbital theory, in the LCAO approximation, tells
us that they form a stable lower energy � bond state. The
bonding depends essentially on the zero phase difference �the
+1 factor� between the two wavefunctions �L and �R. Be-
cause of this zero phase difference, the two wavefunctions
reinforce each other in the region of overlap between the two
nuclei, increasing the wavefunction amplitude between the
nuclei.18

We find the opposite behavior for �−1. Then the two 1s
orbitals are 180° out of phase �the �1 factor�. As a result,
where the two wavefunctions overlap, they will destructively
interfere. Calculations show that this state has higher energy
state.19 It is an unstable state in which the two nuclei repel
�the antibonding �� state�. The two states are shown in Fig.
10, where the magnitude of the wavefunction amplitude is
indicated by shading.

The bonding and antibonding states enable a simple ex-
perimental procedure for determining whether the separated
singly ionized hydrogen molecule H2

+ is in the bonding state

ΨL

L

ΨR

R

ΨL

L

−ΨR

R

Fig. 9. �+1 and �−1 for two square wave potential wells.

Bonding Antibonding

+
Fig. 10. Bonding and antibonding states of H2 .
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�+1 or in the antibonding state �−1. The nuclei are allowed
to move freely. If they are in the bonding state, they will
attract and approach one another. If they are in the antibond-
ing state, they will repel.20

It is not easy to discern how the state �ABC of Eq. �5� will
behave under bonding/antibonding measurements, when
those measurements are used to determine the position prop-
erties of a remote particle. We arrive at a more useful expres-
sion for the state if we make the following substitutions. The
wavefunctions �C,+i and �C,−i are given in terms of �C,L
and �C,R by means of the expressions

�C,+i = �1/�2���C,L + i�C,R�,

�C,−i = �1/�2���C,L − i�C,R� . �11�

The wavefunctions �A,+i, �A,−i, �B,+i, and �B,−i are given
in terms of �A,+1, �A,−1, �B,+1, and �B,−1 by means of21

�A,+i = ��1 + i�/2���A,+1 − i�A,−1�,

�A,−i = ��1 − i�/2���A,+1 + i�A,−1� , �12a�

�B,+i = ��1 + i�/2���B,+1 − i�B,−1�,

�B,−i = ��1 − i�/2���B,+1 + i�B,−1� . �12b�

Multiplying out the resulting terms and canceling where pos-
sible leads to the expression

�ABC = �i/2���A,+1�B,+1�C,L − �A,−1�B,−1�C,L

+ �A,+1�B,−1�C,R + �A,−1�B,+1�C,R� . �13�

As before, we can see how measurements of bonding/
antibonding on the A and B particles enable us to predict the
outcome of a position measurement on the C particle. If, for
example, we measure both A and B particles to be in the
bonding state, then the wavefunction of Eq. �13� has col-
lapsed to

�ABC = �A,+1�B,+1�C,L, �14�

and we are certain that a subsequent measurement on particle
C will show an L position.

Because systems A, B, and C enter symmetrically in the
state of Eq. �5�, these results will hold no matter which two
are the particles on which bonding/antibonding measure-
ments are performed. Hence, from Eq. �13�, we can read off
the following rule, similar to that found for position mea-
surements:

Rule: Same — L, Different — R. �15�

If we measure two particles to have the same bonding state,
then the remaining particle will return position L on mea-
surement. If we measure two particles to have different
bonding states, then the remaining particle will return posi-
tion R on measurement. Here, same just means both bonding
or both antibonding, and different means one bonding and
one antibonding.

The point is that the role of L and R in the rule for bonding
measurements is reversed in comparison to the rule associ-
ated with position measurements. This reversal will yield the

contradiction.
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D. Applying the EPR reality criterion

We proceed as before by assembling the outcomes of all
possible bonding measurements on pairs of particles. These
bonding measurements must cohere with one another.22

Hence, there are only two cases for the various pairs of bond-
ing measurements on the three particles: �a� All three pairs
have the same bonding states. �b� One pair has the same
bonding state and the remaining two pairs have different
bonding states. The position properties of the remote unmea-
sured particles must all conform to the rule in Eq. �15�. Ap-
plying it to case �a� tells us that the three position properties
must all be L. Applying the rule to case �b� tells us that one
position property is L and that the other two must be R. That
is, there are only four possible distributions of the position
properties: RRL, RLR, LRR, or LLL. We see immediately
that these four distributions of position properties contradict
the distribution of position properties in Eq. �9� inferred from
position measurements.

VIII. CONCLUSION

We have arrived at a contradiction. Position measurements
on the three entangled particles of quantum state �Eq. �5��
lead to the conclusion that the particles must possess position
properties that contradict those inferred from bonding/
antibonding measurements.

Two principal assumptions were made in the arguments
that generated this contradiction. One was that the empirical
predictions of quantum theory are reliable. The other was the
EPR reality criterion, which, in turn, depends on the assump-
tions of separability and locality. One of these assumptions
must be given up. The continuing empirical success of quan-
tum theory has led to a consensus that it is the second as-
sumption, the EPR reality criterion, which is to be discarded.
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