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A Greenberger, Horne and Zeilinger-type construction is realized in the 

position properties of three particles whose wave functions are distributed 

over three two-chambered boxes. The same system is modeled more 

realistically using three spatially separated, singly ionized hydrogen 

molecules. 

 

I.	
  INTRODUCTION	
  

 In a celebrated critique, Einstein used entangled systems in an attempt to show 

that the quantum state gives an incomplete description of the properties possessed by a 

quantum system.1 In a celebrated rejoinder, Bell,2 and those who developed his approach, 

showed that no theory employing hidden states that are spatially separate and local could 

recover the same predictions as quantum theory. 
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 Most workers have developed Bell’s ideas in terms of the internal degrees of 

freedom associated with spin, because spins are simpler theoretically and lend themselves 

to experimental tests.3 These analyses preclude hidden spin properties. What of the 

spatial degrees of freedom discussed early in the development of quantum theory that are 

associated with the spread of the wavefunction? 

 This paper will show how the same analysis can be applied directly to spatial 

degrees of freedom and that they preclude hidden position properties. In so far as is 

possible, the analysis will employ only the ideas that a quantum system can be 

represented by a wavefunction and that measurement collapses the wavefunction. In 

particular, the analysis will adapt Bernstein’s4 simplified analysis of a Greenberger, 

Horne, and Zeilinger-type construction to spatial degrees of freedom. 

 The spatial degrees of freedom will be introduced through an example that 

Einstein communicated to Schrödinger shortly after the well know Einstein, Podolsky, 

and Rosen (EPR) paper was written.5 While discussing the essential ideas of the EPR 

paper, Einstein illustrated the notion of incompleteness with the idea of a ball that will 

assuredly appear in one of two boxes. Because the ball’s wavefunction is spread over the 

two boxes, Einstein suggested that the wavefunction provides an incomplete description 

of the ball. Einstein’s account will be given in Sec. II. An example, a two-chambered box 

with a particle, will be described in Sec. III. The division into two-chambers will give the 

added spatial degrees of freedom used to implement the GHZ construction. A realistic 

implementation of the system is found in molecular orbital chemistry through the singly 

ionized hydrogen molecule, H
2

+. This implementation precludes the concern that the 
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highly idealized system of two-chambered boxes might introduce spurious idealizations 

that are responsible for the effects. 

 Einstein’s attempt to show incompleteness depends on the properties of entangled 

systems. These properties will be described briefly in Sec. IV. The EPR analysis, 

sketched in Sec. V, uses measurements of the properties of one system to discern the 

properties possessed by another spatially distant system that is entangled with it. Section 

VI describes a system of three entangled particles that are spread over three two-

chambered boxes. The hidden position property sought by Einstein’ methods is whether 

each of the boxes’ particles is in the left or the right chamber. 

 In Sec. VII we shall see how possible measurements on any two of the boxes 

enables the remote determination of the position properties of the third. The totality of 

such measurements constrains the position properties that must be possessed by the 

particles. Two sorts of measurements will be described. One is a straightforward position 

measurement of which chamber hosts the particle. The other is a determination of 

whether the particle’s wavefunction is spread over the two chambers in a “bonding” or 

“antibonding” state, drawing on a notion from molecular orbital theory. The two sets of 

measurements lead to contradictory ascriptions of the hidden position properties, which 

establishes the failure of Einstein’s attempt to show the incompleteness of quantum 

theory. 

II.	
  EINSTEIN’S	
  BOXES	
  

 The EPR paper was received by Physical Review on March 25, 1935, and 

published on May 15, 1935. In a letter of June 19, 1935, Einstein expressed his 

dissatisfaction with the exposition.6 “For reasons of language,” Einstein explained to 
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Schrödinger, “[it] was written by Podolosky after many discussions. But still it has not 

come out as well as I really wanted; on the contrary, the main point was, so to speak, 

buried by the erudition.”7 He then identified the real problem as residing in the meaning 

of the assertions that a description of reality is complete or incomplete. To explain the 

difference, Einstein introduced the following illustration. 

“… I want to explain the[se assertions] through the following illustration: 

In front of me are two boxes with hinged lids, into which I can see when 

the lids are opened; the latter is called ‘making an observation. There is 

also a ball there that will always be found in one or other of the boxes, if 

one makes an observation.” 

Einstein then distinguished his view of the incompleteness of quantum description (“no”) 

from the standard view of completeness (“yes”): 

“I now describe a state as follows: The probability that the ball is in the 

first box is 1/2.- Is this a complete description? 

No: A complete statement is the ball is in the first box (or is not). That, 

therefore, is how the characterization of the state must appear in a 

complete description. 

Yes. Before I open the box, the ball is by no means in one of the two 

boxes. Being in a definite box only comes about when I lift the lid….” 

 
III.	
  A	
  PARTICLE	
  CONFINED	
  TO	
  A	
  TWO-­‐CHAMBERED	
  BOX	
  

In the following we will base the analysis on Einstein’s example of a ball that is spread 

over two boxes. To keep the analysis tractable, Einstein’s two boxes will be joined 
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together as two spatially separated compartments or chambers L (left) and R (right) of 

one larger box, as shown in Fig. 1. Einstein’s ball will be a single particle. 

 

Figure 1. A Two-Chambered Box 

The simplest quantum mechanical implementation of this system is a single 

particle confined by two infinitely deep square potential wells.8 Figure 2 shows one of 

many possible wavefunctions. 

 

Figure 2. Particle in Two Infinitely Deep Square Potential Wells. 

The two quantum wavefunctions Ψ
L
 and Ψ

R
 are normalized solutions of the 

Schrödinger equation for each potential well individually. The combined wavefunction is 

their normalized sum 

 Ψβ = 

€ 

1 2( )( ΨL + βΨR), (1) 

where β is a relative internal phase factor of unit norm, such as 1, -1, i, -i.  
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 A more realistic implementation of the system is a singly ionized hydrogen 

molecule, H2+. This molecule consists of two protons, whose positive charges create a 

potential well with two chambers centered on each proton. The single electron of the 

ionized molecule is spread across these two chambers. In the standard LCAO (linear 

combination of atomic orbitals) approximation of molecular orbital theory,9 the molecule 

is approximated by a linear superposition of two 1s electron orbitals of the ordinary 

hydrogen atom (see Fig. 3). 

 

Figure 3. Singly ionized hydrogen molecule H2+ 

The bond that joins the two atoms results from the overlapping of these two 

orbitals. It will be important for the following analysis that the compartments be disjoint 

spatially. Therefore the relevant system consists of an H2+ molecule in which the two 

nuclei have been separated sufficiently in space so that the two 1s orbitals no longer 

overlap, as shown in Fig. 4. 

 

Figure 4. Separated singly ionized H2+ molecule 
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Overlapping is avoided almost completely by separating the two nuclei by about 

ten Bohr radii.10 If the two 1s orbitals of the separated H2+ molecule are Ψ
L
 and Ψ

R
, then 

the wavefunction of the molecule’s single electron is given by Eq. (1). 

 Almost all the details of the particle wavefunction in a two-chambered box are 

immaterial to the following analysis. All that is important is that there is a particle whose 

wavefunction is non-vanishing only in two disjoint regions of space L and R. The 

wavefunctions of the particle, if were it confined to each region individually, are Ψ
L
 and 

Ψ
R
. Many possible wavefunctions are admissible for Ψ

L
 and Ψ

R
. For a potential well, 

they correspond to the different energy eigenstates of a particle trapped in such a 

potential, and for a separated H2+ they correspond to the various orbitals of a hydrogen 

atom. All that matters is that we fix on a particular pair of wavefunctionsΨ
L
 and Ψ

R
 and 

use them for the remainder of the analysis. 

 
IV.	
  ENTANGLEMENT	
  AND	
  THE	
  MEASUREMENT	
  OF	
  DISTANT	
  PARTICLE	
  STATES	
  

The EPR analysis depends essentially on the entanglement of systems.  The way 

entanglement of spatial degrees of freedom affects quantum measurement is readily 

recovered from examining the spatial collapse of the wavepacket under a measurement. 

 The simplest case arises when we have two two-chambered boxes, A and B (see 

Fig. 5), which are widely separated in space.  



 8 

 

Figure 5. Two Two-Chambered Boxes 

The particles of each of these boxes may be entangled in different ways. One simple way 

is that the presence of A in its L chamber is associated with B’s presence in its L 

chamber, and similarly for the R chambers. The wavefunction of the resulting entangled 

state is 

 ΨAB = 

€ 

1 2( )  ( ΨA,LΨB,L + ΨA,RΨB,R). (2) 

ΨA,L and ΨA,R are wavefunctions in the position space of particle A, and ΨB,L and ΨB,R 

are wavefunctions in the position space of particle B. ΨAB is not a wavefunction in a 

three-dimensional space, but is a wavefunction in the six-dimensional configuration 

space formed by the product of the two spaces of particles A and B. 

 The wavefunction ΨAB is shown in Fig. 6 in its configuration space; one spatial 

dimension for each of the A and B particles is shown and the remaining four dimensions 

are suppressed.  
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Figure 6. Configuration Space of Two Correlated Particles of Boxes A and B 

The wavefunction is non-zero only in two regions of configuration space. One coincides 

with the L regions of both A and B spaces, LL, and corresponds to the product ΨA,LΨB,L 

of Eq. (2). The other coincides with the R regions of both A and B spaces, RR, and 

corresponds to the product ΨA,RΨB,R of Eq. (2). 

 Suppose that we perform a measurement on particle A that determines whether 

the particle is in the L or the R chamber. In the standard interpretation of quantum theory, 

the effect of this measurement is to collapse the wavefunction to one that is non-zero only 

in one of the L or R regions of A’s space. That is, the measurement will collapse ΨAB to 

one of the regions LL or RR of the configuration space. If the outcome of the 

measurement on the A particle is L, then the wavefunction would collapse to the LL 

region. This collapse would alter the wavefunction of B, which would now only be non-
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zero in its L region. That is, the wavefunction of Eq. (2) has collapsed to just one of its 

terms 

 ΨAB = ΨA,LΨB,L. (3) 

As a result, we can now be certain that any subsequent measurement of the position of 

the B particle will reveal it to be in its L region. 

 This correlation among measurement outcomes is the important fact about 

entanglement for our purposes. Even though we have measured the A particle only, we 

now are certain about the outcome of measurements were they to be performed on the B 

particle, light years away. 

 
V.	
  THE	
  EPR	
  ANALYSIS	
  

Einstein’s objection to quantum theory was that its standard interpretation was 

incomplete. That is, specifying the wavefunction associated with a particle does not fix 

all the physical properties of the particle. If the particle’s wavefunction is spread over the 

two chambers of the box, then standard quantum theory tells us that the particle is neither 

properly in one or other of the chambers. Einstein suggested that the particle has further 

factual properties, not captured in the wavefunction, which correspond to its localization 

in one or other of the chambers. 

 Einstein’s strategy for establishing this incompleteness was first advanced in the 

EPR paper and then by himself in some of Einstein’s later publications. 1 The analysis 

depended on the behavior of entangled systems under measurement, as sketched in 

Sec. IV. Measurement of the position of A enables us to know what a position 

measurement of B would yield, even though B is so remote from A that the physical 

process of our measurement of A could have no effect on B. This fact establishes that the 
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B particle had a definite position property all along, even though the original 

wavefunction did not express it. 

 This analysis depends on an inference from our being able to predict assuredly the 

outcome of a measurement on the B particle, to the possession by the B particle of a 

property. The assumption that justified that inference is of central importance to the EPR 

analysis and stated in italics on the first page of the EPR paper, “If, without in any way 

disturbing a system, we can predict with certainty (i.e. with probability equal to unity) the 

value of a physical quantity, then there exists an element of physical reality 

corresponding to this physical quantity.” We will refer to this assumption as the “EPR 

reality criterion.” 

There is an important counterfactual element in the EPR analysis.11 It does not 

require that we perform the measurements on the A particle to infer the possession of 

position properties by the B particle. All that matters is that we know what would happen 

if we were to perform the measurement, even when, counter to the facts, we do not 

perform it. If we could predict assuredly that there would be some definite position 

measured on the remote B particle, then we could infer that the remote particle possesses 

some definite position property. All we lose by not performing a measurement on the A 

particle is that we do not know which position property is possessed by the remote B 

particle. Because we need not actually perform the measurements, analogous reflections 

on the possibility of measurements on the B particle lead to the corresponding conclusion 

for the A particle: it too possesses a definite position property not expressed completely 

by its wavefunction. The counterfactual aspect is essential if we are to infer that both A 

and B particles possess more position properties than expressed by their wavefunctions. 
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Because we can perform the measurement on at most one of the two entangled particles, 

then under the standard theory, measurement on one alters the combined system.12 

 Howard6 has traced the presence of two important assumptions. First is 

separability: the assumption that the two spatially remote systems have independent 

existences. Second is locality: the assumption that effects between the systems propagate 

at luminal speeds or less. The first assumption affirms that the remote particle has 

properties independent of the local particle being measured, and the second assures us 

that whatever disturbances are introduced by measurement will initially affect only the 

local particle. 

 
VI.	
  THREE	
  TWO-­‐CHAMBERED	
  BOXES,	
  ENTANGLED	
  

The failure of the EPR attempt to show the incompleteness of quantum theory was 

demonstrated by Bell2 and others. The failure is demonstrated by showing that no 

physical theory, constrained by separability and locality, can reproduce the empirical 

predictions of quantum theory. Most analyses follow Bell in considering two entangled 

systems, such as two spin half particles in a singlet state. In that case, the empirical 

failure of separable, local theories is their failure to reproduce the correlations between 

measurement outcomes predicted by quantum theory. 

 A significant conceptual simplification was achieved by Greenberger, Horne, and 

Zeilinger (GHZ).13 If we consider just two entangled systems, the demonstration of the 

failure of the EPR analysis works indirectly by showing that a local, separable theory 

cannot return the statistical correlations among measurements predicted by quantum 

theory. In the GHZ approach, more than two entangled systems are considered. This 

approach enables the EPR reality criterion to be applied directly. From it and the 
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predictions of quantum theory, we can infer the properties a spatially remote system must 

possess and note that the ensuing requirements are contradictory. 

 The entangled system to be developed here is a version of a GHZ system. It is the 

one described in Mermin14 and simplified by Bernstein.4 The analysis has been modified 

by substituting spatial degrees of freedom for the spin degrees of freedom.15 The system 

consists of three spatially remote, two-chambered boxes, A, B, and C, with one particle in 

each box, as shown in Fig. 7. 

 

Figure 7. Three Two-Chambered Boxes 

To display the failure of the EPR analysis, the entanglement of the particles in the 

three boxes is a little more complicated than that of the two particle system of Eq. (2). 

Each particle is spread over the two chambers of its box. For example, there are two ways 

the A particle is spread: 

 ΨA,+i = 

€ 

1 2( )( ΨA,L + iΨA,R) (4a) 

 ΨA,-i = 

€ 

1 2( )( ΨA,L - iΨA,R). (4b) 
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Equation (4a) has a relative internal phase factor β of +i, and Eq. (4b) has a relative 

internal phase factor of –i. Wavefunctions for the B and C boxes are defined analogously. 

The three particles are entangled in the state 

 ΨABC = 

€ 

1 2( )  ( ΨA,+iΨB,+iΨC,+i - ΨA,-iΨB,-iΨC,-i). (5) 

In the remainder of the paper, we will apply the EPR reality criterion to this state to 

determine the properties this criterion attributes to it (its “elements of physical reality”), 

and then show that the resulting requirements are self-contradictory. 

 
VII.	
  MEASUREMENT	
  OF	
  POSSESSED	
  PROPERTIES	
  

We shall ascertain the position properties of the three particles of the entangled state Ψ
ABC 

by considering the outcomes of two sorts of measurements: position measurements and 

“bonding/antibonding” measurements. These measurements on two of the particles will 

enable us to predict the outcome of a position measurement on the third, remote particle. 

Using the EPR reality criterion, we shall thereby learn a property possessed by the remote 

particle. The totality of all possible measurements will place strong restrictions on the 

position properties that may be possessed by the three particles. It will turn out that the 

two different sorts of measurement lead to contradictory restrictions. 

 
VII.A	
  First	
  procedure:	
  Position	
  measurement	
  

 The form in which Ψ
ABC

 is written in Eq. (5) is not conducive to reading off these 

predictions. We can obtain an equivalent expression for ΨABC if we substitute for each 

term in Eq. (5) expressions for Ψ
A,+i

, Ψ
A,-i

, Ψ
B,+i

, … from Eq. (4). Multiplying out the 

terms leads to an unwieldy expression with 16 terms, most of which cancel, leaving 

 Ψ
ABC

 = (i/2) (Ψ
A,L
Ψ

B,L
Ψ

C,R
 + Ψ

A,L
Ψ

B,R
Ψ

C,L
 + Ψ

A,R
Ψ

B,L
Ψ

C,L
 - Ψ

A,R
Ψ

B,R
Ψ

C,R
). (6) 
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We can read off from Eq. (6) how position measurements on two particles enable us to 

predict the outcome of a position measurement on the other particle. For example, if 

position measurements of the A and B particles both yield L, then the state collapses to 

the first term 

 Ψ
ABC

 = Ψ
A,L
Ψ

B,L
Ψ

C,R
, (7) 

and we know that the C particle must return the position R on measurement. These four 

terms correspond to four regions in the configuration space of particles A, B and C, as 

shown in Fig. 8. The measurement described in Eq. (7) would collapse the wavefunction 

to the one marked LLR. 

 

Figure 8. Configuration space of the three entangled particles of ΨABC 

A measurement of the positions of any two particles will collapse the 

wavefunction to one of the four regions LLR, LRL, RLL, and RRR, where LLR indicates 
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A position L, B position L and C position R, etc. We read the following rule from these 

four possibilities: 

 Rule: Same-R, Different-L (8) 

 If we measure two particles to have the same position, then the remaining 

particle will return position R on measurement. If we measure two particles to 

have different positions, then the remaining particle will return position L on 

measurement. Here “same” means both L or both R, and “different” means one L 

and one R. 

VII.B	
  Applying	
  the	
  EPR	
  reality	
  criterion	
  

 We now apply the EPR reality criterion to these results that, so far, only concern 

measurement. When the rule predicts assuredly which position property would be 

measured for a remote particle, we infer that the particle possesses it as a hidden position 

property. 

 We could choose to measure the particle positions of any pair of systems: the pair 

BC, the pair AC, or the pair AB. Then, the rule16 in Eq. (8) would enable to us predict 

with certainty what we would measure for the position of the particle of the third system. 

Recall that the EPR analysis allows us to assemble conclusions that derive from 

considering many different measurements that, counterfactually, are not performed. 

Hence we can pool all these outcomes and conclude that each of the A, B and C particles 

really possess the property of L/R position. 

 If we consider the possible position measurements of the three possible pairings 

of the particle, we may ask if the members of each pair are the same or different. There 

are only two cases: (a) All three pairs have the same position. (b) One pair has the same 
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position and the remaining two pairs have different positions. The position properties of 

these two cases must conform to the rule in Eq. (8) Applying it to case (a) tells us that all 

three position properties must all be R. Applying the rule to case (b) tells us two position 

properties are L and one is R. That is, there are only four possible distributions of 

position properties 

 LLR, LRL, RLL and RRR (9) 

 
VII.C	
  Second	
  procedure:	
  Bonding/antibonding	
  measurement	
  

 A position measurement determines whether a particle in the two-chambered box 

is in the left or right chamber, that is, whether the particle manifests itself as Ψ
L
 or Ψ

R
 on 

measurement. A second measurement determines whether the particle manifests as Ψ+1 

or Ψ-1, that is, as the normalized sum or difference of Ψ
L
 and Ψ

R
: 

Ψ+1 = 

€ 

1 2( )( ΨL + ΨR)           Ψ−1 = 

€ 

1 2( )( ΨL - ΨR).               (10) 

The wavefunctions corresponding to the two cases are shown in Fig. 9 for a particle 

spread over two square wave potential wells. Ψ
+1
 is on the left and Ψ

−1
 on the right. 

 

Figure 9. Ψ+1 and Ψ−1 for Two Square Wave Potential Wells. 

Formally, ascertaining whether the particle is in state  Ψ+1 or Ψ-1 is a 

measurement, because the two states are eigenstates of a self-adjoint operator.17 Merely 

satisfying this formal property might raise doubts as to whether this measurement is the 
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sort of measurement that could actually be performed. The states Ψ
+1

 or Ψ
-1
 differ only in 

a relative, internal phase factor. Is this a difference that measurement can reveal, or is it 

merely an unphysical gauge freedom? 

 We can put these doubts to rest. Recall that one instantiation of the two-

chambered box is a separated, singly ionized hydrogen molecule H
2

+. In this context, the 

two states have distinct physical meanings. For the ionized hydrogen molecule, the 

wavefunctions Ψ
L
 and Ψ

R
 correspond to 1s electron orbitals of the hydrogen atom. For 

Ψ
+1

, the two parts of the electron wavefunction are the same 1s orbitals in phase. If the 

two hydrogen nuclei are allowed to approach, then molecular orbital theory, in the LCAO 

approximation, tells us that they form a stable lower energy σ bond state. The bonding 

depends essentially on the zero phase difference (the +1 factor) between the two 

wavefunctions Ψ
L
 and Ψ

R
. Because of this zero phase difference, the two wavefunctions 

reinforce each other in the region of overlap between the two nuclei, increasing the 

wavefunction amplitude between the nuclei.18 

 We find the opposite behavior for Ψ-1. Then the two 1s orbitals are 1800 out of 

phase (the -1 factor). As a result, where the two wavefunctions overlap, they will 

destructively interfere. Calculations show that this state has higher energy state.19 It is an 

unstable state in which the two nuclei repel (the antibonding σ* state). The two states are 

shown in Fig. 10, where the magnitude of the wavefunction amplitude is indicated by 

shading. 
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Figure 10. Bonding and Antibonding States of H2+. 

The bonding and antibonding states enable a simple experimental procedure for 

determining whether the separated singly ionized hydrogen molecule H2+ is in the 

bonding state Ψ+1 or in the antibonding state Ψ-1. The nuclei are allowed to move freely. 

If they are in the bonding state, they will attract and approach one another. If they are in 

the antibonding state, they will repel.20 

 It is not easy to discern how the state Ψ
ABC

 of Eq. (5) will behave under 

bonding/antibonding measurements, when those measurements are used to determine the 

position properties of a remote particle. We arrive at a more useful expression for the 

state if we make the following substitutions. The wavefunctions ΨC,+i and ΨC,-i are 

given in terms of ΨC,L and ΨC,R by means of the expressions 

 ΨC,+i = 

€ 

1 2( )( ΨC,L + iΨC,R) ΨC,-i = 

€ 

1 2( ) ( ΨC,L - iΨC,R). (11) 

The wavefunctions ΨA,+i, ΨA,-i, ΨB,+i and ΨB,-i are given in terms of ΨA,+1, ΨA,-1, 

ΨB,+1 and ΨB,-1 by means of21 

 ΨA,+i = ((1+i)/2) (ΨA,+1 - iΨA,-1) ΨA,-i = ((1-i)/2) (ΨA,+1 + iΨA,-1) (12a) 

 ΨB,+i = ((1+i)/2) (ΨB,+1 - iΨB,-1) ΨB,-i = ((1-i)/2) (ΨB,+1 + iΨB,-1). (12b) 

Multiplying out the resulting terms and cancelling where possible leads to the expression 
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ΨABC = (i/2) (ΨA,+1ΨB,+1ΨC,L - ΨA,-1ΨB,-1ΨC,L + ΨA,+1ΨB,-1ΨC,R + ΨA,-1ΨB,+1ΨC,R). 

 (13) 

As before, we can see how measurements of bonding/antibonding on the A and B 

particles enable us to predict the outcome of a position measurement on the C particle. If, 

for example, we measure both A and B particles to be in the bonding state, then the 

wavefunction of Eq. (13) has collapsed to 

 ΨABC = ΨA,+1ΨB,+1ΨC,L, (14) 

and we are certain that a subsequent measurement on particle C will show an L position. 

 Because the systems A, B, and C enter symmetrically in the state of Eq. (5), these 

results will hold no matter which two are the particles on which bonding/antibonding 

measurements are performed. Hence, from Eq. (13), we can read off the following rule, 

similar to that found for position measurements 

 Same L, Different R (15) 

If we measure two particles to have the same bonding state, then the remaining 

particle will return position L on measurement. If we measure two particles to 

have different bonding states, then the remaining particle will return position R on 

measurement. Here “same” just means both bonding or both antibonding, and 

“different” means one bonding and one antibonding. 

 The point is that the role of L and R in the rule for bonding measurements is 

reversed in comparison to the rule associated with position measurements. This reversal 

will yield the contradiction. 
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VII.D	
  Applying	
  the	
  EPR	
  reality	
  criterion	
  

 We proceed as before by assembling the outcomes of all possible bonding 

measurements on pairs of particles. These bonding measurements must cohere with one 

another.22 Hence, there are only two cases for the various pairs of bonding measurements 

on the three particles: (a) All three pairs have the same bonding states. (b) One pair has 

the same bonding state and the remaining two pairs have different bonding states. The 

position properties of the remote, unmeasured particles must all conform to the rule in 

Eq. (15). Applying it to case (a) tells us that the three position properties must all be L. 

Applying the rule to case (b) tells us that one position property is L and that the other two 

must be R. That is, there are only four possible distributions of the position properties: 

RRL, RLR, LRR, LLL. We see immediately that these four distributions of position 

properties contradict the distribution of position properties in Eq. (9) inferred from 

position measurements. 

VIII.	
  CONCLUSION	
  

We have arrived at a contradiction. Position measurements on the three entangled 

particles of quantum state Eq. (5) lead to the conclusion that the particles must possess 

position properties that contradict those inferred from bonding/antibonding 

measurements. 

 Two principal assumptions were made in the arguments that generated this 

contradiction. One was that the empirical predictions of quantum theory are reliable. The 

other was the EPR reality criterion, which in turn depends on the assumptions of 

separability and locality. One of these assumptions must be given up. The continuing 
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empirical success of quantum theory has led to a consensus that it is the second 

assumption, the EPR reality criterion, that is to be discarded. 
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