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9Nature is the Realisation of the Simplest
Conceivable Mathematical Ideas:: Einstein
and the Canon of Mathematical Simplicity

John D. Norton*

Einstein proclaimed that we could discover true laws of nature by seeking
those with the simplest mathematical formulation. He came to this view-
point later in his life. In his early years and work he was quite hostile to this
idea. Einstein did not develop his later Platonism from a priori reasoning or
aesthetic considerations. He learned the canon of mathematical simplicity
from his own experiences in the discovery of new theories, most importantly,
his discovery of general relativity. Through his neglect of the canon, he
realised that he delayed the completion of general relativity by three years
and nearly lost priority in discovery of its gravitational "eld equa-
tions. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The account is developed in Sections 1}6 with a minimum of mathematical
technicalities. Readers interested in them will xnd them exiled in Appendices
A}C at the end of the paper and also a brief critique of Einstein's view in
Appendix D.

On 10 June 1933, Einstein gave his Herbert Spenser Lecture &On the Methods of
Theoretical Physics' at the University of Oxford (Einstein, 1933a). He lectured
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1According to FoK lsing (1997, p. 673).
2One might wonder if Einstein's position is consistent if he can portray this as a di$cult task with
a right answer. There is no problem arriving at free inventions*one just invents them! What makes
the invention process di$cult, however, is that the results are only admissible if they can accommo-
date a broad range of our experience. Finding inventions that do this is far from automatic.
Moreover, while he portrayed the concepts and postulates as free inventions as a matter of general
principle, he also urged that in practical terms there turns out to be one theoretical system that does
the job best, much as we might propose any word to solve a word puzzle but only &[2] one word
which solves the puzzle in all its parts' (Einstein, 1936, pp. 294}295; Einstein's emphasis). Consider
also Einstein's (1918a, p. 226) earlier remark that &in practice the world of phenomena uniquely
determines the theoretical system'. The right method leads us to this system. That this system is not
to be thought of instrumentally is made clear by his elaboration of the heuristic of mathematical
simplicity in the Herbert Spenser Lecture when he explains (p. 275): &In the limited number of the
mathematically existent simple "eld types, and the simple equations possible between them, lies the
theorist's hope of grasping the real in all its depth'. His goal is not just a good instrument for
calculating experience but &the real in all its depth'.

for the "rst time in English, reading from a prepared translation.1 The lecture
was to describe the methods used to discover theories in physics. It began with
a self-mocking warning, perhaps because he sensed the account he was about to
give was shocking: &If you want to "nd out anything from the theoretical
physicists about the methods they use, I advise you to stick closely to one
principle: do not listen to their words, "x your attention on their deeds'. As the
lecture developed it was not immediately apparent why Einstein should have
entered into such an experiment in irony. He proceeded to a safe, empiricist
disclaimer on the limited role of pure logic in science: &Pure logical thinking
cannot yield us any knowledge of the empirical world; all knowledge of reality
starts from experience and ends with it'. This was followed by a more adventur-
ous claim: while the fundamental concepts and postulates of our theories must
accommodate experience, they are otherwise &free inventions of the human
intellect'. This freedom, he continued, had not been recognised in earlier centur-
ies when natural philosophers erroneously believed that these concepts and
postulates could be deduced from experience. So how are we to "nd them?2 That
seemingly innocent question brought forth a manifesto so grandiose that one
would dismiss it as empty posturing were it not the mature re#ections of that
scientist of the modern age, whose achievements had made his name synony-
mous with genius:

If, then, it is true that the axiomatic basis of theoretical physics cannot be extracted
from experience but must be freely invented, can we ever hope to "nd the right
way? Nay, more, has this right way any existence outside our illusions? Can we
hope to be guided safely by experience at all when there exist theories (such as
classical mechanics) which to a large extent do justice to experience, without
getting to the root of the matter? I answer without hesitation that there is, in my
opinion, a right way, and that we are capable of "nding it. Our experience hitherto
justi"es us in believing that nature is the realisation of the simplest conceivable
mathematical ideas. I am convinced that we can discover by means of purely
mathematical constructions the concepts and the laws connecting them with each
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other, which furnish the key to the understanding of natural phenomena. Experi-
ence may suggest the appropriate mathematical concepts, but they most certainly
cannot be deduced from it. Experience remains, of course, the sole criterion of the
physical utility of a mathematical construction. But the creative principle resides in
mathematics. In a certain sense, therefore, I hold it true that pure thought can
grasp reality, as the ancients dreamed.

To remove any doubt that Einstein had a quite concrete understanding of this
&right method', he proceeded to show how it leads directly to the two most
successful theories of his time outside the quantum domain, Maxwell's elec-
trodynamics and his own general theory of relativity:

In order to justify this con"dence, I am compelled to make use of a mathematical
concept. The physical world is represented as a four-dimensional continuum. If
I assume a Riemannian metric in it and ask what are the simplest laws which such
a metric can satisfy, I arrive at the relativistic theory of gravitation in empty space.
If in that space I assume a vector-"eld or an anti-symmetrical tensor "eld which
can be derived from it, and ask what are the simplest laws which such a "eld can
satisfy, I arrive at Maxwell's equations for empty space.

My purpose in this paper is to reveal where Einstein found his con"dence in
the supreme heuristic power of mathematical simplicity. It was not an a priori
aesthetic judgement or the outpourings of a physicist eager to extract impressive
philosophical morals from his work. Rather it was the practical conclusion of
a physicist who sought to adopt quite pragmatically whatever approach would
lead to successful physics.

We shall see that Einstein was indi!erent and at times even derisive of
considerations of mathematical simplicity early in his career. That was to
change for good reason. We must understand Einstein quite literally when he
proclaims in his manifesto (my emphasis): &Our experience hitherto justi"es us in
believing that nature is the realisation of the simplest conceivable mathematical
ideas'. This experience is not just the communal experience of scientists. It
includes Einstein's own experiences; most importantly, it includes his experience
with his greatest discovery, the general theory of relativity.

His indi!erence to mathematical simplicity persisted up to and through the
years in which he worked on completing the theory. This indi!erence was
weakened temporarily by the need to proceed within a context more mathemat-
ically sophisticated than any in which he had worked before. His research
required him to master the Ricci Levi-Civita &absolute di!erential calculus', now
called &tensor calculus'. As he formulated and tested candidate equations for his
theory, he consciously alternated between two explicit strategies. The "rst
employed physical constraints to narrow in on the "nal theory; the second
asked after the laws that were most naturally written in the new formalism.
He expected both to yield the same result so that one could be used to test
the product of the other. When he erroneously concluded they did not yield the
same results, he had to choose. He chose in favour of the "rst, the
physical approach, unaware that an unnecessarily restrictive formulation of
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3This synoptic appraisal of Einstein's struggle was developed by an historical research group
meeting in Berlin. See Section 4 below.

the physical constraints precluded the theory he would "nally adopt at the end
of 1915.3

In 1913, the result was an ill-formed theory which Einstein struggled to
embrace for over two years. He recognised his errors towards the end of 1915,
just as the great mathematician David Hilbert turned his powers to the task of
giving Einstein's theory an elegant axiomatic formulation. Einstein spent that
November in mounting frenzy, sending a series of communications to the
Prussian Academy of Science, each correcting the one before, all the while
knowing that Hilbert was hard on his heels. The "nal equations were commu-
nicated by an exhausted Einstein at the end of the month. Through this last
month, Einstein had consciously chosen to allow the natural mathematical
constructions of the absolute di!erential calculus to guide him and that they did.
They brought him rapidly to the "nal result, the most joyous achievement of
Einstein's scienti"c life. The speed and ease of this "nal passage was an experi-
ence Einstein never forgot and, I will urge, were recalled by him when he needed
to justify his new canon of mathematical simplicity. The canon grew more
important in Einstein's thought and work and came to dominate his search for
a uni"ed "eld theory.

Section 2 below will review Einstein's early enthusiasm for mathematics and
recount how Einstein consciously chose to neglect the use of more advanced
mathematics in his physical theorising, right up to the moment at which tensor
calculus was introduced into his search for the general theory of relativity. In
Section 3, we shall see how Einstein, even at this last moment, was quite
disparaging and even scornful of the heuristic power of mathematical simplicity.
In Section 4 we begin to review how Einstein consciously alternated between
answering the demands of physical constraints and natural mathematical condi-
tions in devising the draft of his general theory of relativity, the &Entwurf' theory.
The next Section 5 reviews Einstein's return to the mathematically natural
candidates for gravitational "eld equations and documents an immediate rever-
sal in his appraisal of the importance of mathematical simplicity. The "nal
Section 6 o!ers conclusions.

2. Mathematics and the Young Einstein

Contrary to popular myth, the young Einstein was not a poor student. He took
a special interest in mathematics. It yielded to a conscious decision to
minimise the mathematical sophistication of his earlier work in physics.

Many struggling students and their parents have found consolation in the
stories that Einstein was himself a poor student and perhaps a%icted with
some sort of learning disability. Comforting as these stories are, there is no
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4This is not always immediately apparent from the documentary evidence. For example, at the
Argau Canton School in the year 1895}1896 he was awarded a grade of 1}2 in physics in each of the
third and fourth quarters on a scale of 1 to 6. But in the "rst quarter of 1896}1897, he was awarded
a grade of 5}6 (Stachel et al., 1987, p. 16). As the editors of Volume 1 of the Einstein Papers reveal (p.
17, note 4), this variation betokened no inconsistency in Einstein's achievement. It merely re#ected
a change in the grading scheme. In 1895}1896, 1 was the highest grade and 6 the lowest; that was
reversed in 1896}1897.
5Translations from Stachel et al. (1987) are from Beck (1987).
6Rudolf Jakob Hamm, as part of a longer description of his visit to Einstein in Berlin in 1917 when
he was a 22 year old student, reported Einstein telling him &[2] He maintains that he is a bad
calculator [2]' (quoted in Seelig, 1956, p. 155).

evidence for them. Einstein was a good if not stellar student, regularly earning
respectable grades.4 For our purposes, we learn from our most reliable sources
that some of Einstein's earliest interests focused on mathematics and that he did
very well at it. He recalled in his Autobiographical Notes (Einstein, 1949, pp. 8}9)
the wonder he experienced at the age of 12 when he acquired a book on
Euclidean geometry and that he was able, independently, to "nd a proof of
Pythagoras' theorem. A short biography by his sister Maja (Stachel et al., 1987,
pp. xlviii}lxvi) a$rms the intensity of Einstein's engagement with mathematics
at this time (ibid., p. lxi): &Play and playmates were forgotten. [2] For days on
end he sat alone, immersed in the search for solution, not giving up before he
found it'.5 This fascination with geometry seems to antedate a similar, sustained
interest in science. Around this time, a family friend, Max Talmud, introduced
Einstein to a literature in science and philosophy. On Maja's report (ibid., p.
lxii), we learn that &[h]is scienti"c interests were broadened as a result; he was no
longer solely engrossed in mathematics [2]'.

We recover a portrait of a young Einstein both able in and fascinated by
mathematics. It is reinforced by his report that he taught himself calculus
between the ages of 12 and 16 (Einstein, 1949, pp. 12}13) and by a note he wrote
at the age of 17 (Stachel et al., 1987 Doc. 22) in which he recorded his plan to
attend the polytechnical school in Zurich to study &mathematics and physics'.
Those who have studied Einstein's publications and private calculations in
manuscript can have little doubt of Einstein's facility and freedom in whichever
branch of mathematics he chose to employ.

So how are we to explain the repeated rumours of some sort of mathematical
weakness on Einstein's part? They have a largely anecdotal basis, although
presumably they re#ect some self e!acing remarks by Einstein. McCormmach
(1976, pp. xxvii, xxix) reports two: the physicist F. A. Lindemann, having met
Einstein at the 1911 Solvay conference related that Einstein &says he knows very
little mathematics'. McCormmach gives Smith (1962, p. 43) as the ultimate
source. Again McCormmach reports: &On his deathbed Einstein is said to have
lamented to his son: `If only I had more mathematics!a', with Michelmore (1962,
p. 197) given as the source.6 Some of the most famous can be traced back to the
great mathematician David Hilbert himself*or at least are attributed to him
without proper citation. Philip Frank (1947, p. 206), Einstein's biographer and
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7These quips can become even more distanced from their source. Hilbert's biographer, Constance
Reid (1986, p. 142), repeats them in variant form without citation to any source.
8The mathematician, Ernst G. Straus, was Einstein's assistant in Princeton when Einstein wrote his
Autobiographical Notes. Straus (1982, p. 422) related how Einstein often told him of his recognition as
a student that he could not discern the important in mathematics unlike in physics, the story related
in the passage quoted below, so &that was the only reason I could be of any use to him'.
9At the same time as reporting Hilbert's quips, Frank (1947, p. 206) also attributes a corresponding
suspicion of GoK ttingen mathematics to Einstein: &The people in GoK ttingen sometimes strike me, not
as if they wanted to help one formulate something clearly, but instead as if they wanted only to show
us physicists how much brighter they are than we'.

successor at Prague, attributed two such double edged quips to Hilbert: &Every
boy in the streets of our mathematical GoK ttingen understands more about
four-dimensional geometry than Einstein [2]. Yet, despite that, Einstein did
the work and not the mathematicians'. &Do you know why Einstein said the
most original and profound things about space and time that have been said in
our generation? Because he learned nothing about all the philosophy and
mathematics of time and space'.7

It seems to me that there is a natural explanation for the origin of these
rumours. Compared to the average physicist and perhaps even mathematician,
Einstein's mathematical powers were excellent. But Einstein did not compare
himself to them. The natural comparison was with the mathematicians who
took an interest in his theory. These included Hermann Minkowski, David
Hilbert, Hermann Weyl and many more*a roster of mathematical brilliance
that outshines all. Presumably the quips attributed to Hilbert above re#ect
similar standards. Compatible with this, when Einstein sought assistance, as he
so often did, he turned to mathematicians who could aid him in the mathemat-
ical aspects of his work, recognising that his competence in mathematics did not
match his singular insight in physics.8 His collaboration with the mathematician
Marcel Grossmann on general relativity is best known of these. Einstein seems
to have made a conscious decision early in his career not to pursue mathemat-
ical researches and this was then accompanied by a minimalist approach to the
mathematical tools used in his early physical theories.9 He wrote in his Autobio-
graphical Notes (1949, pp. 14}15) of his time as a student at the Zurich Polytech-
nic:

The fact that I neglected mathematics to a certain extent had its cause not merely
in my stronger interest in the natural sciences than in mathematics but also in the
following peculiar circumstance. I saw that mathematics was split up into numer-
ous specialties, each of which could easily absorb the short lifetime granted to us.
Consequently, I saw myself in the position of Buridan's ass, which was unable to
decide upon any particular bundle of hay. Presumably this was because my
intuition was not strong enough in the "eld of mathematics to di!erentiate clearly
the fundamentally important, that which is really basic, from the rest of the more
or less dispensable erudition. Also, my interest in the study of nature was no doubt
stronger; and it was not clear to me as a young student that access to a more
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profound knowledge of the basic principles of physics depends on the most
intricate mathematical methods. That dawned on me only gradually after years of
independent scienti"c work.

Einstein's ensuing scienti"c work continued under the in#uence of this decision.
His annus mirabilis of 1905 gave us his famous papers on Brownian motion, the
light quantum and the special theory of relativity. These works employed little
mathematics beyond the calculus of many variables.

That Einstein's work in special relativity could bene"t from more imaginative
mathematics was shown in 1907, famously, when Hermann Minkowski refor-
mulated Einstein's theory as the geometry of a four-dimensional spacetime.
Under the in#uence of the GoK ttingen mathematical establishment, this sophisti-
cated geometrical approach to the theory #ourished, in spite of Minkowski's
early death in 1909. By 1911, the "rst text book on relativity (Laue, 1911)
developed the theory in this more sophisticated mathematical garb as a matter
of course. Einstein's publications continued to eschew this greater level of
mathematical sophistication. The following year, Einstein continued his at-
tempts to develop his insight of 1907 on how the relativity principle might be
generalised to acceleration. The papers he published that year, essential inter-
mediates in his passage to the general theory of relativity, use mathematics no
more sophisticated than his work of 1905 and 1907. Thus Einstein reportedly
joked that &I myself can hardly understand Laue's book' (Frank, 1947, p. 206).
That the remark could re#ect a chosen distance from Minkowski's four-dimen-
sional methods is suggested by the more somber remark to Valentin Bargmann
that Einstein had found these methods &super#uous learnedness' (Pais, 1982,
p. 152). This attitude was about to change, but not before Einstein had put on
record his disdain for the heuristic power of mathematical simplicity and beauty.

3. Einstein Condemns Abraham's Theory of Gravitation in 1912

In 1912, Einstein reveals his continued distrust of considerations of math-
ematical beauty and simplicity in an acrimonious dispute with Max Abraham.
Einstein accuses him of allowing such considerations to engender an unten-
able theory of gravitation.

Upon his return to Zurich in August 1912, Einstein sought the mathematical
assistance of his friend Marcel Grossmann. He learned from Grossmann that
the instrument needed to carry his new theory of gravitation to completion was
lying neglected in the mathematical literature. It was the absolute di!erential
calculus of Ricci and Levi-Civita (1901). Using this instrument Einstein's e!orts
at generalising the principle of relativity through a gravitation theory reached
a new level of mathematical sophistication and he was now close to a reversal of
his opinion of the heuristic power of mathematics. We may wonder whether this
reversal was not already underway by 1912. Einstein was seven years beyond the
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10Klein et al., 1993, Doc. 377. Translations from this volume here and below are based on Beck
(1995) with my adjustments.
11Again on 29 October 1912, he wrote to Arnold Sommerfeld (Klein et al., 1993, Doc. 421): &[2]
Abraham's new theory is, as far as I can see, logically correct, it is nevertheless a monster spawned by
embarrassment'.

great discoveries of 1905. He was no longer a mere patent clerk but was rising
rapidly through a succession of desirable academic positions. At the same time,
he had encountered two problems that taxed his powers: the problem of the
quantum and the problem of gravity and general relativity. Might these pres-
sures have already caused him to rethink his brash, youthful appraisal of
mathematics?

While we cannot preclude such a reappraisal in the deeper recesses of his
heart, his remarks to his correspondents give no evidence of it prior to his
exposure through Grossmann to the absolute di!erential calculus. Indeed they
suggest his attitude hardened. Remarks in his letters on Abraham's new theory
of gravitation suggest that Einstein thought reliance on such considerations
a worthy target of public criticism and that Abraham had been induced by them
to advance a defective theory. If Einstein was later to learn from his experience
with general relativity of the value of a mathematical heuristic, then Einstein
might well be learning from Abraham's theory of the power of the mathematical
heuristic to lead one astray.

When Abraham's theory "rst appeared in January 1912, Einstein was
quite taken by it exactly because of its mathematical appeal. He recalled in
a letter to Besso of 26 March 1912: &[2] at the "rst moment (for 14 days!) I too
was totally `blu!eda by the beauty and simplicity of his formulas'.10 By the end
of the month, however, he had turned against the theory and, in the months
following made sure to inform correspondent after correspondent that the
theory was:

&totally untenable' (to Paul Ehrenfest, 12 February 1912 (Klein et al., 1993, Doc. 357)),

&incorrect in every respect' (to H. A. Lorentz, 18 February 1912 (Klein et al., 1993, Doc. 360)),
&totally unacceptable' (to Wilhelm Wien, 24 February 1912 (Klein et al., 1993, Doc. 365)),
&totally untenable' (to Heinrich Zangger, received 29 February 1912 (Klein et al., 1993, Doc.
366)), and
&completely untenable' (to Michele Besso, 26 March 1912 (Klein et al., 1993, Doc. 377)).

As the months passed and the dispute with Abraham deepened, his negative
appraisals became more "gurative. By 16 August 1912, he wrote to Ludwig
Hopf (Klein et al., 1993, Doc. 416):11

Recently in two massive attacks*as you perhaps saw*Abraham slaughtered me,
along with the theory of relativity, and wrote down (Phys. Zeitschr.) the only
correct theory of gravitation (with the &nostri"cation' of my results)*a stately
beast, but it lacks three legs!
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12He wrote to Wilhelm Wien on 11 March 1912 (Klein et al., 1993, Doc. 371): &[2] the thing is not
as simple as Abraham thinks. In particular, the principle of the constancy of c and, with it, the
equivalence of the 4 dimensions are lost'.

The initial aesthetic appeal of Abraham's theory arose because it supplied the
simplest accommodation of Newton's theory of gravitation to Minkowski's
four-dimensional spacetime (see Appendix A: &Abraham's Theory of Gravi-
tation'). But Einstein soon saw past it. To avoid the physical triviality of dealing
only with constant potential "elds, Abraham had chosen to copy Einstein's idea
of allowing the speed of light c to vary with the gravitational potential. Einstein
soon realised that, in Abraham's hands, this modi"cation compromised the
essential structure of Minkowski spacetime.12 Einstein began to press Abraham
both in private correspondence and in publication, showing that with variable
c the Lorentz transformations would no longer hold, even in"nitesimally.
Abraham incorporated Einstein's criticism into the development of his theory
but also began to query the validity of the (special) theory of relativity and
whether Einstein's own gravitation theory, which employed a variable c, had
given up this theory as well. (For a compact synopsis of the dispute, see Klein
et al., 1995, pp. 124}127.) As the dispute with the notoriously acidic Abraham
grew unseemly, Einstein decided to break away from further discussion with
a short note in Annalen der Physik (Einstein, 1912b), addressed not to Abraham
but the journal's readers. He explained that he would not reply further to
Abraham and asked readers not to understand his silence as agreement between
Einstein and Abraham.

Einstein made clear to his correspondents that Abraham had let himself be led
astray by mathematical considerations just as Einstein himself had initially been
&blu!ed'. He wrote to Heinrich Zangger on 27 January 1912 (Klein et al., 1993,
Doc. 344):

Abraham has extended my gravitation item to a closed theory, but he made some
serious mistakes in reasoning so that the thing is probably wrong. This is what
happens when one operates formally, without thinking physically!

Again he wrote to Besso on 26 March 1912 (Klein et al., 1993, Doc. 377):

Abraham's theory has been created out of thin air, i.e. out of nothing but
considerations of mathematical beauty, and is completely untenable. How this
intelligent man could let himself be carried away with such super"ciality is beyond
me. To be sure, at the "rst moment (for 14 days!) I too was totally &blu!ed' by the
beauty and simplicity of his formulas.

Einstein even suggested that such formal thinking was a lazy and ine!ective way
of doing physics. He asked Wien (24 February 1912, Klein et al., 1993, Doc. 365):
&Who has ever been so lucky to hit upon correct equations without any e!ort!'
We may well wonder if Einstein carried these warnings against purely formal
thinking and the over-valuing of mathematical simplicity and beauty into
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13Presumably Einstein wrote of his reappraisal of mathematics with the understanding that it would
be read by welcoming eyes. Sommerfeld had long sought to propagate Minkowski's new mathemat-
ical methods. By this time he had authored an introductory survey paper on four-dimensional
methods in Annalen der Physik (Sommerfeld, 1910). He also wrote detailed explanatory notes on
Minkowski's (1908) famous popular lecture &Space and Time' and they are included in the standard
edition cited here.

the intense work on the general theory of relativity that he was about to
undertake.

4. Einstein's Struggles to Find the Gravitational Field Equations
of General Relativity

We learn from an historical research group in Berlin that Einstein consciously
balanced formal and physical thinking in these struggles. He allowed erro-
neous physical restrictions to dominate the formal and published formally
dexcient equations. His completion of the theory was delayed for over two
years.

With his return to Zurich in August 1912 and his immersion in the absolute
di!erential calculus of Ricci and Levi-Civita, Einstein's antipathy to mathemat-
ical indulgences almost immediately began to soften. He wrote to Arnold
Sommerfeld on 29 October 1912 (Klein et al., 1993, Doc. 421):13

I am now working exclusively on the gravitation problem and believe that I can
overcome all di$culties with the help of a mathematician friend of mine here
[Marcel Grossmann]. But one thing is certain: never before in my life have I toiled
any where near as much, and I have gained enormous respect for mathematics,
whose more subtle parts I considered until now, in my ignorance, as pure luxury.
Compared with this problem, the original theory of relativity is child's play.

When he wrote these words, Einstein had over two years of toil ahead before his
theory would be completed in November 1915.

By mid 1913, Einstein had arrived at a "rst draft of his new gravitation theory,
which he published in collaboration with Grossmann, the &Entwurf ' theory
(Einstein and Grossmann, 1913). That theory contained virtually all the ele-
ments of the "nal general theory of relativity. It associated gravitation with
a curvature of spacetime and used the Ricci Levi}Civita calculus to ensure that
all its equations were generally covariant, that is, remained unchanged in form
under arbitrary transformation of the spacetime coordinate system. The one
exception was its gravitational "eld equations. These were the most important
equations of the theory, specifying how matter curves spacetime and how that
curvature propagates. These equations were not generally covariant. That
contradicted almost everything associated with the theory, including Einstein's
initial demand that they be so, the framework of the Ricci Levi}Civita calculus,
the "nal version of the theory and the expectations of any modern reader who
happens to stumble onto Einstein and Grossmann's paper.
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14The group's members include Michel Janssen, John Norton, JuK rgen Renn, Tilman Sauer and John
Stachel. The research group was begun under the direction of Peter Damerow and JuK rgen Renn with
the Working Group Albert Einstein, funded by the Senate of Berlin and a$liated with the Center for
Development and Socialization headed by Wolfgang Edelstein at the Max Planck Institute for
Human Development and Education in Berlin. It was continued under the direction of JuK rgen Renn
as part of the project of studies of the integration and disintegration of knowledge in modern science
at the Max Planck Institute for the History of Science.
15A preliminary survey of this account of Einstein's heuristics has been presented by Renn and
Sauer (1999) and a more extensive and detailed volume is now in preparation. For a related proposal
on how Einstein arrived at general relativity by restricting a universe of candidate theories with
diverse heuristic principles, see Norton (1995). See this paper also for briefer remarks on how
Einstein's experience with general relativity altered his perception of the heuristic value of mathe-
matics.
16For an account of how Einstein translated the principle of equivalence into a covariance
requirement, see Norton (1985). Whether Einstein's translation of relativity principles into
covariance principle is legitimate remains a subject of often heated debate. For a review, see Norton
(1993).
17 Just which were the &arbitrary' transformation was left vague by Einstein. They certainly
included all C= transformations. General covariance requires more than a generalised principle of
relativity since it would include covariance under transformations that do not correspond to
changes of states of motion, such as the replacement of Cartesian spatial coordinates by polar
coordinates.

A research group, meeting in Berlin over the last few years,14 has come to
a most enlightening understanding of Einstein's e!orts to construct and com-
plete his general theory of relativity.15 Einstein sought to construct a theory that
satis"ed a list of requirements. The theory must revert to Newtonian theory in
the case of su$ciently weak gravitational "elds. It must satisfy a requirement of
conservation of energy and momentum. It must embody the principle of equiva-
lence, which demands that we generate a homogeneous gravitational "eld in
a Minkowski spacetime by transforming to a uniformly accelerating frame.
Finally it must embody a generalisation of the principle of relativity that
includes acceleration. Part of the latter was an expectation that it would account
for the inertia of bodies as arising from an interaction with all the other masses
of the universe. This requirement was later called &Mach's Principle' and separ-
ated from the generalised principle of relativity.

Einstein divided these requirements and their consequences loosely into two
groups. The "rst had a physical character and included the requirement of the
Newtonian limit and of conservation of energy and momentum. The second
group had a more formal, mathematical character. Both the principle of equiva-
lence and the generalised principle of relativity were expressed mathematically
by Einstein as a requirement of the covariance of the equations of his theory.16
To implement them, these equations should remain unchanged in form under
coordinate transformations that corresponded to transformations to accelerated
frames of reference. While narrower covariance might be su$cient, Einstein
found it most convenient to require general covariance; that is, the equations
must remain unchanged in form under arbitrary transformation of the coordi-
nates.17 This was his principle of general covariance.
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18So named because its content was written in Zurich. See Klein et al. (1995, Doc. 10). The Berlin
group will also publish a more extensive examination of this notebook in their joint work in
preparation.

Each group of requirements exerted powerful constraints on the admissible
theories. Merely asking how one group could be satis"ed in a simple and natural
way would greatly reduce the choices. This fact induced Einstein to employ
a two-pronged strategy. He might start with the physical requirements, for
example, and construct components of the theory naturally suggested by them.
He could then test them against the formal, mathematical requirements. That is,
he would ask if they have the requisite covariance. If all is well they will and the
two sets of requirements are satis"ed. Conversely, he might look in the mathe-
matics literature, with the assistance of Marcel Grossmann, for generally
covariant expressions that appear suitable for his theory. He could then check
whether they satisfy the physical requirements.

The Berlin group arrived at this account of Einstein's methods in part from
the examination of a notebook of calculations Einstein kept during the period of
his work on the &Entwurf ' theory, the &Zurich Notebook'.18 This remarkable
notebook documents Einstein's deliberations from his early acquaintance with
the new methods of Ricci and Levi-Civita, through his evaluation of candidate
gravitational "eld equations, to the "nal equations of the &Entwurf ' theory.

Early in these deliberations we "nd a simple example of the successful
application of the strategy (see Appendix B: &Einstein Uses Physical and Formal
Mathematical Approaches to Write the Energy Conservation Law'). Einstein
sought the expression for the conservation of energy and momentum in the case
of distributed matter, such as a #uid #owing under the in#uence of a gravi-
tational "eld. He began with the equation of motion of a single point mass in free
fall. From it he read o! expressions for gravitational force and for the energy
and momentum of the mass. Conceiving the #uid as a cloud of masses, he
converted these expressions to densities and assembled a simple di!erential law
that set the gravitational force density equal to the rate of accumulation of
energy-momentum density and arrived at his "nal law.

This result derived essentially from physical reasoning. While the result was
strongly suggested by Einstein's analysis, its derivation was not an unequivocal
translation of the equation of motion of individual masses into the correspond-
ing law for distributed matter. Einstein needed a way to check the result. That
was provided by his formal, mathematical requirements. In the best case, the law
he found would not just be generally covariant. It would be one that could be
assembled from simple elements within the Ricci Levi-Civita framework. To see
whether this was so, Einstein broke the equation into two parts, a di!erential
operator and the stress-energy tensor it acted on. The general covariance of the
equation was assured if that di!erential operator had quite general powers, so
that it would generate generally covariant expressions when applied not just to
the stress-energy tensor, but to any tensor like it. To test this, Einstein let the
operator act on the other, similar tensor conveniently at hand, the metric tensor,
and con"rmed the general covariance of the resulting equation. Einstein's
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19The saga of Einstein's heroic struggle has been of considerable interest to historians of general
relativity and an extensive literature has grown around it. For my contribution, see Norton (1984).
See also the commentary in Klein et al. (1995, Doc. 10).
20While these presumptions about the Newtonian limit were su$cient to preclude Einstein's
acceptance of his "nal theory of November 1915, Einstein clearly also allowed one or more other
misconceptions to derail his investigations. Just what they were remains under debate. My own
proposal is that it was the same error committed months later in the context of the &hole argument'.
Translated back to the context of the Zurich notebook, it led Einstein to place additional, impossible
demands on how the gravitational "eld equations must yield the Newtonian limit. See Norton
(manuscript a, manuscript b).

expectations were ful"lled. There were two paths to the result. The one he
followed used essentially physical reasoning. But he could also have arrived at
the same result by seeking simple expressions of the appropriate form within the
Ricci Levi-Civita calculus. Einstein's obvious satisfaction with the outcome is
recorded by a single word written at the bottom of the page: &Stimmt' [&correct'].

While this simple application of his strategy succeeded, Einstein was not so
fortunate when he turned his e!orts to the gravitational "eld equations. There
his attempts to apply this same strategy met with repeated failure, in spite of
proposals of increasing ingenuity and ever greater exertions. On page after page
of the notebook he approached the problem from either side, here writing
expressions suggested by the physical requirements of the Newtonian limit and
energy-momentum conservation, there writing expressions naturally suggested
by the generally covariant quantities supplied by the mathematics of Ricci and
Levi-Civita. Try as he did, he could not get the two groups of requirements to
agree. The expressions generated by physical requirements either lacked su$-
cient covariance or had unknown covariance. Conversely, the expressions gen-
erated by covariance considerations failed to yield the correct Newtonian limit
or energy-momentum conservation. Most famously, Einstein considered gravi-
tational "eld equations based on the Riemann}Christo!el curvature tensor, now
the natural and rapid entry to the modern gravitational "eld equations. Gross-
mann reported their failure to succeed with this tensor in his part of Einstein and
Grossmann (1913, Part II, p. 36).19

As Einstein's deliberations drew to a close, he was forced to a most unwel-
come decision. He could not be assured of satisfaction of both requirements. He
could o!er equations that demonstrably satis"ed only one group. Which would
it be? Einstein had to choose and his decision would haunt him for over two
years. He chose gravitational "eld equations that were assured to satisfy en-
ergy-momentum conservation and return the correct Newtonian limit. But their
covariance was unknown. These were the equations he published in Einstein
and Grossmann (1913), the &Entwurf ' paper.

Einstein later discovered that his dilemma was of his own making. There are
equations that satisfy all his conditions. But he had erroneously judged them as
inadmissible by formulating some of his requirements too restrictively. Most
importantly, he presumed that the geometry of space must become #at in the
weak "elds that return Newtonian theory and would not allow small deviations
from #atness in quantities of the order of smallness.20
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21Were these categories already in Einstein's thought before he commenced working in the Ricci
Levi}Civita calculus? That they were is suggested by his remark of January 1912 to Zangger (quoted
above): &[2] This is what happens when one operates formally, without thinking physically!'

These insights would not come until much later in 1915. In the meantime
Einstein laboured on, trying to convince himself of the admissibility of his
defective theory and that the natural mathematical expressions were merely
deceptive temptations. In early March 1914, after he sensed some success, he
reported to his friend Besso how these e!orts had worn him (Klein et al., 1993,
Doc. 514):

At the moment I do not especially feel like working, for I had to struggle horribly
to discover what I described above. The general theory of invariants was only an
impediment. The direct route proved to be the only feasible one. It is just di$cult
to understand why I had to grope around for so long before I found what was so
near at hand.

These remarks are also revealing for they a$rm that Einstein consciously
conceived his e!orts in terms of the two routes to the "nal result.21 The &direct
route', his usual physical argumentation, turned out to work. The formal,
mathematical approach would look to the theory of invariants to suggest simple
covariant expressions that would be candidates for the theory's laws. These
expressions proved to be inadmissible physically. While he had been tempted, he
now reverted to his earlier skepticism about more advanced mathematics. For
physicists it is a distracting luxury after all.

5. Reversal at the Eleventh Hour

In the fall of 1915, aware of the yaws in his &Entwurf + theory, Einstein decided
he could only xnd the correct theory through the expressions naturally
suggested by the mathematics. He proceeded rapidly to the completion of the
theory and the greatest triumph of his life, barely outpacing Hilbert and just
securing his priority. Einstein now saw the magic in mathematics.

Einstein remained reconciled to his #awed theory through his move to Berlin
later in April 1914, through the writing of an expansive review article (Einstein,
1914; submitted 29 October) and on into the summer of the following year. In
retrospect, Einstein's e!orts to sustain this reconciliation were contrived and
ill-fated. If he could not demonstrate the general covariance of his theory, he
would do the next best thing. He would try to show with his &hole argument' that
general covariance was not to be desired after all; it would be physically
uninteresting since, he urged, it would violate the determinism of the theory
(Einstein, 1914, Section 12). And then he thought he could derive his &Entwurf '
gravitational "eld equations largely from the demand that they have the max-
imum covariance permitted by the hole argument (Einstein, 1914, Section 15).
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22For an account of Einstein's joust with rotation, see Janssen (1999).
23Translation based on Janssen (1999, p. 135).
24For further discussion of Einstein's return to general covariance, see Norton (1984, Section 7;
manuscript a, Section 11).

The fragile truce could not last. Einstein had long known that his new theory
of gravitation did not account for the anomalous motion of Mercury's peri-
helion (see Klein et al., 1995, Doc. 14). That could not yet be counted as so
serious a defect since no other theory could then do better. His con"dence would
soon crumble. On 30 September 1915, a shaken Einstein sent disturbing news to
the astronomer Erwin Freundlich (Schulmann et al., 1998, Part A, Doc. 123).
Contrary to his earlier belief, he now found his &Entwurf' theory was not
covariant under a simple transformation that set the spatial coordinate axes into
uniform rotation. This discovery was shocking since it meant that his theory
could not extend the relativity of motion to such important cases as Newton's
rotating bucket of water.22 In obvious despair, he con"ded to Freundlich and
vainly sought help in solving the problem that had exercised and defeated
Einstein at the height of his powers:23

This is a blatant contradiction. I do not doubt, therefore, that the theory of the
perihelion motion also su!ers from the same mistake. Either the equations are
already numerically incorrect (number coe$cients) or I apply the equations in
a fundamentally wrong way. I do not believe I am able to "nd the mistake myself,
for in this matter my mind is too set in a deep rut. More likely, I have to rely on
some fellow human being with unspoiled brain matter "nding the mistake. Do not
forget to study the subject, if you have time [Einstein's emphasis].

This discovery broke Einstein's con"dence in his &Entwurf' theory and he soon
recognised further de"ciencies in it.24 By November, Einstein had pressed his
spoiled brain matter into the most productive service. He sent a series of
communications to the Prussian Academy (Einstein, 1915a,b,c,d) in which he
wound his way out of the labyrinthine confusions of the &Entwurf ' theory,
demonstrated the successful explanation of the anomalous perihelion motion of
Mercury and, in stages, o!ered the generally covariant gravitational "eld equa-
tions that now bear his name.

The feat brought Einstein the greatest success of his life, the satisfactory
completion of the general theory of relativity. He wrote to Sommerfeld at the
end of November (Schulmann, 1998, Part A, Doc. 153, 28 November 1915;
Einstein's emphasis):

You must not be mad with me that I only now reply to your friendly and
interesting letter. But in the last month I had one of the most exciting and
strenuous times of my life, also though one of the most successful. I could not think
about writing.

Its moment of greatest triumph came when he found that his theory now
explained the anomalous motion of Mercury's perihelion exactly without the
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25 In judging his success with Mercury the strongest experience emotionally in Einstein's scienti"c
life, Pais (1982, p. 253) reports even more powerful remarks by Einstein over the impact on him of
this result:

The discovery was, I believe, by far the strongest emotional experience in Einstein's
scienti"c life, perhaps in all his life. Nature had spoken to him. He had to be right. &For
a few days, I was beside myself with joyous excitement.' [2] Later, he told Fokker
that his discovery had given him palpitations of the heart [2]. What he told de Haas
is even more profoundly signi"cant: when he saw that his calculations agreed with the
unexplained astronomical observations, he had the feeling something actually snap-
ped in him...

(The last ellipses are Pais'.) For further details of Einstein's calculation see Earman and Janssen
(1993).
26 In this "rst communication, Einstein had not yet arrived at his "nal equations. (For further
discussion of how the proposals developed through the four communications of November 1915, see
Norton, 1984, Section 8.) In the "rst communication, he advanced gravitational "eld equations that
were not generally covariant, but only covariant under the broad class of transformations of unit
determinant. Hence he speaks of &more general covariance' and not simply &general covariance'. The
"eld equations he is about to advance had been considered in the Zurich Notebook but rejected for
reasons that have been obscure until recently. Norton (manuscript a, b) reports a conjecture that
I believe explains naturally why the proposal was abandoned in the Zurich Notebook.

need for any arbitrary assumptions. That result gave him special pleasure as he
recounted the following January in a letter to Ehrenfest (Schulmann, 1998, Part
A, Doc. 182):25

Imagine my joy at the recognition of the feasibility of general covariance and at the
result that the equations correctly yield the perihelion motion of Mercury. I was
beside myself for several days in joyous excitement.

In a similar exuberant humour, he wrote to Besso (Schulmann, 1998, Part A,
Doc. 162, 10 December 1915; Einstein's emphasis):

My wildest dreams have been ful"lled. General covariance. Perihelion motion of
Mercury wonderfully exact.

We can gauge how excited he must have been by the fact that this successful
explanation remains today one of the favourite illustrations in philosophy of
science of striking success in con"rmation.

How had Einstein hauled his spoiled brain matter out of its rut? To what did
he owe his triumph and these moments of greatest joy? He gave his answer in
print in the opening pages of Einstein (1915a, p. 778), the "rst paper of that
memorable November series:26

[2] I completely lost trust in the "eld equations I had chosen and looked for
a way to restrict the possibilities in a natural manner. Thus I went back to the
requirement of a more general covariance of the "eld equations, which I had left
only with a heavy heart when I worked together with my friend Grossmann. In fact
we had then already come quite close to the solution of the problem given in the
following.
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27See Howard and Norton (1993) for an account of this visit and a proposal concerning an
unexpected repercussion.
28The quite stunning revelation from the unrevised proof pages is that Hilbert there accepts
Einstein's hole argument against general covariance.

He gave a similar account in correspondence to Sommerfeld at the end of the
month (Schulmann, 1998, Part A, Doc. 153):

Once all trust in the results and methods of the earlier theory had gone, I saw
clearly that a satisfactory solution could only be found through a connection to the
general theory of covariants, i.e. to Riemann's covariant.

In e!ect his new tactic was to reverse his decision of 1913. When the physical
requirements appeared to contradict the formal mathematical requirements, he
had then chosen in favour of the former. He now chose the latter and, writing
down the mathematically natural equations, found himself rapidly propelled
towards a theory that satis"ed all the requirements and ful"lled his &wildest
dreams'.

There was a heightened sense of urgency and a sinister cast in this last
all-consuming month. The previous summer, Einstein had visited GoK ttingen to
speak on his earlier &Entwurf ' theory. He had found to his delight that the
mathematicians there, notably the great Felix Klein and David Hilbert, under-
stood and accepted his theory.27 Hilbert had now also turned to work on the
theory and, in the course of that "nal November, was also on the trail of the
gravitational "eld equations. Einstein might have apologised to Sommerfeld for
being too distracted to write to him in that month. But he certainly found time
to correspond with Hilbert and each tried nervously to discern the extent of
agreement with the equations the other was advancing. Einstein presented his
"nal equations on 26 November 1915, to the Prussian Academy. Hilbert's (1915)
communication of a paper with the same equations to the GoK ttingen Academy is
dated 20 November 1915.

Hilbert was not quite as far ahead as a simple comparison of these two dates
would suggest. This was shown by the recent discovery in the GoK ttingen archive
of the proof pages of Hilbert's (1915) paper (Corry et al., 1997). These proof
pages were revised substantially to yield the "nal published paper. In the
unrevised version, the equations in a form comparable to those communicated
by Einstein on 26 November are not in evidence. Nonetheless, Hilbert was
extremely close.28 The unrevised proof pages do contain exactly the recipe for
Einstein's equations: they are to be recovered by varying an action density that
is Riemann's curvature scalar. Carrying through the recipe had an assured result
and required no special mathematical brilliance.

Einstein would be fully justi"ed in November in fearing that he might lose the
consummation of his theory to Hilbert. While history now grants Einstein the
prize, the immediate e!ect of his experience was a temporary bitterness concern-
ing Hilbert. He wrote to Zangger on the day of communication of the "nal result
(Schulmann et al., 1998, Part A, Doc. 152, 26 November 1915; Einstein's
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29Einstein and Hilbert's interactions over general relativity have long been a subject of historical
investigation. See Earman and Glymour (1978), Mehra (1974), Norton (1984, Section 8), Pais (1982,
pp. 257}261). They have been enhanced greatly by recent work. See Corry (1999), Renn and Stachel
(1999) and Sauer (1999).
30 I am grateful to Michel Janssen for pointing out the irony of these remarks. Less than two years
before, Einstein had told this same Besso just the opposite: the physical argumentation gave the
obvious result; the mathematics was a distraction! (See above.)

emphasis):

The theory is of incomparable beauty. However only one colleague has really
understood it and that one seeks to &nostrify' it in a clever manner (Abraham's
expression). I have in my personal experience hardly ever gotten to know better the
contemptibility of humanity as on the occasion of this theory and everything
associated with it. But it does not bother me.

Einstein soon made his peace with Hilbert.29
Einstein's reversal was his Moses that parted the waters and led him from

bondage into the promised land of his general theory of relativity*and not
a moment too soon. Had he delayed, the promised land might well have been
Hilbert's. Einstein (1933b, p. 289) recalled how he &ruefully returned to the
Riemann curvature'. He now saw just how directly the mathematical route had
delivered the correct equations in 1913 and, by contrast, how treacherous was
his passage if he used physical requirements as his principal compass. While still
sparring with Hilbert in the middle of that frantic November, he described to
Hilbert (Schulmann et al., 1998, Part A, Doc. 148, 18 November 1915) wistfully
how the mathematical pathway had actually already given him the right equa-
tions three years before:

The di$culty did not lie in "nding generally covariant equations for the g
l
m ; this is

easily done with the help of Riemann's tensor. Rather it was di$cult to recognise
that these equations formed a generalisation of Newton's law and indeed a simple
and natural generalisation. I succeeded in this only in the last few weeks [2],
while I had already taken into consideration the only possible generally covariant
equations, which now prove to be the right ones, three years ago with my friend
Grossmann. Only with heavy hearts did we detach ourselves from them, since the
physical discussion had apparently shown their incompatibility with Newton's
law.

Within weeks, Einstein was quite happy to pronounce bluntly that the equations
suggested by the mathematics were the obvious ones, but that physical consider-
ations had distracted him.30 He wrote to Besso on 10 December 1915 (Schul-
mann et al., 1998, Part A, Doc. 162):

This time the most obvious was correct; however Grossmann and I believed that
the conservation laws would not be satis"ed and that Newton's law would not
come out in the "rst approximation.

The reversal was complete. Just a few years before, Einstein had growled in
derision over thoughts of mathematical beauty and simplicity. He now found
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31That his experience with the completion of the theory was life changing is suggested by power of
his concluding remarks in a lecture outlining how he discovered the theory (1933b, pp. 289}290): &In
the light of the knowledge attained, the happy achievement seems almost a matter of course, and any
intelligent student can grasp it without too much trouble. But the years of anxious searching in the
dark, with their intense longing, their alternations of con"dence and exhaustion and the "nal
emergence into the light*only those who have experienced it can understand that'.
32For further discussion, see Schulmann et al. (1998, Part A, pp. lii}liii). Einstein communicated
Weyl's paper to the Prussian Academy with his own note of reservation, Einstein (1918b).

that mathematics set his teenage heart a#utter. He wrote in the introduction to
the "rst of his communications of 4 November 1915 (1915a, p. 779):

Hardly anyone who has truly understood it can resist the charm of this theory; it
signi"es a real triumph of the method of the general di!erential calculus, founded
by Gauss, Riemann, Christo!el, Ricci and Levi-Civita.

Einstein had succumbed to these charms before he knew that his theory was
about to deliver the triumph of explaining Mercury's anomalous motion*that
he found later in the month.31

Einstein's reversal was heartfelt and embraced with all the relief of the
survivor of an unforeseen peril. But how close had it brought him to the
viewpoint of the grand manifesto of the Herbert Spenser lecture? In his Novem-
ber 1915 remarks, he praised the advent of general relativity as a triumph of the
&method ' of the general di!erential calculus. That suggests that he had already
seen mathematics as hosting what he called &the creative principle' and the &right
way' in his 1933 Herbert Spenser lecture. If that was his view, however, why did
it take nearly two decades before Einstein gave the view canonical public
formulation? Was it just that he saw no need to do it earlier? Or was it that the
ideas were so radical that he was reluctant to proclaim them universally in all
their shocking details? Or had he himself not realised how radical the viewpoint
was that he was drawn towards? His experiences of November 1915 might have
been life changing, but might he have needed over a decade to assimilate their
full signi"cance consciously and "nd words to give it concrete form? Or might he
have been reluctant and needed reinforcement from further experiences before
he was driven to the viewpoint of 1933?

How might we answer these questions? I am grateful to Michel Janssen for the
astute suggestion that we look at Einstein's 1918 response to Hermann Weyl's
(1918) proposal for a geometrical uni"cation of gravitation and electromagnetism,
for there we "nd Einstein again balancing mathematical and physical consider-
ations.32 Weyl had found a mathematically ingenious way of extending
the Riemannian geometry of general relativity so that it would accommodate
electromagnetism as well as gravitation. He introduced a second group of trans-
formations of the "eld quantities that soon came to be known as &gauge trans-
formations'. The proposal faltered and languished, no doubt in large measure
because of Einstein's objections and opposition, but the mathematical device of
the gauge transformation became wildly successful in a di!erent context and now
drives the #ourishing tradition of gauge theories in quantum "eld theory.
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Einstein's response to the proposal was rapid and immovable. He marvelled
at its mathematical brilliance but insisted that a simple physical objection was
fatal to it. Weyl's theory allowed the magnitude of measuring rods and clock
ticks to vary with the paths the rods and clocks followed in spacetime. Atomic
emissions spectra are the ticking of a kind of atomic clock. So, Einstein
concluded, sharp atomic spectral lines would not be possible in Weyl's theory,
since the frequency of an atomic clock would depend on its history, contrary to
our experience. As soon as Einstein received Weyl's paper he formulated his
double-edged response (Einstein to Weyl, 6 April 1918; Schulmann et al., 1998,
Doc. 498. Translations here and below from Hentschel (1998). Einstein's empha-
sis):

Your paper has arrived. It is a xrst class stroke of genius. However I have not been
able to settle my measuring-rod objection yet. More details on this another time.

Einstein persisted in his mixture of praise of the mathematics and rejection of the
physics two days later (Einstein to Weyl, 8 April 1918; Schulmann et al., 1998,
Part B, Doc. 499):

Your chain of reasoning is so wonderfully self-contained. The deduction of the
dimension number 4 impressed me very much as well. The decomposition of your
invariant of &weight' zero is also very striking. Except for the agreement with
reality, it is in any case a grand intellectual achievement.

How are we to understand Einstein's response to Weyl's theory? Suggestive as
his remarks are, I do not see how they allow us to decide how close Einstein had
come in 1918 to the views expressed in 1933. He praised Weyl's elegant
mathematics but unhesitatingly rejected the physical theory that resulted. Might
this reveal that Einstein had not yet fully succumbed to the charms of mathe-
matics? Perhaps the radical viewpoint of 1933 had not yet fully taken hold but
was still advancing quietly on Einstein's consciousness. Or this combined praise
might well just be reminding us of an element present in the 1933 viewpoint all
along. While the Einstein of 1933 proclaimed that &the creative principle resides
in mathematics', he was equally clear that this creative principle was not free of
restriction: &Experience remains, of course, the sole criterion of the physical
utility of a mathematical construction'. While the creative principle #ourished
sumptuously in Weyl's work of 1918, its product failed to meet experience, the
&sole criterion of [its] physical utility'. The Einstein of 1918 would be well
justi"ed in dismissing Weyl's invention as a viable physical proposal, no matter
how close he had come to the viewpoint of 1933.

6. Conclusion

A passage in Einstein's Autobiographical Notes recalls how his experience
with gravitation taught him the heuristic power of mathematics.
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By the time of his 1933 manifesto, Einstein had completely discarded his
youthful skepticism over the heuristic power of mathematics and forcefully
advocated the exact opposite view. No doubt many factors contributed to his
change of heart. Of these factors, his experience with general relativity must
count as the most important. Indeed this seems to be just the message he sent
when he re#ected in his Autobiographical Notes (Einstein, 1949, p. 85) on the
di$culty of "nding the fearfully complicated equations that govern his uni"ed
"eld theory. He wrote:

I have learned something else from the theory of gravitation: no collection of
empirical facts however comprehensive can ever lead to the setting up of such
complicated equations [as non-linear "eld equations of the uni"ed "eld]. A theory
can be tested by experience, but there is no way from experience to the construc-
tion of a theory. Equations of such complexity as are the equations of the
gravitational "eld can be found only through the discovery of a logically simple
mathematical condition that determines the equations completely or almost com-
pletely. Once one has obtained those su$ciently strong formal conditions, one
requires only little knowledge of facts for the construction of the theory; in the case
of the equations of gravitation it is the four-dimensionality and the symmetric
tensor as expression for the structure of space that, together with the invariance
with respect to the continuous transformation group, determine the equations all
but completely.

When he wrote here of learning from the theory of gravitation*general relativ-
ity*we cannot doubt what Einstein had in mind. It was his three errant years of
struggle to complete the theory; his last minute reversal over the heuristic power
of mathematics; how it had allowed him to bring the theory to a rapid,
triumphant close; and how he won his race with Hilbert. In retrospect, Einstein
could see that it was so straightforward. He merely needed to let simple
mathematical conditions dictate his equations; he then would have to bother
little with physical facts. In 1913, when working on the general theory of
relativity, he had not approached the problem this way. He had now learned his
lesson. He would not make the same mistake with his uni"ed "eld theory.

Appendix A. Abraham's Theory of Gravitation

It is the simplest four-dimensional extension of Newton's theory. It runs into
dizculties that Abraham chose to resolve by allowing c, the speed of light, to
vary with the gravitational potential. Einstein was very critical of this escape.

Abraham's (1912) theory was initially intended to be a simple and natural
accommodation of Newton's theory of gravitation to relativity theory, that is, it
would &satisfy the principle of relativity' (1912, p. 1). Its leading idea was to take
the equations of Newton's theory written in three-dimensional space and gener-
alise them directly to a four-dimensional spacetime. In Newton's theory, the
force (F

x
, F

y
, F

z
) on a unit mass was merely the gradient of gravitational
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33To see this, note that the line element is !dx2!dy2!dz2#c2dt2"c2dq2 and therefore we
have

A
dx

dqB
2
#A

dy

dqB
2
#A

dz

dqB
2
#A

du

dqB
2
"!c2.

Di!erentiating with respect to q we recover

dx

dq
d2x

dq2
#

dy

dq
d2y

dq2
#

dz

dq
d2z

dq2
#

du

dq
d2u

dq2
"!c

dc

dq
.

Substituting
d2x

dt2
"F

x
"!

LU

Lq
,

etc. we have
dx

dq
)
LU

Lx
#

dy

dq
)
LU

Ly
#

dz

dq
)
LU

Lz
#

du

dq
)
LU

Lu
"

dU

dq
"c

dc

dq
.

potential U and the potential was in turn "xed by the mass density l according
to Poisson's equation
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where x, y and z are Cartesian spatial coordinates and c is the gravitation
constant. The relativised version was generated merely by adding an extra
coordinate u"ict to extend the space into a spacetime then extending the above
formulae with terms exactly mimicking those of Newton's theory,

F
x
"!

LU

Lx
, F

y
"!

LU

Ly
, F

z
"!

LU

Lz
, F

z
"!

LU

Lu
,

L2U
Lx2

#

L2U
Ly2

#

L2U
Lz2

#

L2U

Lu2
"4ncl, (2)

where the unit mass is now acted upon by the four-force (F
x
, F

y
, F

z
, F

u
).

Simple and natural as this extension was, it ran into a complication once
Abraham allowed that the four-force is equal to the four-acceleration
((d2x/dq), (d2y/dq), (d2z/dq), (d2u/dq)) of the unit mass (q is the proper time along
the trajectory). This equality entailed that the gravitational potential U is related
to the speed of light c by

dU

dq
"c

dc

dq
(3)

along the trajectory of a unit mass in free fall.33 If the speed of light c were
a constant, this result would trivialise Abraham's theory. We would have
0"c(dc/dq)"(dU/dq) so that the potential U must be constant along any free
fall trajectory of a unit mass.

Abraham's escape was direct if not somewhat opportunistic. He recalled that
Einstein had proposed that the speed of light c would no longer be constant in
the presence of gravitation but would vary with the potential, basing his new

156 Studies in History and Philosophy of Modern Physics



34 It was not the only choice. Another alternative was to allow that the mass of the falling body
would vary with the gravitational potential. NordstroK m explored this possibility in his later 1912
theory with the active engagement of Einstein. See Norton (1992, Section 6).

theory of gravitation upon the proposal. Abraham adopted the same notion,
concluding that the potential U would vary directly with c2.34

Einstein (1912a, Section 4) protested that this expedient within Abraham's
theory precluded the Lorentz transformation holding even in"nitesimally. If,
following the usual notation, we transform spacetime coordinates (x, y, z, t) to
(x@, y@, z@, t@), then the expression for the coordinate di!erential dx@ is

dx@"(dx!vdt)/S1!
v2

c2
(4)

if the Lorentz transformation is to hold in"nitesimally. If this di!erential is exact
so that the in"nitesimal dx@ can be integrated into a coordinate x@, then the
expression for dx@ must satisfy the exactness condition

L
Lt G

1

J1!v2/c2H"
L
Lx G

!v

J1!v2/c2H . (5)

Otherwise the di!erential transform will not correspond to any coordinate
transformation at all. But, Einstein continued, this exactness condition must fail
in the case of a static "eld in which c is a function of the spatial coordinates x, y
and z only and if v is constant. For then the expression in curly brackets on the left
is independent of t, so that the left-hand side vanishes. But the expression in curly
brackets on the right will be a function of x, so the right-hand side does not vanish.

Appendix B. Einstein Uses Physical and Formal Mathematical Approaches to
Write the Energy Conservation Law

The Zurich Notebook contains a successful implementation of Einstein's dual
strategy. He generates the conservation law by physical argumentation and
then checks that it is a law that could have been found by seeking simple
covariant expressions.

Early in the deliberations recorded in the Zurich notebook is a page headed
&Gravitation'. (Klein et al., 1995, Doc. 10, p. 10; also control number p. 3 006 5R
in the duplicate Einstein Archive. This page is represented in facsimile on the
dust jacket of Klein et al., 1995.) It commences with the mechanics of a point
mass in a gravitational "eld and concludes with the writing of the law of
conservation of energy and momentum, expressed as the vanishing covariant
divergence of the stress-energy tensor. The discussion is brief, but discern-
ing its purpose is relatively easy, especially since a similar calculation is given
in published form in Einstein and Grossmann (1913, p. 7, pp. 9}11).
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35 I will not follow Einstein's idiosyncratic notation of 1913. Here summation over repeated indices
is implied. Covariant tensorial components are indicated by lowered indices and contravariant
components by raised indices. Latin indices range over 1, 2, 3 and Greek indices over 1, 2, 3, 4. The
derivation of the quantities in (9) is straightforward as long as one recalls that x

i
and x5

i
are treated as

six independent variables in the di!erentiations and that the gkl are functions of x
i
but not x5

i
. For

example, we have

LH

Lx5
i

"

L
Lx5

i
A!m

ds

dtB"
L

Lx5
i

(!mJgklx5 kx5 l )"!m
1

2ds/dt
2g

ilx5 l"!mg
il

dxl
ds

which gives the expression for J
i
. For E we have

!E"H!

LH

Lx5
i

x5
i
"!m

ds

dt
#mg

ilx5 i
dxl
ds

"!m
ds

dt A1!g
il
dx

i
ds

dxl
ds B

"!m
ds

dt
g
4l

dx
4

ds

dxl
dt

"!mg
4l

dxl
ds

.

To begin, I shall follow this later development since there Einstein cuts fewer
corners.

In the "rst stage of the calculation (as given in Einstein and Grossmann, 1913, p.
7), Einstein develops the mechanics of a point of mass m. He employs a coordinate
system (x

1
, x

2
, x

3
, x

4
"t) and an invariant line element along the mass' traject-

ory ds2"g
11

dx2
1
#2#g

44
dx2

4
, for gkl the metric. The mass in free fall

follows a geodesic governed by d:ds"0 which Einstein rewrites as d:ds"
d:(ds/dt) dt"0"d:Hdt, where he has set what we would now call the Lagrangian
H"!m(ds/dt). (Beware! In modern texts, the symbol ¸ is used for this quantity.)
From the Euler}Lagrange equation associated with this extremal principle,

d

dt A
LH

Lx5
i
B!

LH

Lx
i

"0, (6)

for i"1, 2, 3, Einstein reads o! expressions for the force on the mass,
K

i
"(LH/Lx

i
) and its momentum J

i
"(LH/Lx5

i
). (The dot indicates di!erenti-

ation with respect to t.) Following the usual results of Hamiltonian mechanics,
the energy is given by

!E"! +
i/1,3

x5
i

LH

Lx5
i

#H. (7)

Recalling that

H"!m
ds

dt
"!mJg

11
x5 2
1
#2#g

44
x5 2
4
, (8)

Einstein can re-express these quantities as35

J
i
"!mg

il
dxl
ds

, !E"!mg
4l

dxl
ds

, K
i
"!1

2
m

Lgkl
Lx

i

dxk
ds

dxl
dt

. (9)
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36The manipulation is straightforward. For example,

j
i
"A

1

<B J
i
"A

J!g

<
0

dt

dsB A!mg
il

dxl
ds B"!

m

<
0

J!gg
il

dxl
ds

dx
4

ds
.

The conservation of energy and momentum is a consequence of the Euler}
Lagrange equation (6). In the next phase of the calculation (Einstein and
Grossmann, 1913, Part I, pp. 9}11), Einstein extends these conservation laws to
a matter distribution. For simplicity he considers the case of a frictionless,
pressureless dust cloud with rest mass density o

0
. He "rst converts the expres-

sions (9) for momentum, energy and force into densities, j
i
, g and k

i
. To do this

he imagines the mass m of the body to be distributed over a small volume

< which he shows to satisfy the relation J!g<dt"<
0

ds, where <
0

is the
associated rest volume and g the determinant of the metric gkl . Dividing each
expression in (9) by < he recovers36

j
i
"

J
i
<
"!o

0
J!gg

il
dxl
ds

dx
4

ds
"!J!gg

il¹l4

!g"
!E

<
"!o

0
J!gg

4l
dxl
ds

dx
4

ds
"!J!gg

4l¹l4

k
i
"

K
i
<

"!1
2
o
0
J!g

Lgkl
Lx

i

dxk
ds

dxl
dt

"!1
2
J!g

Lgkl
Lx

i

¹kl (9@)

where the expressions have been simpli"ed by introducing the stress-energy
tensor for dust:

¹kl"o
0

dxk
ds

dxl
ds

. (10)

Einstein now proceeds to the "nal result. He writes down the di!erential law
governing the quantities of (9@) that expresses energy-momentum conservation

L
Lxl

(J!ggpk¹kl)!1
2

J!g
Lgkl
Lxp

¹kl"0 . (11)

Exactly how he proceeded from the expressions of (9@) to (11) is not so clear and
this is a matter of central interest to us. Whatever inferences Einstein used to
proceed from (9@) to (11), he seemed to have found them both brief and
automatic. In the Zurich Notebook there are no intermediate expressions
written down. In Einstein and Grossmann (1913, Part I, p. 10), the jump is made
merely by announcing: &One presumes [vermutet] from the above that the
momentum-energy law will have the form [2]' (my emphasis). He does not
claim the law has been rigorously deduced.

If (11) is intended to be an automatic translation of the equation of motion (6)
into di!erential form, then considerably more needs to be said to legitimate the
inference. For an account of just how much more is needed, see my best
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reconstruction in Appendix C. It shows that (6) strongly suggests (11) but that
(11) cannot be derived simply by mechanical translation of (6). The brevity of
Einstein's remarks suggests that he did not have as elaborate a story in mind. He
may well only have asked how the quantities of (9@) could be combined into
a conservation law analogous in form to that used in special relativity. There,
the conservation laws were expressed in the four-dimensional formalism in
equations like

L¹kl
Lxl

"Kk (11@)

(See Laue's (1911) relativity text, pp. 82, 136.) The divergence of the stress-energy
tensor is set equal to the four-force Kk. Equation (11) has this form; its "rst term
is a divergence and its second is a force term. But if one compares (11) and (11@)
more carefully one sees that the formation of (11@) involves some extrapolation.
Only the "rst three (i"1, 2, 3) components K

i
of the four-force density have

been identi"ed in the list of (9@). Einstein extrapolates in assuming that the p"4
component of the four-force density is analogous in form. Similarly the list does
not interpret the stress terms in ¹kl arising in (11), such as ¹11 which, in special
relativity, represent normal pressures. Finally, in forming the "rst divergence

term of (11), can we be assured that no other terms in J!g enter? Can we

preclude factors of 1/J!g, for example?
Einstein had good reason to write down the expression (11). It is the natural

expression suggested by the physical considerations. But he also had good
reason to hesitate, for the expression might just di!er from the correct one in
some trivial but nonetheless fatal way. Einstein needed a way to check the result.
He could have resorted to the sort of elaborate physical demonstration such as
is laid in Appendix C. Instead he chose a much more elegant test. He turned to
his mathematical requirements. If all was well, the expression (11) should be
generally covariant. In Einstein and Grossmann (1913, Part I, p. 10) Einstein
just remarked nonchalantly: &It turns out in fact that these equations [(11)] are
generally covariant under arbitrary substitutions'. A footnote to Grossmann's
&Mathematical Part II' of the paper led readers to the demonstration. The
vanishing of (11) turns out, Grossmann showed (Einstein and Grossmann, 1913,
Part II, Section 4.1), to be equivalent to the vanishing of the covariant diver-
gence of the stress-energy tensor ¹kl.

In the Zurich Notebook, Einstein did not apparently have the luxury of
Grossmann's result. Instead he turned to a more indirect test. If (11) was
generally covariant, it might just turn out that this general covariance had arisen
in a very simple way. The expression in (11) could be conceived as the action on
the stress-energy tensor ¹kl by the operator

L
Lxl

(J!ggpk zkl)!1
2
J!g

Lgkl
Lxp

zkl (12)

where zkl represents the empty slot into which any second rank, symmetric
tensor could be inserted. (It must be symmetric to match the symmetry of ¹kl.)

160 Studies in History and Philosophy of Modern Physics



37 In the quote I have silently modernised Einstein's notation as indicated above.
38Einstein "nds the "rst term is

L
Lxl

(J!ggpkgkl)"
L

Lxl
(J!gdlp )"

L
Lxl

(J!g).

Since

1

g

Lg

Lxp
"

Lgkl
Lxp

gkl,

this "rst term is equal to the negation of the second term:

1
2

J!g
Lgkl
Lxp

gkl"1
2

J!g
1

g

Lg

Lxp
"1

2

1

J!g

L(!g)

Lxp
"

L
Lxp

(J!g).

Equation (11) would be generally covariant if this operator were itself generally
covariant; that is, it would yield a generally covariant vector when it acted on
a symmetric tensor. It is by no means assured that the operator (12) had this
property, even if (11) is generally covariant. In retrospect we can see that (12) is
not the unrestricted covariant divergence operator; it had been simpli"ed so that
it would form a covariant divergence only when acting on symmetric tensors.
That had arisen automatically in the generation of (11). How could Einstein
preclude the possibility that some other unrecognised special property of
¹kl had further restricted the operator?

A test was needed and Einstein proceeded with it. He allowed the operator
(12) to act on the other second rank, symmetric tensor that was ready to hand,
the metric tensor gkl . Einstein wrote the expression for this operator acting on
the metric tensor and recorded his expectation37

` L
Lxl

(J!ggpkgkl)!1
2
J!g

Lgkl
Lxp

gkl"0 or a four-vectora. (13)

Modern readers will recognise that the expression in (13) vanishes identically; it
is just equivalent to the vanishing of the covariant divergence of the metric
tensor. It is easy on "rst reading this page to imagine that Einstein is merely
reciting a standard identity of the Ricci Levi-Civita calculus. But that is not what
Einstein is doing. He does not know if the expression of (13) vanishes or is
merely a generally covariant four vector*and his written remark in (13) shows
it. Indeed the latter would be all he needed for the operator in (12) to pass his
test. Einstein proceeds to evaluate the two terms in (13) and discovers that the
expression does indeed vanish.38 In e!ect, by physical reasoning, Einstein has
discovered a form of the covariant divergence operator!

Einstein is now assured that (12) has the desired property so that his equation
(11) is generally covariant. Indeed it might even then be apparent to Einstein
that he could have arrived at (11) by mathematical reasoning as well. If, instead
of pursuing physical considerations, he had merely asked &what simple, generally
covariant divergence operators are there', he might well have been led directly to
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(12) and thence (11). In any case, his physical argumentation had produced
a result that matched his mathematical expectations. He wrote across the
bottom of the page &Stimmt' [&Correct'].

A small complication in the calculation shows that Einstein's caution in
checking the result was not misplaced. As Grossmann showed, (12) is not the
covariant divergence operation after all. It lacks a multiplicative factor of

1/J!g. This turns out not to compromise Einstein's overall result. Equation
(11) still vanishes in all coordinate systems whether or not this extra factor is
included. But it does mean that Einstein was incorrect in identifying (13) as a
four-vector and in his marginal remark written next to equation (11): &In general
a corresponding vector'. The operations involved in the formation of (11)
produce a vector from a second rank, symmetric tensor ¹kl only if the missing

factor of 1/J!g is included. As it turns out, what saves Einstein is the fact that
both (11) and (13) are set to zero so the e!ect of the factor is eliminated; the
equations are equivalent and thus both versions are generally covariant. How-
ever were circumstances to arise in which (11) did not vanish, then the di!erence
might matter.

Appendix C. The Missing Derivation

To proceed from the mechanics of a point mass to the laws governing
distributed matter, Einstein would need an argument augmented with an
appeal to naturalness or with further material assumptions.

The conservation law (11) can almost be recovered from an argument that
takes the corresponding laws of the mechanics of a point mass and translates
them into equations governing distributed matter. The "nal step requires either
an appeal to naturalness or a material augmentation of the argument. There is
no assurance that Einstein would have o!ered this sort of derivation if it were
requested. However it is plausible that he would. After reporting the covariance
properties of (11) in Einstein and Grossmann (1913, Part I, p. 10), he proceeded
to observe: &Further, the equations of motion of a material point, from which we
began, can be derived again by integration over the current threads'. The
derivation below amounts to Einstein's proposed rederivation conducted in
reverse. We can also specify more precisely just how Einstein's proposed re-
derivation of the equations of motion would have proceeded by consulting the
analogous derivation that Einstein sketches within special relativity in his text
(Einstein, 1922, pp. 52}53). Although the derivation from the distributed law (11)
to the equation of motion (6) is straight forward, its reversal here is not.

The Euler}Lagrange equation (6) expresses momentum conservation for the
point mass. It will translate into the p"1,2,3 components of equation (11),
which express momentum conservation. To recover them we represent the mass
point as a small, extended body, as shown in Fig. 1.
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Fig. 1. An isolated mass

The stress-energy tensor for the matter vanishes everywhere except within the
small region R of each spacelike surface of constant t"x

4
occupied by the

mass. Expressed in terms of the quantities of (9), the Euler}Lagrange equation
(6) adopts the familiar form

K
i
"

dJ
i

dt
. (6@)

Re-expressing these quantities in terms of densities pertinent to the mass as
portrayed in Fig. 1 we have

K
i
"P
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dx

1
dx
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dx

3
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41!#%

A!1
2
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3
, (14)

where I have substituted for k
i
from (9@). We also have

dJ
i

dt
"

d

dtP
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41!#%

j
i
dx

1
dx

2
dx

3
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d
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3
. (15)

The last equality requires that we choose a particular coordinate system in
which curves of constant x

1
, x

2
and x

3
coincide with the trajectories of the
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elements of the mass. In that case we have

d

dt
"

L
Lt

#

dx
k

dt

L
Lx

k

"

L
Lt

, (16)

since dx
k
/dt"0. The results arrived at will therefore be restricted to these

special coordinate systems. A more elaborate derivation could avoid this restric-
tion, but it is not needed since, as Grossmann showed, the "nal result is generally
covariant and thus holds in all coordinate systems.

To proceed we apply Gauss' theorem in the three-space spanned by coordi-
nates x

1
, x

2
and x

3
at some "xed x

4
to infer that
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(!J!gg
ik¹kk)dx
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2
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3
"0, (17)

where summation over k extends to just k"1,2,3. This integrated divergence
vanishes since Gauss' theorem allows us to equate it with a surface integral that
lies outside R so that ¹kl"0 everywhere on the surface. Since (17) vanishes, we
can add it to the expression for dJ

i
/dt and recover

dJ
i

dt
"P
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41!#%

L
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(!J!gg
ik¹kl)dx

1
dx

2
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3
. (18)

So equation (6@) is now equivalent to
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. (6A)

A suzcient condition for (6@) to hold is the equality of the terms within the scope
of the integration operations

L
Lxl

(J!gg
ik¹kl)"1

2
J!g

Lgkl
Lx

i

¹kl, (11; p"1,2,3)

which is just the p"1,2,3 components of the result (11) sought. For the derivation
to be complete, we would need to show that the result is also necessary for (6@);
that is, that (6@) entails (11; p"1,2,3). But this last entailment does not obtain.
Equation (6@) can be recovered from alternatives to (11; p"1,2,3). In the

argument above, we could add a three-space divergence (L/Lx
k
) (!J!gg

ik¹kk)
in¹kl to the integral expression for dJ

i
/dt exactly because this divergence would

vanish by Gauss' theorem in the integration. So variants of (11; p"1,2,3) with
other such divergence terms added to the left hand side are compatible with (6@).
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39This result is a consequence of the Euler}Lagrange equation (6). It is recovered by regrouping
terms in
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recalling that

E"
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Lx5
i

x5
i
!H.

Most simply we might just neglect to add the above mentioned divergence term,
so that in place of (11; p"1,2,3) we would have

L
Lt

(J!gg
ik¹k4)"1

2
J!g

Lgkl
Lx

i

¹kl, (19)

but we can still recover (6@) from it by integration.
Needless to say, the derivation could be completed, but only by adding new

assumptions that go beyond the original enterprise of translating (6@) into
di!erential form. We might note that the modi"ed forms of (11; p"1,2,3) are
not likely to give generally covariant expressions. But that now invokes Ein-
stein's mathematical argument. Or we might note that analogy with special
relativity requires symmetry over all four coordinates in the derivative term on
the left of (11; p"1,2,3). But then we would need to argue that (11; p"1,2,3) is
the only way to achieve this symmetry. Or we might wonder if a variant of (11;
p"1,2,3) will still yield the correct special relativistic and Newtonian limit. But
it will if (11; p"1,2,3) is augmented by cleverly contrived terms that vanish in
these limiting processes. Finally we might note that the divergence on the left
hand side of (11; p"1,2,3) is needed if the resulting law is to express a conserva-
tion of momentum upon integration in other cases of distributed matter in
which the stress-energy tensor does not vanish on the spatial boundary of the
region considered. That is true, but it is now an extension of the original
argument. We require that our di!erential law return both the conservation of
momentum for a point mass and also for other cases as well (and it will need
physical interpretation of other terms of ¹kl).

To proceed with the derivation, we also need to recover the p"4 component
of (11) and here again we discover incompleteness in the physical argument
Einstein sketches. We might expect to be forced to the p"4 component of (11)
once we have the p"1,2,3 components of (11), if (11) is to be generally
covariant*but that is a mathematical argument and not the physical derivation
sought. The latter derivation requires that we begin with an equation that
expresses energy conservation for the point mass. Such an equation was not
written by Einstein in his developments. The relevant equation requires an
expression for P, the power developed. It is recovered from the familiar result in
Hamiltonian mechanics that39 (dE/dt)"!(LH/Lt). Substituting for H, the
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expression for power turns out to be
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Forming densities as before, we have the power density
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. (21)

The equation that expresses energy conservation is

dE

dt
"P. (22)

This is reexpressed in terms of the energy and power densities g and p for the
mass in Fig. 1 as
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We now substitute the above expression for p and the earlier expression (9@) for
g. Proceeding as before in the coordinate system in which d/dt"L/Lt and with
addition of a term analogous to (17) above, equation (22) is equivalent to
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As before, (22@) will hold if
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(24)

which is the p"4 component of (11) desired. Again, further assumption is
needed if we are to deduce this last result from (22). The argument leading to (11;
p"1,2,3) could not preclude an additional three space divergence term. The
same problem arises with the p"4 component.

Appendix D. A Brief Critique of Einstein's Viewpoint

That many successful, physical theories xnd simple mathematical formula-
tions might equally reyect the malleability of existing formalisms and the
ingenuity of mathematicians in creating new ones to xt the theory at hand.
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Einstein makes two claims in his 1933 Herbert Spenser lecture. First is a claim
about the world: &Nature is the realisation of the simplest conceivable math-
ematical ideas'. The second is about successful methods and is a consequence of
the "rst: we can "nd the true theories by looking for those that are mathemat-
ically simple. I shall express doubts about both claims here.

Einstein's evidence for the "rst claim is that so many of our successful theories
do in fact have simple mathematical expression. This evidence does not compel
acceptance of Einstein's claim. It has most persuasive power if we presume that
our mathematical formalism is "xed. The true physical laws are those that "nd
simple expression in this "xed formalism. But formalisms are not "xed. They
evolve according to the practical needs of the mathematicians and their cus-
tomers. The more common scenario is that a new physical theory emerges, often
in cumbersome mathematical clothing, and a mathematical formalism is re"ned
and simpli"ed by mathematicians in order to accommodate the theory. As
a result, the theory automatically "nds simple expression in that formalism*not
because nature is built from a simple mathematical blueprint, but because we
have contrived mightily to "nd a formalism in which the theory is simple.

This is just what happened with the emergence of quantum mechanics. It
struggled through a quarter century as the old quantum theory in which both
classical concepts and formalism were strained to contain it. With the break-
through to the new quantum theory starting in 1925, several new formal
approaches emerged: Heisenberg's matrices, SchroK dinger's waves and Dirac's
q-numbers. It was only after considerable further mathematical work that
a natural formal home for the theory was found in terms of linear operators on
Hilbert spaces. This example also reveals a vagueness in Einstein's claim.
A physical theory will "nd simple expression only if the right formalism is
selected. Given the huge range of choices and the possibility of generating more
formalisms should none do the job, one must be less impressed when this or that
theory eventually "nds simple mathematical expression.

In this regard, general relativity appears exceptional. The right mathematical
formalism lay waiting, presciently, in the mathematical literature. But this last
assessment is somewhat over-optimistic. The Ricci Levi-Civita system of 1901
was still not a perfect match for Einstein's theory. As a result of the enormous
interest generated by the success of Einstein's theory, there was an explosion of
new mathematical work, all designed to enhance Einstein's theory. One of the
most important was Levi-Civita's introduction of the notion of parallel displace-
ment in 1917, after general relativity had been completed.

Finally we should guard against a simple selection e!ect. Imagine that some
true theories can be expressed simply in a mathematical formalism ready to
hand and that others cannot. In this scenario we are most likely to "nd the "rst
type of theory and less likely to "nd the second. So the fact that our physics texts
are bursting with theories in simple mathematical clothing would just re#ect our
inability to discover the ones that require complicated expression.

What of Einstein's second claim? Perhaps nature is not constructed
from a mathematical blueprint. Does that still preclude the heuristic value of
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assuming that it does? We might wonder if a false presumption could be of
sustained heuristic power. How could it consistently license action that "ts the
world if nothing in the presumption matches the world? We should also recall
the hidden catch in the heuristic. It can only succeed if we happen to choose the
right formalism in which to write our simple equations. As long as we seek
simple laws in the formalism of classical phase spaces, we are unlikely to write
down quantum results. Nonetheless, the more immediate test lies in checking
whether the heuristic has historically had power. Here the results are mixed.
Einstein clearly takes the success with general relativity as a premiere illustra-
tion. But one success does not distinguish between a #awed method that was
lucky once and a good method that will enjoy repeated success. Further
successful applications are needed. They would have been supplied, had Ein-
stein's quest for a uni"ed "eld theory met with acclaimed success. But the
physics community has voted with their pencils. Einstein's theory and his
programme languish in neglect.

We should not marvel at the hand because it "ts the glove.
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