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1.	  Introduction	  

 Albert Einstein read philosophy. It was not an affectation of a celebrity-physicist trying to 

show his adoring public that he was no mere technician, but a cultured thinker. It was an interest 

in evidence from the start. 

 In 1902, Einstein was a poorly paid patent examiner in Bern seeking to make a few extra 

Francs by offering tutorials in physics. Maurice Solovine answered the advertisement. The 

tutorials quickly vanished when they discovered their common fascinations in reading and 

talking. They were soon joined in their raucous meetings by Conrad Habicht, completing what 

they dubbed their “Olympia Academy.” Their explorations where wide-ranging, devouring texts 

and sausages with gusto. They read the philosophers and philosophically-minded scientists of the 

day, including Pearson, Mach, Hill, Hume, Spinoza, Avenarius, Cifford and Poincaré.1 

 The philosophical interest endured. In the late 1920s, there were three portraits on the 

walls of Einstein’s study in Berlin. Two were unsurprising: the great English physicists Michael 

Faraday and James Clerk Maxwell. And the third? It was not one most people would predict. It 

was Arthur Schopenhauer. However, as Don Howard2 has shown in detail, once one is alerted to 
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look, the imprint of Einstein’s reading of Schopenhauer is clearly visible in his writing and 

thought. 

 Einstein’s own philosophical writings have in turn attracted considerable attention.3 In 

the years following his discovery of the general theory of relativity, Einstein was read and 

consulted by many philosophers, including Rudolf Carnap, Hans Reichenbach and Moritz 

Schlick. As a result, Einstein’s writings in physics and philosophy enjoyed a commanding 

presence in the new movements in modern philosophy that gained strength in the 1920s and 

1930s.4 

 My purpose in this note is not to attempt a synthetic portrait of Einstein’s philosophy. For 

reasons I will indicate later, I am not sure how useful that would be. Rather I want to draw 

attention to what I believe is the most important aspect of Einstein’s interest in philosophy. 

Einstein quite consciously integrated philosophical analysis into his physical theorizing. Its 

explicit use was part of how Einstein found his way to new theories and defended them. Here I 

will sketch a few of episodes in Einstein’s physics in which philosophical analysis played an 

important role. I will try to explain at a level relatively free of the technicalities of physical 

theories just what role the philosophical analysis played. 

 The first episode, recounted in Section 2, is Einstein’s adopting an empiricist theory of 

concepts in order to legitimate an extraordinary new physical proposal concerning time in special 

relativity. Section 3 will recount what Einstein described as the “epistemological defect” in 

earlier theories that motivated him to seek his general theory of relativity. Section 4 will describe 

how Einstein twice grounded his theorizing in principles that distinguish the real from the unreal. 

One pertains to the completion of the general relativity and the grounds his co-authored efforts to 

prove the incompleteness of quantum theory. Finally, in Section 5, I will describe how Einstein 

came to adopt a form of mathematical Platonism as the way to find to new theories, such as his 

unified field theory. In the conclusion in Section 6, I will explain why I believe Einstein was 

correct and appropriately unapologetic in portraying himself as an “unscrupulous opportunist” in 

the view of a systematic epistemologist. 
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2.	  An	  Empiricist	  Theory	  of	  Concepts	  

 In June 1905, Einstein5  sent the journal Annalen der Physik the manuscript of his paper, 

“On the Electrodynamics of Moving Bodies.” In it, he laid out his special theory of relativity. Its 

first “Kinematical Part” is both a brilliant departure from earlier thinking and a deceptively easy 

analysis to read. In order to solve certain problems in electrodynamics, Einstein tells us, he will 

posit two principles: the principle of relativity and the light postulate. The first asserts the 

equivalence of all inertial motion. The second assigns a unique speed to light propagating in 

vacuo. 

 The two principles are “apparently irreconcilable,” Einstein mentions in passing on the 

paper’s first page. The reader is left to imagine why. It is not hard to do. When the two principles 

are combined, they entail that all inertially moving observers will find the same speed for the one 

beam of light. Imagine that you measure the speed of a light beam and find some value, “c.” If I 

am chasing rapidly after that same beam at the great speed of c/2, should I not find it to 

propagate at c – c/2 = c/2? No, the two principles say. I must find the same value, c; and that just 

does not seem right. 

 Einstein turned immediately to a simple explanation of why this irreconcilability is only 

apparent. Implicit in our judgments of the speed of light are further assumptions about space and 

time. In concrete terms, an observer measures the speed of light by timing how long light takes 

to traverse a known distance; and that time difference is measured by clocks placed at either end 

of the distance. The procedure requires that the two clocks be properly synchronized. Each must 

read “12 o’clock” at precisely the same instant. It is easy to assume that, if one observer judges 

the clocks to be properly synchronized, then so also will another observer in relative motion. 

That, Einstein proceeded to demonstrate, is incorrect. His famous demonstration involved an 

ingenious thought experiment with clocks and light signals and drew on his theory’s two 

principles. The essential outcome is that the two observers will not agree on which spatially 

separated events are simultaneous; and thus they will not agree on whether the two clocks are 

properly synchronized. In their attempts to measure the speed of light, the two observers will use 

clocks synchronized differently. The resulting differences turn out to be exactly sufficient to 

ensure that both recover the same value c for the speed of light. 

 This effect, “the relativity of simultaneity,” was the first of the novel results of the new 

special theory of relativity. It led Einstein immediately to argue that observers in relative motion 
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will, in general, not agree on the lengths of objects and the time durations measured for 

processes. The analysis is so crisp and simple that it is hard to suppress the image of impish 

Einstein casually tossing off the analysis from the comfort of an armchair one sunny afternoon. 

 The reality of the discovery was quite different. As I have recounted in some detail 

elsewhere6, Einstein had become convinced years before that the principle of relativity must hold 

in Maxwell’s theory of electrodynamics, even though that theory was based on an ether in which 

there was a preferred state of rest. Worse, Maxwell’s theory asserted that light always travels at 

just one speed, c=186,000 miles per second in vacuo in relation to this ether. It seemed to 

Einstein that the principle of relativity would force him to give up this constancy. He struggled to 

find a modification of Maxwell’s theory in which the speed of light would vary according to 

speed of the emitter. After many fruitless attempts, Einstein finally realized that he could find no 

sustainable emission theory of light. Maxwell’s theory and the constancy of the speed of light 

must stand. It was a point of desperation for him. How could he keep both the principle of 

relativity and the constancy of the speed of light? 

 Einstein later recalled in his Autobiographical Notes how he finally solved the problem: 7 

Today everyone knows, of course, that all attempts to clarify this paradox 

satisfactorily were condemned to failure as long as the axiom of the absolute 

character of time, or of simultaneity, was rooted unrecognized in the unconscious. 

To recognize clearly this axiom and its arbitrary character already implies the 

essentials of the solution of the problem. 

To solve his problem, Einstein had to see what everyone before him had missed: that the 

absoluteness of simultaneity is an assumption that can be challenged. And further he needed 

something to give him the courage to mount that challenge and abandon the assumption. Einstein 

continued the above remarks by noting that this essential support came from his reading in 

philosophy: 

The type of critical reasoning required for the discovery of this central point was 

decisively furthered, in my case, especially by the reading of David Hume’s and 

Ernst Mach’s philosophical writings.  

Einstein affirms here that reading Hume and Mach’s philosophical writings were decisive. 

However he does not tell us how they were decisive or even which writings were at issue. It has 
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been natural to assume that it was Hume and Mach’s writings specifically in philosophy of space 

and time. 

 When we begin to explore Einstein’s other writings and remarks, another possibility 

emerges. In 1924, Einstein remarked8 

After seven years of reflection in vain (1898–1905), the solution came to me 

suddenly with the thought that our concepts and laws of space and time can only 

claim validity insofar as they stand in a clear relation to experiences; and that 

experience could very well lead to the alteration of the concepts and laws. By a 

revision of the concept of simultaneity into a more malleable form, I thus arrived at 

the special theory of relativity. 

The same idea is given more succinctly in a remark from Einstein’s 1917 popular account of 

relativity theory9 

The concept [of simultaneity] does not exist for the physicist until he has the 

possibility of discovering whether or not it is fulfilled in an actual case. 

The breakthrough was not grounded in some novel philosophical insight into space and time 

specifically. Rather it was a general view about how concepts are properly employed in physical 

theories. 

 The concepts of physical theories must, Einstein here asserts, be properly grounded in 

experience; else they are fictions. Once one has this clue, one recalls immediately that just this 

sort of empiricist approach to concepts is fundamental to the thought of Hume and Mach and one 

can see that is this aspect of their writing to which Einstein referred. The analysis of David 

Hume’s Treatise depends on just this simple grounding of concepts (“ideas”) in experience 

(“impressions”). The introductory section  concludes with the synoptic assertion:10 

…all our simple ideas proceed either mediately or immediately, from their 

correspondent impressions. 

     This then is the first principle I establish in the science of human nature… 

Later he makes clear that concepts cannot extend beyond this grounding in experience without 

introducing a fiction. For example, he writes:11  

Ideas always represent the objects or impressions from which they are deriv’d, and 

can never without a fiction represent or be appl’d to any other… 
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One finds a similar empiricist approach to concepts in the writings of Ernst Mach. More 

relevantly, we know that Einstein found it in Mach, for Einstein tells us just this in his obituary 

for Mach12 

Science is, according to Mach, nothing but the comparison and orderly arrangement 

of factually given contents of consciousness, in accord with certain gradually 

acquired points of view and methods…. 

…concepts have meaning only in so far as they can be found in things, just as they 

are the points of view according to which these things are organized. (Analysis of 

concepts) 

What is important is that this empiricist approach to concepts is quite general. It is not limited to 

the analysis of space and time, but applies to all concepts. Most famously, Hume applied it to 

causation. 

 All this is only the beginning of a fascinating tale. Einstein elsewhere averred that it was 

Hume “still much more” than Mach who guided him; and we find some differences in the way 

Einstein was willing to accept fictional concepts not properly grounded in experience in his 

theorizing as conventions.13  

3.	  “An	  (Inherent)	  Epistemological	  Defect”	  

 In his analysis of 1905, Einstein eliminated the ether state of rest from physics and 

reinstated the relativity of motion only as far as inertial motion, that is, uniform motion in a 

straight line. Over the ensuing decade, Einstein sought a new theory that would extend the 

principle of relativity to all motion, including accelerated motion. Einstein believed that he had 

achieved this in 1915 with the completion of his general theory of relativity. 

 What is important for our purposes are the motivations Einstein reported for seeking this 

extension of the principle of relativity. In 1916, Einstein published a definitive review article of 

the completed theory. In an early section, “§2 The Need for an Extension of the Postulate of 

Relativity,” Einstein gives what is surely a type of reason that is rarely found stated explicitly in 

the physics literature:14 
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In classical mechanics, and no less in the special theory of relativity, there is an 

inherent epistemological defect with was, perhaps for the first time, clearly pointed 

out by Ernst Mach. 

Einstein’s German—ein erkenntnistheoretischer Mangel--was a little weaker than the standard 

Perrett and Jeffrey translation given here and is captured more literally merely as 

“epistemological defect.” However I have reported the stronger Perrett and Jeffrey translation 

since that it has been in the standard edition of Einstein’s paper since its 1923 translation; and I 

like to pretend that it captures the passionate energy of its author, a barely 37 year old Einstein at 

the moment of his greatest scientific creativity. 

 Either way, it is an extraordinary idea. Our best theory of gravity and Einstein’s greatest 

contribution to modern physics is motivated in part by the need to remedy an epistemological 

defect of earlier theories! 

 Einstein proceeded to explain the problem. Both classical physics and special relativity 

posit certain preferred inertial motions. These were the uniform straight-line motions followed 

by free bodies, unaffected by perturbing forces. These motions in turn define inertial spaces of 

reference; they are, loosely speaking, the spaces carried with each set of bodies moving together 

inertially. So-called “inertial forces” arise if a body is constrained to accelerate, that is, to deviate 

from inertial motions. Newton15 imagined water swirling in a bucket and the resulting 

acceleration led the water to be hurled outward and climb up the wall of the bucket, producing a 

concave water surface. Analogously, fluid spheres in rotation, such as stars and planets, bulge at 

their equators. 

 What causes this bulge, Einstein asked. We are, he noted, inclined to answer that the 

cause is rotation with respect to inertial spaces. This answer is rejected thunderously: 

No answer can be admitted as epistemologically satisfactory, unless the reason 

given is an observable fact of experience. The law of causality has not the 

significance of a statement as to the world of experience, except when observable 

facts ultimately appear as causes and effects. [Einstein’s emphasis] 

He continued a few sentences later: 

…the privileged [inertial] space of … Galileo thus introduced, is merely a factitious 

[“bloss fingierte” = ad hoc, JDN] cause, and not a thing that can be observed. 

(Einstein’s emphasis) 
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Then Einstein turned to the cause that he would accept, distant masses and their motions. He 

thereby foreshadowed the form that he hoped his final theory would take. In it, nothing intrinsic 

to a space distinguishes one space from another. The discrimination of spaces into inertial and 

accelerating comes only by virtue of the masses distributed in them. If the masses of the universe 

are at rest in a space, it is an inertial space. If those masses swirl around, it is a space with inertial 

forces that pull water up the sides of Newton’s bucket and lead fluid bodies to bulge at their 

equators. 

 The analysis is driven by Einstein’s conception of an epistemological defect. In his 

popular account of relativity, written at the end of 1916, Einstein gave a more prosaic and 

visceral illustration of it:16 

I am standing in front of a gas range. Standing alongside of each other on the range 

are two pans so much alike that one may be mistaken for the other. Both are half 

full of water. I notice that steam is being emitted continuously from the one pan, but 

not from the other. I am surprised at this, even if I have never seen either a gas 

range or a pan before. But if I now notice a luminous something of bluish colour 

under the first pan but not under the other, I cease to be astonished, even if I have 

never before seen a gas flame. For I can only say that this bluish something will 

cause the emission of the steam, or at least possibly it may do so. If, however, I 

notice the bluish something in neither case, and if I observe that the one 

continuously emits steam whilst the other does not, then I shall remain astonished 

and dissatisfied until I have discovered some circumstance to which I can attribute 

the different behaviour of the two pans. 

It is hard for a philosopher to read this and not see an account here of the violation of a venerable 

principle, Leibniz’s principle of sufficient reason.17 This, however, was not Einstein’s reading. 

He proceeded to assert that it was “E. Mach [who] recognised [the epistemological defect of 

prior theories] most clearly of all…” 

 Einstein clearly had in mind Mach’s celebrated analysis of Newton’s notions of absolute 

space and time in his Science of Mechanics, including his famous remark on Newton’s bucket:18 

Newton's experiment with the rotating vessel of water simply informs us, that the 

relative rotation of the water with respect to the sides of the vessel produces no 

noticeable centrifugal forces, but that such forces are produced by its relative 
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rotation with respect to the mass of the earth and the other celestial bodies. No one 

is competent to say how the experiment would turn out if the sides of the vessel 

increased in thickness and mass till they were ultimately several leagues thick. The 

one experiment lies before us, and our business is, to bring it into accord with the 

other facts known to us, and not with the arbitrary fictions of our imagination. 

Einstein has left us in little doubt as to how he read Mach’s critique. His first published statement 

of what he later dubbed “Mach’s Principle” came in 1912 when Einstein had developed only a 

rudimentary forerunner to his general theory of relativity. The statement asserts:19 

...the entire inertia of a point mass is the effect of the presence of all other masses, 

deriving from a kind of interaction with the latter. 

Lest there be any doubt as to the origin of the idea, Einstein—notorious for his meager citation 

habits--appended a footnote to the section of Science of Mechanics in which the above bucket 

quote appears: 

This is exactly the point of view which E. Mach urged in his acute investigations on 

the subject. (E. Mach, The Development of the Principles of Dynamics. Second 

Chapter. Newton's Views of Time, Space and Motion.) 

 Einstein’s reading of Mach’s remark is curious. Mach asserts (my emphasis) “No one is 

competent to say how the experiment would turn out if the sides of the vessel increased in 

thickness…” Yet Einstein took this as a license to say just what would happen. Were the walls of 

bucket so enlarged and set into rotation, they would drag the water in the bucket slightly. This 

dragging would be a massively weakened version of what Einstein believed happens when all the 

masses of the universe rotated around the bucket. 

 Einstein sought to derive these “Machian” effects in his developing theories of gravity of 

Einstein prior to the completion of general relativity.20 They are recovered in various forms in 

the final theory as well, as Einstein explains in his Meaning of Relativity, the closest Einstein 

came to writing a textbook for his theory.21 

 Matters did not continue as one might expect. Einstein later came to renounce his 

fascination with Mach’s critique. Writing in 1946 in his “Autobiographical Notes,” he 

reflected:22 

…in my younger years, however, Mach's epistemological position also influenced 

me very greatly, a position that today appears to me to be essentially untenable. For 
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he did not place in the correct light the essentially constructive and speculative 

nature of all thinking and more especially of scientific thinking; in consequence, he 

condemned theory precisely at those points where its constructive-speculative 

character comes to light unmistakably, such as in the kinetic theory of atoms. 

It was also never clear that the general theory of relativity did meet the Machian-inspired 

demands concerning the origin of inertial. Eventually Einstein withdrew his support for these 

demands, as he noted again later in his “Autobiographical Notes”:23 

Mach conjectures that in a truly reasonable theory inertia would have to depend 

upon the interaction of the masses, precisely as was true for Newton's other forces, 

a conception that for a long time I considered in principle the correct one. It 

presupposes implicitly, however, that the basic theory should be of the general type 

of Newton's mechanics: masses and their interaction as the original concepts. Such 

an attempt at a resolution does not fit into a consistent field theory, as will be 

immediately recognized. 

Finally it remains unclear that the critique of absolute space Einstein read in Mach’s writings is 

the one Mach intended. Einstein found the critique as authorizing the search for a new theory of 

inertia, whereas Mach may merely have intended it to support an austere formulation of an 

otherwise unaltered classical physics, everywhere purged of the mention of metaphysical 

notions, such as Newton’s absolute space.24  

4.	  The	  Real	  

 A perennial theme in philosophy is the separation of reality from appearance. Present day 

physics is replete with techniques that effect this separation. They are associated with the notions 

of invariance, symmetry and gauge transformations, whose lineage in physics traces back to 

Einstein’s work. A century ago, his theories of relativity demonstrated the same reality can have 

very different appearances in different frames of reference. However the idea of using group 

theory and distinguishing the real as the invariants of the transformations of groups is a 

nineteenth century notion. It was a commonplace of geometry before it was brought into 

twentieth century physics, in large measure through the stimulus of Einstein’s theories of 

relativity. 



 11 

 These are broad themes. My concern in this section, however, is two narrow episodes 

concerning the real. In them, Einstein sought to resolve a pressing problem in physics by positing 

what we might call a reality principle; that is, a principle that separates reality from appearance. 

4.1	  The	  Point-‐Coincidence	  Argument	  

 The first of these episodes arose with the completion of the general theory of relativity. 

We saw that Einstein’s initial concern was to implement a generalized principle of relativity that 

extended to accelerated motion. By 1916, that demand had evolved into a requirement of general 

covariance. To see what it amounts to, we should recall that spacetime theories label events with 

four numbers. They are usually three spatial coordinate and one time coordinate. However one 

can make new numerical labels for any event by adding, subtracting or taking any combination 

of the more traditional choices of the event’s coordinates, and any rescaling of them. These 

manipulations create arbitrarily many more spacetime coordinate systems. If one has a physical 

theory that can employ any of these coordinate systems, no matter how jumbled and rescaled, 

then the theory is generally covariant. 

 The central conception of Einstein’s general theory is a connection between gravitation 

and the curvature of the spacetime geometry. His decision to seek a generally covariant theory 

was pivotal. It enabled Einstein to draw on the elaborate body of mathematical techniques 

emerging from the nineteenth century for understanding curvature. As long as he kept his 

equations generally covariant, this body of mathematics admitted remarkably few possibilities 

for the implementation of his theory. That fact is routinely used today in motivating Einstein’s 

theory. 

 Hence it can come as a surprise to modern readers to learn that Einstein considered and 

rejected general covariance in 1913. Then he and his mathematician friend, Marcel Grossmann, 

published a sketch of what was the general theory of relativity in all its parts, excepting its most 

essential part.25 That was its gravitational field equations, the theory’s analog of Newton’s 

inverse square law of gravitation. They announced that they had been unable to find physically 

admissible generally covariant gravitational field equations. In place of these equations, they 

published gravitational field equations of limited covariance.26 

 In a little over two years, Einstein would recognize this rejection of general covariance 

for the catastrophe it was. However, before then, Einstein turned his powers towards making a 
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bad situation worse. If he could not find admissible generally covariant gravitational field 

equations, then he would demonstrate that omission no failing, for he would prove that such 

equations are physically uninteresting. What resulted was his “hole argument.” 27 It was 

published in four versions in 1913 and 1914. One was in an addendum to his joint paper with 

Grossmann28. The most complete version was in a 1914 review article.29 

 General covariance gives the theorist the power to represent the one physical reality in 

many different coordinate systems. What Einstein found, however, was that it also permitted a 

reverse capacity. One could fix the coordinate system and induce many apparently distinct 

physical realities in it and this could be done in a way that seemed to compromise determinism. 

 The essential idea can be conveyed in an analogy to different map projections. One sheet 

of paper can host many projections of the world. One of the oldest and best known is the 

Mercator projection of 1569 of Figure 1. 

 
Figure 1. Mercator Projection30 

Many more projections are possible. Another is the Lambert projection of 1772 of Figure 2. 

 
Figure 2. Lambert Projection 
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The continents in the two projections look rather different. Antarctica in the Mercator projection 

looks enormous in comparison to Antarctica in the Lambert projection. We know, of course, that 

this difference is purely an artifact of the different projections and represents nothing real. 

 Imagine, however, that one did not realize that the differences were artifactual. One 

would then imagine that these are maps of two different worlds: the Mercator world, with its 

enormous Antarctica, and the factually distinct Lambert world, in which Antarctica is a mere 

sliver. Worse, we can construct further factually distinct hybrid worlds. The Southern 

hemisphere may be extracted from the Mercator projection and the Northern from the Lambert 

projection. That would be yet another world depicted in Figure 3.  

 
Figure 3. Hybrid Mercator-Lambert Projection 

 

 One would then be faced with an odd problem if one is trying to determine which of the 

Mercator or Lambert worlds is our world. We might check the world everywhere in the Southern 

hemisphere and find that everywhere in the Southern hemisphere our world conforms precisely 

with the Mercator world. We still could not know whether our world in toto is the Mercator 

world, for it could extend into the hybrid world of Figure 3 in which the Northern hemisphere is 

Lambertian. Perhaps that is our world. Even though we are dealing with a limited set of atlases, 

the geography of the Southern hemisphere does not fix the altas that applies to the Northern 

hemisphere. 

 This structure is essentially the one Einstein implemented in his hole argument. The sheet 

of paper that carries the different map projections corresponds to Einstein’s spacetime coordinate 

system. The figures printed on the paper correspond to the fields of Einstein’s theory. General 

covariance was the license that permitted him to spread his fields over the one spacetime 
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coordinate system with the same freedom as we have in moving between map projections. In 

1913, Einstein believed that the different spreadings of the fields corresponded to factually 

distinct realities. If we imagine that the Southern hemisphere of our map corresponds to the past 

of Einstein’s spacetime and the Northern hemisphere to its future, the problem becomes a failure 

of determinism. Fixing the past of the spacetime does not fix its future. 

 What of the “hole”? Einstein realized that there was a sharpened version that was even 

more troubling. In the map analogy, instead of grafting hemispheres of different projections 

together, one could perform the grafting in just a small portion of the page. We might have a 

projection that is everywhere Mercator, except in the region holding Australia, into which we 

graft some other projection, being sure to smooth the join neatly, as shown in Figure 4. 

 
Figure 4. Mercator Projection with a Distorted Hole 

Allowing this possibility means that knowing the geography everywhere except Australia fails to 

fix the geography of Australia. 

 In Einstein’s theory, the corresponding construction realizes a more severe failure of 

determinism. The hole corresponds to a small region of space that persists for a short time. It 

might just be a volume of space the size of a basketball that lasts for a second. Fixing everything 

in spacetime in its past, in its future and in all other parts of space throughout the universe still 

fails to fix what happens inside the hole. In 1913 and 1914, this result satisfied Einstein. It 

assured him that the generally covariant equations he could not find would not be worth finding. 

They would visit a radical form of indeterminism on his theory. 
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 Matters had changed by the end of 1915. Then Einstein had returned to general 

covariance and had proposed the generally covariant gravitation field equations for which he 

became famous, the “Einstein field equations.” Clearly some repair work was needed. Einstein 

now saw that, if he paid careful attention to what is real and what is not, the hole argument 

establish neither indeterminism and nor the physical inadmissibility of a generally covariant 

theory. 

 The map analogy lets us see how this comes about. While we have the freedom to spread 

our pictures of the continents in many ways over the one sheet of paper, there are no factual 

differences in geography to be found in the different spreadings. 

 The town of Alice Springs lies in the heart of Australia. Its exact placement on the sheet 

of paper will differ in the different map projections of the hole. However none of these 

differences will translate into verifiable geographical facts. Alice Springs lies roughly North of 

Adelaide on the South coast of Australia. Someone who leaves Adelaide and drives about 1500 

km Northward along the highways, mostly the Stuart Highway, will arrive there. The drive will 

intersect that of someone who leaves Darwin on the North coast of Australia and drives roughly 

1500 km Southward, again much of it on the Stuart Highway. The two projections will agree that 

the two travelers will meet at Alice Springs, as they will agree upon any other matter of 

geography that one can check. What is outside the hole fails to determine some aspects of what is 

within. But any aspects that remain undetermined are purely artifacts of the different projections; 

no geographic fact that can be checked is left uncertain. 

 Einstein’s resolution was essentially identical to this analysis in geography, but with the 

claims carried over into spacetime theory. He wrote in his 1916 review article:31 

All our space-time verifications invariably amount to a determination of space-time 

coincidences. If, for example, events consisted merely in the motion of material 

points, then ultimately nothing would be observable but the meetings of two or 

more of these points. Moreover, the results of our measurings are nothing but 

verifications of such meetings of the material points of our measuring instruments 

with other material points, coincidences between the hands of a clock and points on 

the clock-dial, and observed point-events happening at the same place at the same 

time. 
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This is the “point-coincidence” argument.32 Its immediate purpose is to establish the conclusion 

that the factual content of a physical theory is exhausted by the catalog of spacetime 

coincidences that it licenses. The different spreadings of the fields over the one coordinate 

system in the hole argument agreed in all spacetime coincidences. It now followed that any 

differences between the spreadings were purely artifactual; they correspond to no factual 

differences. The threat of the hole argument is averted. 

 The possibility of the multiple spreadings of fields had been inferred by Einstein from the 

requirement of general covariance, that is, the requirement that a physical theory can use any 

spacetime coordinate system. The hole argument had been deployed to demonstrate the 

untenability of general covariance. Einstein’s position was now reversed. He was advocating 

general covariance strongly. The point-coincidence argument was called to his aid and it was 

extended into an argument for general covariance. The extension depended upon the fact that the 

two spreadings of the fields differ only in the spacetime coordinates at which the various 

spacetime coincidences may be found. Hence the assigning of spacetime coordinates is purely 

artifactual and has no physical content.33 “The introduction of a system of reference [coordinate 

system] serves no other purpose than to facilitate the description of the totality of such 

coincidences,” Einstein wrote immediately after the quote above. It follows that we should be 

free to use any coordinate system we like. 

 In his review article, Einstein did not make clear that this point-coincidence argument 

was his answer to the hole argument. It introduced as an argument for general covariance. We 

can understand that Einstein would be reluctant to call any further attention to an argument that 

he had published four times but now deemed erroneous. That the point-coincidence argument 

was explicitly intended to resolve the hole argument was made clear when Einstein explained to 

correspondents why he felt authorized to restore the demand of general covariance. For our 

purposes, these explanations are interesting because they contain strong statements about the 

division between what is real and what is not. 

 On January 3, 1916, he wrote to his friend, collaborator and confidant, Michele Besso:34 

Nothing is physically real but the totality of space-time point coincidences. If, for 

example, all physical happenings were to be built up from the motions of material 

points alone, then the meetings of these points, i.e. the intersection of their world 
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lines, would be the only real things, i.e. observable in principle. (Einstein’s 

emphasis) 

A letter from Einstein to Ehrenfest of December 26, 1915, contains similarly strong assertions 

concerning what is real:35 

The following considerations should replace [the 1914 presentation of the hole 

argument]. The physically real in what happens in the world (as opposed to what 

depends on the choice of the reference system) consists of spatio-temporal 

coincidences. [Einstein’s footnote here: “and in nothing else!”] For example, the 

points of intersection of two world lines, or the assertion that they do not intersect, 

are real. Such assertions referring to the physically real are thus not lost because of 

any (single-valued) coordinate transformations. 

This correspondence is also helpful in that it affirms that the map analogy captures Einstein’s 

understanding. The analogy is close to one Einstein used in explaining the point-coincidence 

argument to Ehrenfest in another letter to him from late December 1915. Einstein took 

Ehrenfest’s example of light from a star passing through an aperture to strike a photographic 

plate and then considered how the fields representing the system might be spread differently over 

a spacetime coordinate system. Einstein used a homely construction to illustrate how the 

resulting solutions of the field equations—Ehrenfest’s A and B--are related. Ehrenfest was to 

trace a drawing of the system onto deformable paper. The different spreadings were then 

produced merely by deforming the paper. Is there any factual difference between the two 

resulting figures? Einstein continued:36 

What is essential is this: As long as the drawing paper, i.e. “space,” has no reality, 

the two figures do not differ at all. It is only a matter of “coincidences,” e.g., 

whether or not the point on the plate is struck by light. Thus, the difference between 

your solutions A and B becomes a mere difference of representation, with physical 

agreement. 

 In all this, what is intriguing to a philosopher is to see that strong pronouncements 

concerning the real figure prominently in a major scientific discovery. Taken in isolation they are 

strong, even programmatic announcements of a fundamental principle: “Nothing is physically 

real but the totality of space-time point coincidences.” and “The physically real consists of 

spatio-temporal coincidences. (and in nothing else!)” Even more striking is the strongly 
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verificationist tone that underpins them. The real and the observable appear to be identified (“the 

only real things, i.e. observable in principle.”) As a result, it has proven tempting to philosophers 

to regard these claims by Einstein as the anticipation of a grander verificationist view of science 

and one that, perhaps, should be regarded with suspicion for its extremism.37 

 We should approach that portrait of Einstein with caution. The Einstein who wrote these 

words was not the armchair philosopher grappling with the problem of reality and appearance at 

the most abstract level. The Einstein who wrote these words was jubilant at his great success 

with a scientific theory, general relativity, but physically and emotionally exhausted. He had 

struggled for nearly three years with his extraordinary new theory of gravity, in imperfect and 

misshapen form. Its defects were now finally identified and eliminated. The struggle was over. 

All that remained was for Einstein to correct the errors of these three past years. One senses his 

weariness when he introduces his explanation of the error of the hole argument to Ehrenfest in 

his letter of December 26 1915.38 

It is comfortable for Einstein. Each year he retracts what he wrote the previous year; 

now my duty in the extremely sad business of justifying my most recent retraction. 

Einstein’s proclamations about reality are not forward-looking, the anticipation of a new 

tradition of verificationism in philosophy. They are backward-looking, a convenient device that 

brings closure to an episode that Einstein now finds painful. In these circumstances, it is not 

surprising that Einstein would fail to give his pronouncements the pedantic precision that 

characterizes careful analysis by a professional philosopher. 

 Don Howard39 has identified a significant and pertinent conflation. Are Einstein’s 

coincidences “point-coincidences” or “pointer-coincidences”? The former are mathematical 

abstractions akin to idealized Euclidean points in geometry. They may be designated as the real 

in the sense that they are invariant, which means that they remain the same in all spacetime 

coordinate system. The latter are the coincidences of macroscopic objects, such as pointer 

needles and scale marks. They are observable and hence real. Einstein’s writing runs the two 

together. However the first, point-coincidences, is what Einstein needed to deflect his hole 

argument and restore general covariance. The second, pointer-coincidences, is what the ensuing 

tradition in verificationism needed to read in Einstein’s writing if it was to claim him as their 

patron. 
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4.2	  The	  Incompleteness	  of	  Quantum	  Theory	  

 There is another, better known criterion of reality associate with Einstein. It too arose in 

the context of a significant problem in physical theory: Einstein’s critique of quantum theory.  

 The Einstein of 1916 was the discoverer of general relativity. He was the theorist who 

stood in the vanguard of new work in physics. This was the same Einstein who had, in 1905, 

proposed the revolutionary concept of the light quantum. Now, in 1916, he continued his 

contributions to quantum theory with his “A and B coefficient” quantum analysis of heat 

radiation, laying the grounding for the modern theory of lasers. 

 The Einstein of 1926, a decade later, was drifting into a different role. The energy of 

physics had been drawn into the emergence of the so-called “new quantum theory.” In 

Schroedinger’s famous formulation, each particle of the new theory was associated with a wave. 

Since a wave is spread out in space, one could associate no definite position with the particle, 

even though, on position measurement, the particle would always manifest in a definite position. 

Correspondingly, in general, a particle has no definite momentum, but it will always manifest a 

definite momentum upon momentum measurement. The best the new theory could provide was 

the probability that particle would manifest in this position or with that momentum on the 

corresponding measurement.  

 Einstein joined his colleagues in recognizing that this new quantum theory was a worthy 

achievement that resolved accumulating difficulties of the “old quantum theory.” However 

Einstein resisted one aspect of it resolutely. Does the quantum wave associated with a particle 

provide a complete description of the particle? Or are there further facts about a particular 

particle that is not expressed in the wave? The mainstream adopted the first view. Einstein urged 

the second view, incompleteness. A full accounting of why Einstein found himself a critic of the 

mainstream view of completeness would require a discussion of his reluctance to admit the 

arcane possibilities of non-locality and non-separability.40 

 However, in seeking the grounding of Einstein’s discomfort, one cannot overlook his 

much repeated quip that God does not play dice.41 If the quantum wave provides a complete 

description of the state of a particle, then quantum theory is indeterministic. Fixing the full state 

of the present does not fix the future. If we fix the quantum state of particle now, the best we can 

recover for the future are merely probabilities for the particle being measure in this or that 

position. We have seen that Einstein recoiled from indeterminism when it was threatened in the 
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hole argument. Einstein then described this failure of determinism as a failure of the “law of 

causality.”42 That reveals a decidedly nineteenth century aspect to Einstein’s thinking, for in the 

nineteenth century, causality was purged of all its embellishments and reduced to the simple 

notion of determinism. Hence the failure of determinism would be viewed as a failure of 

causality itself. This orientation is reflected in the general description in the earlier part of the 

twentieth century of the indeterminism of quantum theory as a violation of causality, a failure 

that many find inherently troubling. Einstein, it would appear, was sufficiently nineteenth 

century in his thinking to find the indeterminism of quantum theory an unacceptable violation of 

causality.43 

 While the origins of Einstein’s discomfort with quantum theory may be diffuse, there was 

a single argument that Einstein favored as the way to establish the theory’s incompleteness. The 

best-known presentation of the argument was given in his co-authored paper with Boris 

Podolsky and Nathan Rosen, the celebrated “EPR” paper.44 

 Establishing that the quantum wave provides an incomplete description of a particle is 

not straightforward. If one measures the position or momentum of a particle, under the standard 

account, its wave collapses to a new state with a definite position or momentum, according to the 

measurement undertaken. The old state is destroyed and one cannot preclude the possibility that 

the definite measurement outcome was created by the measurement process itself. Direct 

measurement no longer necessarily reveals the properties of particles possessed prior to 

measurement. 

 What the EPR paper recognized was that indirect measurement should succeed in 

revealing the properties really possessed by a particle, where direct measurement may fail. In 

classical physics, if two qualitatively identical particles are flung symmetrically from some 

central explosion, they will carry duplicate properties. When the first particle has moved some 

distance—say 100 m to the left—the other particle will have moved the same distance—100 m – 

to the right. Therefore measuring the position of one particle will reveal the position of the other. 

Similarly, since momentum is conserved, the momentum of one particle is simply the negation of 

the momentum of the other. So measuring the momentum of one particle will tell us the 

momentum of the other. It turns out that quantum theory allows similarly correlated particles in 

what is known as an entangled state. So the same indirect measurements are possible for 

quantum particles. 
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 Once that fact is recognized, the remainder of the analysis is straightforward. We prepare 

two entangled particles as above. We know that were we to perform a position measurement on 

one particle, we could recover a definite position for it. Hence we would know that the other 

remote particle would reveal the corresponding, definite position on measurement. Since our 

measurement here cannot affect the remote particle some great distance away, we know that 

position property is possessed by the remote particle and not created by the measurement 

operation. That is already enough to establish the sought after incompleteness, for, in general, 

quantum theory does not allow a single definite position for the particle. The argument can then 

also be repeated for the momentum of the particle. 

 This simple and beautiful argument depends upon some apparently innocuous 

assumptions. One must assume that a measurement here cannot instantly affect a remote particle 

there; this is an assumption of locality. One must also assume that the two particles, once 

separated spatially, have independent existences with their own definite properties; this is an 

assumption of separability. The two assumptions must be made if we are to infer from 

measurements on local particles to the real properties possessed by distant particles entangled 

with them. The EPR authors recognized that assumptions along these lines were being made. 

While harboring no evident doubts, they asserted their version of the assumptions clearly in italic 

text at the start of the EPR paper: 

If, without in any way disturbing a system, we can predict with certainty (i.e. with 

probability equal to unity) the value of a physical quantity, then there exists an 

element of physical reality corresponding to this physical quantity. 

This is the famous criterion of reality from the EPR paper of 1935. It is the foundation of the 

argument mounted by EPR and Einstein writing as a single author for the incompleteness of 

quantum theory. 

 All this is just the beginning of a long saga. The EPR paper failed to move the 

mainstream of physics. Einstein’s antagonist, Niels Bohr, wrote a rebuttal that, sadly, was as 

obscure as it was influential. The EPR analysis did not receive the response it deserved until the 

work of John S. Bell. He demonstrated that no theory that agrees empirically with quantum 

theory could preserve locality and separability. Since these last two notions were, one way or 

another, necessary for the EPR reality criterion, Bell’s work forced a choice between abandoning 
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the empirical adequacy of quantum theory or abandoning the assumptions needed for the EPR 

criterion of reality. The mainstream of physics has chosen to abandon the latter. 45 

5.	  The	  Power	  of	  Platonism	  

 Most of the examples of the philosophy we have seen so far in Einstein’s work have 

empiricist, positivist or verificationist underpinnings. Hence we might conclude that Einstein’s 

commitments are to empiricist and verificationist principles. To some extent, that was been true. 

Yet, however strong these commitments may have been, they were subordinate to a deeper 

commitment. It was simple commitment to whatever ideology best led him to new theories. 

Hence, we should expect Einstein’s commitments to empiricism and related approaches to be 

negotiable and even dispensable. And they were. Platonism is anathema to an empiricist. Yet, in 

the episode to be recounted, Einstein quite gladly adopted a mathematical Platonism when he 

sensed that it might be a more fertile aid to him in generating new theories. 

 During the research that led up to his discovery of the general theory of relativity, 

Einstein reflected explicitly on the methods he was using.46 On the one side, he identified a 

physical approach. It took as the guide to new theories physical principles that were usually 

closely grounded in experience. They included the principle of relativity of his special theory and 

the principles of conservation of energy and momentum. The physical approach also gave special 

weight to limiting cases whose content is assured by physical reasoning. For weak gravitational 

fields, for example, his new theory had to replicate Newtonian theory. The purest embodiment of 

the physical approach came in the thought experiments for which Einstein was famous. In them, 

our physical sensibilities would direct us inexorably towards a particular outcome. 

 This approach was contrasted with a formal or mathematical approach. According to it, 

we are guided to new theories by the mathematical properties of the structures involved.  That 

transformations must form a group in the mathematical sense can be a powerful restriction. So 

also is the requirement of covariance, that the equations of the theory preserve their form in 

transformations among some stipulated range of spacetime coordinate systems. In this approach, 

mathematical theorems can reduce the viable theories to a very small selection. The purest 

embodiment of the approach is the use of formal naturalness and mathematical simplicity as a 

guide in theory selection. 
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 Einstein’s early inclinations had been strongly towards the physical approach, along with 

a discomfort and even distaste for the formal approach. This distaste is still evident in 1912 when 

he was turning to devote his attentions more fully the developing general theory of relativity. 

One episode reveals it clearly. A gravitation theory that competed with Einstein’s was 

formulated by Max Abraham by the simple expedient of transporting Newton’s theory of gravity 

in special relativity in the mathematically simplest way. Einstein immediately proclaimed his 

displeasure with the theory to his correspondents, denouncing it as “totally untenable,” “incorrect 

in every respect,” and more. Most revealing, however, was that he was prepared to condemn the 

theory precisely because it had followed the formal approach. “…the thing is probably wrong.” 

he wrote to Heinrich Zangger on 27 January 1912, “This what happens when one operates 

formally, without thinking physically.”47 

 After his move to Zurich in August of 1912, Einstein became embroiled in the new 

mathematical methods needed by his developing theory. With the assistance of a friend, the 

mathematician Marcel Grossmann, he began to learn the absolute differential calculus of Ricci 

and Levi-Civita (now called “tensor calculus”). As he developed his theory, Einstein continued 

to use his well-worked physical approach. However he could not ignore how the mathematical 

tools supplied by Grossmann offered certain natural structures from which to build his theory. 

Most importantly, it provided the Riemann curvature tensor as the structure that described the 

curvature of spacetime and from which the gravitational field equations should be built. 

 We are fortunate to have an intimate window onto Einstein’s deliberations at this crucial 

time in the development of general relativity. His research notes have survived in the form of the 

“Zurich Notebook.”48 In it we can trace his earliest efforts to relate gravity and spacetime 

curvature and their ultimate fate. Einstein’s expectation was that he could apply both approaches, 

physical and formal, and that they would agree. However, as his investigations proceeded, 

Einstein failed again and again to secure the agreement. Eventually he was forced to a choice: 

should he accept the results of the physical approach or those of the formal approach? Fatefully, 

Einstein chose in favor of the physical approach, abandoning general covariance. He struggled 

for nearly three more years with the resulting misshapen theory.49 

 Einstein’s return to general covariance became a matter of public record in November 

1915. Then he published four papers, one each week, with a series of proposals for gravitational 

field equations, based on the Riemann curvature tensor. It was a difficulty month, made all the 



 24 

more tense by the knowledge that David Hilbert in Goettingen, perhaps the greatest 

mathematician of the age, was in that same month working and publishing on the gravitational 

field equations of Einstein’s theory. The month closed with the greatest achievement of 

Einstein’s career. He completed the general theory of relativity and, in the process, received a 

welcome affirmation of its correctness. A jubilant Einstein found that his perfected theory could 

now account precisely for the anomalous motion of Mercury. 

 As that fateful month began, Einstein made no secret that his advances derived from a 

reversion to the mathematical or formal approach. In the first of the four papers, he reported:50 

I completely lost trust in the field equations I had chosen and looked for a way to 

restrict the possibilities in a natural manner. Thus I went back to the requirement of 

a more general covariance of the field equations, which I had left only with a heavy 

heart when I worked together with my friend Grossmann. In fact we had then 

already come quite close to the solution of the problem given in the following. 

Einstein makes a similar report to Sommerfeld in correspondence at the end that month:51 

Once all trust in the results and methods of the earlier theory had gone, I saw clearly 

that a satisfactory solution could only be found through a connection to the general 

theory of covariants, i.e. to Riemann's covariant. 

For our purposes, what is striking is just how willing a formerly scornful Einstein was to heap 

praise upon the fertility of the mathematical approach. He wrote in the first of the papers of 

November 1915:52 

Hardly anyone who has truly understood it can resist the charm of this theory; it 

signifies a real triumph of the method of the general differential calculus, founded 

by Gauss, Riemann, Christoffel, Ricci and Levi-Civita. 

 Einstein drew an important moral from this experience. Had he only taken the formal 

approach more seriously at the start, he would have spared himself much suffering. This moral 

entered into Einstein’s methods. His subsequent search for a unified field theory depended 

essentially on seeking the mathematically simplest equations. 

 By the time of Einstein’s 1933 Herbert Spenser lecture “On the Methods of Theoretical 

Physics,” Einstein’s (1933) advocacy of mathematical Platonism is explicit and powerful. There 

he wrote the following.53 
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Our experience hitherto justifies us in believing that nature is the realisation of the 

simplest conceivable mathematical ideas. I am convinced that we can discover by 

means of purely mathematical constructions the concepts and the laws connecting 

them with each other, which furnish the key to the understanding of natural 

phenomena. Experience may suggest the appropriate mathematical concepts, but 

they most certainly cannot be deduced from it. Experience remains, of course, the 

sole criterion of the physical utility of a mathematical construction. But the creative 

principle resides in mathematics. In a certain sense, therefore, I hold it true that pure 

thought can grasp reality, as the ancients dreamed. 

One should not mistake these words for the abstract musings of an armchair philosopher. They 

are the mature reflections of a philosophically sophisticated Einstein, reporting the methods that 

had worked in his earlier researches and that he hoped would lead him to his unified field theory. 

6.	  Conclusion	  

 Albert Einstein took philosophy seriously. He read it;  he wrote it; and he engaged in 

exchanges with the leading philosophers of his time. Most importantly, philosophical analysis 

was incorporated directly into his theorizing in physics. He was a physicist who could use the 

work “epistemological” in a physics paper. However Einstein was not a philosopher. His concern 

was physics and his allegiance was to whatever instrument would advance his theorizing. Hence, 

taken in isolation, Einstein’s philosophical commitments may appear capricious, changing at 

whim. But that is a short-sighted appraisal. It merely reflects that the Einstein who wrote 

philosophy was not a dogmatic philosopher who would defend his system come what may. 

Rather, it reflects an Einstein who used philosophy pragmatically for other purposes. 

 One might find this assessment of Einstein’s philosophical commitments slighting. 

However Einstein was quite self-aware and it is, I believe, his own assessment. Responding to 

critics later in life in early 1949, he wrote:54 

… no sooner has the epistemologist, who is seeking a clear system, fought his way 

through to such a system, than he is inclined to interpret the thought-content of 

science in the sense of his system and to reject whatever does not fit into his system. 

The scientist, however, cannot afford to carry his striving for epistemological 
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systematic that far. He accepts gratefully the epistemological conceptual analysis; 

but the external conditions, which are set for him by the facts of experience, do not 

permit him to let himself be too much restricted in the construction of his 

conceptual world by the adherence to an epistemological system. He therefore must 

appear to the systematic epistemologist as a type of unscrupulous opportunist: he 

appears as realist insofar as he seeks to describe a world independent of the acts of 

perception; as idealist insofar as he looks upon the concepts and theories as free 

inventions of the human spirit (not logically derivable from what is empirically 

given); as positivist insofar as he considers his concepts and theories justified only 

to the extent to which they furnish a logical representation of relations among 

sensory experiences. He may even appear as Platonist or Pythagorean insofar as he 

considers the viewpoint of logical simplicity as an indispensable and effective tool 

of his research. 
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