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Abstract

Euclid’s The Elements shows that a unique circle in R2 is determined by three noncollinear points. In [4]
it is shown that circles can be similarly determined in F2

q, the two-dimensional vector space over the finite field
Fq. More specifically, it is shown that three noncollinear points which have nonzero distance from each other
determine a unique circle of nonzero radius. In this paper, we extend this result to show that four noncoplanar
points in F3

q determine a unique sphere. However, unlike the two-dimensional case, ensuring the four points are
nonzero distance from each other does not guarantee that the sphere will have a nonzero radius.
Keywords: Finite fields, spheres

1 Introduction

We would like for any undergraduate student with a rea-
sonable mathematics background to be able to read this
paper. Therefore, as in [4], we provide the following basic
information which allows us to define a finite field. See [3]
to find more information about groups, rings, and fields,
see [5] for more details regarding vectors spaces and ma-
trix theory, and see [8] to find out more about lines and
planes in R3.

Before getting into the definitions, we should mention
that a similar result to Theorem 1.15 is proven in [7].
However, in this paper we go further by using zero lines
to show that choosing the four noncoplanar points to be
nonzero distance from each other is not sufficient to ob-
tain a nonzero radius sphere. Although the technique of
our proof is similar, we provide significantly more back-
ground, detail, and justification. Specifically, we prove
that the coefficient matrix of the system has a nonzero
determinant and find an explicit formula for the center of
the sphere. We begin with the following definition of a
group.

Definition 1.1. The set G defines a group with respect
to the binary operation ∗ if the following are satisfied:

1. G is closed under ∗.

2. ∗ is associative.

3. G has an identity element, e.

4. Every element of G has an inverse. For each a ∈ G,
there exists b ∈ G such that a ∗ b = b ∗ a = e.

Note that if ∗ on G is commutative, then G is called
an abelian group.

Definition 1.2. The set R defines a ring with respect to
addition and multiplication if the following are satisfied:

1. R forms an abelian group with respect to addition.

2. R is closed with respect to an associative multipli-
cation.

3. The following two distributive laws hold: x(y+z) =
xy + xz and (x + y)z = xz + yz.

In the case that multiplication in R is commutative,
then R is called a commutative ring.

Definition 1.3. The set F defines a field if the following
are satisfied:

1. F is a commutative ring.

2. F has a unity 1 6= 0 such that 1 · x = x · 1 = x for
all x ∈ F .

3. Every nonzero element of F has a multiplicative
inverse.

Every field is an integral domain, meaning that there
are no zero divisors [3]. Zero divisors are nonzero elements
of a ring which can be multiplied by another nonzero el-
ement to yield zero.
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Definition 1.4. A field that has a finite number of ele-
ments is called a finite field.

It is known that the order of every finite field is the
power of a prime [6]. In this paper, we use Fq to denote a
finite field with q elements where q = pl, p > 2 is a prime,
and l ∈ N. Note that since Fq is a finite integral domain,
the characteristic of the unity 1 is p [3]. In other words,
p is the least positive integer such that p · 1 = 0. Since
p > 2 it follows that 2 6= 0.

Throughout this paper, we will use the following no-
tation:

1. a
b will represent (a)(b−1), where b−1 is the multi-
plicative inverse of b.

2. a−b will represent a+(−b), where −b is the additive
inverse of b.

Definition 1.5. Let F be a field. A vector space is a set
V along with an addition on V and a scalar multiplication
on V such that the following properties hold (see [1]):

1. u + v = v + u for all u, v ∈ V .

2. (u + v) + w = u + (v + w) and (ab)v = a(bv) for all
u, v, w ∈ V and all a, b ∈ F.

3. There exists an element 0 ∈ V such that v + 0 = v
for all v ∈ V .

4. For every v ∈ V , there exists w ∈ V such that
v + w = 0.

5. 1v = v for all v ∈ V .

6. a(u + v) = au + av and (a + b)u = au + bu for all
a, b ∈ F and all u, v ∈ V .

In this paper we work exclusively in F3
q, the three-

dimensional vector space over the finite field Fq. Just as
R3 is the set of all ordered triples of real numbers, one
can think of F3

q as all ordered triples of elements of Fq,
that is, F3

q = {(x, y, z) : x, y, z ∈ Fq}.

Definition 1.6. The norm, or distance, between two
points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) where P1,
P2 ∈ F3

q, denoted ||P2 − P1||, is (x2 − x1)2 + (y2 − y1)2 +
(z2 − z1)2.

Note that in vector spaces over finite fields, it is pos-
sible for two distinct points to possess zero distance.

Example 1.7. Consider Z3
7, the three-dimensional vector

space over the finite field Z7. We use bar notation to de-
note the congruence classes, that is, Z7 = {0, 1, 2, 3, 4, 5, 6}.
In this particular field, modular arithmetic allows us to
demonstrate zero distance between the points (5, 6, 4) and
(2, 1, 3). Substituting these points into the norm equa-
tion, we get ||P2 − P1|| = (5− 2)2 + (6− 1)2 + (4− 3)2 =
9 + 25 + 1 = 35 = 0, since 35 ≡ 0 (mod 7).

Definition 1.8. As in R3, a line in F3
q is determined by a

point on the line and the direction of the line. We define
the line through (x0, y0, z0) parallel to 〈a, b, c〉 to be the
set of points {(x0 + at, y0 + bt, z0 + ct) : t ∈ Fq}.

Definition 1.9. A zero line is a line where each point
on the line is zero distance from all of the other points on
the line. See [4] for more details.

Definition 1.10. A plane in F3
q is represented by a point

(x0, y0, z0) on the plane and a vector ~n = 〈a, b, c〉 that is
normal to the plane, where a, b, c ∈ Fq. We can then write
the scalar equation of the plane as a(x−x0) + b(y−y0) +
c(z − z0) = 0 or equivalently ax + by + cz + d = 0 where
d = −ax0 − by0 − cz0.

Before getting into the linear algebra needed to prove
our main result, it is worth mentioning that although in-
troductory linear algebra courses usually use R or C as
the base field, essentially every result is independent of
the base field. In other words, we can use Fq as the
base field in place of R or C. In the next section we
demonstrate how standard linear algebra techniques such
as Gauss-Jordan elimination still work in this setting.

Definition 1.11. Let Mn×n(Fq) be the set of matrices
of size n × n whose entries belong to Fq. The n × n
identity matrix, In, is a matrix consisting of 1’s along the
main diagonal and 0’s elsewhere. The inverse of a matrix
A ∈ Mn×n(Fq), denoted A−1, is a matrix that satisfies
the equation AA−1 = A−1A = In. Such a matrix A is
also said to be invertible.

Definition 1.12. For n ≥ 2, the determinant of A ∈
Mn×n(Fq), denoted either as det (A) or |A|, is given by
the equation det (A) =

∑n
j=1(−1)i+jaij det (Aij), where

aij is the element in the ith row and jth column of matrix
A, and Aij is the submatrix obtained by deleting the ith
row and the jth column of A. In particular, the 2 × 2

determinant

∣∣∣∣a b
c d

∣∣∣∣ = ad − bc. A 3 × 3 determinant will

be calculated later as an exercise.

Theorem 1.13 (Invertible Matrix Theorem). If A ∈
Mn×n(Fq), then the following statements are equivalent:

1. A is an invertible matrix.

2. The equation A~x = ~b has a unique solution for every
n× 1 column matrix ~b.

3. The equation A~x = ~0 has only the trivial solution
where ~0 is the n× 1 zero matrix.

4. The determinant of A is not equal to zero.

See [5] for a statement and proof of Theorem 1.13 in
its entirety; for brevity we only list the conditions that
will be utilized within the proof of Theorem 1.15.
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Definition 1.14. A sphere in F3
q is defined as the set

of all points equidistant from its center. In particular,
a sphere centered at C of radius r is given by Sr(C) =
{P ∈ F3

q : ||C − P || = r}.
Figure 1 depicts a sphere of radius three over Z3

7 to
provide an example of what such a sphere would look like.

Figure 1: A sphere of radius three centered at (3, 3, 3)
over Z3

7. The origin (0, 0, 0) is not included the sphere,
the point is colored in this instance merely to indicate its
position for orientation purposes. Screenshot taken from
the video game Minecraft.

Our main result is the following.

Theorem 1.15. If P1, P2, P3, P4 ∈ F3
q are four distinct,

noncoplanar points, then they determine a unique sphere
in F3

q.

2 Exhibition of Linear Algebra
Techniques

As a demonstration that linear algebraic techniques con-
tinue to be applicable when the base field is a finite field,
we provide an example of Gauss-Jordan elimination find-
ing the inverse of a matrix. In the subsequent example,
we find the determinant of a 3× 3 matrix using cofactor
expansion.

Note 2.1. It is sufficient to use Zp in place of Fp as Zp

and Fp are isomorphic. See [6] for a proof of this fact.

Example 2.2. Let A ∈ M2×2(Z7), A =

[
1 3
1 2

]
where∣∣∣∣1 3

1 2

∣∣∣∣ = 1 · 2 − 3 · 1 = 6 6= 0. Since the determinant is

nonzero, by Theorem 1.13 we know there exists an inverse
A−1. To find the inverse using Gauss-Jordan elimination,
augment matrix A with I2 and row reduce:

[
1 3 1 0
1 2 0 1

]
−R1+R2→R2−−−−−−−−−→

[
1 3 1 0
0 6 6 1

]
6R2→R2−−−−−−→

[
1 3 1 0
0 1 1 6

]
−3R2+R1→R1−−−−−−−−−−→

[
1 0 5 3
0 1 1 6

]

This gives A−1 =

[
5 3
1 6

]
, which can be verified by check-

ing AA−1 =

[
1 3
1 2

]
·
[
5 3
1 6

]
=

[
1 0
0 1

]
= I2.

Example 2.3. To find the determinant of a 3×3 matrix,
multiply each entry of a row or column by its respective
cofactor matrix as follows:

det (A) =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= a1

∣∣∣∣b2 c2
b3 c3

∣∣∣∣− a2

∣∣∣∣b1 c1
b3 c3

∣∣∣∣+ a3

∣∣∣∣b1 c1
b2 c2

∣∣∣∣
= a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

= a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1.

In particular, for A =

1 3 4
2 3 1
3 3 1

 ∈ M3×3(Z5), we can

use the equation above to find the following determinant:

det (A) =(1 · 3 · 1)− (1 · 3 · 1)− (2 · 3 · 1)

+ (2 · 3 · 4) + (3 · 3 · 1)− (3 · 3 · 4)

=3− 3− 1 + 4 + 4− 1

=1

Note 2.4. Let A =

a1 b1 c1
a2 b2 c2
a3 b3 c3

. One application

of determinants is the following theorem found in [5] in
which the inverse of a matrix can be found by the follow-
ing equation:

A−1 =
1

det (A)
adj (A)

where adj (A) is the transpose of the cofactor matrix,
which is found by replacing each aij ∈ A with det (Aij).
By Theorem 1.13 we know that if A is invertible, then
det (A) 6= 0, so 1

det (A) is in fact defined. We can then find

the inverse as follows:
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A−1 =
1

det (A)
adj (A)

=
1

det (A)



+

∣∣∣∣b2 c2
b3 c3

∣∣∣∣ − ∣∣∣∣a2 c2
a3 c3

∣∣∣∣ +

∣∣∣∣a2 b2
a3 b3

∣∣∣∣
−
∣∣∣∣b1 c1
b3 c3

∣∣∣∣ +

∣∣∣∣a1 c1
a3 c3

∣∣∣∣ − ∣∣∣∣a1 b1
a3 b3

∣∣∣∣
+

∣∣∣∣b1 c1
b2 c2

∣∣∣∣ − ∣∣∣∣a1 c1
a2 c2

∣∣∣∣ +

∣∣∣∣a1 b1
a2 b2

∣∣∣∣



T

=
1

det (A)

+(b2c3 − b3c2) −(a2c3 − a3c2) +(a2b3 − a3b2)
−(b1c3 − b3c1) +(a1c3 − a3c1) −(a1b3 − a3b1)
+(b1c2 − b2c1) −(a1c2 − a2c1) +(a1b2 − a2b1)

T

=
1

det (A)

(b2c3 − b3c2) (a3c2 − a2c3) (a2b3 − a3b2)
(b3c1 − b1c3) (a1c3 − a3c1) (a3b1 − a1b3)
(b1c2 − b2c1) (a2c1 − a1c2) (a1b2 − a2b1)

T

=
1

det (A)

(b2c3 − b3c2) (b3c1 − b1c3) (b1c2 − b2c1)
(a3c2 − a2c3) (a1c3 − a3c1) (a2c1 − a1c2)
(a2b3 − a3b2) (a3b1 − a1b3) (a1b2 − a2b1)


Exercise 2.1. Gauss-Jordan elimination can be used to
find the inverse of any invertible n×n matrix. As an exer-

cise, use both methods to find A−1 where A =

9 4 2
2 5 6
1 3 4


is an element of M3×3(Z11). Verify that your answer is
correct by checking that A ·A−1 = I3.

3 Proof of Theorem 1.15

Let P1, P2, P3, P4 ∈ F3
q be four noncoplanar points. Say

P1 = (x1, y1, z1), P2 = (x2, y2, z2), P3 = (x3, y3, z3), and
P4 = (x4, y4, z4). As in [4], if P1, P2, P3, and P4 all lie
on the same sphere with center C = (x, y, z), then the
distance from P1 to C must be the same as the distance
from P2 to C and so on, which yields the following equa-
tions.

||P1 − C|| = ||P2 − C||
=⇒ (x1 − x)2 + (y1 − y)2 + (z1 − z)2 = (x2 − x)2 + (y2 − y)2 + (z2 − z)2

=⇒ x2
1 − 2xx1 + x2 + y21 − 2yy1 + y2 + z21 − 2zz1 + z2 = x2

2 − 2xx2 + x2+

y22 − 2yy2 + y2 + z22 − 2zz2 + z2

=⇒ x2
1 − 2xx1 + y21 − 2yy1 + z21 − 2zz1 = x2

2 − 2xx2 + y22 − 2yy2 + z22 − 2zz2

=⇒ 2x(x1 − x2) + 2y(y1 − y2) + 2z(z1 − z2) = x2
1 − x2

2 + y21 − y22 + z21 − z22

=⇒ x(x1 − x2) + y(y1 − y2) + z(z1 − z2) =
1

2
(x2

1 − x2
2 + y21 − y22 + z21 − z22).

Note that this is an equation of a plane. Similarly,

||P2 − C|| = ||P3 − C||

=⇒ x(x2 − x3) + y(y2 − y3) + z(z2 − z3) =
1

2
(x2

2 − x2
3 + y22 − y23 + z22 − z23).

||P3 − C|| = ||P4 − C||

=⇒ x(x3 − x4) + y(y3 − y4) + z(z3 − z4) =
1

2
(x2

3 − x2
4 + y23 − y24 + z23 − z24).

We have the following system of equations:
x(x1 − x2) + y(y1 − y2) + z(z1 − z2) = 1

2 (x2
1 − x2

2 + y21 − y22 + z21 − z22)

x(x2 − x3) + y(y2 − y3) + z(z2 − z3) = 1
2 (x2

2 − x2
3 + y22 − y23 + z22 − z23)

x(x3 − x4) + y(y3 − y4) + z(z3 − z4) = 1
2 (x2

3 − x2
4 + y23 − y24 + z23 − z24).

In [4], basic algebra (Substitution Method) was used
to solve the analogous system in two dimensions. How-
ever, the algebra quickly becomes overwhelming in this
scenario. Therefore, we use linear algebra theory to solve
it. This system can be written as a matrix equation in
the form A~x = ~b:(x1 − x2) (y1 − y2) (z1 − z2)

(x2 − x3) (y2 − y3) (z2 − z3)
(x3 − x4) (y3 − y4) (z3 − z4)

 ·
xy
z

 =

 1
2 (x2

1 − x2
2 + y21 − y22 + z21 − z22)

1
2 (x2

2 − x2
3 + y22 − y23 + z22 − z23)

1
2 (x2

3 − x2
4 + y23 − y24 + z23 − z24)

.

To guarantee that this system has a unique solution,
by Theorem 1.13 it suffices to show that

det (A) =

∣∣∣∣∣∣
(x1 − x2) (y1 − y2) (z1 − z2)
(x2 − x3) (y2 − y3) (z2 − z3)
(x3 − x4) (y3 − y4) (z3 − z4)

∣∣∣∣∣∣ 6= 0.

Remark 3.1. In R3, this determinant represents the scalar
triple product of the vectors 〈x1 − x2, y1 − y2, z1 − z2〉,
〈x2−x3, y2−y3, z2−z3〉, and 〈x3−x4, y3−y4, z3−z4〉 [8].
The absolute value of the scalar triple product represents
the volume of the parallelepiped determined by the vec-
tors. So, if we were in R3 we would be finished due to the
three vectors being noncoplanar, thus producing a paral-
lelepiped with volume greater than zero. (Note that if the
vectors 〈x1−x2, y1−y2, z1−z2〉, 〈x2−x3, y2−y3, z2−z3〉,
and 〈x3−x4, y3−y4, z3−z4〉 lie in the same plane, then in
particular the head and tail of each vector lie in the plane
which would imply that P1, P2, P3, and P4 are coplanar.)
However, in F3

q we have several issues to contend with.
First, we are uncertain if we have a notion of volume of
a parallelepiped. Second, since finite fields are unordered
we would not be able to argue that the volume obtained
here is greater than zero. Thus, the following argument
is required.

Observe that by using row and column operations that
preserve the determinant, we get:

det (A) =

∣∣∣∣∣∣
(x1 − x2) (y1 − y2) (z1 − z2)
(x2 − x3) (y2 − y3) (z2 − z3)
(x3 − x4) (y3 − y4) (z3 − z4)

∣∣∣∣∣∣
R2+R3→R2−−−−−−−−→

∣∣∣∣∣∣
(x1 − x2) (y1 − y2) (z1 − z2)
(x2 − x4) (y2 − y4) (z2 − z4)
(x3 − x4) (y3 − y4) (z3 − z4)

∣∣∣∣∣∣
R1+R2→R1−−−−−−−−→

∣∣∣∣∣∣
(x1 − x4) (y1 − y4) (z1 − z4)
(x2 − x4) (y2 − y4) (z2 − z4)
(x3 − x4) (y3 − y4) (z3 − z4)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(x1 − x4) (y1 − y4) (z1 − z4) 1
(x2 − x4) (y2 − y4) (z2 − z4) 1
(x3 − x4) (y3 − y4) (z3 − z4) 1

0 0 0 1

∣∣∣∣∣∣∣∣
C1+x4C4→C1−−−−−−−−−→
C2+x4C4→C2−−−−−−−−−→
C3+x4C4→C3−−−−−−−−−→

∣∣∣∣∣∣∣∣
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣ .
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Let B be the matrix obtained in the final step above.
We have reduced the problem to showing that det (B) 6=
0. For a contradiction, assume det (B) = 0 and con-

sider the system


x1a + y1b + z1c + d = 0

x2a + y2b + z2c + d = 0

x3a + y3b + z3c + d = 0

x4a + y4b + z4c + d = 0

which can be rep-

resented by the matrix equation B ·
[
a
b
c
d

]
=

[
0
0
0
0

]
. Since

det (B) = 0 it follows from Theorem 1.13 that there exists
a nontrivial solution, say a = a0, b = b0, c = c0, d = d0
where a, b, and c are not all zero. Then a0x + b0y +
c0z + d0 = 0 is an equation for the plane satisfied by
P1, P2, P3, andP4, a contradiction to the fact that the four
points are noncoplanar. Thus, det (B) = det (A) 6= 0
which implies A is invertible.

We now can take the inverse of A to solve for the
center ~x. For ease of notation, let

A =

(x1 − x2) (y1 − y2) (z1 − z2)
(x2 − x3) (y2 − y3) (z2 − z3)
(x3 − x4) (y3 − y4) (z3 − z4)

 =

a1 b1 c1
a2 b2 c2
a3 b3 c3


and

~b =

 1
2 (x2

1 − x2
2 + y21 − y22 + z21 − z22)

1
2 (x2

2 − x2
3 + y22 − y23 + z22 − z23)

1
2 (x2

3 − x2
4 + y23 − y24 + z23 − z24)

 =

 1
2`
1
2m
1
2n

 .

We have A~x = ~b which implies ~x = A−1~b. Thus,

xy
z

 =

a1 b1 c1
a2 b2 c2
a3 b3 c3

−1 ·
 1

2`
1
2m
1
2n


=

1

det (A)
·

b2c3 − b3c2 b3c1 − b1c3 b1c2 − b2c1
a3c2 − a2c3 a1c3 − a3c1 a1c2 − a2c1
a2b3 − a3b2 a3b1 − a3b1 a1b2 − a2b1

 ·
 `
m
n

 · 1

2

=
1

2 det (A)
·

b2c3 − b3c2 b3c1 − b1c3 b1c2 − b2c1
a3c2 − a2c3 a1c3 − a3c1 a1c2 − a2c1
a2b3 − a3b2 a3b1 − a3b1 a1b2 − a2b1

 ·
 `
m
n


=

1

2 det (A)
·

 (b2c3 − b3c2)(`) + (b3c1 − b1c3)(m) + (b1c2 − b2c1)(n)
(a3c2 − a2c3)(`) + (a1c3 − a3c1)(m) + (a1c2 − a2c1)(n)
(a2b3 − a3b2)(`) + (a3b1 − a3b1)(m) + (a1b2 − a2b1)(n)


Since det (A) is nonzero, this expression is well defined.
We now have the coordinates for the center of a unique
sphere from four distinct, noncoplanar points, which con-
cludes our proof.

4 Zero Radius Counterexample

In [4] it was shown that three noncollinear points that are
pairwise nonzero distance apart are sufficient to define a
circle with nonzero radius. The crux of the argument is
that in F2

q there are either no zero lines or exactly two
zero lines through a given point. Thus, if the three non-
collinear points are all zero distance from the center C
and there are at most two zero lines through C, it follows
from the pigeon hole principle that at least two of the
three points must lie on the same line, contradicting the
hypothesis that they are noncollinear.

We originally conjectured that an analogous state-
ment would be true for spheres. Namely, we conjectured
that if P1, P2, P3, P4 ∈ F3

q are four distinct, noncoplanar
points that are pairwise nonzero distance apart, then they
determine a unique sphere in F3

q of nonzero radius. How-
ever, unlike the two dimensional case, it can be shown
that there exist more than two zero lines in F3

q, so the
pigeon hole principle is insufficient in this instance. We
now present a counter example to this conjecture.

The following is a list of all eight zero lines in Z3
7

passing through the origin. It is straightforward to check
that all of the points on the given lines are zero distance
from each other. Figure 2 depicts `1 in Z3

7.

`1 = {(1t, 2t, 3t) : t ∈ Z7}, `2 = {(1t, 2t, 4t) : t ∈ Z7}
`3 = {(1t, 3t, 2t) : t ∈ Z7}, `4 = {(1t, 3t, 5t) : t ∈ Z7}
`5 = {(1t, 4t, 2t) : t ∈ Z7}, `6 = {(1t, 4t, 5t) : t ∈ Z7}
`7 = {(1t, 5t, 3t) : t ∈ Z7}, `8 = {(1t, 5t, 4t) : t ∈ Z7}

Figure 2: Zero line `1 = {(1t, 2t, 3t) : t ∈ Z7}. Screenshot
taken from the video game Minecraft.

Choose four noncoplanar points that are pairwise nonzero
distance apart that lie on separate zero lines from the ori-
gin. Select P1 = (1, 2, 3) , P2 = (2, 3, 1), P3 = (3, 1, 2),
and P4 = (1, 2, 4). Note that P1 ∈ `1, P2 ∈ `8, P3 ∈ `7
and P4 ∈ `2. We shall first verify the points are nonzero
distance from each other:
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||P1 − P2|| = (1− 2)2 + (2− 3)2 + (3− 1)2 = 6

||P1 − P3|| = (1− 3)2 + (2− 1)2 + (3− 2)2 = 6

||P1 − P4|| = (1− 1)2 + (2− 2)2 + (3− 4)2 = 1

||P2 − P3|| = (2− 3)2 + (3− 1)2 + (1− 2)2 = 6

||P2 − P4|| = (2− 1)2 + (3− 2)2 + (1− 4)2 = 4

||P3 − P4|| = (3− 1)2 + (1− 2)2 + (2− 4)2 = 2

To show the points are noncoplanar, construct a plane
containing P1, P2, and P3 and show P4 is not contained
on the plane. We must first construct a normal vector to
the plane, ~n:

~a = P2 − P1 = (1, 1, 5)

~b = P3 − P2 = (1, 5, 1)

~n = ~a×~b

=

∣∣∣∣∣∣
i j k
1 1 5
1 5 1

∣∣∣∣∣∣
= i(1− 25)− j(1− 5) + k(5− 1)

= 4i + 4j + 4k

Now, using P1 we get the equation of the plane to be
4(x− 1) + 4(y− 2) + 4(z− 3) = 0 or 4x+ 4y + 4z + 4 = 0.
To see that P4 is not contained in the plane, observe that
4(1) + 4(2) + 4(4) + 4 = 4 + 1 + 2 + 4 = 4 6= 0. Thus,
P1, P2, P3 and P4 are noncoplanar.

However, C = (0, 0, 0) satisfies ||P1 − C|| = ||P2 −
C|| = ||P3 − C|| = ||P4 − C|| = 0 which shows that C is
the center of the sphere of radius 0 containing the points
P1, P2, P3 and P4. Figure 3 depicts a representation of
this particular sphere in Z3

7.
Therefore, four noncoplanar points that are nonzero

distance apart is not sufficient to guarantee a sphere with
nonzero radius.

5 Conclusion and Further
Research

We have shown that in F3
q, four distinct, noncoplanar

points pairwise nonzero distance apart determine a unique
sphere. Extending this finding into higher dimensions
would be the first logical next step in this topic of re-
search, as well as finding novel methods of representing
these spheres. An exploration of zero lines in general is
also warranted as little is known about their properties
outside their defining characteristic. Specifically, the re-
searchers would like to examine the cardinality of zero
lines in Fn

q , as well as determining the conditions of their
existence in lower dimensions.

Figure 3: A sphere of radius zero centered at (0, 0, 0) in
Z3
7. Notice in this case the center is in fact included as a

part of the sphere. Screenshot taken from the video game
Minecraft.
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