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Non-trivial calculi of inductive inference are incomplete. This 

result is demonstrated formally elsewhere (Norton, manuscript). 

Here the significance and background to the result is described. 

This note explains what is meant by incompleteness, why it is 

desirable, if only it could be secured, and it gives some indication 

of the arguments needed to establish its failure. The discussion will 

be informal, using illustrative examples rather than general results. 

Technical details and general proofs are presented in Norton 

(manuscript). 

Introduction	
  
 The first part of this paper describes what it would be for a calculus of inductive 

inference to be complete, using the illustration of the Bayesian analysis of simplicity; and it 

explains why the completeness is desirable, if only it could be secured. In brief, completeness is 

achieved when computations in the calculus are carried out in a domain sufficiently large so that 

the computations do not need to call upon inductive content that is external to the domain. 
                                                
1 I am grateful for helpful discussion especially to Wayne Myrvold and to Yann Benétreau-

Dupin and the Fellows of the Center for Philosophy of Science, Spring Term, 2015, who urged 

me to write this introductory account. 
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Completeness would allow us to characterize inductive inference merely as inference that 

conforms to the calculus at issue. This characterization would provide a clear and simple solution 

to the enduring foundational problems of inductive inference. All such problems would be 

reduced to questions answerable by computation in the calculus. 

 This attractive solution to the foundational problems fails. Non-trivial calculi of inductive 

inference are incomplete. These incomplete calculi include many more than just the probability 

calculus.  This incompleteness explains why particular calculi of inductive inference are beset by 

lingering difficulties. The Bayesian system is perpetually struggling to overcome the problem of 

the priors. Augmented calculi are repeatedly proposed to solve problems in older calculi, while 

none manages without its own, new problems. All these problems arise because we are really 

trying to formulate a complete calculus of inductive inference. That they must linger unsolved 

does not derive from a failure of our imagination to hit upon just the right solution. It is a 

necessity derived from incompleteness. 

 The second part of this paper will provide a simplified guide to the full proof of this 

failure, given elsewhere. Here is a terse summary of the main result that will be introduced and 

explained in greater detail in this paper. The incompleteness arises from the combination of two 

desirable properties of calculi of inductive inference. 

 The first property is an expression of completeness: we can find a sufficiently large set of 

propositions in which the inductive strengths of support are fixed by relations in the set, without 

the need to import any inductive content from outside it. Since the only other inferential 

resources within the set are the deductive relations among the propositions, this amounts to 

requiring that the inductive strengths of support are fixed by the deductive relations among the 

propositions in the set. This requirement is unremarkable. The Kolmogorov axioms of 

probability theory are a routine part of such a specification. These axioms adapt the probabilities 

to the deductive structure. They need only a small supplement to fix the probabilities uniquely. 

 The second property involves disjunctive refinements of propositions. Through them we 

replace a proposition 

“Person X is in Boston.” 

by a disjunction of its disjunctive parts: 

“Person X is in Boston-location-1 or Person X is in Boston-location-2 or 

… or Person X is in Boston-location-r.” 
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Such disjunctive refinement increases the expressive power of the set of propositions and leads 

to adjustments of the inductive strengths of support. The requirement of asymptotic stability 

asserts that continuing disjunctive refinement eventually provides such diminished further power 

that the inductive strengths of support among some fixed set of propositions stabilize to limiting 

values. Further refinement eventually becomes inert, inductive hair-splitting. 

 The failure of the completeness resides in the impossibility of sustaining both properties.2 

In briefest terms, the deductive closure of any set of propositions is highly symmetric. Each of 

the non-contradictory, logically strongest propositions—the “atoms”—enter into the same 

deductive relations. As a result, a deductively definable logic of induction must treat them alike. 

Each new disjunctive refinement will alter the atoms and, as a result, the inductive strengths 

throughout the set. It turns out that a deductively definable logic of induction will continue to 

respond without stabilization to suitably crafted, continuing disjunctive refinements, unless it is a 

trivial logic that assigns the same limiting inductive strengths everywhere. 

 One might be tempted by an obvious rejoinder: if continuing refinement causes 

continuing problems, stop refining! Declare one specific refinement as preferred; or declare that 

its propositions comprise a preferred language. That resolves the problem. But the decision of 

when to stop or which is the preferred language must be made on external, inductive grounds. It 

privileges certain propositions and thus amounts to the introduction of external inductive content, 

in violation of the requirement of completeness. 

 The third part of this paper takes stock and reviews possible responses. 

PART	
  I.	
  The	
  Ideal	
  of	
  Completeness	
  

The	
  Many	
  Problems	
  of	
  Induction	
  
 Philosophical accounts of inductive inference are not in good shape. Simple enumerative 

induction fails more than it succeeds. It is almost never the case that, when some As are B, it also 

happens that all As are B. Other approaches embroil us in larger philosophical puzzles with little 
                                                
2 The proof strategy is an extension of the familiar problems introduced by the principle of 

indifference probabilistic logic. See Norton (2008) for discussion. 
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hope of resolution. Infer to the best explanation, we are told. But we are offered no precise 

characterization of just what is a good explanation or why explaining, whatever it is, has such 

evidential powers. Ad hoc hypotheses do not deserve evidential support, we are told.  But we are 

left to wonder why an hypothesis is punished for being tailored to fit the evidence. Is not that sort 

of fit just what we seek? Finally, to mention an example that will return below, evidence favors 

simpler hypotheses, we are told. But we have no serviceable characterization of what makes an 

hypothesis simpler or why such hypotheses should be favored. 

 These are just the beginnings of the difficulties. Over the centuries, inductive inference has 

attracted a fulsome collection of general problems that threaten the very cogency of this form of 

inference. We have Hume’s problem, Hempel’s raven, Goodman’s grue and Quine’s 

underdetermination. The difficulties are so enduring that mere mention of induction calls 

philosophical pain to mind. 

Calculating	
  Mechanically	
  
 The tenacity of these problems stands in striking contrast with deductive inference. While 

there are always complications at the fringes, the core is stable to the point of tedium. Modus 

ponens is a valid argument. Affirming the consequent is a fallacy. These facts of logic leave no 

room for doubt or debate. We separate the valid from the invalid deductive inferences merely by 

checking whether the argument form used is one of the approved argument forms in a logic 

textbook. The exercise is reminiscent of making travel plans by checking a train timetable. 

 In this regard, deductive logic is more like arithmetic than inductive inference. It is an 

uncontested, particular fact of arithmetic that 7,919 is the thousandth prime number; and it is 

merely a matter of tedious computation using standard algorithms to check it. More general facts 

have a similar security. That there are infinitely many prime numbers is proved by a theorem 

known since the time of Euclid. Anyone who doubts the infinity of the primes can consult the 

proof and, by working through its steps, receive all the assurance a reasonable person could 

require. 

A	
  Calculus	
  for	
  Inductive	
  Inference?	
  
 Might the problems of inductive inference be resolvable in a similar way? Might the 
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puzzles of induction be converted into queries that can be put to and answered by mechanical 

computation in some suitable calculus? The presently most popular approach to inductive 

inference, the Bayesian approach, holds out the promise of such a solution. The approach is 

based on the supposition that inductive support or warranted belief is captured by the 

mathematical calculus of probabilities. Much of Bayesian analysis is the tedious working of 

proofs in the calculus. The strength of inductive support provided by some item of evidence for 

some hypothesis is computed numerically as a conditional probability. General facts about 

inductive inference are established as theorems of the probability calculus, much as Euclid 

proved the infinity of the primes. In each case, we have the comforting assurance that, one way 

or another, a computation will provide a precise answer to our question. 

A	
  Bayesian	
  Analysis	
  of	
  Simplicity	
  
 Here is an illustration of such a computation. A familiar principle is that evidence favors a 

simpler hypothesis. For example, when we fit a curve to data, we may find a good enough fit 

from the hypothesis of a straight line and a slightly better fit from a parabola. We are routinely 

willing to forgo a slightly better fit by a parabola for the lesser fit of straight line, because we 

prefer to use the simpler hypothesis. 

 This preference for the simpler can be vindicated in Bayesian analysis. The key to it is that 

there are fewer of the simpler hypotheses. A straight line—“y=ax+b”—is fixed by just two 

adjustable parameters, a and b. A parabola—“y=ax2+bx+c”—is fixed by three parameters, a, b 

and c. Hence there are many more of the more complicated hypotheses. The straight line 

hypotheses form a two dimensional space. The parabolic hypotheses form a three dimensional 

space. 

 A still simpler example uses this fact and will suffice to get to the key point. Imagine that 

we have to choose between a simple hypothesis and a more complicated one. Let us say that the 

simple hypotheses is drawn from a ten-membered set {Hsim1, Hsim2, … , Hsim10} of hypotheses 

of comparable simplicity. The complicated hypothesis is drawn from a much larger, one-

hundred-membered set {Hcom1, Hcom2, … , Hcom100} of hypotheses of comparable 

complication. We shall assign equal prior probability to each set: 

P({Hsim1, Hsim2, … , Hsim10}) = P({Hcom1, Hcom2, … , Hcom100})                    (1) 



 6 

where conditionalization on a background Ω is supposed but not represented. We then spread the 

probability uniformly within each set. Since the second set has ten times as many members as the 

first, the prior probability of any of individual simple hypothesis Hsim i is ten times as great as 

the prior probability of any of the complicated hypotheses Hcom k. 

€ 

P(Hsim  i )
P(Hcom  k )

=10                                                                      (2) 

Let us say that the two hypotheses Hsim i and Hcom k fit roughly equally well with the evidence. 

That is, the supposition of each makes the evidence E roughly equally probable: 

P(E|Hsim i) ≈ P(E|Hcom k) 

so that the ratio of likelihoods P(E|Hsim i) / P(E|Hcom k) ≈ 1. The relative strength of support 

from the evidence and background together for the hypotheses is expressed by the ratio of 

posterior probabilities P(Hsim i|E) / P(Hcom k|E). It can be calculated with the ratio form of 

Bayes’ theorem: 

€ 

P(Hsim  i | E)
P(Hcom  k | E)

=
P(E | Hsim  i )
P(E | Hcom  k )

⋅
P(Hsim  i )
P(Hcom  k )

 

Since the likelihood ratio is approximately one, the ratio of the priors (2) is the deciding factor 

that gives a large boost to the probability of the simpler hypotheses: 

€ 

P(Hsim  i | E)
P(Hcom  k | E)

≈
P(Hsim  i )
P(Hcom  k )

=10                                                    (3) 

In brief, since there are fewer simpler hypotheses, a natural spreading of prior probabilities (1) 

can assign higher prior probability to the simpler hypotheses. When the evidence is equivocal in 

choosing among the hypothesis, this higher prior probability gives the simpler hypothesis the 

decisive advantage. 

 While this captures the essentials of the Bayesian analysis, more realistic cases are messier. 

There are almost always infinitely many hypotheses grouped into one complexity class and then, 

in addition, infinitely many such classes. Simply counting hypotheses no longer works. More 

sophisticated analyses are needed, while the essentials remain the same. Jeffreys (1961, p. 47) 

measures the complexity of classes of curves by the sum of the order, the degree and the absolute 

values of the coefficients of a suitably reduced differential equation that governs the curves. 

Solomonoff (1964) measures complexity as algorithmic complexity; that is, the measure is the 

size of the smallest universal Turing machine program needed to generate the hypothesis. They 
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both then exponentially penalize the prior probability of each complexity class so that the 

probabilities can sum to unity. 

External	
  Inductive	
  Content	
  
 In many examples like this, Bayesian analysis has been able to reduce an inductive puzzle 

to a computation in the probability calculus. In each case, however, it turns out that the analysis 

is not self-contained. Each requires supplement by external inductive content. That is, the 

computation depends on direct or indirect specification of inductive strengths of support by 

considerations external to the computation. 

 Take the case of the analysis of simplicity above. We assigned equal probability to the two 

complexity classes in (1) and then spread the assigned probability uniformly within each class. 

The outcome was that each of the simpler hypotheses was assigned a greater prior probability; 

and this was key to the whole analysis. Yet nothing within the probabilistic computation forced 

this assignment. We could merely have assigned the same prior probability to each hypothesis 

individually 

P(Hsim1) = P(Hsim2) = … = P(Hsim10}) 

= P(Hcom1) = P(Hcom2) =  … =P(Hcom100)                              (1’) 

This alternative assignment would have defeated the analysis. For then, instead of (2), we would 

have had: 

€ 

P(Hsim  i )
P(Hcom  k )

=1                                                                     (2’) 

and the simpler hypothesis would have received no probabilistic boost: 

€ 

P(Hsim  i | E)
P(Hcom  k | E)

≈
P(Hsim  i )
P(Hcom  k )

=1                                                       (3’) 

 The point is not that the assignment of (1) is unjustifiable. One could certainly conceive 

circumstances in which we would be warranted in assigning a higher prior probability to a 

simpler hypothesis. And we could conceive others in which this might not be so. 

 The point is that the assignment of (1) is provided externally to the probabilistic 

computation that takes us from (1) to the main result (3). This means that the recovery of the 

result (3) by the computation is not inductively self-contained. Essential inductive content is 

provided from an external source. To preclude confusion, by “inductive content” I mean merely 
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the assignments of probability in (1) or (1’). 

The	
  Ideal	
  of	
  Completeness	
  
 A natural response to the presence of the external inductive content in the Bayesian 

analysis of simplicity is that we have set our boundaries too narrowly. That the simpler 

hypotheses ought to be assigned a higher prior probability is something that can in turn be 

learned inductively. In Jeffreys’ analysis of simplicity, we are to assume that nature favors 

curves drawn from the simpler of his complexity classes. In Solomonoff’s analysis, we are to 

assume that nature favors hypotheses that are algorithmically simpler. Neither of these are a 

priori truths. They are contingent facts about the world. Ascertaining their truth is a matter of 

further inductive investigation. If we extend the boundaries of our computation, we would hope 

to capture those considerations as well. 

 What if those considerations in turn depend upon further external inductive content? We 

would then extend our boundaries still further. Let us suppose that it is possible to extend the 

boundary of the computational domain so far that no external inductive content is needed. What  

would result is an account of all the relations of inductive support within the domain that is fully 

contained in a single, enormous computation in the probability calculus. 

 While such an enormous computation would surely outstrip any human powers of 

comprehension, its possibility in principle is of profound foundational importance. It would 

mean that the probability calculus is all we need for a full understanding of inductive inference 

within a suitably large domain. 

 All particular facts of inductive support within that domain would be expressible by 

particular probabilistic relations among its propositions. That the straight-line hypothesis is better 

supported by the evidence would be expressed by its greater probability; and so on for every 

other particular fact of inductive support.  

 The same would be true for general facts about inductive inference. Every general fact 

could, in principle, be captured by some general theorem within this huge computation. If, for 

example, simpler hypotheses are favored evidentially in this domain, that general fact would be 

captured by a theorem. It would assert that the prior probabilities of hypotheses in simpler 

classes must, in general, be higher, as in (1). All this, at both the level of the particular and the 
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general, could be known without drawing upon any inductive content from outside the domain. 

The analysis would be self-contained. 

Its	
  Failure	
  
 What is shown in Norton (manuscript) and will be reviewed below is that this ideal of 

completeness is unattainable. A very large class of possible calculi that likely includes any 

calculus one might realistically consider, proves unable to support this ideal of completeness. 

This failure is profound foundationally. It tells us something important about the nature of 

inductive inference itself: it cannot be fully characterized merely by a calculus. 

 To get a sense of this import, it is helpful to compare it with the familiar incompleteness of 

arithmetic. It was once quite reasonable to expect that all the truths of arithmetic could be 

captured by a few axioms. For example, Peano’s axioms lay down a few simple properties of 

natural numbers: 1 is a number; every number has a unique successor; and so on. We would hope 

that we could identify all of arithmetic with all the truths that can be deduced from these axioms. 

 Famously, Gödel demonstrated that no finite axiom system can capture all arithmetic truths 

in this way. The truths of arithmetic are something more than what can be deduced from any 

fixed, finite system of axioms. We may, of course, be able to derive very many important and 

interesting arithmetic truths from our favorite axiom system. However, no matter which finite 

axiom system we favor, there will always be arithmetic truths that are external to its theorems. 

 I hesitate to draw a comparison with Gödel’s result, for his result is profound and his 

methods extraordinarily ingenious. The corresponding methods for inductive calculi are simple 

and mechanical and the result rather banal. But the significance of the result for inductive logic is 

comparable. 

 We may have a favored calculus for inductive inference and be able to infer many 

important and useful results within it. We might then seek to characterize inductive inference 

merely as inference that conforms with some specific calculus, such as the probability calculus. 

The incompleteness tells us that characterization fails. There is always more to inductive support 

than can be captured by the calculus. Searching for theorems within a favored calculus can only 

ever return a partial understanding. Inductive inference cannot be reduced to inference that 

conforms with some favored calculus. 
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PART	
  II.	
  Demonstrating	
  the	
  Failure	
  

Deductive	
  Structure	
  
 How is the incompleteness demonstrated? The first step is to fix the environment in 

which the inductive logic is applied. We take a fixed set of propositions 

{A1, A2, … , Am}. 

and our concern will be to determine the inductive relations prevailing among these propositions. 

This set is intended to be not just large, but very large. It might be all the hypotheses entertained 

in science, all the evidence statements that may support them and every other proposition that in 

some way mediates between them. That set—all the propositions we have entertained in 

science—will be large. But it will still be finite. For there have only been finitely many scientists 

and, given some finite limit of the length of sentences, only finitely many propositions 

expressible. 

 These propositions come with a deductive structure. That structure is just the set of all 

deductive entailment relations among the m propositions. It may turn out, for example, that 

A1235 deductively entails A441; or that A57 and A103 logically incompatible, so that their 

conjunction entails the contradiction ∅. The deductive structure is the totality of these deductive 

relations. 

 It will be essential for what follows to see that this structure is highly symmetric. That 

symmetry is harder to see if we consider merely the propositions A1, A2, … , Am by themselves. 

Rather we take the larger set of propositions generated by Boolean operations; that is, by taking 

all negations (“not” ~), disjunctions (“or” v) and conjunctions (“and” &) of the propositions. The 

set of sentences that results is infinite. However the set of logically distinct propositions is not. 

The set contains many logically equivalent sentences. The sentence A1, for example, is logically 

equivalent to all of ~~ A1, ~~~~ A1, A1v A1, A1& (A2v~ A2), etc. 

A	
  Boolean	
  Algebra	
  of	
  Propositions	
  
 The deductive structure, with all these duplications eliminated, is best characterized by 

identifying its “atoms.” These are the logically strongest (non-contradictory) propositions. A 
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finite set of propositions can support only finitely many atoms. Take the simple case of two 

propositions in the set {A,B}, where we assume they are logically compatible and do not exhaust 

the space. Then there are four distinct atoms: 

a1 = A&B   a2 = A&~B   a3 = ~A&B   a4 = ~A&~B 

The proposition a1 is an atom since nothing (other than the contradiction ∅) entails it.  

 These four atoms generate a four-atom Boolean algebra of finitely many propositions, 

which has five distinct logical levels 

the universal proposition: Ω4 = a1 v a2 v a3 v a4 

three-atom disjunctions: a1 v a2 v a3,   a1 v a2 v a4,   a1 v a3 v a4,   a2 v a3 v a4 

two-atom disjunctions: a1 v a2,   a1 v a3,   a1 v a4,   a2 v a3,   a2 v a4,   a3 v a4 

atoms: a1, a2, a3, a4 

the contradiction: ∅ 

The original propositions A and B reside within this Boolean algebra as A = a1 v a2 and B = a1 v 

a3. Figure 1 is a picture of the algebra, showing the distinct levels. The arrows represent 

deductive entailment. 

Ø

Ω

a1

a1va2va3

a2va3

a1va2

a1va3

a1va3va4a1va2va4

a2va4

a1va4

a2va3va4

a3va4

a2 a3

a4

 
Figure 1. A Four-Atom Boolean Algebra 
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Symmetries	
  of	
  Deductive	
  Structure	
  
 A Boolean algebra is a highly symmetric structure. Informally speaking, each level is 

homogeneous. That is, the entire algebra “looks the same” from any proposition we pick in the 

level. For example, take the two-atom disjunction level of the four-atom algebra. Each 

disjunction in it is entailed by two atoms; and each disjunction in the two-atom layer in turn 

entails just two three-atom disjunctions. The only change, as we move around within one of the 

levels is the labeling of the atoms that appear in the deductive entailments. 

 When there are very many atoms in the algebra, the basic structure remains the same. 

There are now, however, many more levels: the one-atom level, the two-atom level, the three-

atom level, and so on for very many more levels. As before, each level in the algebra is 

homogenous. That is, the algebra looks the same, as far as deductive relations are concerned, 

from each proposition in the same level. 

 More formally, this symmetry is expressed as a labeling invariance. That is, the total 

deductive structure is unchanged if we permute the labels attached to the atoms. Take the four 

atoms 

a1, a2, a3, a4 

and permute their labels any way you please. You might just switch the first two, so that the 

atoms are now labeled 

a2, a1, a3, a4 

Or you might cyclically permute them to  

a2, a3, a4, a1 

In both cases, propagate the labeling change through the remainder of the algebra. For these 

permutations and for any others, the total deductive structure will remain unchanged. If a1 entails 

a1 v a2 entails a1 v a2 v a3 prior to the permutations of atomic labels, the same will be true for the 

relabeled propositions. 

 The symmetry is easier to see geometrically in a simpler figure that shows just a three-

atom algebra. Figure 2 shows the same three-atom algebra, differing only in the arbitrary 

labeling for the atoms. Labels a1 and a2 are switched on one side; and atom labels a1, a2 and a3 

are cyclically permuted on the other: 
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Ø

Ω

a1

a2va3a1va2

a1, a2

switch
a1, a2, a3

cycle

a1va3

a2

a3

Ø

Ω

a1

a2va3

a1va2a1va3

a2a3

Ø

Ω

a1

a2va3

a1va2 a1va3

a2 a3

 
Figure 2. Relabelings of a Three-Atom Algebra 

Deductively	
  Definable	
  Logics	
  of	
  Induction	
  
 A calculus of inductive inference will here be built around the fundamental quantity 

“[A|B]”, which is the strength of the inductive support afforded proposition A by proposition B. 

The strength might be a conditional probability, which means that it conforms with the 

probability calculus. The strength need not be a probability. It may be a strength that conforms 

with one of many other calculi. 

 Other choices are possible for the basic quantity. We could instead use “[A|B,C]”, which 

could be interpreted as the strength of inductive support afforded proposition A by B with 

respect to background C. It will become clear that the arguments leading to incompleteness can 

be mounted in variant form for each of these choices. We will proceed with just [A|B] since it is 

all that is needed to see how the arguments run. 

 A calculus of inductive inference is a system of rules that enables the assignment by purely 

mechanical computation of all the strengths [Ai|Ak]  for propositions in the set {A1, A2, … , 

Am}. They key question is which resources these rules may use. If the domain in which the set 

resides is sufficiently large for completeness, then the rules may not use any inductive content 

from outside the domain. That is, it may not set any of the [Ai|Ak] by external considerations 

independent of the rules of the calculus. 

 This restriction then leaves as the sole resource the deductive relations among the 

propositions in the set {A1, A2, … , Am} and their deductive relations with the other 
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propositions in the larger algebra Ω in which it resides. A calculus that employs just this 

deductive structure in specifying its strength is “deductively definable.” 

Two	
  Sample	
  Logics	
  	
  
 At first it may seem that deductive definability is excessively restrictive. It is not. Rather it 

is the standard way of specifying a calculus of this type. As a general matter, the definitions of 

the strengths [Ai|Ak] may be supplied by explicit or implicit definitions. 

 The latter implicit definitions are more commonly used. The celebrated Kolmogorov  

axioms (1950) for the probability axioms provide implicit definitions solely in terms of the 

deductive structures among the propositions in the outcome space. These axioms, used to define 

an additive measure m on the algebra, assert: 

For any A, m(A)≥0. (4a) 

m(Ω) = 1 (4b) 

If A&B=∅, then m(AvB) = m(A) + m(B) (4c) 

This is an implicit definition of the additive measure m. It consists of three sentences in which 

the measure appears; and those sentences otherwise only mention the deductive structure of the 

algebra. For example, (4b) assigns unity to the universal proposition Ω, distinguished by the fact 

that it is deductively entailed by all the propositions in the algebra. The summation rule relates 

the measure of a disjunction to the measures of the disjuncts, in the special case in which the 

disjuncts are deductively incompatible. 

 The Kolmogorov axioms constrain the measure m, but do not definite it uniquely. In any 

given algebra, there will be infinitely many measures compatible with the axioms. We can assure 

uniqueness of m in some algebra by adding further conditions, such as: 

For all atoms, a1, a2, …, an, 

m(a1) = m(a2) = … = m(an) 

(5) 

Once again, this sentence mentions only deductive structure. The atoms a1, a2, …, an are the 

propositions in the algebra that are deductively entailed by no other propositions (other than the 

contradiction, ∅). 

 This uniquely defined additive measure can now be used to introduce the familiar inductive 

strength of support, a conditional probability. For all propositions A and B, where B is not ∅ 
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€ 

[A | B]P = P(A | B) =
m(A& B)
m(B)

                                                       (6) 

In order to underscore that these results apply to many calculi, we can also define a different 

calculus—a “specific conditioning” logic—by replacing (6) by the following.3 For all 

propositions A and B, where neither A nor B is ∅ 

€ 

[A | B]SC = P(A | B) =
m(A& B)2

m(A)m(B)
                                                       (7) 

We will see shortly in an example what motivates this logic. 

General	
  Form	
  of	
  the	
  Definitions	
  
 The conditions (4), (5) and (6) implicitly define a probabilistic calculus of inductive 

inference. The conditions (4), (5) and (7) implicitly define a distinct “specific conditioning” 

calculus of inductive inference. What will matter in what follows is the general form of the 

definitions: 

General form of the implicit definition: 

Set of sentences that mention the strengths [Ai|Ak] and deductive relations 

among the members of the set {A1, A2, … , Am}  and the other 

propositions in the algebra. 

These two examples are just two of many possible deductively definable logics of induction. 

More are described in Norton (2010). 

 A simple and natural one derives from the basic notion of hypothetico-deductive 

confirmation. According to it, if hypothesis H deductively entails evidence E, then evidence E 

inductively supports H. This much provides for a single value “supports” for [H|E] via the 

explicit definition: 

If H deductively entails E, then [H|E] = supports. 

There is much scope to enhance the definition. We might replace the single value with increasing 

numerical values the closer that H is to E in terms of the levels of the Boolean algebra. If, for 

example, H = a1 v a2 from the level of two atom disjunctions and E = a1 v a2 v a3 v a4 from the 

                                                
3 For more details of the properties of a special conditioning logic, see Norton (2010, §11.2). 
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level of four atom disjunctions, then the strength of support might be defined as 2/4. Then the 

closer they are in levels, the stronger the support. This gives the augmented definition4 

If H from the level of m atom disjunctions 

deductively entails E from the level of n atom disjunctions, 

then [H|E] = m/n. 

This second example illustrates the general form of an explicit definition of inductive strengths: 

General form of the explicit definition: 

The strengths [Ai|Ak] are determined by a formula that mentions only the 

deductive relations among the members of the set {A1, A2, … , Am}  and 

the other propositions in the algebra. 

In the example, the formula is “m/n”, where the quantities n and m are related to atom counts and 

are thus recoverable from the deductive structure of the Boolean algebra. 

 This hypothetico-deductive model could be enhanced still further by rewarding hypotheses 

with stronger support if they are more explanatory or simpler. To do this requires that we have 

some way of identifying which hypotheses are more explanatory or which are simpler. If that can 

be done by adding further propositions to the algebra, then the definition of the inductive 

strengths can still meet the requirement that they draw only on resources within the domain. If 

that cannot be done and these judgments require resources outside the domain, then we have 

already established that these particular augmentations of the hypothetico-deductive scheme are 

not complete. 

The	
  Quest	
  for	
  an	
  Art	
  Thief	
  
 As an illustration, we will imagine an inductive problem presented to the police in their 

efforts to track down the location of a notorious art thief. They know, we shall say, that the art 

thief is in one of four cities: Boston “BOS”, New York “NY”, Philadelphia “PHL” or Pittsburgh 

“PIT.” That is we have 

Ω = BOS v NY v PHL v PIT 

These four propositions are the atoms of the algebra. Their evidence is that the thief is in an east 

                                                
4 This definition induces a product rule. If A entails B entails C, then [A|C] = [A|B]x[B|C].  
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coast, Atlantic port city “EC”: 

EC = BOS v NY v PHL 

We can then ask how much support EC provides to the various possibilities. We have from the 

Kolmogorov axioms (4) and condition (5) that 

m(BOS) = m(NY) = m(PHL) = m(PIT) = 1/4 

It follows from the definition (6) that the evidence EC gives the same support to the hypothesis 

BOS as it does to the disjunction BOS v PIT 

P(BOS | EC) = P(BOS v PIT | EC) = 1/3 

This is a familiar property of conditional probability. Since the proposition PIT contradicts the 

evidence EC, forming a disjunction with BOS does not alter the conditional probability. 

 While it is familiar, this is an oddity of probabilistic support. Unless we have honed our 

sense of evidential support on probabilistic notions, we would judge the support provided by EC 

for BOS to be weakened when we form a disjunction with a city PIT that contradicts the 

evidence. The evidence specifically supports BOS, not PIT. Within the probabilistic analysis, we 

can recover the fact that the PIT disjunct plays no role in the support accrued to BOS v PIT by 

noting that the probability is unchanged when we eliminate the PIT disjunct. We have to do the 

additional work of determining that the evidence points better to BOS rather than BOS v PIT. 

 The specific conditioning logic (7) is designed to remedy this defect. It does the work of 

discriminating between BOS and BOS v PIT by assigning a lower strength of support to BOS v 

PIT. That is, we have 

€ 

[BOS | EC]SC =
m(BOS& EC)2

m(BOS)m(EC)
=
12

1⋅ 3
=
1
3

 

whereas 

€ 

[BOS∨PIT | EC]SC =
m((BOS∨PIT )& EC)2

m(BOS∨PIT )m(EC)
=
12

2 ⋅ 3
=
1
6

 

so that 1/6 = [(BOS v PIT) | EC]SC < [BOS | EC]SC = 1/3. Perhaps in this case, the advantage of 

the specific conditioning logic is unclear. But that is only because we can “see through” the 

example and recognize the odd, disjunctive character of the hypothesis BOS v PIT. In more 

complicated cases, this might not be possible and we would benefit from the specific 

conditioning logic doing the work of recognizing the oddity for us. 
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Symmetry	
  Constraints	
  on	
  Deductively	
  Definable	
  Inductive	
  Logics	
  
 Two properties of the systems developed here combine to place powerful constraints on the 

inductive logics. 

 First, the inductive logic is deductively definable. It follows directly from the above 

general implicit and explicit definitions that, if two sets of propositions agree in their deductive 

relations, then they must agree in their inductive relations. That is, assume that a set of 

proposition are A, B, C, … and can be mapped to the second set A’, B’, C’, … in a way that 

preserves deductive structure. It follows that the inductive strengths formed from A, B, C, … 

must agree with the corresponding strengths formed from A’, B’, C’, … 

 Second, the deductive structure is highly symmetric. This means that the deductive 

structure preserving map can be implemented within a single algebra of propositions merely by 

relabeling the propositions. It then follows that many of the inductive strengths formed within 

the single algebra must be equal. 

An	
  Illustration	
  
 We can see how these equalities arise in the example of the art thief. Consider the support 

afforded by EC for each of BOS and NY. That is, compare [BOS|EC] and [NY|EC]. We shall see 

that they must be equal. 

 To see this, we relabel BOS and NY as: 

BOS’ = NY and NY’ = BOS 

The two remaining atom labels are unchanged other than for the addition of a prime: 

PHL’ = PHL and PIT’ = PIT. 

One sees immediately that the deductive structure of the propositions with the primed labels is 

the same as the deductive structure of the propositions with the unprimed labels. That is, for 

every deductive entailment in the first there is a corresponding deductive entailment in the 

second; and vice versa. For example, BOS deductively entails EC = BOS v NY v PHL. 

Correspondingly BOS’ deductively entails EC’ = BOS’ v NY’ v PHL’. 

 Since the inductive logic is deductively definable, it now follows that all corresponding 

inductive strengths must agree. That is we have: 

[BOS|EC] = [BOS’|EC’] 
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[NY|EC] = [NY’|EC’] 

[PHL|EC] = [PHL’|EC’] 

[PIT|EC] = [PIT’|EC’] 

etc, 

The primed propositions are merely relabelings of the unprimed propositions. In particular, BOS’ 

= NY and EC’ = EC. Making the replacements in the first equality [BOS|EC] = [BOS’|EC’] 

gives the result promised 

[BOS|EC] = [NY|EC]. 

 We can see informally how this equality comes about. It arises because the BOS-EC 

relationship is, roughly speaking, 

“single atomic proposition deductively entails three-atom disjunction.” 

The NY-EC relationship is the same. Since the deductive structures involved are the same, the 

correspondingly inductive strengths must be the same. 

The	
  Symmetry	
  Theorem	
  
 The symmetry constraint can be generalized. Take a slightly more general case of a 

deductively definable logic in which the inductive strengths [A|B] are fixed by the deductive 

relations among A and B and the remaining propositions of the algebra. When might we have an 

equality of two strengths [A|B] and [C|D]? It arises when there is some relabeling possible for 

the atoms in the algebra, so that A and B are relabeled as A’ and B’ and 

A’&B’ = C&D 

A’&~B’ = C&~D 

~A’&B’ = ~C&D 

~A’&~B’ = ~C&~D 

This relabeling will be possible just in case the conjunctions to be set equal are formed from the 

same number of atoms. That is, the same number of atoms disjoined to form A&B and to form 

C&D; as so on for the remaining equalities, so that 

#A&B = #C&D 

#A&~B = #C&~D 

#~A&B = #~C&D 
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#~A&~B = #~C&~D 

where the notation “#proposition” indicates the number of atoms disjoined to form the 

proposition. 

 Then, by reasoning analogous to that of the last section, we can show that the deductive 

relations into which A and B enter are the same as those into which C and D enter. It now 

follows that the inductive strength [A|B] is fixed by the atom counts of these four conjunctions. 

That is: 

Symmetry Theorem 

For each deductively definable logic in which the inductive strengths 

[A|B] are fixed by the deductive relations among A and B and the 

remaining propositions of the algebra, there exists a function f such that 

[A|B] = f(#A&B, #A&~B, #~A&B, #~A&~B) 

We can illustrate this theorem in the case of the two logics considered above. For the 

probabilistic logic we have 

€ 

[A | B]P = P(A | B) =
# A& B

# A& B  +  # ~ A& B
=

# A& B
# B

 

For the specific conditioning logic, we have 

€ 

[A | B]SC =
(#A& B)2

(#A& B  +  # A& ~ B) ⋅ (# A& B  +  # ~ A& B)
=

(#A& B)2

# A⋅# B
 

In general, the specification of a new inductive logic merely requires the specification of a new 

function f in the theorem. 

 This formulation of the symmetry theorem is not the most general formulation. In general, 

the strengths [Ai|Ak] are fixed by deductive relations among the large set {A1, A2, … , Am} and 

their deductive relations with the other propositions in the larger algebra Ω in which it resides. 

The obvious generalization of the theorem is given in Norton (Manuscript, §4.2) 

How	
  Might	
  Deductive	
  Definability	
  Fail?	
  
 The requirement of deductive definability is fragile and easily broken. Since that might not 

be immediately apparent, here is an example of a failure. Consider the deductively definable 

logic of induction specified by (4) and (5) above. Replace (5) by 
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For all atoms, a1, a2, …, an, 

m(a1) = m(a2)/2 = … = m(an)/n 

(5’) 

That is equivalent to setting the normalized measures of the atoms to 

m(a1) = 2/(n+n2),   m(a2) = 2.2/(n+n2),   m(a3) = 2.3/(n+n2),   …,   m(an) = 2.n/(n+n2) 

The corresponding conditional probabilities are  

P(a1|Ω) = 2/(n+n2),   P(a2|Ω) = 2.2/(n+n2),    

P(a3|Ω) = 2.3/(n+n2),  …,   P(an|Ω) = 2.n/(n+n2)                       (5’’) 

The key fact about these assignments is that they are non-uniform. That uniformity is 

unsustainable in a deductively definable logic of induction. Each of the atoms a1, a2, …, an 

enters into exactly the same deductive relations with the other propositions in the algebra. Hence 

deductive definability requires the equality of all these conditional probabilities 

P(a1|Ω) =  P(a2|Ω) =  P(a3|Ω) = …  = P(an|Ω). 

For the condition (5’) to be upheld, we must have some way of distinguishing among the atoms. 

Atom a1 will be assigned the smallest measure m; atom a2 will be assigned the next largest 

measure m; and so on. 

 Distinguishing among them cannot be done in terms of the deductive structure. It must be 

done by means external to the algebra. These means amount to external inductive content and 

lead to specification of the non-uniform probabilities (5’’). 

 Finally, since the logic is no longer deductively definable, it is no longer possible to define 

the conditional probabilities of (5’’) purely as a function of atoms counts, so the symmetry 

theorem does not apply to this logic. 

The	
  Need	
  for	
  Disjunctive	
  Refinements	
  
 The example of the art thief shows how a simple deductively definable logic of induction 

can be inadequate for its intended purpose. We would like to know whether the evidence EC 

better supports that the art thief is in New York (NY), say, rather than in Boston, (BOS). 

However the logic requires [BOS|EC] = [NY|EC]. So differential support is not possible. 

 This problem will persist as long as the propositions form a small Boolean algebra based 

on just four atoms BOS, NY, PHL and PIT. The remedy is to increase the expressive power of 



 22 

the algebra by increasing the number of atoms. For example, we may judge that there are a large 

number of possible lairs in Boston in which our thief may hide. If we write BOSi as the 

proposition that the thief is hiding in the ith of r possible lairs, then we create a disjunctive 

refinement of original algebra by replacing the atom BOS by the disjunction of new atoms 

BOS = BOS1 v … v BOSr 

Correspondingly we can expand the remaining atoms as 

NY = NY1 v … v NYs 

PHL = PHL1 v … v PHLt 

PIT = PIT1 v … v PITu 

The small four-atom algebra has now been replaced by a larger algebra with r+s+t+u atoms.  

 This larger algebra gives us a great deal more expressive power. We can assign widely 

varying support to propositions like BOS or NY, according to the values selected for r, s, t and u. 

In the probabilistic logic, we now have 

P(BOS|EC) =  r/(r+s+t)      P(NY|EC) = s/(r+s+t) 

If there are many more likely places to hide in New York than in Boston, we would have r<s and 

P(BOS|EC) < P(NY|EC). For the specific conditioning logic, we now have 

[BOS|EC]SC = r/(r+s+t)  

 [(BOS v PIT)|EC]SC = r2/[(r+t)(r+s+t)] = r/(r+t) [BOS|EC]SC 

Then [(BOS v PIT)|EC]SC would be reduced in relation to [BOS|EC]SC according to how large t 

is in relation to r. 

Asymptotic	
  Stability	
  
 This last example illustrates a general property of deductively definable logics of 

induction. By disjunctively refining the atoms, we introduce new possibilities that alter the 

inductive strengths. Part of that content comes in the inductive relations among the new atoms 

and the original propositions. The part that will concern us here, however, involves just the 

relations among the old propositions. 

 Here is an example. We fix just three for examination: BOS, NY and EC and ask after the 

support BOS accrues from evidence EC and the support NY accrues from EC. As we refine and 
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add more atoms, the relative strengths of support [BOS|EC] and [NY|EC] will change. Initially, 

these changes reflect the incorporation of new information into the algebra of propositions. There 

may be, for example, many more lairs in New York in which the art thief can hide. 

 In this process, we are not altering the evidence proposition directly. We are asking the 

same question repeatedly: what is the support accrued to NY from the evidence EC? What 

changes is the background deductive and inductive structure in which the propositions NY and 

EC appears. Those changes should be reflected, to greater or lesser degree, in the strength 

[NY|EC]. 

 Eventually, we expect that the new information incorporated will have diminishing import 

inductively. If NY1 happens to be the proposition that the art thief is in a luxurious Fifth Avenue 

penthouse apartment in New York, then we might refine it further as 

NY1 = NY1-NE v NY1-NW v NY1-SE v NY1-SW 

where NY1-NE is the proposition that the art thief is, at this moment, in the North-East corner of 

penthouse; and so on for the remaining three quadrants NW, SE and SW. Presumably this 

refinement would lead at best to a small change in the inductive strength [NY|EC]. 

 Or perhaps not. Perhaps there is some evidential import in the location of the art thief in the 

penthouse that the inductive logic can discern. Then we might refine further to incorporate still 

more inductively relevant information. Through the refinements, we may add new sorts of 

propositions, perhaps concerning the history of the art thief’s behavior, the climate in New York 

and elsewhere, the public transport system in various cities, and so on. 

 The requirement of asymptotic stability is that, eventually, continuing refinement will 

produce diminishing returns, in the sense that the original strengths like [NY|EC] alter less and 

less. Once we are at this point, strengths involving these propositions stabilize. They many stop 

changing completely. Or they may approach their limiting values asymptotically. For example, if 

[NY|EC] has the limiting value [NY|EC]lim, then, once we are at this point of diminishing 

returns, the actual value of [NY|EC] will be close to [NY|EC]lim and the sole change introduced 

by further refinement is to bring [NY|EC] closer to the limiting value, [NY|EC]lim.5 

                                                
5 More precisely, when we require that [NY|EC] approaches the limiting value [NY|EC]lim 

asymptotically we just mean this. Pick any measure of closeness to [NY|EC]lim you like: within 
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 The idea behind asymptotic stability is just that there is a right choice for the strength of 

support [NY|EC] once all relevant background information is incorporated into the algebra; and 

that the inductive logic implemented is able to find it, at least asymptotically. 

 The alternative is to allow that the strength [NY|EC] never stabilizes. That would mean 

that, no matter how much additional information we incorporate into the algebra of propositions, 

the value of [NY|EC] would keep changing without ever settling down. An inductive logic that 

behaves this way is of no value to us, for it is unable to implement the idea that there is a definite 

strength of support that EC affords NY in the context of even the fullest specification of 

background facts. 

 This discussion so far has dealt with a special case of the art thief. The general case is no 

different. As indicated above, we concern ourselves with some fixed set of proposition {A1, A2, 

… , Am}, where that set is very large and may include all the propositions considered in science. 

The requirement of asymptotic stability is that sufficient disjunctive refinement of the atoms 

leads each of the pairwise strengths [Ai| Ak] to settle down asymptotically to its limiting value, 

from which still further refinement cannot remove it. The limiting value is the best representation 

of the inductive support Ak affords Ai. 

The	
  Two	
  Requirements	
  Conflict	
  
 Now the trouble starts. We require two things of our logic of induction, each well 

motivated. First, we require it to be deductively definable, as a consequence of our requirement 

that the logic be complete. Second, we require asymptotic stability, as a consequence of our 

requirement that the logic can eventually lead to stable inductive strengths under continued 

disjunctive refinements. 

 The two requirements conflict and visit disaster on the logic. That is, if the logic is 

deductively definable, then it must be so responsive to different disjunctive refinements that it 

never settles down to limiting inductive strengths. Asymptotic stability proves unsustainable. 

                                                

1%, within 0.1%, within 0.001%, etc. Then it is always possible to refine the algebra so that the 

actually value of [NY|EC] lies within those bounds and so that it remains there under all 

possible, subsequent refinements. 
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 The instability is easily recoverable in the example of the art thief. Imagine that the art 

thief has a confederate within the police headquarters who is intent on confounding the police’s 

efforts. The confederate can confound any inductive logic merely by artful selection of 

disjunctive refinements. 

 The ease of this confounding follows directly from the symmetry theorem: inductive 

strengths are fixed by the atom counts in the propositions. The confederate can then confound the 

logic merely by refinements that artfully manipulate the atom counts and drive the inductive 

support in any direction the malicious confederate desires. 

 For example, take the probabilistic case above. We have 

P(BOS|EC) =  r/(r+s+t)      P(NY|EC) = s/(r+s+t) 

We might start with values r = s = t = 10, as result of the first refinement. Then we would have 

P(BOS|EC) =  1/3      P(NY|EC) = 1/3 

The confederate might choose to lead the police towards Boston by merely refining BOS much 

more than NY and PHL. So we might refine further to r = 1000 and s = t = 10. Then evidential 

support swings strongly towards BOS since we have 

P(BOS|EC) =  1000/1020 = 0.9804      P(NY|EC) = 10/1020 = 0.0098 

But had the confederate chosen instead to refine NY, we could get exactly the reversed result, 

from r = t = 10 and s = 1000: 

P(BOS|EC) = 10/1020 = 0.0098        P(NY|EC) =  1000/1020 = 0.9804  

No matter how far advanced the disjunctive refinements may be, this possibility for confounding 

by further, malicious refinement will always be there. There can be no stabilization of the two 

probabilities. For, if ever the probabilities seem to stabilize, further malicious refinement can 

drive them away from what appeared to be their limiting values.  The logic has no protection 

from this malice. Nothing within it can distinguish a refinement that reflects proper inductive 

import from one that merely deceives. 

 One might imagine the following escape. The malicious refinements are blocked merely 

by halting the disjunctive refinements at a stage at which further refinements would only advance 

the deception. This escape would succeed, but its success would depend upon knowing when is 

the appropriate stage of refinement at which to halt. That fact is not recoverable within the 

propositions of the algebra. It must be supplied by external considerations. These external 

considerations would then be supplying important inductive content in violation of the 
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requirement of completeness of the inductive logic. That is, we escape instability by admitting 

incompleteness. 

 The example above is drawn from a probabilistic logic of induction. The same malicious 

deception can be visited upon any non-trivial logic of induction. The symmetry theorem tells us 

that the strengths in any deductively definable logic of induction are fixed by the atom counts. 

As long as the logic assigns different inductive strengths when the atom counts change, a 

malicious confederate will always be able to steer the weight of inductive support in any desired 

direction. 

Triviality	
  of	
  a	
  Complete	
  Logic	
  of	
  Induction	
  
 The escape that preserves completeness is an unhappy one: if the logic of induction fails 

to adjust its strengths of inductive support when the atom counts change, then it is immune to 

deception by malicious disjunctive refinements. However a logic that is unresponsive to the atom 

counts, or merely unresponsive in its limiting behavior, is a trivial logic that assigns the same 

limiting inductive strength in all cases, no matter what the atoms counts in the propositions might 

be. 

 In short, deductive definability and asymptotic stability forces the inductive logic to be 

the trivial logic that assigns the same limiting value to all inductive strengths. The discussion 

here does not provide a proof of this result. It merely recounts an example to illustrate how the 

result comes about. The full demonstration of Norton (manuscript), its “no-go” result, requires a 

great deal more logical accountancy. But those details introduce no further matters of principle. 

The essential manipulations have already been illustrated in the example above.  

 There is a technical complication in the full demonstration. To get the simplest version of 

the no-go result, a third condition of continuity is needed. It merely requires that inductive 

strengths do not make discontinuous jumps in their dependence on atom counts, when the atom 

counts are large. Without it, one still has triviality forced on the inductive logics, but the triviality 

comes in the form of a unique limiting value for each inductive strength, according to the class of 

deductive structure to which they belong. The notion of class is defined in Norton (manuscript). 
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PART	
  III.	
  Taking	
  Stock	
  

Escapes	
  
 The no-go result is developed in a precise setting: the deductive structure is given by 

propositional logic with finitely many propositions; and the inductive structure is given by 

inductive strengths that are represented by the binary quantity [A|B]. The temptation is to look 

for ways of escaping the result by altering the setting. The prospects of such an escape are poor.  

 As far the deductive structure is concerned, the logic employs just the Boolean operators, 

They reappear in most, more developed deductive logics. All these logics will then admit the 

disjunctive refinements that power the present analysis. More generally, the decisive property of 

the deductive structure is that it is highly symmetric. This symmetry can be replicated in richer 

logics. For example, if we have a simple predicate logic with monadic predicates only, P1(.), … , 

Pn(.), then the logic will be symmetric under permutation of the predicates. 

 Similarly, a richer inductive structure will also generate corresponding no-go results. For 

example, we may replace [A|B] by a tertiary quantity, “[A|B,C],” as suggested earlier. It could be 

interpreted as the strength of inductive support afforded proposition A by B with respect to 

background C. The discussion above would remain largely unchanged except in the details. If the 

inductive logic is deductively definable, the strength of support would still turn out to be a 

function solely of the atom counts in propositions A, B and C. As a result it would be subject to 

confounding by malicious disjunctive refinement, as before, and the logic would be forced to 

triviality. 

 More briefly stated, the no-go result developed here is likely to be replicable in almost 

any setting precisely because there is rather little in it. Deductive structures are, generally, highly 

symmetric; and asymptotic stability is hard to deny, for otherwise the inductive logic would fail 

to assign a stable limiting value for the strengths of inductive support. With these properties 

pervasive, a version of the incompleteness result is always nearby. 
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Subjective	
  Bayesianism	
  
 Because of the present popularity of subjective Bayesianism, it is worth indicating how it 

interacts with the no-go result. To begin, the fact that prior probabilities can be assigned 

arbitrarily, according to our personal whim, does break the symmetry essential to the no-go 

result. However it breaks it at great cost, for the conditional probabilities cease to be measures of 

inductive support. They have become, initially, pure statements of opinion and, after 

conditionalization on evidence, an amalgam of opinion and evidential warrant. 6 

 One might hope that the amalgam of opinion and warrant can be separated into its 

elements by a confirmation measure. It would be defined in terms of the subjective Bayesians’ 

probabilities and would extract just the evidential warrant from the amalgam. What the no-go 

result asserts, however, is that any such confirmation measure must be trivial, if it is to be 

complete. For such a measure would conform to the conditions that lead to the no-go result. 

The	
  Recalcitrance	
  of	
  Problems	
  of	
  Induction	
  Explained	
  
 This analysis establishes that any non-trivial calculus of inductive inference is 

incomplete. In retrospect that fact is not so surprising. The literature on calculi of inductive 

inference has been beset with persistent problems. We can now see that their recalcitrance is 

explicable as an inevitable outcome of incompleteness. 

 The traditional failure is the notorious problem of the priors in Bayesian analysis. The 

hope has been that we can push our inductive investigations back far enough to a neutral starting 

point, prior to the inclusion of any relevant evidence. There we seek a prior probability 

distribution that is vacuous in the sense that it inductively favors no particular proposition over 

any others. Yet no such vacuous prior has been found. All prior probability distributions exert an 

influence on the subsequent analysis and can only be used responsibly if they reflect the presence 

of further evidence outside the calculation. 

                                                
6 The celebrated “washing out of the priors” theorems fall short of what is needed. There is a 

reverse, indelibility result. Loosely speaking, for any fixed likelihoods and any fixed posterior 

probability we may choose, there will always be some perversely chosen prior probability 

compatible with it. 
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 That is just what incompleteness predicts. For a vacuous prior would enable a calculus to 

be complete.  Moreover the incompleteness result predicts that this problem of the priors will 

reappear in some form in any non-trivial calculus, not just a probabilistic calculus. 

 Another recurring problem is that the unadulterated probability calculus is not elastic 

enough to accommodate all inductive inference problems. There have been many extensions 

proposed. We may suppose, for example, that a simple probability measure is insufficient and it 

is replaced by a set of measures; or by a structure that uses interval values; and so on. Or we may 

alter the calculus in fundamental ways, such as the violation of additivity in the Shafer-Dempster 

calculus. Whatever successes these expansions meet, they are always limited. Further problems 

arise and call for still more extensions. 

 If we reconceive these proposals for altered calculi as efforts to find the one, true and 

complete logic of inductive inference, then their limited success ceases to be an unexpected 

annoyance. It is merely the reflection of a necessity: there can be no non-trivial, complete logic 

of inductive inference. 

How	
  should	
  we	
  think	
  about	
  inductive	
  inference?	
  
 We need not give up the idea of calculi of inductive inference. Rather we should give up 

the quest for a single, all-purpose calculus that will give us a complete treatment of inductive 

inference. In its place, we should conceive of inductive inference locally. In any domain of 

investigation, no matter how big or how small, we may seek a calculus to govern our inductive 

inferences. However, that calculus will never provide a complete account of the inductive 

relations in that domain. We will always need further inductive content to be supplied externally 

to the domain. No matter what our domain, there will always be an external background to which 

we must resort for inductive content. 

 This local reconception of inductive inference is essentially the one that I have developed 

as the material theory of induction. See Norton (2003) and later papers. In each domain, there 

will be relations of inductive support peculiar to it. They are not warranted by conformity with 

some universal calculus. They are warranted by the particular background facts prevailing in that 

domain. If those relations are regular enough to be described abstractly, we may identify a 

calculus for those inductive relations. However whether there is such a calculus and what its 
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rules are will depend on the background facts prevailing in that domain. We should expect the 

calculus to differ from domain to domain. There is no universal calculus of inductive inference. 

That is the final moral of incompleteness. 
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