Time in Thermodynamics

Fill North

(The Oxford Handbook of Philosophy of Time (2011), ed. Craig Callender. Oxford:
Oxford University Press, 312—350)

Or better: time asymmetry in thermodynamics. Better still: time
asymmetry in thermodynamic phenomena. “Time in thermodynamics”
misleadingly suggests that thermodynamics will tell us about the fun-
damental nature of time. But we don’t think that thermodynamics is a
fundamental theory. It is a theory of macroscopic behavior, often called
a “phenomenological science.” And to the extent that physics can tell us
about the fundamental features of the world, including such things as the
nature of time, we generally think that only fundamental physics can. On
its own, a science like thermodynamics won’t be able to tell us about time
per se. But the theory will have much to say about everyday processes that
occur in time; and in particular, the apparent asymmetry of those pro-
cesses. The pressing question of time in the context of thermodynamics
is about the asymmetry of things iz time, not the asymmetry of time, to
paraphrase Price (1996, 16).

I use the title anyway, to underscore what is, to my mind, the cen-
trality of thermodynamics to any discussion of the nature of time and
our experience in it. The two issues—the temporal features of processes
in time, and the intrinsic structure of time itself—are related. Indeed,
it is in part this relation that makes the question of time asymmetry in
thermodynamics so interesting. This, plus the fact that thermodynamics
describes a surprisingly wide range of our ordinary experience. We’ll
return to this. First, we need to get the question of time asymmetry in
thermodynamics out on the table.



1. The problem

The puzzle that I want to focus on here, the puzzle that gets to the heart
of the role of thermodynamics in understanding time asymmetry, arises
in the foundations of physics, and has implications for many issues in
philosophy as well. The puzzle comes up in connection with the project
of explaining our macroscopic experience with micro-physics; of trying
to fit the macroscopic world of our everyday lives onto the picture of the
world given us by fundamental physics. The puzzle has been debated by
physicists and philosophers since the nineteenth century. There is still
no consensus on a solution.

Here is the problem. Our everyday experience is largely of physical
process that occur in only one direction in time. A warm cup of coffee,
left on its own in a cooler room, will cool down during the day, not grow
gradually warmer. A box of gas, opened up in one corner of a room, will
expand to fill the volume of the room; an initially spread-out gas won’t
contract to one tiny corner. A popsicle stick left out on the table melts
into a hopeless mess; the hopeless mess sadly won’t congeal back into the
original popsicle.

While we would be shocked to see the temporally reversed processes,
the familiar ones are so familiar that they hardly seem worth mentioning.
But there is a problem lurking. The problem is that the physical laws
governing the particles of these systems are symmetric in time. These
laws allow for the time reversed processes we never see, and don’t seem
capable of explaining the asymmetry we experience.

Suppose I open a vial of gas in a corner of the room. The gas will
spread out to fill the room. Take a film of this process, and run that film
backward. The reverse-running film shows an initially spread-out gas
contract to one corner of the room. This is something that we never see
happen in everyday life. Yet this process, as much as the original one,
evolves with the fundamental dynamical laws, the laws that govern the
motions of the particles in a system like this. Consider it in terms of New-
tonian mechanics. (For ease of exposition, I stick to classical mechanics.
Assume this unless explicitly stated otherwise.) The dynamical law of this
theory is F = ma. Now, the gas just is lots of particles moving around

A video, with background music: http://www.youtube.com/watch?v=tPFqBrCoynE.
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in accord with this law. And the law is time reversible: it applies to the
reverse-running film as much as to the forward-playing one. Intuitively,
the law does not contain any direction of time in it. We can see this by
noting that each quantity in the law has the same value in both films: in
the backward film, the forces between the particles are the same as in the
forward film (these forces are functions of the particles’ intrinsic features
and their relative spatial separations); their masses are the same; and their
accelerations (the second time derivatives of position) are the same. For
any process that evolves with this law, the time reversed process—what
we would see in a reverse-running film—will also satisfy the law.

This is, roughly, what we mean when we say that the laws governing a
system’s particles are time reversal symmetric, or time reversal invariant.
The movie-playing image brings out an intuitive sense of time reversal
symmetry. On a time reversal invariant theory, the film of any process
allowed by the laws of the theory, run backward, also depicts a process
that obeys the laws. (A bit more on this in the next section.)

In this sense, the classical laws are time reversal symmetric. Run the
film of an ordinary Newtonian process backward, and we still see a pro-
cess that is perfectly in accord with the Newtonian dynamical laws.? This
time reversal symmetry isn’t limited to classical mechanics, either. For
(exceptions and caveats aside for now3) it seems that all the plausible can-
didates for the fundamental dynamical laws of our world are temporally
symmetric in just this way.

But then there is nothing in the relevant physics of particles to prohibit
the spontaneous contracting of a gas to one corner of the room, or the
warming up of a cup of coffee, or the reconstitution of a melted popsicle—
what we would see in reverse-running films of the usual processes. And
yet we never see these kinds of things happen. That’s puzzling. Why
don’t we ever see boxes of gas and cups of coffee behave like this, if the
laws governing their particles say that it is possible for them to do so?

It’s not that we never see the temporally reversed phenomena, of
course. We do see water turning to ice in the freezer, coffee heating up
on the stove, melted popsicles re-congealing in the fridge. But these
processes are importantly different from the time reverse of the usual

*See Feynman (1965, ch. 5) and Greene (2004, ch. 6) for accessible discussion.
3Caveats in the next section; an exception in 5.2.



phenomena. These processes differ from what we would see in the reverse-
running films of ice melting, coffee cooling, and popsicles dripping. For
they require an input of energy. (We can formulate the asymmetry as the
fact that energetically isolated systems behave asymmetrically in time.4)

More, it seems to be a lawlike fact that popsicles melt and gases expand
to fill their containers. These generalizations support counterfactuals,
they are used in successful explanations and predictions, and so on. They
seem to satisfy any criteria you like for lawfulness; they surely don’t seem
accidental. Think of how widespread and reliable they are.

And, in fact, there is a physical law that describes these processes: the
second law of thermodynamics. This law says that a physical quantity we
can define for all these systems, the entropy, never decreases. We’ll return
to entropy in section 3. For now, note that this is a time asymmetric law:
it says that different things are possible in either direction of time. Only
non-entropy-decreasing processes can happen in the direction of time
we call the future.

It turns out that ordinary processes like the expansion of gases and the
melting of popsicles are all entropy-increasing processes. All the processes
mentioned so far are characterized by the science of thermodynamics;
their time asymmetry, in particular, is characterized by the second law of
thermodynamics. This law seems to capture the very asymmetry we set
out to explain. Does this then solve our initial puzzle?

No. If anything, it makes the problem starker. The question now is
where the asymmetry of the second law of thermodynamics comes from,
if not from the underlying physical laws. The macroscopic systems of our
experience consist of groups of particles moving around in accord with
the fundamental physical laws. Our experience is of physical processes
that are due to the motions of the particles in these systems. Where does
the asymmetry of the macroscopic behavior come from, if not from the
motions of systems’ component particles? Consider that if we watch a
film of an ice cube melting, we can tell whether the film is being played
forward or backward. But we won’t be able to tell which way the film is

4One approach to the puzzle, which I do not discuss here, exploits the fact that typical
systems are not in fact energetically isolated. This approach faces similar questions
about the asymmetry of the influences themselves: Sklar (1993, 250-254); Albert (2000,
152-153). But see Earman (2006, 422) for a recent suggestion along these lines.
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playing if we zoom in to look at the motions of the individual molecules
in the ice: these motions are compatible with the film’s running either
torward or backward.s

Where does the observed temporal asymmetry come from? What
grounds the lawfulness of entropy increase, if not the underlying dynami-
cal laws, the laws governing the world’s fundamental physical ontology?
Can we can explain the asymmetry of thermodynamics, and of our expe-
rience, by means of the underlying physics?

>. Interlude: time reversal invariance

The puzzle of time asymmetry in thermodynamics stems from the tem-
poral symmetry of the fundamental physical laws. Before moving on, a
caveat and a related issue.

Caveat. We now have experimental evidence that there is a fundamen-
tal, lawful time asymmetry in our world. Given the CPT theorem, the
observed parity violations in the decay of neutral (chargeless) k,-mesons
implies a violation of time reversal symmetry. Yet it is widely thought that
these violations are too small and infrequent to account for the widespread
macroscopic asymmetries of our experience and of thermodynamics. I
set this aside here.

A related issue, also interesting and important, but also to be set aside
here. Whether the laws are time reversal invariant is the subject of recent
debate, for two reasons.

First, what quantities characterize a system’s fundamental state at a
time is subject to debate. Take Newtonian mechanics. Think of a film
of a Newtonian process, such as a baseball flying through the air along
a parabolic trajectory. Run this film backward, and we seem to have a
process that also evolves with Newton’s laws. We see baseballs fly through
the air in opposite directions, obeying the laws of physics, all the time.
However, the reverse-flying ball only obeys the physics supposing that we
invert the directions of the velocities at each instant in the time reversed

5The example is from Feynman (1965, 111-112).

6See Sachs (1987, ch. ) for a summary of the empirical evidence. For dissent on
the conclusiveness of this evidence, see Horwich (1987, 3.6). See Arntzenius (2010) for
more on time and the CPT theorem.



process. Otherwise, we get a process in which, at any given instant, the
ball at a later instant will have moved in the opposite direction to that
in which its velocity had been pointing previously. If we simply take the
time reversed sequence of instantaneous states—if we run the sequence
of film frames in reverse temporal order—and those states (movie frames)
include particle velocities, then not even Newtonian mechanics would be
time reversal symmetric: the time reversed process would not be possible.

In other words, if our time reversal operator—the mathematical object
we use to figure out whether a theory is time reversal symmetric—only
inverts sequences of instantaneous states, and those states include ve-
locities, then Newtonian mechanics will not be symmetric under the
time reversal operation. In general, we apply an operator to a theory
to learn about the symmetry of the theory and the world it describes.
We compare the theory with what happens to it after undergoing the
operation. If the theory is the same afterward, then it is symmetric under
the operation; we say that the theory is invariant under the operation.
And surely Newtonian mechanics is time reversal invariant, if any theory
is. Newtonian mechanics, that is, should be symmetric under the time
reversal operator.” This theory doesn’t seem to indicate any asymmetric
temporal structure in the worlds it describes.

Physics texts respond by allowing the time reversal operator to act on
the instantaneous states that make up a given time reversed process. In
Newtonian mechanics, for example, the standard time reversal operator
does not just invert the time order of instantaneous states; it also flips the
directions of the velocities within each instantaneous state. Then a time
reversal invariant theory is one on which, for any process allowed by the
theory, the reverse sequence of time reversed states is also allowed. This
is a slightly different understanding of time reversal symmetry from the
intuitive, movie-playing idea. Still, all the candidate fundamental theories
(with an exception to come later, and aside from the caveat mentioned
above) are time reversal symmetric, on this understanding.

This raises a question. Should we allow time reversal operations on
instantaneous states, and if so, which ones? We cannot allow any old
time reversal operators, else risk our theories’ trivially coming out time

"For disagreement on this view of classical mechanics, see Hutchison (1993, 1995);
also Uffink (2002). Savitt (1994); Callender (1995) are replies.
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reversal symmetric.?

An alternative view, advocated by Horwich (1987) and Albert (2000, ch.
1), holds that particle velocities aren’t intrinsic features of instantaneous
states to begin with. If velocities aren’t included in the fundamental
state of a system at a time, then when we line up the instantaneous
states in reverse temporal order, we won’t get the problem that we did
above for Newtonian mechanics, the problem that motivated us to move
to a slightly different time reversal operation. (Instead, velocities will
invert when we take the reverse sequence of position states.) On this
view, for any sequence of states allowed by a time symmetric theory,
the inverse sequence of the very same states is also allowed. Newtonian
mechanics, for example, is time reversal invariant. But there are some
radical consequences of this view; for example, it loses the time reversal
invariance of other theories that are standardly taken to be invariant.?

(It is interesting to think of how the debate will go for other formula-
tions of the dynamics. There has not been as much discussion of this.*®
Presumably, equivalent formulations of a theory should all be invariant, or
not, with respect to any given operation. For a theory’s (non-)invariance
indicates (a)symmetries in the world it describes. And different, equiv-
alent formulations of a theory should describe the same set of possible
worlds. Thus, take the Hamiltonian formulation of classical mechanics.
The equations of motion are %i; = % and %i; = _d—‘?’. On the standard
view, this theory is time reversal invariant just in case H is invariant when
p =T -p(-t)and q -7 q(-t), where T is the time reversal operator. Why
these time reversal properties for the momentum and position coordi-
nates? A common suggestion is by analogy to the Newtonian case: there,
we inverted velocities under time reversal; here, we invert the momenta.
This suggestion, however, faces Arntzenius’ (2004) challenge to justify the
time reversal operators used in Newtonian mechanics. Note that it seems
that someone with Albert’s view can also say that Hamiltonian mechanics

8See Arntzenius (2004, 32-33).

9On this debate, see Earman (1974, 2002); Horwich (1987, ch. 3); Albert (2000,
ch. 1); Callender (2000); Arntzenius (2000, 2003); Smith (2003); Malament (2004).
See Arntzenius (1997a) for time reversal invariance of indeterministic theories. See
Arntzenius and Greaves (2009) for time reversal and quantum field theory.

*Some discussion of this can be found in Arntzenius (2000); Uffink (2002).



is time reversal invariant, but for interestingly different reasons. Albert
can get this result by taking the second equation of motion above to be
a definition of momentum rather than an additional fundamental law.
Albert only allows time reversal operations to act on non-fundamental
quantities that are the time derivatives of fundamental quantities; for
example, in Newtonian mechanics, particle velocities invert because se-
quences of positions do. By taking momentum to be defined by this law,
it becomes a non-intrinsic, non-fundamental quantity, which then inverts
under time reversal because sequences of positions do.)

A second reason that the time reversal symmetry of the laws is subject
to recent debate is that the proper action of the time reversal operator is
under debate. (A third reason, whether a particular theory of quantum
mechanics is correct, will be discussed in section 5.2.) Setting aside their
differences on the intrinsic properties of instantaneous states, the above
views all agree that the basic action of the time reversal operator is to
invert the time order of a sequence of states. But whether this is the
proper action for the time reversal operator is debatable. A different
notion of time reversal, as an inverting of the temporal orientation, was
recently proposed by Malament (2004), and is defended by North (2008).

3. Trouble in thermodynamics

Thermodynamics was originally developed in the nineteenth century,
by figures such as Carnot, Clausius, and Thomson (Lord Kelvin), as an
autonomous science, without taking into account the constituents of ther-
modynamic systems and the dynamics governing those constituents.™*
The original developers of the theory didn’t try to explain thermodynam-
ics on the basis of anything more fundamental. In particular, the puzzle
of thermodynamic asymmetry was not yet recognized.*?

""Fermi (1956) is a readable book on thermodynamics. Here is Fermi on the auton-
omy: in thermodynamics, the “laws are assumed as postulates based on experimental
evidence, and conclusions are drawn from them without entering into the kinetic mech-
anism of the phenomena” (1956, x).

">There are many issues that I set aside here. Throughout, I stick with the modern
formulation of the second law in terms of entropy. For discussion of the historical
development of thermodynamics and of other aspects of the theory, see Sklar (1993);
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That changed with the advent of the atomic hypothesis, and the
identification of various thermodynamic quantities with properties of
systems’ particles.’3 Given the atomic make-up of matter, and given
the successful identification of macroscopic properties such as average
temperature, pressure, and volume with properties of groups of particles,
the question arises as to where the asymmetry of macroscopic behavior
comes from.

Statistical mechanics is the physical theory applying the fundamental
dynamical laws to systems with large numbers of particles, such as the
systems studied in thermodynamics. (Statistical mechanics adds some
probability assumptions to the fundamental dynamics, more on which
below.) So the question is whether we can explain thermodynamics on
the basis of statistical mechanics, and in particular, whether we can locate
a statistical mechanical grounding of the second law.4

The work of Maxwell, Boltzmann, and Gibbs, among others, led to
key components of an answer. Each of them had their own approach
to statistical mechanics and the explanation of entropy increase. Since
there remains disagreement on the proper understanding of statistical
mechanics, there remains disagreement on the proper grounding of ther-
modynamics. In what follows, I use a Boltzmannian approach. Gibbs’
statistical mechanics can be adapted to the discussion (and according to
some, it must be); the main difference lies in the conception of entropy. I

Uffink (2001); Callender (2001, 2008); and references therein. Later axiomatizations of
thermodynamics, beginning with Carathéodory in 1909, rigorized the theory; Lieb and
Yngvason (2000) explains a recent version. Sklar (1993); Hagar (2005); Uffink (2007);
Torretti (2007) (see also references therein) contain surveys of the development of, and
different approaches to, both statistical mechanics and thermodynamics. See Earman
(1981, 2006); Liu (1994) on the question of a relativistic thermodynamics. On entropy
in quantum statistical mechanics, see Hemmo and Shenker (2006); Campisi (2008).

30n whether this constitutes a reduction of thermodynamics, see Sklar (1993, ch.
9); Callender (1999); Hellman (1999); Yi (2003); Batterman (2005); Lavis (2005).

"4Ehrenfest and Ehrenfest (2002) is a classic text on the development and foundations
of statistical mechanics. See also Sklar (1973, 1993, 2000, 2001, 2007); O. Penrose
(1979); Uttink (1996, 2007); Frigg (2008a,b). A different approach is discussed in Liu
(z001). Wallace (2002); Emch (2007) discuss issues in the foundations of quantum sta-
tistical mechanics. Some textbooks on statistical mechanics, all with varying approaches:
Khinchin (1949); Prigogine (1961); Tolman (1979); Landau and Lifshitz (1980); Pathria
(1996); O. Penrose (2005a).



will have to stick to one version here, and choose Boltzmann’s out of my
own views on the matter.'s

Boltzmann’s key insights were developed in response to the so-called
reversibility objections (of Loschmidt and Zermelo).'® The objection, in
a nutshell, is the one that we have already seen. If the laws governing the
particles of thermodynamic systems are symmetric in time, then entropy
increase can’t be explained by these laws. Think of any system that has
been increasing in entropy, such as a partly melted ice cube, and imagine
reversing the velocities of all its particles. The determinism'7 and time
reversal invariance of the dynamics entail that the system will follow the
opposite time development: the system will decrease in entropy, becoming
a more frozen ice cube. (Another reversibility objection, with a similar
conclusion for the inability of the dynamics to ground entropy increase,
employs Poincaré recurrence.) The time reversed, anti-thermodynamic
behavior is just as allowed by the physics of the particles.

The first part of a reply is this. Boltzmann and others realized that,
given the time reversal invariance and determinism of the underlying
dynamical laws, the second law of thermodynamics can’t be a strict law.
It must instead be a probabilistic law. Entropy decrease is not impossible,
but extremely unlikely.

"To understand the move to a probabilistic version of the second law,
Maxwell’s thought experiment is illuminating.'® Imagine that a demon, or
a computer, controls a shutter covering an opening in a wall that divides
a box of gas. The gas on one side of the divider is warmer than the gas

sFor more on Gibbs’ approach, see Gibbs (1902); Ehrenfest and Ehrenfest (2002);
Sklar (1993); Lavis (2005, 2008); Earman (2006); Pitowsky (2006); Uffink (2007). For
arguments in favor of Boltzmann’s, see Lebowitz (1993a,b,c, 1999a,b); Bricmont (1995);
Maudlin (1995); Callender (1999); Albert (2000); Goldstein (2001); Goldstein and
Lebowitz (2004); against the approach, see Earman (2006). On information-theoretic
notions of entropy (especially in relation to Maxwell’s demon), see Earman and Norton
(1998, 1999); Bub (2001); Weinstein (2003); Balian (2005); Maroney (2005); Norton
(2005); Ladyman et al. (2007, 2008); and references therein.

160n the history of the debate over the reversibility objections, see Brush (1975).

7] set aside the cases of indeterminism in classical mechanics: see Earman (1986);
Norton (2008); Malament (2008).

More, the thought experiment suggests that Maxwell recognized the reversibility
problem, and the probabilistic version of the second law, sooner than did Boltzmann:
Earman (2006).
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on the other side. Now, the average temperature in the gas is a function
of the mean kinetic energy of its molecules. Within the warmer portion
of the gas, then, there will be molecules that are moving, on average,
slower than the rest of the molecules. Within the cooler portion of the
gas, there will be molecules that are moving, on average, faster than
the rest of the molecules. Suppose that the shutter is opened whenever
a slower-on-average molecule within the warmer gas moves near the
opening, sending that molecule into the cooler gas; and whenever a
faster-on-average molecule within the cooler gas moves near the opening,
sending that molecule into the warmer gas. The net result is that the two
gases will become mzore uneven in temperature, against the second law of
thermodynamics.*9

Intuitively, this separation in temperature could happen. It could even
happen on its own, just by accident. Imagine that there is no shutter, just
an opening in the middle of the divider. The particles could just happen
to wander through the hole at the right times to cause the gas to grow
more uneven in temperature. This seems extremely unlikely; but it also
seems possible. The fundamental laws governing the molecules of the
gas do not prohibit this from happening.

Still, it would take a massive coincidence, an extremely unlikely coordi-
nation among the motions of all the molecules in the gas. In other words:
the second law of thermodynamics—the tendency of systems to increase
in entropy, such as the tendency of a gas to even out in temperature—
holds probabilistically. Entropy decrease is possible, but unlikely. Indeed,
given the huge numbers of particles in typical thermodynamic systems,
and given the extent of the coordination among their motions that would
be required, entropy decrease is extremely unlikely.

The probabilistic understanding of the second law is a first step toward
a solution to the puzzle of time asymmetry in thermodynamics. But it is
only a first step (albeit a very large one). For the reversibility objections
apply just as much to the probabilistic version of the second law as to
the non-probabilistic one. The probabilistic version of the law says that

"9This can arguably be done without doing any work. Whether or not a genuine
Maxwell’s demon is possible is a matter of continuing debate. See, for example, Earman
and Norton (1998, 1999); Albert (2000, ch. 5); Callender (2002); Norton (2005); and
references therein.
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entropy decrease, while not impossible, is extremely unlikely. Given the
time reversal symmetry of the underlying laws, though, where does this
asymmetry come from? Why isn’t entropy extremely unlikely to decrease
in either direction of time? If it’s so unlikely that my half-melted popsicle
will be more frozen to the future, then why did it “unmelt” to the past?
Remember, the temporally symmetric laws don’t make any distinction
between the past and future time directions. If I feed the current state of
my half-melted popsicle into those laws, then how do the laws tell the
particles to increase in entropy to the future and not to the past? The
laws don’t even pick out or mention the future as opposed to the past!
Where in the world is thermodynamic asymmetry?

4. Statistical mechanics

In order to make progress at this point, we need a more detailed under-
standing of the statistical mechanical basis of the second law.

This takes some setting up. A typical thermodynamic system will have
a large number of particles. We can specify the state of such a system
by means of its macroscopic features, such as its average temperature,
pressure, and volume. These features pick out the muacrostate of the system.
Another way to specify the system’s state is by means of the fundamental
states of its constituent particles. This gives the system’s mzicrostate, its
most precisely specified state, in terms of the positions and velocities and
types of each of its particles. In general, corresponding to any macroscop-
ically specified state, there will be many different compatible microstates,
many different arrangements of a system’s particles that give rise to the
same set of macroscopic features.

Think of this in terms of phase space. The phase space of a system is
a mathematical space in which we represent all its possible fundamental
states. For a classical system with n particles, the phase space has 6n
dimensions, one dimension for the position and velocity of each particle,
in each of the three spatial directions. (The phase space has dimension
anr, where n is the number of particles and r is the number of degrees of
freedom, here assumed to be the three dimensions of ordinary physical
space.) Each point in phase space picks out a possible microstate for the
system; a curve through the space represents a possible micro-history. A
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macrostate corresponds to a region in phase space, each point of which
picks out a microstate that realizes the macrostate.

In the phase space of a gas, for example, each point represents a
different possible way for the particles in the gas to be arranged, with
different positions and velocities. Think of a macrostate of the gas, say
the one where it fills half the room. Think of all the different ways the
particles could be arranged to yield a gas that fills this volume of the room.
Swap some of their positions, or change a few of their velocities, and we
still get a gas that fills this volume of the room. These changes amount
to picking out a different point in the phase space of the gas, consistent
with its filling this volume of the room. The region comprising all those
points represents the macrostate in which the gas fills half the room.>°

Now we can get more precise about Boltzmann’s insight. Boltzmann
showed that the thermodynamic entropy, S, of a given system, the same
entropy appearing in the second law of thermodynamics, is a function
of how many arrangements of the system’s particles are compatible with
its macrostate. He found that S = klogn (up to additive constant), where
n is the “number” of microstates consistent with the macrostate, and
k is a constant. Here #n is the “number” of particles in the sense of
the size of the region in phase space that the corresponding macrostate
takes up—the region’s volume, on the standard measure.?* This quantity
has been empirically determined to track the thermodynamic entropy.
Boltzmann thus arguably discovered a statistical mechanical correlate of
thermodynamic entropy, just as had been done for other thermodynamic
quantities, such as the identification of average temperature with the
mean kinetic energy of a system’s particles, or of average pressure with
the rate and force of particle collisions with a system’s container.>?

*°] skirt over details about how to divide up, or coarse-grain, the phase space: see
Sklar (1993); Albert (2000, ch. 3); Earman (2006); Uffink (2007).

*"The standard measure in classical statistical mechanics is the Liouville volume
measure: the standard Lebesgue measure defined over the canonical coordinates. Boltz-
mann’s equation is thus S = klog|Ty|, where || is the standard (normalized) volume
of the phase space region corresponding to the macrostate M. Typically, the constant
energy E is one of the macro constraints; in which case we use the volume induced by
the standard measure on the 6n —1 energy hypersurface. A bit more on this later.

**Rather, for a system whose microstate realizes the equilibrium macrostate, Boltz-
mann saw that this quantity agrees with the thermodynamic entropy defined for systems
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Boltzmann’s equation tells us that macrostates compatible with many
distinct microstates—macrostates that can be formed by many different
arrangements of a system’s particles, macrostates that correspond to large
regions of a system’s phase space—have higher entropy than macrostates
compatible with fewer microstates. Basic combinatorics shows that these
macrostates have overwbelmingly higher entropy. Thus, spread-out, uni-
form, even-temperature macrostates have overwhelmingly higher entropy
than concentrated, unevenly distributed ones. Think of the gas in the
room. Intuitively, there are many more ways for the gas’ particles to be
arranged so that the gas is spread out in the room than concentrated
in one tiny part: there are many more microstates compatible with the
spread-out macrostate. This is reflected in the difference in entropy. The
state in which the gas has spread out to fill the room has a much higher
entropy than the state in which it is concentrated in one corner. The
equilibrium macrostate, the one in which the gas has stabilized to fill the
volume of the room, has the overwhelmingly highest entropy.

So higher entropy macrostates have many, many more distinct possible
microstates than do lower entropy macrostates. Boltzmann showed this
to be the case for all thermodynamic systems.

This suggests that we can understand entropy increase as the progres-
sion toward more and more probable macrostates. Add to our theory a
natural-seeming probability assumption, that a system is as likely to be in
any one of its possible microstates as any other—that is, place a uniform
probability distribution, on the standard measure, over the phase space
region corresponding to the system’s macrostate—and we get that high
entropy, large-volume-occupying macrostates are overwhelmingly more
probable than low entropy, small-volume ones.?3 At any time, a system is
overwhelmingly likely to evolve to a microstate realizing a macrostate that

at equilibrium. Boltzmann then extends this notion of entropy to systems not at equilib-
rium too; indeed, that is one of the reasons to prefer his notion to Gibbs’: Callender
(1999); Lebowitz (1999b); Goldstein and Lebowitz (2004). Though whether it can be
so extended is a matter of continuing debate.

*3Where this probability distribution comes from is another large subject of debate.
See Sklar (1973, 1993, 2001, 2007); Jaynes (1983); Lebowitz (1993b); Bricmont (1995);
Strevens (1998, 2003); Callender (1999); Albert (2000, ch. 4); Goldstein (2001); Loewer
(2001, 2004); Wallace (2002); North (2004, ch. 3), (2010); Goldstein and Lebowitz
(2004); Lavis (2005, 2008); Earman (2006); Maudlin (2007b); Frigg (2008a).
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takes up a larger phase space region (or to stay in its current macrostate
if it is already at equilibrium), the very higher entropy macrostate that
thermodynamics says it should evolve into. This is because, according
to the particle dynamics and the uniform probability measure, there are
overwhelmingly more such states for the system to be in.

Have we finally found the statistical mechanical grounding of ther-
modynamics? Have we managed to derive the probabilistic version of
second law from the underlying dynamics and the statistical postulate (as
it is often called) of uniform probabilities over the microstates compatible
with a system’s macrostate?

Well, no. But it turns out to be a big start.

We know that this can’t be enough to ground the thermodynamic
asymmetry, for the now-familiar reason that the dynamical laws are time
reversible. Take any entropy-increasing microstate compatible with a
system’s macrostate—any microstate for which, if the system starts out in
it, the dynamical laws predict that it will (deterministically, on the classi-
cal dynamics) increase in entropy—and there will be another, entropy-
decreasing microstate compatible with that macrostate: just reverse all
the particle velocities. There is a one-one mapping between microstates
and their time reverses. And for any microstate that is compatible with
a given macrostate, so is its time reverse. So there will be just as many
entropy-increasing as entropy-decreasing ways for the system to evolve
from its current state. But then entropy increase can’t be any more likely
than entropy decrease.

In other words, the uniform probability distribution, combined with
a dynamical law like F = ma, will predict overwhelmingly likely entropy
increase to the future of any thermodynamic system. That is all to the
good. But the uniform probability distribution, combined with the dy-
namics, also says that any system is overwhelmingly likely to increase in
entropy to the past. That is decidedly not to the good. Itis contrary to the
second law of thermodynamics—not to mention most of our ordinary
experience. We remember the coffee having been warmer than the room,
the gas having been more concentrated, the popsicle more frozen. These
are the mundane observations that got us going along this puzzle-solving
path in the first place! Although the elements of our theory thus far
predict what we expect for these systems’ future behaviors, they radically
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contradict what we take to be the case for their pasts. Hence the depth of
our problem. Statistical mechanics seems to make predictions that are
radically falsified by our ordinary experience and by the evidence we have
for the second law of thermodynamics.

Our problem goes deeper still. If statistical mechanics says that the
past was radically different from what our current evidence suggests, then
this undermines the very evidence we have for the physics that got us
into this mess! Take the current macrostate of the world, a uniform prob-
ability distribution over its compatible microstates,*+ and the dynamics
governing the world’s particles. These are the elements of our statistical
mechanical theory as it now stands. In the overwhelming majority of these
microstates, the world increases in entropy to the future; but likewise, in
the overwhelmingly majority of these microstates, the world increases
in entropy to the past. In other words, the overwhelming majority of
possible micro-histories for our world are ones in which the records we
currently have are not, in fact, preceded by the events that they seem
to depict. It is overwhelmingly mzore likely that the current state of the
world, apparent records and all, spontaneously fluctuated out of a past
equilibrium state, than that our current records are veridical accounts of
the world’s having evolved from an extremely unlikely low entropy state.
Statistical mechanics deems it extremely unlikely that any of our evidence
for the world’s lower entropy past is reliable. And that is the very evidence
we have for the dynamical laws and the uniform distribution in the first
place. Not only does this undermine the asymmetry of thermodynamics,
but it undermines all of the evidence we have for thermodynamics, not
to mention the rest of physics. We have on our hands the threat of “a
full-blown skeptical catastrophe” (Albert, 2000, 116).25

At this point, it may be surprising to hear that we have made any
headway; but indeed we have. The work done by Boltzmann and others

*4Alternatively, take the macrostate of any given sub-system and a uniform distribution
over its possible microstates. Whether the theory can be applied to the world or universe
as a whole remains contentious. For a particularly forceful contention, see Earman
(2006).

*5See Albert (2000, ch. 6) for more on the problem of records and the solution to
it discussed below. Earman (2006) argues against both the apparent problem and this
solution.
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in the foundations of statistical mechanics suggests that we can conclude
this much: for any given macrostate, the overwhelming majority of its
compatible microstates are those for which, if the system were in it, the
system would (deterministically) increase in entropy. So we can reasonably
infer entropy increase to the future, just as our experience leads us to
expect.

The problem is that we can just as reasonably infer entropy increase
to the past. That is the problem we now have to solve.

5. Different approaches

In order to explain thermodynamics, we will need a temporal asymmetry
somewhere in our fundamental theory. As Price (1996) emphasizes: no
asymmetry in, no asymmetry out.?® The question is where. Answers can
generally be divided into one of two camps: an asymmetry in boundary
conditions or an asymmetry in the dynamics. Within each of these camps,
there are differing approaches. I survey here a few of the representative
and, to my mind, most promising. For discussion of other approaches
(interventionism, expansion of the universe, others), I refer the reader
to the references cited here; for comprehensive overviews, see especially

Sklar (1993); Price (1996); Uffink (2007); Frigg (2008b).

5.1. Boundary conditions

Recall the problem we have now gotten ourselves into. If Boltzmann’s
reasoning explains overwhelmingly likely entropy increase to the future,
then why isn’t entropy just as likely to increase to the past?

Another way of seeing the problem is emphasized by Albert (2000,
ch. 4) in order to motivate the move to asymmetric boundary conditions.
Take a partly melted popsicle. A uniform probability distribution over the
microstates compatible with its macrostate, when combined with F = ma,
predicts that the popsicle is overwhelmingly likely to be more melted in
five minutes. But a uniform distribution over the microstates compatible
with the macrostate that obtains five minutes from now, combined with

26See Price (1996) for arguments that many accounts can be faulted for smuggling in
unwarranted asymmetric assumptions.
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F = ma, predicts that the popsicle is overwhelmingly likely to have been
more melted five minutes ago—contrary to our initial assumption, as well
as to thermodynamics. Not only does our theory make false predictions
about the past, but it cannot be consistently applied at more than one
time in a system’s history. Apply the theory at one time, and the theory
itself predicts that it will fail at any other time.>7

The solution in terms of boundary conditions goes like this. The
basic idea is simple. Assume that entropy was lower to the past, as our
records and memories suggest that it was, and take the uniform probability
distribution over the compatible microstates then. The dynamical laws
will predict overwhelmingly likely entropy increase to the future of that
time. That is what we learned from the work of Boltzmann and Gibbs.

Think of our partly melted popsicle. Our theory as it currently stands
predicts that the popsicle is extremely likely to be more melted five
minutes from now, and also five minutes ago. But suppose we now posit
that the popsicle was more frozen five minutes ago; suppose we keep
the more-frozen macrostate fixed to the past. Relative to this posit, the
uniform distribution (taken over the microstates compatible with the
five-minutes-ago macrostate) and the dynamics predict overwhelmingly
likely entropy increase for the popsicle’s future. Of course, this won’t
help if we want to make inferences about the popsicle half an hour ago:
the popsicle is overwhelmingly likely to have been more melted half an
hour ago. So now move the low entropy posit to the thirty-minutes-ago
macrostate. Relative to that posit, the popsicle is extremely likely to keep
on melting to the future.

You see where this is going. In order to predict entropy increase for
the entire history of the world, posit the low entropy macrostate at its very
beginning. This past hypothesis, as Albert (2000) calls it, that soon after
the big bang the entropy of our universe was extremely low, disallows the
high entropy inferences that statistical mechanics makes about the past.?8

*7For disagreement on this point, see Earman (2006); another source of disagreement
will be discussed in section 6.2. Note that this is not the case for any probabilistic theory.
In Bohmian quantum mechanics, for example, the compatibility of the dynamics and
the probabilities, at all times, can be demonstrated: Diirr et al. (1992a,b).

*%The idea has been suggested in different ways by Boltzmann (1964) (see Uffink
(2007); Goldstein (z001)); Feynman (1965, ch. 5); Penrose (1989, ch. 7), (2005b, ch. 27);
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Add the past hypothesis to statistical mechanics, and plausibly, we can
explain the fact that thermodynamic systems behave asymmetrically in
time, even though the dynamical laws governing their particles are time
reversible. It is because the world started out with extremely low entropy,
and at any given time entropy is overwhelmingly likely to go up. Don’t
posit a low entropy “future hypothesis” since the evidence suggests that
entropy was lower to the past and not to the future. (That is, unless we
found evidence to the contrary.) On this view, the time asymmetry of
thermodynamics comes from an asymmetry in the boundary conditions
of our universe.

In this way, amazingly, modern big bang cosmology seems to be get-
ting at what we need in order to explain thermodynamics. The reasoning
we get in statistical mechanics from the likes of Boltzmann and Gibbs,
and the empirical evidence we get from cosmology, are converging on the
same initial low entropy macrostate of our universe.?9 Although we must
ultimately assume the past hypothesis, since without it our evidence of
past low entropy is likely mistaken, this gives us a kind of justification for
the assumption: the evidence we have from both foundations of statistical
mechanics and cosmology, evidence empirical and theoretical, suggests
that we can reasonably assume initial low entropy. That, plus the fact
that all of this evidence would be self-defeating without the assumption
of the past hypothesis. Without this assumption, remember, physics
deems it overwhelmingly likely that the past was completely different
from what we think, and that the laws are completely different as well.

Lebowitz (1993a; 1993b; 1993¢; 1999b); Bricmont (1995); Price (1996; 2002a; 2002b;
2004); Albert (2000); Goldstein (2001); Goldstein and Lebowitz (2004); Callender
(2004a,b); Wald (2006). Challenges to its account of thermodynamics are in Winsberg
(2004a); Parker (2005); Earman (2006); a bit more of which soon.

*9See Earman (2006) for sustained argument against this claim. Earman points out,
for example, that not just any low entropy macrostate will be capable of grounding
thermodynamics; it should be the kind of small, dense, hot, uniform state that big bang
cosmology suggests it was. Even then, we need further details about the initial state to
show that this should yield thermodynamics; and in Earman’s view, no details likely to
be forthcoming will do the job. More, the initial posit doesn’t say anything about the
rate at which entropy will increase. We need more details about the dynamics to show
that the theory predicts a current macrostate of relatively low entropy. All of which
leads Earman to conclude that this is no more than a “just-so” story, “a solution gained
by too many posits and not enough honest toil” (2006, 412).
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We would have no reliable evidence for what the physics of our world is
really like, and no reason to infer anything in particular about the past or
tuture. We could not even trust our belief in Newtonian mechanics. For
what evidence we have deems it overwhelmingly likely that this evidence
is radically misleading. If we assume the past hypothesis, however, we
plausibly avoid getting into that muddle.

Some objections, replies, and clarifications, before moving on.

What is the status of the past hypothesis? Some (Albert, Feynman, Pen-
rose, among others) regard the past hypothesis as a fundamental law.
Whether you agree will depend on your view of laws. The past hy-
pothesis does satisfy many of the generally accepted criteria of lawhood
(counterfactual support, explanatory and predictive success), but for its
being a non-dynamical generalization. Still, if successful, the past hypoth-
esis yields a simple and unifying theory—no need to add anything to the
laws we already have other than a simple statistical constraint on initial
conditions—and this counts in favor of its law status.3° Note that if we
do treat the past hypothesis like this, then there is an asymmetry in the
fundamental laws after all, albeit non-dynamical one. If not, then the past
hypothesis is a contingent generalization for which we have empirical
evidence, albeit evidence that is only reliable once we assume that it is.

Why does the initial state have low entropy? Doesn’t big bang cosmology
say that the universe began in a uniform macrostate? Although this has not
been worked out rigorously, there is a rough answer that strikes many
people as plausible.3* Immediately after the big bang, the universe was in
a uniformly hot “soup,” with matter and energy uniformly distributed in
thermal equilibrium. This state did have high thermodynamic entropy.
The thought is that it had extremely low entropy due to gravity. Gravity is
an attractive force: matter tends to clump up under this force, and then to
stay clumped up. We know from thermodynamics that maximal entropy

3°In particular on a Lewisian best-system account: Loewer (2001; 2004). But see
Frigg (2008a, 2010); Winsberg (2008) for argument against this.

3'Such as Penrose (1989, 317-322), (2005b, ch. 27). See Earman (2006) for disagree-
ment. Earman argues that even the rough answer is implausible, for we do not have, and
are unlikely to get, a theory of the entropy due to gravity, let alone such a theory that
allows us to calculate the entropy of the entire universe. Wald (2006) is more optimistic.
See Callender (2010) for recent discussion. See Ellis (2007) for recent discussion on
this and other philosophical issues in cosmology.
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states are the equilibrium states toward which systems tend to evolve
and then stay. For systems primarily under the influence of gravity, then,
a clumped-up state has high entropy.3 The early state of the universe,
non-clumped-up and uniformly spread out, had extremely low entropy
due to gravity.33

Why did the universe start out in such an unlikely state? "This account tells
us to assume something thatis extremely unlikely by its own lights.34 Price
(1996, 2002a,b, 2004), who argues in favor of the boundary conditions
strategy, says that more is needed to complete the story. In his view, the
real puzzle about thermodynamic asymmetry is to explain the low entropy
initial state itself.35 We know that entropy increase is extremely likely
from the work of Boltzmann and others, after all. The puzzle, according
to Price, is why entropy was so low to begin with. On a view which thinks
of this state as a fundamental law, though, this search for explanation
will seem misguided. Even without that view of the past hypothesis, one
might question the need to explain initial conditions.3%

How can the past hypothesis get us anywhere, when statistical mechanics
says that all the evidence we have for it is extremely likely to be mistaken?
Without the past hypothesis, our theory says it’s extremely likely that
our current memories and records are mistaken, and radically so. If we
don’t start out assuming past low entropy, then the overwhelmingly most
likely scenario is that our current records and memories—no matter
how well-correlated they are with other records and alleged states of
the world—spontaneously fluctuated out of past equilibrium. Yet once
we assume the past hypothesis, the suggestion is, this will no longer be
the case. For, given past low entropy, it is overwhelmingly more likely

32 Another way of putting it is that the state will be spread out in momentum space,
even though it will be relatively clumped up in position space.

33Though not completely uniform: enough non-uniformities are needed to start the
clumping-up process that leads to the formation of stars and galaxies and so forth.

3#How unlikely? See Penrose (1989, 343).

35 A similar view is in Carroll (2008).

3°As do, for example, Boltzmann (in Goldstein (2001)); Sklar (1993, 309-318); Cal-
lender (1998, 2004a,b); North (2002). Penrose (1989, ch. 7), (2005b, ch. 28) argues that
there may be a dynamical explanation on which the initial state is not unlikely. Carroll
and Chen (2004, 2005); Carroll (2008) attempt to explain the initial state by means of
the large-scale structure of the multiverse. Wald (2006) argues against these ideas.
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that a popsicle had been more frozen to the past than that it formed
spontaneously out of a homogeneous soup. Relative to the assumption
that the popsicle was frozen to the past, the overwhelming majority of
micro-histories yielding its current state will have come by way of that
lower entropy past state; for if that weren’t the case, then the entropy of
the popsicle would not have been increasing since then. See a footprint on
a beach, and without the past hypothesis, the footprint is overwhelmingly
likely to have spontaneously formed out of past equilibrium; assume past
low entropy, and this is much less likely than a person’s having walked on
the beach.37 Relative to the assumption of past low entropy, it is much
more likely that the world is in a microstate, compatible with its current
macrostate, which evolved through a lower entropy past state with a
person on the beach.

In other words, plausibly, the low entropy initial posit makes it over-
whelmingly likely that our usual causal accounts for how things got to
be the way that they currently are, are correct: that there was a person
to cause the footprint on the beach, a more frozen popsicle to cause my
memory, and not just a homogeneous equilibrium soup. For the past
hypothesis makes it overwhelmingly likely that the correlations among
our current records and memories are due to past states of the world. This
is not a rigorous argument. It is a plausibility claim that the theory should
be able to ground our records in this way, given Boltzmann’s reasoning
in statistical mechanics, and given big bang cosmology’s account of the
formation of stars and galaxies, which in turn lead to the existence of
beaches and people, who in turn lead to the existence of frozen popsicles,
and so on.3% Plausibly, given the past hypothesis, we can reconstruct a
picture of the world on which our inferences, and the records that they
rely on, come out successful in the way that we think they are.39

(Take the current macrostate of the world, the fundamental dynamics,
and the probability postulate. Conditionalize on the past hypothesis, and

37See Earman (2006) for disagreement on both parts of this claim.

38See Penrose (1989, ch. 7).

39Note the different sense of “record” here from that of Lewis (1979). Rather than
being a determinant, a record is something in the current state relative to which, condi-
tional on the past hypothesis, it is overwhelmingly likely that the system passed through
the state that the record appears to be a record of.
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we constrain the overwhelming majority of possible world-histories to
those in which our records are by and large veridical. Hence the basis for
Albert’s (2000, ch. 6) claim that this explains why we know more about
the past than about the future: initial low entropy restricts the possible
pasts of our world more than its possible futures. Not that it restricts the
set of possible past microstates more than possible future microstates. By
Liouville’s theorem, the volume in phase space taken up by the world’s
macrostate at any time will be the same. Rather, there is a “branching tree
structure” to the world (Loewer, 2007), in which the initial low entropy
macrostate constrains the possible past macrostates of the world more
than the possible future macrostates, relative to the current macrostate.4°)

This only gives us records at the level of entire macrostates of the world. What
about the localized records we’re familiar with—footprints, photographs, and the
like? More needs to be done to suggest that the past hypothesis, even if
necessary for thermodynamics, is sufficient as well; in particular, for the
localized records that make up our ordinary evidence for thermodynamics.
More details about the initial state might help. Immediately after the big
bang, everything in the universe was distributed relatively uniformly, in a
dense, hot, equilibrium soup; the matter and fields were evenly distributed
and particles were moving around randomly.4* Some of these randomly
moving particles will eventually collide, and under gravity, some clumps
of matter will begin to form. These clumps contain accelerating particles
and will be hotter on average than the surrounding space. As the universe
expands, then, it evolves away from its initial homogeneous state into
macrostates that consist of hotter clumps of matter in a cooler surrounding
space. Relative to the assumption of initial homogeneity, these later
states indicate that there had been particle collisions in the past. For if
everything started out moving randomly in an even-temperature soup,
the later states containing warmer masses within a cooler surrounding

4°Why this structure? Plausibly, because the microstates of the world compatible with
its macrostate at any time are on trajectories that spread out, or “fibrillate,” over more
and more distinct macrostates to the future; see note 45. Objections to the explanation
of the asymmetry of knowledge are in Parker (2005); Frisch (20052, 2007); Earman
(2006).

+'We'll ultimately need quantum mechanics to describe an equilibrium state of matter
and energy. Even then, you may be skeptical that such a description is possible: note 31.
A very brief sketch of how that might go is at the end of North (2003).
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space indicate past particle collisions and not future ones. More, the
clumps are relatively localized records of past collisions.+?

How can the past hypothesis explain entropy increase in the world’s various
sub-systems, even if it can ground entropy increase for the universe as a whole?43
Given the deterministic dynamics, a probability distribution taken over
the microstates compatible with the macrostate of the world at any time
will induce a probability distribution over the world’s possible microstates
at any other time: conditionalize the initial distribution on the macro-
scopic constraints at the other time. By means of this conditionalizing
procedure, the initial distribution will assign probabilities to the different
possible fundamental states of the world at any time. But any microstate
of the world includes a specification of the exact state of any sub-system.
So the distribution taken over the phase space of the world, by assign-
ing probabilities to its possible microstates at any time, will also assign
probabilities to the possible microstates of any sub-system at any time.
Restrict the initial distribution to the region representing the sub-system’s
macrostate; i.e., conditionalize the initial universal distribution on the
system’s macroscopic features. More, this should yield relatively uniform
probabilities over the sub-system’s compatible microstates (see below).44

Why should this yield the same probabilities as the empirically confirmed
ones of ordinary statistical mechanics? Ordinary statistical mechanics takes the
uniform distribution at any time we choose to call the initial one, without condi-

+This is extremely rough, at best only a very beginning. See Elga (2007) for a more
worked-out account; see also Albert (2000, ch. 6).

#BWinsberg (2004a), for example, argues that we need a further posit to rule out local
anti-thermodynamic behavior (since small, relatively isolated sub-systems will have
randomized microstates as a result of past interactions with the rest of the universe), a
posit which, moreover, we don’t think is true; Earman (2006, 420) concurs. A similar
criticism is in Reichenbach’s “branching systems” objection (Sklar, 1993). (See Winsberg
(2004b) for an updated version of Reichenbach’s idea.) Frigg (2008b) suggests that the
standard measure cannot tell us the probabilistic behavior of an ordinary system, whose
microstate is confined to an energy hypersurface, since any such lower-dimensional
space gets zero measure on the standard volume measure taken over all of phase space.

#A standard assumption in statistical mechanics makes it plausible that, for any
system, the initial distribution will be relatively uniform throughout any sub-space
of the higher-dimensional phase space. So that when we conditionalize the initial
distribution on the sub-space (and renormalize), we get another distribution that is
relatively uniform. See Lebowitz (1993b,c, 1999b); and below.
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tionalizing on the past. 'Two reasons. The firstis Boltzmann’s combinatorics,
which suggests that the overwhelming majority of microstates compatible
with any given macrostate lie on trajectories that increase in entropy (both
to the future and to the past). That is, think of the phase space region
representing a system’s macrostate. Boltzmann’s reasoning suggests that
the proportion of the volume of this region that is taken up by microstates
leading to entropy increase is overwhelmingly large; and the proportion
taken up by microstates leading to entropy decrease is overwhelmingly
small. The second is a randomness assumption. Within any phase space
region corresponding to a system’s macrostate, the microstates leading
to entropy decrease will be scattered, relatively randomly, throughout.
Again, this is a reasonable, if unproven, assumption of ordinary statistical
mechanics.45 All of which suggests that the standard uniform distribution
will yield the same probabilities of future thermodynamic behavior as the
uniform distribution that is first conditionalized on the past hypothesis.
At the same time, the distribution conditionalized on the past hypothesis
will improve upon the standard one with respect to inferences about past
thermodynamic behavior.45

5.2. Dynamics

Another way of trying to solve our puzzle is with laws that aren’t time
reversal invariant. If the fundamental dynamical laws say that different
things can happen to the past and to the future, then this might explain
the asymmetry of thermodynamics.

You might wonder if even the classical laws, time reversal invariant
though they be, could do the job. You might think that these laws have

some property that will show entropy likely to increase over time; say,

45Thus Lebowitz: “for systems with realistic interactions the domain Ty, will be
so convoluted that it will be ‘essentially dense’ in I'y,” (19933, 10); M refers to the
system’s macrostate, I the phase space, I'ys the phase space region corresponding to M,
M, the system’s initial macrostate, M, its later macrostate, and Ty, the region of Ty,
that came via Ty, (the set of microstates within T, that are on trajectories that come
from Ty,). Again: “interactions the domain Ty, will be so convoluted as to appear
uniformly smeared out in Ty. It is therefore reasonable that the future behavior of the
system, as far as macrostates go, will be unaffected by their past history” (1999b, S349).

4More on this is in North (2004, ch. 3).
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some chaotic property. You would not be alone. There is a history of
trying to show just this, a history that continues to the present.47 Yet no ap-
proach relying on these as the fundamental laws can suffice to explain the
thermodynamic asymmetry; not without asymmetric boundary assump-
tions. This is for the usual reasons, namely, the time reversal symmetry
and determinism that lead straight to the reversibility objections.43
That is why ergodic theory cannot do the job, as far as explaining
thermodynamics goes. This approach to statistical mechanics uses mathe-
matical theorems from ergodic theory to pinpoint features of the dynamics
to explain entropy increase. In so doing, the approach also tries to explain
the probability distribution that standard statistical mechanics, and its ex-
planation of entropy increase, relies on.49 This is a large approach to the
foundations of statistical mechanics, which I cannot adequately address
here; for survey and references, see Sklar (1993); Utfink (2004, 2007).
Let me mention the reasons to be skeptical of its ability to ground the
second law of thermodynamics. First, it has not been shown that ordinary

47Part of this history lies in Boltzmann’s own H-theorem. For more on the H-theorem
and on Boltzmann’s later account—that the universe as a whole is almost always at
maximum entropy, but we happen to be on the up-slope of one of its fluctuations out
of equilibrium—see Ehrenfest and Ehrenfest (2002); Feynman (1965); Sklar (1993, ch.
2); Price (1996, ch. 2); Uffink (2004). For more on symmetric cosmological accounts,
see Price (1996, ch. 4). For a recent version of a “symmetric on the whole” theory, see
Carroll and Chen (2004, 2005); Carroll (2008); also discussed in Wald (2006).

#Nor does this depend on your view of time reversal (section 2). Even someone like
Albert, who thinks that most theories other than Newtonian mechanics are non-time
reversal invariant, won’t for that reason explain the second law of thermodynamics. As
Albert (2000, ch. 1) puts it, these theories are still symmetric with respect to the evolu-
tions of particle positions, and that is enough to get the puzzle about thermodynamic
systems going.

#The tradition of invoking ergodic theory in explanations of statistical mechanics
goes back to Boltzmann (Ehrenfest and Ehrenfest, 2002). Boltzmann’s original idea
was that a system is ergodic if, for almost all (standard measure 1) initial conditions, its
trajectory passes through every point in the available phase space. A version of Birkhoff’s
theorem then says that for such a system, the infinite time average of the phase function
corresponding to a macroscopic property equals the function’s average over the phase
space. (Birkhoft’s theorem says that infinite time averages exist for almost all initial
conditions. A corollary says that if a system is ergodic, then those infinite time averages
equal the standard (microcanonical) phase averages for almost all initial conditions. See
Earman and Rédei (1996).)
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systems are, in fact, ergodic. Although some notions of ergodicity have
been demonstrated to hold of certain simple systems, results such as the
KAM theorem suggest that most statistical mechanical systems will fail
to satisfy any strict notion of ergodicity.5° More generally, the results
using ergodic theory do not seem necessary to the statistical mechanical
grounding of thermodynamics. Goldstein (2001) argues that many of
these results (such as the technique of Gibbs phase averaging, used to
calculate the values of thermodynamic quantities at equilibrium) can be
shown to hold regardless of whether a system is ergodic. Ergodic theory
seems insufficient for this project as well, since it cannot avoid the need
for some initial probability assumption: the ergodic approach can’t derive
all probabilistic posits from the dynamics alone (as in the “measure zero
problem” discussed in the literature), with laws that are deterministic and
time reversal invariant, though that is one of its chief motivations. In
particular, it can’t avoid the need for an asymmetric boundary assumption
like the one above.5* (Though not enough to solve the puzzle here, note
that ergodicity could help ground the randomness assumption (section
5.1; note 45): that the compatible microstates on entropy-decreasing
trajectories will be scattered randomly throughout a system’s phase space;
that they will spread out over the phase space.5?)

A recent proposal based on non-time reversal invariant dynamics
comes from Albert (1994, 2000). Here, too, the basic idea is simple,
though we must now take into account quantum mechanics.53 The sug-

5°See Sklar (1993, ch. 5); Earman and Rédei (1996).

5'See Sklar (1973), (1993, ch. 5); Friedman (1976); Leeds (1989); Earman and Rédei
(1996); van Lith (2001) for presentations of the problem and various proposals for
addressing it. For recent ergodic-based accounts that improve upon the traditional
ones, see Malament and Zabell (1980); Vranas (1998); also Campisi (2005). Vranas,
for example, suggests that something close enough to ergodicity might actually hold
of ordinary systems. See Strevens (1998, 2003, 2005) for a different, non-ergodic-
based approach to demonstrating that macroscopic generalizations, such as those of
thermodynamics, come from chaotic properties in the micro-dynamics.

5*See Berkowitz etal. (2006) for recent work along these lines. See Earman (2006, 406)
for such a suggestion based on a mixing property (stronger than ergodicity). Earman,
however, argues that this suggestion undermines the Boltzmann apparatus.

53A different approach, using quantum decoherence, is in Hemmo (2003); Hemmo
and Shenker (2001, 2003, 2005). Bacciagaluppi (2007) is another. An overview of
different theories of quantum mechanics is in Albert (1992).
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gestion is that a certain theory of quantum mechanics, the collapse theory
of Ghirardi, Rimini, and Weber,54 or GRW, is non-time reversal invariant
in a way that can account for the thermodynamic asymmetry.ss

In quantum mechanics, questions of time asymmetry are tricky, since
there are different versions of the theory on the table. But there are some
broad similarities and differences that are relevant to our question here.

All theories of quantum mechanics take the Schrédinger equation to
be a fundamental law. This is a deterministic and time reversal invariant
equation of motion.5¢ It governs the evolution of a system’s wavefunction,
the mathematical object that describes a system’s fundamental quantum
state at a time. Different theories of quantum mechanics disagree on
the scope of this law. Non-collapse theories of quantum mechanics,
such as Bohm’s theory or many worlds, posit the Schrodinger equation
as the fundamental dynamical law governing the evolution of a system’s
wavefunction, at all times.57 Collapse theories, on the other hand, say that
Schrodinger evolution fails to hold whenever the wavefunction “collapses”
onto one of its components, in accord with probabilities dictated by
the theory. Collapses are non-unitary, indeterministic transitions, not
governed by Schrodinger evolution.

GRW is a collapse theory. It posits a fundamental, probabilistic col-
lapse law governing the evolution of the wavefunction, in addition to
the Schrodinger equation. In GRW, the collapse law gives a probability
per (small) unit time of a wavefunction collapse,s® at which point the
wavefunction is multiplied by a normalized Gaussian function. The result
is that the wavefunction is localized to a small region within its phase

54See Ghirardi et al. (1985, 1986).

550n the relevant sense of time reversal non-invariance, see Arntzenius (1997a).

56Tt is time reversal invariant given the standard time reversal operator in quantum
mechanics, which maps t — —t and also takes the complex conjugate. Whether this is a
legitimate time reversal operator is open to question: see section 2.

57The guiding equation of Bohm’s theory, which governs particle evolutions, comes
from the Schrodinger equation plus some natural symmetry considerations: Diirr et al.
(1992b, 852-854).

58Roughly per “particle.” Recent empirical evidence suggests that a probability of
collapse per atom isn’t right, but there are other versions available. I say “particle” since
there are no fundamental particles on this theory, and so arguably no particles at all: see
Albert and Loewer (1995); Albert (1996).
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space.59 The probability that the multiplying Gaussian is centered on any
given location in phase space depends on the wavefunction just before
the collapse, in accord with the usual square amplitudes.

Not only is wavefunction collapse governed by a fundamental, inde-
terministic law on this theory, but by a fundamental, non-time reversal
invariant law. GRW assigns probabilities to the different possible future
wavefunctions that a system’s current wavefunction could collapse into.
(After which the wavefunction will evolve deterministically, in accord
with the Schrédinger equation, until another collapse occurs.) The theory
doesn’t assign probabilities to different possible past wavefunctions, given
a system’s current wavefunction. The collapse law doesn’t say anything
about the chances of different past wavefunctions.’> GRW then says that
different things can happen in either direction of time: wavefunctions
can collapse in accord with lawful probabilities to the future, not the past.

Time reversal invariant theories of quantum mechanics face the same
problem of explaining the asymmetry of thermodynamics that classical
theories do. As a result, in order to ground thermodynamics, these
theories will need an asymmetric boundary assumption such as the one
discussed above. This assumption is needed in order to make it unlikely
that a system ever starts out in an entropy-decreasing quantum state; for
if it did, then the deterministic and time reversible dynamics entails that
the system will decrease in entropy to the future of that state.%*

Albert’s suggestion is that this won’t be the case for GRW. On this
theory, there is a fundamental time asymmetry in the dynamics. So maybe

59Except for the “tails”: Albert and Loewer (1995).

%°As Arntzenius (1997a) puts it, GRW is a theory of forward transition chances,
with no backward transition chances. Against this, Price (1996, 2002a,b) argues that a
theory like GRW might really be a symmetric theory, with backward transition chances
in addition to the usual forward ones; the backward chances don’t result in observed
frequencies because they are subordinate chances that are overridden by the initial low
entropy condition. One might wonder, though, why we should believe in the existence
of lawful chances in that time direction, if they are never manifested in observable
frequencies. More, it seems we can only add backward transition chances at the expense
of empirical adequacy, since quantum phenomena don’t display invariant backward
transition frequencies, as argued by Arntzenius (1995, 1997a,b).

'There remains the question of how to define a uniform probability measure over
the complex infinite-dimensional vector spaces of quantum mechanics. This is a large
question for any version of quantum statistical mechanics.
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this fundamental asymmetry can explain the macroscopic asymmetry of
thermodynamics.

The reason to think that GRW might be able to do this stems from
the structure of the entropy-decreasing microstates in phase space, com-
bined with the nature of the theory’s transition probabilities. Recall that,
plausibly, the phase space regions consisting of the entropy-decreasing mi-
crostates (really, the microstates leading to any abnormal thermodynamic
behavior) are scattered randomly, in extremely tiny clumps, throughout
a system’s phase space. Indeed, these entropy-deacreasing regions will
be so scattered and tiny that a uniform probability distribution taken
over just about any phase space region—any region that is not as tiny
and scattered as the entropy-decreasing regions themselves—will deem it
overwhelmingly unlikely that a system will decrease in entropy. That is,
entropy decrease (to the future as well as to the past) is overwhelmingly
unlikely not only given a uniform distribution over the phase space region
corresponding to a system’s macrostate, but also given a uniform distri-
bution over virtually any sub-region of that phase space region, however
small; including the neighborhood of any single microstate, whether
entropy-decreasing or not.®* This is what Boltzmann made plausible.

If this is right, then the entropy-decreasing microstates are extremely
unstable: any system that’s in an entropy-decreasing state is extremely
“close” to being in an entropy-increasing one.% Plausibly, therefore, on
a theory of fundamental, indeterministic wavefunction collapses, any
system will be overwhelmingly likely to increase in entropy. For it is
overwhelmingly likely that, if the system is in an entropy-increasing
quantum state at some time, then a wavefunction collapse to the future will
keep its state within the entropy-increasing regions of its phase space—the
regions containing the quantum states that will deterministically, in accord
with the Schrédinger equation, increase in entropy to the future. And it is
overwhelmingly likely that, if the system is in an entropy-decreasing state
at some time, then a wavefunction collapse to the future will cause it to
jump to a state within the entropy-increasing regions. Given the extent of
the instability of the entropy-decreasing microstates, these wavefunction

62See also note 43.
% But see note 671.
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jumps should make it overwhelmingly likely that any54 system will evolve
in accord with the second law of thermodynamics, even if it starts out in
an entropy-decreasing microstate (a microstate on a trajectory that takes
the system to a lower entropy future macrostate).

Since the abnormal microstates take up non-zero phase space vol-
umes, not just any kind of collapse will get this result. But there are
reasons to think the collapses of a theory like GRW will.65 The GRW
collapse law assigns a probability per unit time to a wavefunction collapse,
in accord with the usual quantum mechanical probabilities, at which
point the wavefunction is multiplied by a Gaussian. At any time, that
is, the theory places a probability distribution over the different pos-
sible microstates that a system could evolve into after collapse, given
its wavefunction at that time, in accord with the usual Born rule. This
probability distribution is centered on the system’s initial microstate. It
is also uniform over a very small phase space region, smaller than any
region representing a macrostate. Given the level of the instability of
the abnormal microstates, and given the Gaussian width of the collapsed
wavefunction (the width over which the probabilities are distributed), the
region over which the this probability distribution is taken should be at
least as large as the smallest sub-region of phase space which yields the
same probabilistic predictions as the standard distribution over all the
microstates compatible with a system’s macrostate. At the same time, the
region should be small enough that any system, even after undergoing
a wavefunction collapse, will remain in one of its possible microstates.
Collapses won’t cause the system to behave non-thermodynamically by
carrying it to some far-off region in phase space, that is.

This is non-rigorous. Calculations are needed to show that the GRW
distributions are of this order. But the conclusion seems plausible, given
how tiny and scattered the entropy-decreasing portions of a system’s
phase space should be.

Of course, whether this works as a theory of thermodynamics depends
on the truth of GRW as a theory of quantum mechanics. And the ac-

%4That is, any large enough system, large enough to exhibit an entropy-increasing
tendency: see Albert (1994), (2000, ch. 7); North (2002). And setting aside the possibility
of Maxwell’s demon type systems: Albert (2000, ch. 5).

% Briefly here. See Albert (1994, 2000, ch. 7), also North (2004, ch. 1), for more.
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count relying on asymmetric boundary conditions arguably succeeds in
grounding thermodynamics. So the question is whether GRW, should it
turn out to be a true theory, could explain thermodynamics better.

There is reason to think that it can. In order to answer the reversibility
objections, any time symmetric theory of quantum mechanics will require
two fundamental probability distributions: the probabilities of quantum
mechanics and the statistical mechanical probability distribution. We
are thus left with “two utterly unrelated sorts of chance,” as Albert puts
it, “one (the quantum-mechanical one) in the fundamental microscopic
equations of motion, and the other (the statistical-mechanical one) in the
statistical postulate” (2000, 161).

A statistical mechanics based on GRW dynamics, on the other hand,
does away with the latter distribution. On this theory, it is the probability
per unit time of a wavefunction collapse that yields overwhelmingly
likely entropy increase, not a probability distribution over possible initial
wavefunctions. There is no need for an additional probability distribution,
since no matter which microstate compatible with its macrostate a system
starts out in—even an entropy-decreasing one—the stochastic dynamics
predicts that it is overwhelmingly likely to evolve with the second law of
thermodynamics. No need for an initial distribution to make entropy-
decreasing quantum states unlikely; the dynamics takes care of this for us.
(The past hypothesis is still needed for inferences about the past, but not
as a correction to otherwise faulty retrodictions, as it was above.)

On this theory, there would be only one probability law underlying
thermodynamics: the probabilistic law of wavefunction collapse. The
probability distribution posited by GRW to yield a viable theory of quan-
tum mechanics would also yield the probabilities of statistical mechanics
and of thermodynamics. This is then a simpler, more unified theory.
Other things equal, it is preferable, assuming that an explanation is bet-
ter to the extent that it is simpler and more unifying, relying on fewer
independent assumptions. Although we must wait and see what the right
theory of quantum mechanics is, and although asymmetric boundary
conditions should do the job if GRW is not that theory, this is a better
theory of thermodynamics, if GRW does turn out to be true.%

%See Albert (2000, ch. 7) for further considerations in its favor, Callender (1997) for
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6. The Status of Statistical Mechanics

Another way to challenge the above attempts at a solution, whether via
asymmetric boundary conditions or asymmetric dynamics, is to challenge
the view of statistical mechanics as a scientific theory. So far, I've been
assuming that statistical mechanics is a fundamental theory. Hence the
problem with thermodynamics: if statistical mechanics is a fundamental
theory and thermodynamics is not, then where does the asymmetry of
the latter come from, if not an asymmetry in the former?

What, then, is the status of statistical mechanics? Could denying it
fundamental status help solve the puzzle about thermodynamics?

6.1. Universal and fundamental

As Albert presents it, and as it tends to be treated in physics textbooks, sta-
tistical mechanics is a fundamental theory. Statistical mechanics consists
of the fundamental dynamics, whether classical or quantum mechanical,
for systems consisting of large numbers of particles.®?

Albert goes further than ordinary statistical mechanics books do. On
his version of the theory, the probability distribution is pushed back to
the initial state of the universe. This distribution is then updated, by
conditionalizing, for use at all other times. Albert argues that this is the
right thing to do in the face of the reversibility objections (that is, unless
a GRW dynamics is true). But note the effect of this maneuver. Given
the deterministic dynamics, the initial distribution yields a probability
distribution over each possible microstate of the universe at any time.
In so doing, it assigns a probability to anything that supervenes on the
fundamental physical state of the universe at any time. This means that
the theory makes probabilistic predictions for every physical event in
the world’s history—for every fundamental physical event, and for every
event that supervenes on the fundamental physical state.%® (Indeed, it

argument against, and North (2004, ch. 1) for more discussion. See Price (2002a,b),
Uftfink (2002) for further argument against; North (2002) is a reply to Price.
7In Albert’s presentation, statistical mechanics comprises the following three funda-
mental laws: the dynamics, the statistical postulate, and the past hypothesis (2000, 96).
Remove the past hypothesis to get the version of the theory presented in textbooks.
%8We can set aside here the question of how to spell out this supervenience relation.
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assigns probabilities to the possible microstates of a system conditional on
any less-precisely-specified state.®9) Since this theory makes probabilistic
predictions for everything that happens in the world, everything that
happens must either conform to its predictions, else disconfirm the theory.

If this theory is right, then statistical mechanics underlies not only the
future behavior of gases, as it does in ordinary textbooks, but it underlies
their past behaviors as well. It also underlies all sorts of macroscopic
phenomena, even such things as the fact that people tend to keep spatulas
in kitchen drawers rather than in their bathtubs, to use an example of
Albert’s. The idea that statistical mechanics can ground these phenomena
might strike you as outlandish. But it follows naturally from the past
hypothesis as a solution to the reversibility objections, combined with a
realism about statistical mechanics (against a view such as Leeds’, below)
and a physicalism according to which everything supervenes on the world’s
fundamental physical state.

Of course, statistical mechanics is not ordinarily used to predict things
like spatula locations. Nor should it: the calculations involved would
be much too complicated. Why then think it should do so in principle?
Because the evidence we have so far supports this theory (at the least,
it does not contradict it; more below), and this is the theory we end
up with in reply to the reversibility objections. Or if GRW is correct,
then because the statistical mechanical probabilities are the fundamental
quantum mechanical probabilities.

6.2. A more limited theory

That’s an awful lot to ask of statistical mechanics. Leeds (2003) argues that
it’s too much. Where Albert takes the reversibility objections to motivate
a reformulation of the statistical postulate, Leeds suggests that we treat
statistical mechanics instrumentally. Statistical mechanics is simply a
successful instrument of prediction, and for just those phenomena we
have evidence that it is successful for.

Ordinary statistical mechanics takes the uniform distribution over

It suffices to assume that there is such a relation.
%9Hence Loewer’s argument (2009; 2008) that this can account for the existence of
the special sciences.
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the macrostate of a system at any time we choose to call the initial one,
regardless of its past behavior. And it is successful in doing so. According
to Leeds, we should follow this ordinary practice, using the standard
distribution to predict things such as the future behavior of gases and the
values of thermodynamic quantities at equilibrium, and leave it at that.
For we have no reason to think that statistical mechanics can (or should)
yield successful inferences about the past, let alone where people tend to
keep their spatulas.7>7' A more limited version of the theory is “all we
need, and also the most we are likely to get” (Leeds, 2003, 126).

In Leeds’ view, we needn’t worry so much about the reversibility
objections. For we can simply rely on our records, explaining the fact that
an ice cube was more frozen ten minutes ago by describing its macrostate
half an hour ago, for instance.” In particular, we needn’t try to correct
the predictions of ordinary statistical mechanics by pushing the statistical
postulate back so far as to get a theory with claims to universality. Instead,
we should use the standard postulate for making future thermodynamic
predictions, since it has proven its mettle in that temporal direction. We
should refrain from using it for the past, given its manifest failure in that
direction. Empirical evidence shows that statistical mechanics only gives
us rules for making inferences about the future, not about the past.

Likewise for other macroscopic phenomena, such as where people
tend to keep their spatulas. Here, it’s not that we have evidence that
statistical mechanics fails, but that we lack any reason to think it can
succeed. We certainly don’t see any positive evidence in ordinary statis-
tical mechanics textbooks; spatulas are a far cry from the systems that
statistical mechanics ordinarily talks about, such as boxes of gas. So we
should refrain from using statistical mechanics to predict these things,
and not try to alter the theory so that we can.

7°A similar inductive skepticism could stem from a view like that of Cartwright (1999).
Cartwright argues we have no reason to infer that the physical laws will hold of ordinary
systems outside the laboratory, even granting their truth in lab situations we set up.

""Further, if we regard the distribution as no more than a successful instrument of
prediction, we can consistently apply it at arbitrary times, avoiding the inconsistency
with the dynamics mentioned at the beginning of 5.1. One of Leeds’ motivations is a
view of the statistical mechanical probabilities as subjective and epistemic; against, for
example, the view of Albert (2000, ch. 4); Loewer (2001).

72Cf. Earman (2006, 421-422).
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The result is a statistical mechanics that is committed to less, and is
correspondingly less prone to failure. This also means that we get less out
of it, however; it can’t be used to predict macroscopic phenomena other
than the future behavior of ordinary thermodynamic parameters. And
given that we don’t yet have disconfirmation of the stronger theory, and
given the success of statistical mechanics for other macroscopic systems
made up of the same kinds of particles,” and given the reasoning of
Boltzmann and Gibbs, it is not so crazy to hope that it could.

Leeds (and Callender, below) suggests that statistical mechanics, prop-
erly understood, doesn’t make any inferences about the past; in particular,
it doesn’t make false inferences that need correcting with a revised statisti-
cal postulate. But s this the right view of the theory’s range of predictions?
Why did we entertain the idea that it makes these predictions? The rea-
son is the time reversal invariance and determinism of the dynamics. The
classical dynamics (and the dynamics of no-collapse quantum mechanics),
taken by itself, does yield inferences about the past. Plug in the state of
a system at any one time, and the dynamics will predict its state at any
other time—without taking into account the time of the initial state, and
without making a distinction between past and future temporal directions.
As far as the dynamics is concerned, the prediction could hold to the
past or to the future of the state we plug in. Statistical mechanics, which
takes this dynamics and applies it to large systems, should be likewise
temporally symmetric, leading again to the reversibility objections and
the past hypothesis as a means of responding to them. Without the past
hypothesis, that is, statistical mechanics will yield these inferences of
past high entropy, inferences that disconfirm the theory unless we do
something to prevent them.

But Leeds has pointed to a trade-off. Either we accept a more limited
version of the theory and evade the reversibility objections in that way,

73Thus Pathria (1996, 1): “Statistical mechanics is a formalism which aims at explain-
ing the physical properties of matter in bulk on the basis of the dynamical behavior of
its microscopic constituents. The scope of the formalism is almost as unlimited as the
very range of the natural phenomena, for in principle it is applicable to matter in any
state whatsoever. It has, in fact, been applied, with considerable success, to the study
of matter in the solid state, the liquid state or the gaseous state, matter composed of
several phases and/or several components”, and more (italics in the original).
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or end up with a theory that is committed it to a lot, including much that
it can get wrong. Since the stronger theory would be deeper and more
unifying, explaining not only individual systems’ behavior, but the success
of thermodynamics as a whole, and other macroscopic phenomena besides,
it seems worthwhile to aim for it, unless we get evidence otherwise.

6.3. Special science

Another take on statistical mechanics comes from Callender (1997, forth-
coming). Callender argues that the thermodynamic puzzle shows that
statistical mechanics is a special science rather than a fundamental theory
(let alone a theory with ambitions to universality). This is because it bears
the hallmark of a special science, namely, the requiring of special initial
conditions—in this case, initial low entropy—for its generalizations, such
as the second law of thermodynamics, to hold.

Compare this with a special science generalization such as Fisher’s
fundamental theorem of natural selection, which says that the rate of
evolution in a population is roughly equal to the variance in fitness. This
law does not always hold of real organisms (as in artificial selection by
breeders). But by regarding it as a special science law with an implicit
ceteris paribus clause, we understand that it is only supposed to hold
given initial conditions where natural selection is the lone force at work.

Similarly here. By regarding statistical mechanics as a special science,
we understand that its predictions are only supposed to hold when the
requisite initial conditions are in place. Statistical mechanics simply does
not hold of models of the world with high entropy pasts.

"This view of statistical mechanics has its own solution to the puzzle of
thermodynamics: there was no problem to begin with. Statistical mechan-
ics, properly understood, does not make any high entropy predictions
about the past. Not once the requisite boundary conditions are in place.

There are reasons to disagree with this view of statistical mechanics,
however. Take the past hypothesis as a fundamental law, and statistical
mechanics is a fundamental theory which rules out past high entropy,
without the need for special initial conditions; the initial state is itself a
law that rules out models with high entropy pasts. Take the fundamental
dynamics to be GRW, and there is no problem of past high entropy,
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because the theory does not say anything about the past. Both these
accounts avoid the conflict with thermodynamics. Yet neither one requires
statistical mechanics to be a special science.

Even without those views, one might deny that statistical mechanics
is a special science. For the way in which statistical mechanics requires
special boundary conditions is different from the way that ordinary special
sciences do. First, the initial constraints of statistical mechanics, initial
low entropy and a uniform probability distribution over the microstates
compatible with that state, are very simple and natural. A special science
generalization like Fisher’s law posits constraints that are intuitively con-
trived: the initial state must be such that there are no artificial breeders,
for instance. Second, statistical mechanics requires an initial state for
which we arguably have independent evidence from cosmology. Fisher’s
law approximates what happens only by ignoring intervening factors that
actually occur. Third, statistical mechanics makes extremely successful
predictions about the future; it is in order to get it to succeed for the past
that we need the initial constraint. None of the predictions of Fisher’s
theorem would come out absent its initial constraints. Fourth, without
the past hypothesis, it is not just that statistical mechanics makes predic-
tions that conflict with thermodynamics. Most of our inferences about
the world would fail, and fail radically. If the initial conditions required
of Fisher’s law did not hold, though, we wouldn’t lose the same handle
on our evidence about the world.

Here’s a different idea. Suppose that statistical mechanics comprises
the fundamental dynamical laws and a statistical postulate. (Add the past
hypothesis to get Albert’s version.) The second law of thermodynamics
is then a consequence of statistical mechanics, not a generalization of
statistical mechanics itself. In that case, it is not the generalizations of
statistical mechanics that fail absent special initial conditions; it is the
generalizations of thermodynamics, and even then, only when applied
to the past. Thermodynamics is the special science here, not statistical
mechanics.

Of course, if statistical mechanics is fundamental and thermodynamics
is not, then we will want an account of the latter on the basis of the former.
Callender suggests that we elude this puzzle with a different conception
of statistical mechanics. But the puzzle stems from the fact that statistical
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mechanics applies directly to the fundamental constituents of the world: it
describes macroscopic systems in virtue of their comprising fundamental
particles. That’s why it is so puzzling that it should fail to ground the
widespread and familiar macroscopic regularities. The generalizations of
thermodynamics (or of a science like evolutionary theory), on the other
hand, are stated independently of the fact that systems are composed
of particles (see note 11). Ordinary special science generalizations hold
without reference to the fundamental physical ontology; that is part of
why they are special sciences. And if GRW is true, all the more reason
to think that statistical mechanics is not a special science in the way
that evolutionary theory is, for it would be a direct consequence of the
fundamental dynamics, even without the initial constraint.

7. Other time asymmetries and the direction of time

Thermodynamics covers a surprisingly wide range of the time asymmetric
phenomena of our ordinary experience: the spreading of gases, the cooling
of cups of coffee, the melting of popsicles, and more besides. This raises
a tempting prospect. Perhaps whatever explains thermodynamics can
explain all of the widespread macroscopic asymmetries we are familiar
with—the asymmetry of knowledge, of counterfactuals, of causation, and
more.

It might seem strange to hope that it could. Less strange, once we
notice that these other asymmetries, like the thermodynamic one, all
involve sequences of fundamental physical states that can occur in one
temporal order and not the other. This raises the same question. Where
do these macroscopic asymmetries come from, if not from asymmetries
in the underlying laws?

As an example, take the wave asymmetry. Waves (water waves, elec-
tromagnetic waves) behave asymmetrically in time. Waves propagate
away from their sources to the future and not to the past. We see waves
spread out from their sources after those sources (a rock dropped in a
pond, a light switch flipped on) begin to accelerate; we don’t see waves
converging on sources which then begin to accelerate. The puzzle is that
the physical laws governing waves are symmetric in time. This is similar
to the puzzle of thermodynamics, and solutions tend to fall into one of
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the two same camps: posit an asymmetry in boundary conditions or in
the dynamics. Thus, Frisch (2000, 2005b, 2006) argues that the wave
asymmetry is an additional fundamental dynamical law, whereas Price
(1996, 2006, ch. 3) argues that it stems from special initial conditions.
My own view (North, 2003) is that the wave asymmetry can be explained
analogously to the thermodynamic one, by means of initial low entropy;
so that it is not the additional law it is for Frisch, but neither is it the same
explanation as the one for Price.7+ I argue that this is a reason to prefer
the account: it can explain, in one simple and unified theory, both the
asymmetry of thermodynamics and the asymmetry of wave phenomena.

More generally, if any account of the thermodynamic asymmetry is
able to explain other macroscopic time asymmetries, then this would be a
reason to prefer it. Indeed, if one such account could give a single, unified
explanation for all the pervasive time asymmetries of our experience,
then that would be a huge—perhaps decisive—mark in its favor. Some
accounts of thermodynamics aim to do just this.7s

One reason that thermodynamics seems so central to questions about
time and our experience is that thermodynamics covers such a wide
range of the everyday processes we experience. The correct theory of
thermodynamics might even account for the asymmetry of records, as
well as the asymmetries of knowledge and memory (see section 5.1), all
of which are particularly central to our ordinary experience in time.7

Another is that the best theory of the thermodynamic asymmetry
may be able tell us whether time itself has a direction: whether there
is an objective distinction between past and future, a distinction that is
intrinsic to the nature of time itself. (That is, whether there is a temporal
orientation on the spacetime manifold.) We can’t directly observe whether
time has this structure. Nor do the phenomena, however asymmetric

74See also ?; North (2004, ch. 2); Atkinson (2006). Zeh (1999) is a different initial
conditions approach. See Price (2006); Earman (2010) for more on the radiation
asymmetry.

75This is a current area of research in philosophy. On other time asymmetries and
ways of accounting for them, see, among others: Reichenbach (1999); Horwich (1987);
Savitt (1995, 1996); Price (1996); Callender (1998, 2008); Zeh (1999); Albert (2000, ch.
6); Rohrlich (2000); Elga (2001); Huggett (2002); Kutach (2002, 2007); Rovelli (2004);
Frisch (2005a); Eckhardt (2006); and references therein.

76 Against this, see Farman (2006).
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they appear to be, suffice to tell us this. Things are asymmetrically
distributed in space, but we don’t conclude from this alone that space
itself is asymmetric.

We can learn about the structure of time another way: from the
fundamental dynamical laws. In general, we infer a certain structure to
the world from features of the dynamics. If the fundamental dynamical
laws can’t be formulated without referring to some structure, then we
infer that this structure must exist in order to support the laws—“support”
in the sense that the laws could not be formulated without it. Thus, if
these laws are non-time reversal invariant, then we couldn’t state them
without presupposing an objective distinction between the two temporal
directions; a structural difference picking out which time direction things
are allowed to evolve in and which they are not. This would then give
us reason to infer that time has a direction. If the laws are time reversal
invariant, on the other hand, then they do not presuppose a temporal
direction. They “say the same thing” regardless of which direction things
are evolving in. In that case, we would not infer a direction of time.

Non-time reversal invariant, fundamental laws would thus give us
reason to believe that time has a direction. However, this inference
won’t be conclusive. There could instead be highly non-local laws or
asymmetric boundary conditions, neither of which suggest a direction of
time. How do we decide?

Any inference to fundamental structure in the world, whether a di-
rection of time or some other, must take into account the best, most
fundamental physical theory. And this is where the account of thermody-
namics comes in. Thermodynamic phenomena are asymmetric in time;
they encompass much of our everyday experience of asymmetric pro-
cesses in time. Recall the two approaches to explaining thermodynamics:
posit an asymmetry in boundary conditions or in the dynamics. If the
former is the best account of the thermodynamic asymmetry, then we
arguably would not have reason to infer that time has a direction.?7 If the
latter is the best account of thermodynamics, then we arguably would
have reason to infer that time is asymmetric, ultimately responsible for

77But see Maudlin (2007a) for argument that an asymmetry in boundary conditions
is evidence for a direction of time.
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the asymmetries we observe.”® On this view, GRW, for example, posits
non-time reversal invariant laws that would give us a reason to infer a di-
rection of time.” A no-collapse theory such as Bohmian mechanics does
not. (On that theory, the asymmetry in the phenomena is not a matter
of fundamental dynamical law, but the result of asymmetric boundary
conditions.®°)

The best account of our ordinary macroscopic experience in time,
in other words, can give us insight into the nature of time itself. All of
which is to say that thermodynamics, which covers such a wide range of
the ordinary phenomena of our experience—including, perhaps, the fact
that we have memories of the past and not the future—is central to our
explanation of, and our experience in, time.
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