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Equilibrium states are used as limit states to define thermodynamically reversible 

processes. When these processes are implemented in statistical physics, these 

limit states become unstable and can change with time, due to thermal 

fluctuations. For macroscopic systems, the changes are insignificant on ordinary 

time scales and what little there is can be suppressed by macroscopically 

negligible, entropy-creating dissipation. For systems of molecular sizes, the 

changes are large on short time scales and can only sometimes be suppressed with 

significant entropy-creating dissipation. As a result, at molecular scales, 

thermodynamically reversible processes are impossible in principle. Unlike the 

macroscopic case, they cannot be realized even approximately, when we account 

for all sources of dissipation. 

I.	INTRODUCTION	

 In ordinary thermodynamics, a reversible process is, loosely speaking, one whose driving 

forces are so delicately balanced around equilibrium that only a very slight disturbance to them 

can lead the process to reverse direction. Since the process is arbitrarily close to a perfect balance 

of driving forces, they proceed arbitrarily slowly while their states remain arbitrarily close to 

equilibrium states. They can never become equilibrium states. For otherwise, there would be no 

imbalance of driving forces, no change and no process. Equilibrium states remain as they are. 
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 This circumstance changes when we allow that thermal systems consist of very many 

interacting components, such as molecules, whose behavior is to be analyzed statistically. Then 

what were the limiting equilibrium states of ordinary thermodynamics are no longer unchanging. 

Molecular scale thermal fluctuations, that is, thermal noise, move them to neighboring states and, 

since there are no directed imbalances of driving forces, these migrations meander indifferently 

in a random walk. The very slight imbalance of forces of a reversible process must overcome this 

meandering if the process is to complete.  

 On macroscopic scales, the fluctuation-derived meandering is negligible and what little 

there is can easily be overcome by very slight imbalances in the driving forces. On molecular 

scales, however, fluctuations are large and significant imbalances in the driving forces are 

needed to bring any process to completion. Since such imbalances are dissipative, creating 

entropy, reversible processes are impossible on molecular scales. Completion of a process is only 

assured probabilistically, with higher probabilities requiring greater entropy creation. 

 The principal goal of this paper is to demonstrate these last claims at the general level and 

to provide an illustration of them in the isothermal expansion of an ideal gas. Section II 

introduces the essential but neglected idea that one cannot properly assess the dissipation 

associated with a process unless one accounts for all sources of dissipation. For reversible 

processes, that includes the normally suppressed devices that guide the process in its slow 

advance. Section III contains the main results for the cases of processes in both isolated and in 

isothermal systems. These results are illustrated in Section IV with the case of an isothermal 

expansion of an ideal gas. 

II.	SELF-CONTAINED	THERMODYNAMICALLY	REVERSIBLE	PROCESSES	

 If our treatment of thermodynamically reversible processes is to be consistent, then we 

must consider the thermal and statistical properties of all the components involved in the process. 

This may seem like a minor point. However fully implementing it is essential to all that follows. 

A full implementation is rare since many common goals can be met without it. We may merely 

wish, for example, to determine the thermodynamic properties of some system, such as the 

volume dependence of the entropy of a gas. Then we can take shortcuts. 

 In a common case of the shortcut, the gas is confined to a cylinder under a weighted 

piston; and the entirety of the system is within a heat bath that maintains all components at a 
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fixed temperature T. Following a familiar textbook treatment,1 the piston is weighted by a pile of 

sand whose mass is just enough to balance the gas pressure. No process will ensue, unless 

something changes. Tiny grains of sand are removed, one by one, successively lightening the 

load on the piston. With each removal, the gas expands slightly and the gas pressure drops 

slightly, until the pressure is once again balanced by the slightly less weighty piston. Repeated 

removals realizes a thermodynamically reversible expansion of the confined gas. The entropy 

change in the gas ΔS can now be determined by tracking the heat Qrev gained by the gas, 

according to the Clausius formula ΔS =  ∫ dQrev/T. 

 In common treatments of thermodynamically reversible processes in statistical physics, 

all details of the machinery that slowly carries the process forward are omitted. In its place is the 

abstract notion of the manipulation of a variable, such as the volume of the expanding gas. The 

variable may be identified as an “external parameter” whose manipulation comprises a 

“switching process”;2 or as a “control parameter” that is “controlled by an external agent.”3 

 In assuming that the external agent can slowly advance the control parameter, these 

reduced treatments neglect dissipation in the physical processes implementing the external 

manipulation. It is assumed tacitly, for example, that the mechanism that lightens the load on the 

piston can be implemented in some reversible, non-dissipative manner that is consistent with the 

fuller thermodynamic and statistical theory. 

 In principle, an explicit determination of compatibility of the process with our fuller 

theory would require examinations of the details of the external agent’s physical processes. Just 

what are the details of the non-dissipative machinery that picks off the sand grains one at a time? 

Only then have we shown that the process is theoretically self-contained, that is, relies only on 

the components manifestly conforming to our thermodynamic and statistical theory. 

 For macroscopic systems, neglecting these details is usually benign, especially if our 

concern is merely computing thermodynamic properties. The need to attend to these details 

becomes acute when we investigate processes on molecular scales. For fluctuations within 

molecular scale machinery are large and can disrupt the intended operation. As we shall see 

below, entropy creating disequilibria are required to overcome the fluctuations and bring any 

process in a molecular scale device to completion. 
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 The discussion that follows is limited to self-contained thermodynamically reversible 

processes, since these are the only processes fully licensed by thermodynamic and statistical 

theory. 

III.	THERMODYNAMICALLY	REVERSIBLE	PROCESSES:	GENERAL	

RESULTS	

III.1	Limit	States	in	Ordinary	Thermodynamics	

 In ordinary thermodynamics, a thermodynamically reversible process is one whose states 

come arbitrarily close to limiting equilibrium states. For isolated systems, the equilibrium states 

approached have constant thermodynamic entropy. That is, if the stages of the process are 

parametrized by λ, proceeding from an initial value λinit to a final value λfin, we have for the 

total entropy Stot of the total system “tot” that  

dStot/dλ  = 0       and      Stot(λinit) = … = Stot(λ) = … = Stot(λfin).                        (1) 

An important special case is an isothermal reversible process, where the subsystem “sys” is 

maintained as a constant temperature T by heat exchange with a heat bath environment “env, ” 

with which it exchanges no work. For this process, the constancy of total entropy Eq. (1) is 

equivalent to the constancy of the free energy F = U – TS of the system, where U is internal 

energy:4  

dFsys/dλ  = 0    and       Fsys(λinit) = … = Fsys (λ) = … = Fsys(λfin).                        (2) 

A generalized force X and associated displacement variable x are defined so that the amount of 

work done dW by the system in a small constant temperature change is dW = Xdx. If X is the total 

generalized force and we use the displacement variable x to track the degree of completion of the 

process, so that x = λ, then X is given by5  

€ 

X = −
∂Fsys
∂x T

= −
dFsys
dλ

.                                                        (3) 

An equivalent formulation of Eq. (2) is  

X = 0.                                                                      (4) 

The most familiar example of one component of this generalized force is pressure P and its 

associated displacement variable is volume V. For a reversible expansion of a gas, the total 
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generalized force will be the suitably formulated sum of the pressure force of the gas and the 

restraining forces on the piston that hold the system in equilibrium. They will sum to zero, as 

required by Eq. (4). 

III.2	Limit	States	in	Statistical	Physics	

 If a system is in one of the limiting equilibrium states of Eq. (1) and Eq. (2) of ordinary 

thermodynamics, it is unchanging. If we allow for its molecular constitution, then the 

equilibrium is dynamic with its components interacting under the Hamiltonian evolution of a 

phase space. Through this internal dynamics, these states—now just called “limit states”—are no 

longer unchanging. They can migrate to neighboring states through what manifests 

macroscopically as thermal fluctuations. We will consider two cases. 

 First, consider an isolated system. It is microcanonical. That is, its probability density is 

uniform over its classical phase space. As it migrates over the phase space, the probability that 

the system is in some region of the phase space is proportional to its phase volume  

probability  ∝ phase volume.                                              (5) 

System states can be associated with regions of the phase space. The entropy S assigned to them 

is  

S  ∝ k ln (phase volume),                                                 (6) 

where k is Boltzmann’s constant. Combining we have 

S ∝ k ln (probability)    or      probability ∝ exp(S/k) .                               (7) 

Einstein6 called Eq. (7) “Boltzmann’s principle” when he introduced it in his analysis of 

fluctuations. It tells us that isolated thermal systems can fluctuate from high to low entropy 

states, but only with very small probability. 

 Second, consider a system in a heat bath, with which it exchanges heat but no work, and 

is maintained by the bath at constant temperature T. The system will be canonically distributed 

over its phase space. That means that the probability density of finding the system at a phase 

point with energy E, in the course if its migration over the phase space, is proportional to 

exp(-E/kT). Hence, the probability that it is found in some subvolume Vph of its whole phase 

space is proportional to the partition integral Z(Vph), so that  

probability ∝ Z(Vph) = ∫ Vph
exp(-E/kT) dΩ,                                      (8) 
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where dΩ is the phase space volume element.7 If we associate states with volumes of the phase 

space, we have the canonical definition of free energy F is  

F = - kT ln Z.                                                           (9) 

Combining we have  

F ∝ - kT ln (probability)    or      probability ∝ exp(-F/kT) .                           (10) 

The limit states of a reversible process in an isolated system Eq. (1) have equal entropy S. It 

follows from Eq. (7) that thermal fluctuations can bring the system spontaneously to any of the 

limit states with equal probability:  

P(λinit) = … = P(λ) = … = P(λfin) .                                              (11) 

This result of equal probability obtains also for the limit states of a reversible process Eq. (2) in 

an isothermal system. For each state has equal free energy F and thus by Eq. (10) equal 

probability. 

 A familiar illustration of Eq. (11) is provided by a microscopically visible Brownian 

particle suspended in water in a dish. If λ if the position of the particle as it moves about, then 

each λ state has equal entropy S (if the dish is isolated); or equal free energy F (if the dish is in a 

heat bath). Over time, as it executes a random walk, the Brownian particle will visit each 

position and, according to Eq. (11), with equal probability. The time needed to realize these 

motions depends on the scale. For smaller Brownian particles, as their size approaches molecular 

scales, the motions become rapid, comparable to those of individual water molecules. For larger 

particles, approaching macroscopic sizes, the motions become so slow as to be negligible. A pea 

suspended in quiescent broth will eventually explore the complete bowl through its Brownian 

motion, but its migration will require eons and be undetectable on all normal time scales. 

 Allowing for the statistical character of the limiting equilibrium states of a 

thermodynamically reversible process thus reveals that they are no longer equilibrium states. 

Rather they are pseudo-equilibrium states in the sense that they are no longer unchanging and 

can migrate spontaneously through thermal fluctuations to other states. In macroscopic 

applications, this pseudo-equilibrium character can be ignored since the time scales needed for it 

to manifest are enormous. On molecular scales, this pseudo-equilibrium character can no longer 

be ignored. 
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III.3	Fluctuations	Make	Reversible	Processes	Impossible	on	Molecular	Scales	

 To be a reversible process in ordinary thermodynamics, the states of the process must 

come arbitrarily close to limit states. As they do so, the states become ever more delicately 

balanced. In ordinary thermodynamics, these limit states are equilibrium states and there are no 

disturbing forces present to upset the delicate balance. This is no longer so once we allow for the 

statistical character of the limiting states. They are now pseudo-equilibrium states, confounded 

by fluctuations. If the system is in one of the limit states of Eq. (1) or Eq. (2) of some process, 

the effect of thermal fluctuations is to migrate the system through the other limit states of the 

process. These other limit states will be occupied with equal probability according to Eq. (11). 

 With macroscopic systems, the migration can be neglected since the time scales needed 

to realize it are enormous. The pea in quiescent broth mentioned above will eventually migrate 

over the entire bowl, but not in our lifetimes. With molecular scale systems, the migration will be 

rapid and completely disrupt the intended reversible process. We may initiate a molecular scale 

process in or very near to some state corresponding to λinit and then expect that the system will 

very slowly migrate through the states of intermediate λ values, terminating in that of λfin. 

However thermal fluctuations will defeat these expectations and move the system rapidly among 

all the states. Termination will be impossible. If the system occupies a state at or near that of λfin, 

fluctuations will immediately divert it to other, earlier states in the process. Thermodynamically 

reversible processes on molecular scales are impossible. 

III.4	Dissipation	Suppresses	Fluctuations	Probabilistically	

 Once we allow that the limiting states are in pseudo-equilibrium, we see that an attempt 

at a reversible process can only be brought to completion if we introduce some dissipative, 

entropy creating disequilibrium that suppresses the fluctuations. The dissipation replaces the 

uniform probability distribution Eq. (11) by one that favors completion, which can only be 

assured to some nominated probability. That is, we set the ratio P(λfin)/P(λinit), which 

determines how much more likely the system is to settle into the final state λfin as opposed to 

reverting by fluctuations to the initial state λinit. The corresponding dissipation is computed 

through equations Eq. (7) and Eq. (10). For an isolated system, the entropy change ΔS between 

initial and final states is  
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ΔS = k ln (P(λfin)/P(λinit))      or        P(λfin)/P(λinit) =  exp(ΔS/k).                  (12) 

For a system in a heat bath at temperature T with which it exchanges no work, the free energy 

change ΔF between initial and final states is 

ΔF = - kT ln (P(λfin)/P(λinit))       or           P(λfin)/P(λinit) = exp(-ΔF/kT).            (13) 

These equations apply to a system that it initially set up in state λinit, then released and the 

system allowed to equilibrate. P(λfin) is the probability that it will subsequently be found in state 

λfin. P(λinit) is not the probability that the system was initially set up in state λinit. It is the 

probability that the system, after achieving its new equilibration, reverts by a fluctuation to the 

initial state. 

 These two formulae Eqs. (12) and (13) do not give the total entropy and free energy 

changes directly for most processes. Commonly processes can only arrive at the final state if 

many other intermediate states are also accessible, such as the intermediate states of the 

expansion of a gas. Their accessibility leads to further dissipative creation of entropy or further 

free energy decreases. Since these intermediate states remain accessible, this further dissipation 

must be included in the computation of the total dissipation. To arrive at the minimum 

dissipation, all these other intermediate states, incompatible with the initial and final states, must 

be rendered highly improbable by careful design of the process. That is achievable but not done 

in most standard processes. If we do contrive the process so that that the initial and final states 

only are accessible,8 then  

P(λinit) + P(λfin) = 1.                                                    (14) 

With this contrivance, the minimum entropy creation in an isolated system is9 

€ 

ΔSmin = k ln
P(λinit )+P(λ fin )

P(λinit )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = k ln 1+

P(λ fin )
P(λinit )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .                            (15) 

For a system in a heat bath at temperature T with which it exchanges no work, the minimum free 

energy change in executing the process is 

€ 

ΔFmin = −kT ln
P(λinit )+P(λ fin )

P(λinit )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −kT ln 1+

P(λ fin )
P(λinit )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .                      (16) 

 A modest probability ratio for success is: 

P(λfin)/P(λinit) = 20  for which ΔS = 3k and  ΔF = -3kT. 
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In molecular scale systems, a dissipation of entropy 3k and free energy 3kT is comparable to the 

entire amounts of entropy and free energy changing. It is a significant departure from 

equilibrium. Thus the conditions for completion of thermodynamically reversible process cannot 

be met at molecular scales: completion requires that the system not approach the limit states too 

closely, which entails that the process cannot be thermodynamically reversible. 

 For macroscopic systems with component numbers of the order of Avogadro’s number N 

= 6.022x1023, quantities of entropy are of the order of Nk and quantities of free energy of NkT. 

The dissipation required is negligible. If completion is required with very high probability, we 

might choose the ratio: 

P(λfin)/P(λinit) = 7.2x1010,  for which ΔS = 25k and  ΔF = -25kT. 

This level of dissipation is still insignificant for macroscopic systems. Thus molecular-scale 

dissipation provides no obstacle to thermodynamically reversible processes at macroscopic 

scales. 

 If our intended process is the migration of a Brownian particle from one side of dish to 

the other, the entropy creating disequilibrium needed to suppress fluctuations is introduced by 

inclining the dish so that the Brownian particle is driven in the intended direction by gravity. 

 The quantities of entropy produced and the associated probabilities of completion are 

computed in the Appendix. It also illustrates a simple way in which the intermediate states can 

be made probabilistically inaccessible, in order to arrive at the case of minimum dissipation. 

IV.	SELF-CONTAINED,	ISOTHERMAL	EXPANSION	OF	A	IDEAL	GAS	

 The general results of Section III can be illustrated in the case of a self-contained, 

reversible, isothermal expansion of an ideal gas. For the results of Section III to apply, the 

analysis must include the mechanism through which the expanding gas is kept in near perfect 

equilibrium with the restraining piston. If that mechanism is the device of Section II that removes 

sand grains one at a time, its operation would have to be analyzed for dissipative processes. This 

analysis would be complicated. It would also be unnecessary, since there are simpler ways of 

achieving the same effect of a self-contained process. One way is to replace the homogeneous 

gravitational field acting on the piston by another, inhomogeneous field. It weakens as the piston 

rises by just the amount needed to maintain a mechanical balance of forces, without any 

manipulation of the weighting of the piston itself.10 Another approach is computed in detail 
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below. Through a simple mechanical contrivance described in Section IV.11, the piston area 

increases as the gas expands in such a way that the total upward force exerted by the gas on the 

piston remains constant, balancing the constant weight of the piston. 

IV.1	The	Confined	Gas	and	the	Stages	of	Its	Expansion	

 An ideal gas of n monatomic molecules is contained in a chamber under a horizontal, 

weighted piston in a heat bath that maintains the system of gas and piston at a constant 

temperature T. The gas expands reversibly by raising the piston, passing work energy to the 

rising weight. The expansion is made self-contained by ensuring that the piston area A(h) of the 

piston at height h increases by just the right amount that the weight of the piston always balances 

the mean pressure force of the gas for the limiting states. The expansion begins with the piston at 

h = h0 when the gas has spatial volume V(h0) and ends at h = h1with gas spatial volume V(h1). 

 The stages of the process of expansion are, loosely speaking, parameterized by the height 

to which the gas has lifted the piston. This is not precisely correct since the fluctuating thermal 

energy of the piston will allow it to rise above the maximum extension of the gas. We shall see 

that this effect is negligible for a macroscopic gas, but is marked for a gas of one or few 

molecules. To accommodate this effect, the limiting equilibrium states associated with the 

expansion are parameterized by the height h above the chamber floor that demarcates the region 

accessible to the gas and the region accessible to the piston. That is, if the height of the i-th 

molecule is given by xi and the height of the piston by xpist, then the limiting equilibrium states 

are characterized by  

0<xi<h,  for all i     and      xpist≥h .                                                  (17) 

The resulting “h-states” are not completely disjoint in the sense that two may share some of the 

same microstates. 

 For example, states h and 2h may share the same microstate as follows. In state h, a 

thermal fluctuation may bring the piston to height 2h, leaving all the gas molecules below height 

h. The same microstate may be associated with state 2h if all the gas molecules collect below 

height h through a thermal fluctuation. 

 This example makes clear that an extensive overlap of the microstates attached to h-states 

is improbable for a macroscopic gas of large n. For, as we shall see in calculations below, large 

volume fluctuations are extremely improbable in the short-term. Correspondingly, for large n, 
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the mass of the piston will be great, so that the spatial extent of its short-term fluctuations will be 

small. However for a gas of one or few molecules, the fluctuations will be large in relation to the 

system size. As a result, a single microstate, specified by the position of the gas molecules and 

piston, can correspond to a wide range of h-states. This ambiguity in the h-states is part of the 

breakdown of reversible processes at molecular scales: there is a failure of distinctness of the 

individual stages through which we would like to the process to pass. 

  Figure 1 illustrates how h-states for heights h and 2h are almost certainly realized by 

distinct microstates, if the gas is macroscopic. However, just one microstate can realize both h-

states for a gas of very few molecules. 

gas

h

2h

piston

gas

h

piston

gas

piston 2h

gas

piston

 
FIG. 1.  Microstates of  h-states are distinct only for macroscopic gases. 

 

IV.2	Gas-Piston	Hamiltonian	

 The n monatomic gas molecules, each of mass m, have canonical position and 

momentum coordinates x = (xi, yi, zi), p = (pxi, pyi, pzi), where i = 1, … , n. The piston of mass M 

has two relevant degrees of freedom, its vertical canonical position xpist and its vertical canonical 

momentum ppist. The combined Hamiltonian of the gas-piston system is  

Egas-piston(x, p; xpist,ppist) = Egas(x, p) + Episton(xpist, ppist),    where xpist>xi, all i, 

    Egas(x, p) = Σi=1,n p2/2m        Episton(xpist, ppist) = ppist2/2M + Mgxpist .   (18) 

The constant g is the acceleration due to gravity. It is assumed that the individual molecules do 

not feel the gravitational force acting on the piston. 

 The condition xpist>xi asserts that the piston never falls to or below the height of the 

highest molecule. It expresses the coupling between gas and piston. The fact of this coupling 
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would mean normally that the gas-piston partition function does not factor. However the h-state 

of Eq. (17) has the fortunate property of breaking the coupling for each fixed value of h, so that 

the gas-piston partition integral for state h, Zgas-piston(h) is the product of the partition integrals 

for the individual gas and piston systems:  

Zgas-piston(h) = Zgas (h) . Zpiston(h),                                             (19) 

and their free energies F, as given by the canonical formula F = -kT ln Z, will sum 

Fgas-piston(h) = Fgas (h) + Fpiston(h).                                             (20) 

This means that we can compute the thermodynamic properties of the gas and piston 

independently for these states. 

IV.3.	Gas	Properties	

 The gas partition integral is  

€ 

Zgas (h) = exp −
E(x,p)
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

all  x,p∫ dxdp  

€ 

= exp −
pxi

2 + pyi
2 + pzi

2

2mkT

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ all  pi

∫i=1,n
∏ dpxi dpyi dpzi dxidyidziaccessible  yi ,zi

∫∫xi =0

h
∫i=1,n

∏  

€ 

= 2πmkT( )3n /2 A(xi )dxixi =0

h
∫i=1,n

∏ = 2πmkT( )3n /2V (h)n ,                        (21) 

where A(xi) is the gas chamber cross-sectional area at height xi and V(h) is the spatial volume 

accessible to the gas molecules between the chamber floor and height h. The canonical free 

energy is  

Fgas(h) = - kT ln Zgas(h) = -nkT ln V(h) + constgas(T),                 (22) 

where constgas(T) is a constant independent of h. Since V is a monotonic function of h, we can 

use it as the path parameter λ to define the generalized force  

€ 

Xgas (V ) = −
∂
∂V T

Fgas (V ) =
nkT
V

.                             (23) 

That is, the generalized force is just the ordinary pressure of the gas according to the ideal gas 

law. 

IV.4	Piston	Properties	

 The piston partition integral is  
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€ 

Zpiston(h) = exp −
Episton(x, p)

kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ all  p,x∫ dxdp  

€ 

= exp −
p2

2MkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dp ⋅ exp −

Mgx
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dx

x=h

∞

∫all  p∫ = 2πMkT kT
Mg
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp −

Mgh
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .          (24) 

The canonical free energy is  

Fpiston(h) = - kT ln Zpiston(h) = Mgh + constpiston(T),                         (25) 

where constpiston(T) is a constant independent of h. Using V as the path parameter, the 

generalized force is  

€ 

Xpiston(V ) = −
∂
∂V T

Fpiston(V ) = −
∂
∂h T

Fpiston(h) ⋅
dh

dV (h)
= −

Mg
A(h)

.                       (26) 

It is the ordinary gravitational force exerted per unit area by the weight of the piston. 

IV.5.	Balance	of	Forces	

 During the expansion, the piston rises from height h= h0 to h= h1. Associated with each 

height is a limit state in which the mean gas pressure force and piston weight are equal, in the 

correlate of the equilibrium of ordinary thermodynamics. We recover this equality from the 

condition for equilibrium: the free energy of the gas and piston system remains constant as in Eq. 

(2); or, equivalently, that the total generalized force vanishes as in Eq. (4). Setting the sum of the 

generalized forces of Eqs. (23) and (26) to zero, we have  

€ 

nkT
V (h)

−
Mg
A(h)

= 0 .                                                     (27) 

Since A(h) = dV(h)/dh, this last condition gives the differential equation  

€ 

A(h) =
dV (h)
dh

=
Mg
nkT

V (h),                                                (28) 

for h0 < h < h1. The solution is  

€ 

V (h) =V (h0 )exp
Mg(h − h0 )

nkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                                               (29) 

and  

€ 

A(h) =
dV (h)
dh

=
Mg
nkT

V (h0 )exp
Mg(h − h0 )

nkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = A(h0 )exp

Mg(h − h0 )
nkT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .                       (30) 
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Equations (28) and (30) tell us that the gas volume and piston area must each grow exponentially 

with height h during the expansion h0 < h < h1 for equilibrium to be maintained. 

  The probability of P(h) of each h-state is proportional to the partition integral  

Zgas-piston(h) = Zgas (h).Zpiston(h). It is given as 

€ 

P(h)∝ Zgas−piston(h) = (2πmkT )3n /2V (h)n 2πMkT kT
Mg
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp −

Mgh
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

€ 

= (2πmkT )3n /2V (h0 )
n 2πMkT kT

Mg
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp −

Mgh0
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
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where Eq. (29) was used to show  
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That is, Eq. (31) shows that each of the h-states is equally probable. It also follows from Eq. (31) 

that the free energy of each of these states is the same.  

IV.6.	Fluctuations	Negligible	for	a	Macroscopic	Gas	with	Large	n	

 In the h-state of Eq. (17), the mean gas pressure is balanced precisely by the weight of the 

piston. Fluctuations will lead the gas pressure force sometimes to exceed and sometimes to be 

less than the piston weight. As a result, the system will migrate up or down to neighboring, 

equally probable h-states. For a macroscopic gas, however, the migration will be so slow that it 

will not manifest on ordinary time scales.  

 To see this, recall that the motions that lead to the migration of the piston are due to the 

thermal fluctuations in the piston. The piston will have equipartition energy of kT/2 in its kinetic 

energy, (1/2)Mvrms2, where vrms is the piston root-mean-square velocity. A liter of an ideal gas 

forms a cube of side 10cm and a piston area of 100 cm2. At one atmosphere pressure, that is 

1.0332 kg/cm2 in engineering units, so the piston mass M is 103.32kg. Solving (1/2)Mvrms2 = 

(1/2)kT at 25C, we find vrms = 0.06313 Å/s. Since 1Å = 10-10m is ten orders of magnitude 

smaller than macroscopic scales and since this tiny speed will not be sustained unidirectionally 
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more than momentarily, the h-state is, on ordinary time scales and at macroscopic length scales, 

a quiescent state. 

 Another way to see that fluctuations are negligible for macroscopic systems is to look at 

the fluctuations in each of the gas and piston systems taken individually. If we assume that the 

piston is confined to heights h ≥ H but otherwise free, its positions will be Boltzmann distributed 

probabilistically according to a probability density over heights h 
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ppiston(h) =
Mg
kT

exp −Mg(h −H )
kT

⎛ 

⎝ 
⎜ 
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⎟                                                       (33) 

for h≥H. This is an exponential distribution for which  

mean = standard deviation = kT/Mg.                                                    (34) 

Thus kT/Mg is a measure of the linear size of the fluctuation-induced displacements of the piston 

from its floor height H.  

 This measure is very small in comparison with the overall linear size of the gas piston 

system. A convenient measure of the linear size of the gas is the ratio V(H)/A(H). If the gas is 

confined to a cubical box, this ratio is the length of the side. We find directly from Eqs. (28) and 

(34) that  

(size of piston position fluctuations) = (linear size gas)/n.                                     (35) 

For macroscopic samples of gases, n will be of the order of Avogadro’s number N = 6.022x1023. 

Hence the fluctuation-induced disturbance to the equilibrium limit state will be negligible. For 

example, a liter of an ideal gas at 25C and one atmosphere pressure forms a cube of side 10 cm 

and contains 2.46 x1022 molecules. According to Eq. (35), the linear size of the fluctuations is 

10/(2.46x1022)cm = 4.065x10-14 Å. That is, the size of the fluctuations is roughly 3 orders of 

magnitude smaller than atomic sizes.  

 Consideration of volume fluctuations in the gas yields similar negligible deviations. The 

probability that an ideal gas of n molecules of volume V fluctuates to a smaller volume V-ΔV is 

[(V-ΔV)/V]n. Since n is so large, this probability can only appreciably different from zero if ΔV/V 

is very small, so that [(V-ΔV)/V]n ≈ [1 – n(ΔV/V)] = [1 - ΔV/(V/n)]. This probability will still only 

appreciably differ from zero if the magnitude of the fluctuations ΔV is of the order of V/n or 

smaller. That is,  

(size of gas volume fluctuations) < (gas volume)/n.                          (36) 
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The h-state of Eq. (17) does not represent perfectly the intermediate states of the gas expansion, 

since fluctuations in gas volume and piston position will breach the boundary at height h 

between the gas the piston. However, these calculations show that for macroscopic gases the 

breaches are entirely negligible. 

 Hence, a reversible gas expansion is quite achievable in the sense that its states can be 

brought arbitrarily close by macroscopic standards to the equilibrium states. Nonetheless, just as 

in the case of the Brownian motion of a macroscopic body, tiny fluctuations will accumulate 

over long times and eventually enable the gas-piston system to migrate over the full extent of 

configurations available to it. This migration is represented by the equal probabilities of all states 

of Eq. (11). 

IV.7.	Fluctuations	for	n=1	

 Matters change when we take small values of n. The extreme case of a one-molecule gas 

is dominated by fluctuations. The formulae developed above still apply. However we must now 

set n = 1 in them. In place of Eq. (35), we have a piston whose thermal fluctuations fling the 

piston through distances of the order of the size of the entire gas 

(size of piston position fluctuations) = (linear size gas).                     (37) 

It is also evident without calculation that a gas of a single molecule is undergoing massive 

density fluctuations as the molecule moves from region to region. If we associate the volume of a 

gas with the places where its density is high, these in turn can be understood as volume 

fluctuations of the size of the gas confining chamber:  

(size of gas volume fluctuations) ≈ (gas volume).                      (38) 

 That fluctuations will dominate is apparent from brief reflections without calculations. It 

is assumed that the pressure of the one molecule gas is sufficient to support the weight of the 

piston. That is, in molecular terms, repeated collisions with a single rapidly moving molecule are 

enough to support the mass of piston. This can only be the case if the piston mass itself is 

extremely light. If that is so, then its own thermal motion will be considerable. 

 These fluctuations defeat attempts to realize a thermodynamically reversible expansion of 

a gas of one or few molecules. In such an expansion, the gas state is always arbitrarily close to 

the limit states and it is supposed to migrate indefinitely slowly through them, under the delicate 

and very slight imbalance of pressure and weight forces. This circumstance is unrealizable. The 
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fluctuations just described will completely destabilize the delicate imbalance. If the gas-piston 

system has arrived at any height, fluctuations will immediately move it to a different height. A 

near completed expansion may be flung back to the start of the expansion, just as an unexpanded 

gas can be rapidly expanded by a fluctuation. Instead of rising serenely, the piston will jump 

about wildly with no discernible start or finish to the process. 

IV.8	Suppressing	Fluctuations:	A	Rough	Estimate	

 An assured expansion, not confounded by fluctuations, will only be possible if we 

introduce enough disequilibrium to suppress the fluctuations. A very rough first estimate 

confirms that the dissipation will be considerable in relation to the quantities of entropy 

associated with the expansion of a one-molecule gas, but negligible for a macroscopic gas. 

 If the motion of expansion is to dominate the random thermal motions, then the vertical 

velocity of the piston in the overall process must greatly exceed the random thermal motions of 

the piston. Assume that the mass M of the piston is slightly smaller than the equilibrium value 

required in Eq. (28), so that there is a small, net upward force on the piston. This upward force 

gradually accelerates the piston until, at the end of its expansion, it has acquired the vertical 

speed vproc and then slams to a halt. This process speed “proc” is a rough measure of the overall 

vertical motion of the piston. 

 The associated kinetic energy (1/2)Mvproc2 is derived from work done on the piston. It is 

potentially usable work energy that is lost as heat to the environment at the conclusion of the 

process. Had the process been carried out non-dissipatively, that is, reversibly, the only 

difference in the end state is that this lost work would have been stored as extra potential energy 

in the ascent of a weightier piston and the corresponding quantity of heat would not have been 

passed irreversibly to the environment.  

 The dissipation is represented most compactly in terms of free energy. The free energy 

change of the gas-piston system is 

ΔF = ΔFgas + ΔFpist = ΔUgas - T ΔSgas + ΔUpist - T ΔSpist                        (39) 

For a reversible, non-dissipative expansion, we have ΔF = 0. Most of the terms in this expression 

remain the same if we now consider the dissipative expansion. The internal energy Ugas and 

entropy Sgas of the gas are functions of state, so they remain the same. The entropy of the piston 
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is unaltered; it is just a raised mass. So ΔSpist = 0. Overall, in the transition to a dissipative 

expansion, the free energy change ΔF is depressed from its zero value merely by the decrease in 

ΔUpist below its reversible value in the amount of the lost work (1/2)Mvproc2. That is, we have  

ΔF = -(1/2)Mvproc2.                                                     (40) 

 The dissipation can also be measured by an entropy change, but now we must consider 

the entropy of the gas, piston and environment together. If ΔUenv,rev is the change of internal 

energy of the environment in the case of the reversible process, then we have  

ΔUenv = ΔUenv,rev + (1/2)Mvproc2.                                       (41) 

Hence the total entropy change in the environment is  

ΔSenv = ΔUenv,rev/T + (1/2)Mvproc2/T.                                  (42) 

Since the start and end states of the gas are the same for the reversible and the irreversible 

processes and entropy is a function of state, the entropy change in the gas is the same for both 

processes. It follows that  

ΔSgas = - ΔUenv,rev/T,                                                    (43) 

so that the total entropy change for gas, piston and environment together is  

ΔS = ΔSgas + ΔSenv = (1/2)Mvproc2/T.                                        (44) 

Thus the net increase in entropy results entirely from the irreversible transfer of the potentially 

usable work as heat Q = (1/2)Mvproc2 to the environment, which creates entropy Q/T. 

 The random thermal motion of the piston is measured by its root-mean-square vertical 

speed, vtherm, that satisfies 

(1/2)Mvtherm2 = (1/2)kT.                                               (45) 

The condition that random thermal motions not confound the process is  

vproc >> vtherm.                                                       (46) 

It follows immediately from the two preceding equations that  

 ΔF << -(1/2)kT       and      ΔS >> (1/2)k.                                    (47) 

On molecular scales, this decrease in free energy or increase of entropy represents a considerable 

dissipation and departure from equilibrium. For comparison, the free energy and entropy changes 

usually attributed to a two-fold, reversible isothermal expansion of a one molecule gas are just 

ΔF = -kT ln 2 = -0.69 kT and ΔS = k ln 2 = 0.69 k. 
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IV.9	Suppressing	Fluctuations:	Free	Energy	Changes	

 Lightening the piston mass so that vproc >> vtherm enables the expansion to complete with 

dissipation Eq. (47) with a reasonably high, but unquantified, probability. A closer analysis using 

Eq. (13) provides quantitative relations among the amount of lightening of the mass, the 

dissipation and the probability of completion. We will find that negligible lightening and 

dissipation can assure completion with high probability for a macroscopic gas, but that no 

amount of lightening can achieve this for a one-molecule gas. 

 If Meq is the equilibrium mass defined through Eq. (28), then we introduce a slight 

disequilibrium by setting the piston mass M to be slightly smaller  

M = Meq - ΔM,                                                    (48) 

where ΔM > 0. Instead of Eq. (31), we have for the probabilities P(h) of the h-states 
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Most of the terms in Eq. (49) are independent of h, so it can be re-expressed more usefully as:11  
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The free energy change between the two states ΔF is introduced using the canonical formula F = 

-kT ln Z. It follows that the free energy change is 

ΔF = -ΔMg(h1- h0).                                                                      (51) 

This relation admits the obvious reading: in reducing the piston mass by ΔM below the 

equilibrium mass Meq, we lose the possibility of recovering work ΔMg(h1- h0) when the piston is 
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raised from height h0 to h1. That work would otherwise appear as a corresponding increase in the 

potential energy of the unreduced piston of mass M. 

 We have already seen from Section III.4 that a macroscopically negligible free energy 

change ΔF = -25kT is sufficient to ensure a very favorable probability of completion. From Eq. 

(51), we see that this free energy change will correspond to a macroscopically negligible mass 

reduction. For a height difference of (h1- h0)=10 cm and a gas at 300K, the mass reduction is ΔM 

= 25kT/g(h1- h0) = 1.05x10-19 kg, which is considerably less than the 103.32 kg piston mass of 

Section IV.6. 

 In sum, a thermodynamically reversible expansion of a macroscopic gas is possible in 

this sense. The gas-piston system can expand slowly through a sequence of states that are, by 

macroscopic standards, very close to limit states that are stable in the shorter term. Fluctuations 

introduce negligible complications. 

IV.10	Failure	to	Suppress	Fluctuations	for	the	One-Molecule	Gas	

 The suppression of fluctuations breaks down completely, however, for a gas of one or 

few molecules. For the maximum suppression is achieved by reducing the mass of the piston 

arbitrarily close to zero mass. That is, we achieve the maximum probability ratio favoring 

completion in Eq. (50) when ΔM approaches its maximum value Meq. This maximum is the case 

of a massless piston, which is no piston at all.  It is simply releasing the gas freely into an infinite 

space. Then, a canonical probability distribution is not established and the probabilistic analysis 

used here does not apply. To preserve its applicability, consider instead the limiting behavior as 

ΔM approaches Meq arbitrarily closely but never actually equals Meq. Using Eq. (29) with Eq. 

(50), we have 
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 .            (52) 

The probability ratio Eq. (52) is just the probability ratio associated with a spontaneous 

recompression of the gas of n independently moving molecules from volume V(h1) to V(h0). 

 For gases of one or few molecules, the maximum of Eq. (52) presents serious problems. 

For the one-molecule gas undergoing a two-fold volume expansion, the largest probability ratio 

possible is just 2:1. Even in the most dissipative case, with the piston reduced to its lightest mass, 



 21 

the expanding one-molecule gas is just twice as likely to be in the intended final state than in the 

initial state. 

 In sum, a thermodynamically reversible expansion of a gas of one or few molecules is 

impossible. Fluctuations prevent the states of the expansion migrating very close to and very 

slowly past the requisite sequence of pseudo-equilibrium states. In the system described, even 

dissipation in significant measure at molecular scales is unable to suppress the fluctuations. This 

in turn results from the limiting pseudo-equilibrium states themselves being so confounded by 

fluctuations that they cannot persist even briefly as stable states.  

IV.11	How	Piston	Area	Increases	

 It is not so straightforward to devise ordinary mechanical devices that can achieve the 

increase of piston area required by Eq. (30). The simplest arrangement, illustrated in Fig. 2, is to 

have a gas chamber of rectangular section that flares out horizontally in one direction with 

heights h > h0. The chamber is fitted with a horizontal, rectangular piston that increases in area 

as it ascends, so it can keep the gas confined. The piston consists of two rectangular parts that 

slide frictionless over each other and are guided apart by rails as the piston ascends. 

 

h1

h0

 
FIG. 2. A Weighted Piston that Maintains Equilibrium with an Expanding Gas 

 

 The sliding of the parts of the piston introduces new thermal degrees of freedom. They 

can be neglected since they are independent of the expansion. At all piston heights, each sliding 

part has the same slight horizontal motion corresponding to whatever slack is in the fitting of the 

rails to the parts. Since this slack will be the same at all stages of the expansion, they will 
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contribute an additive term to the piston Hamiltonian that is independent h and thus will not 

figure in the h dependence of the piston free energy of Eq. (25) or in the generalized force of Eq. 

(26). 

 Finally, the expansion under this scheme cannot continue indefinitely. Otherwise the gas 

-piston system can access an infinity of equally accessible stages of expansion, which means that 

it will never achieve equilibrium. The probability distributions used above, however, depend on 

the assumption that equilibrium has been achieved. The expansion could be halted by placing a 

maximum stop on the piston at some maximum height. This, however, would introduce 

complicating thermal effects. As the piston approaches the stop, it would behave like a one-

molecule gas and resist compression. The simplest remedy is to assume that, at some height 

Hmax ≥ h1, the chamber-piston system reverts to one with constant piston area. Then achieving 

greater stages of expansion ceases to be equally easy and an equilibration is possible. 

V.	CONCLUSION	

 The accommodation of the molecular constitution of matter by ordinary thermodynamics 

introduces negligible complications for the thermodynamic analysis of macroscopic systems. 

However, as a matter of principle, once we take into account all the processes involved, thermal 

fluctuations preclude thermodynamically reversible processes in systems at molecular scales. 

This has been shown in Section 3 for the general case of any isolated system and for any system 

maintained at constant temperature by a heat bath with which it exchanges no work. 

 In standard treatments of molecular scale systems, thermodynamically reversible 

processes are described as advancing very slowly under the guidance of a parameter that is 

manipulated externally by unspecified processes. The requisite precise, external control of the 

parameter is only possible through considerable dissipation in those unspecified processes. It 

renders the overall process irreversible. The neglect of this additional dissipation masks the 

impossibility described here.  

 The most general result is the impossibility of a reversible process for any isolated, 

molecular scale system since it covers all other cases. Imagine that somehow we could realize a 

reversible process in some part of an isolated system. Since reversibility is unachievable for the 

total isolated system, there must be an unaccounted dissipation in some other part of the system. 
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 The impossibility of molecular scale, thermodynamically reversible processes derives 

from Eqs. (11), (12) and (13) of Sections III.2 and III.4, which apply quite generally. If we have 

a process that is intended to be thermodynamically reversible, Eq. (11) tells us that thermal 

fluctuations lead the system to meander back and forth indefinitely if its states are in or 

arbitrarily near the limiting states. They will eventually realize a uniform probability distribution 

over the process stages. Such a process does not complete. Eq. (12) and (13) determine the order 

of magnitude of the dissipation needed to overcome the fluctuations and assure probabilistic 

completion of the intended process. Eqs. (15) and (16) give the minimum dissipation in a special 

circumstance contrived to be least dissipative. The dissipation is negligible on macroscopic 

scales and significant on molecular scales. 

 The idea that one could undertake a thermodynamically reversible expansion of a gas of a 

single molecule was introduced by Szilard12 as part of his celebrated analysis of Maxwell’s 

demon. The idea has become standard in the now voluminous literature that develops Szilard’s 

work.13 Szilard14 briefly recognized the problem that the gas pressure is wildly fluctuating, as it 

acts to lift a weight coupled to the piston. The problem is dismissed with the parenthetically 

inserted remark:  

The transmission of force to the weight is best arranged so that the force exerted 

by the weight on the piston at any position of the latter equals the average 

pressure of the gas. 

We have now seen here in detail that this is an inadequate response. There is no arrangement that 

can convey the work done by the expanding one-molecule gas to a raised weight in a way that 

maintains thermodynamic reversibility of the entire process. Any arrangement, no matter how 

simple or complicated in design, is subject to the above general relations. They affirm that 

fluctuations will disrupt the intended operation, unless the fluctuations can be suppressed by the 

dissipative creation of entropy in quantities significant at molecular scales. 

APPENDIX.	MOVING	A	BROWNIAN	PARTICLE	

 A microscopically visible Brownian particle is suspended in a flat, horizontal dish of 

water that is maintained at constant temperature T by a heat bath. A candidate 

thermodynamically reversible process is the slow moving of the particle from one side of the 
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dish to the other. Its analysis is one of the simplest illustrations of the general results of Section 

III. 

A1.	A	Small	Particle	in	Ordinary	Thermodynamics.	

 If we neglect the molecular constitution of matter and orient the dish horizontally, then 

the system of particle and water is in perfect equilibrium and will never change. We can move 

the particle slowly from one side of the dish to the other by tilting the dish slightly, so that the 

particle falls slowly under gravity. The particle has effective mass M, which is its apparent 

weight after buoyancy is subtracted. When it falls through a height H, it loses potential energy 

MgH, where g is the acceleration due to gravity. This energy is lost as work that is converted 

irreversibly via friction to heat and is passed to the heat bath. Hence the free energy change, due 

solely to the change of internal energy of the particle, is 

ΔF = -MgH.                                                                (53) 

To realize the process reversibly, this height H can be made arbitrarily small so that ΔF is 

brought arbitrarily close to zero. With successively smaller H, the particle will still move across 

the dish, but now take successively longer times. The limiting equilibrium states are the different 

immobile equilibrium positions the particle can take in the fully horizontal dish. 

A2.	Brownian	Motion	

 Now allow for the molecular constitution of water. As a result of continuing collisions 

with very many water molecules, the particle adopts the fluctuating motion known as Brownian 

motion. Over time, the Brownian particle will migrate throughout the accessible regions of 

water. As Einstein15 showed in 1905, the particle can now be treated as a one-molecule ideal 

gas.  

 This migration over positions by Brownian motion is an example of how fluctuations 

affect what was considered in ordinary thermodynamic to be an equilibrium system. They are led 

to migrate to neighboring states and beyond. The distances migrated in some nominated time lie 

on a bell curve whose spread is measured by its standard deviation. For a 0.001mm diameter 

spherical particle in water at 17C, Einstein16 estimated a standard deviation of 8x10-7 m over 

one second.17 This standard deviation scales with (time)/(particle diameter) . A macroscopic 

body of 1cm radius is 10,000 times larger. Hence the standard deviation for its motion in one 
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second is 100 times smaller: 8x10-9m = 80Å. Since the standard deviation scales with time , 

this standard deviation grows to a macroscopic 8x10-3m = 8mm only after (106)2 = 1012 seconds 

= 31,688 years. The extent of these motions is, for macroscopic bodies, so small as to be 

negligible. 

 For microscopic bodies and smaller, these motions are significant. A particle localized in 

one small part of the water dish ceases to be in an equilibrium state. The particle will proceed to 

explore the entire volume of the dish through its random thermal motions. In this aspect, it is 

akin to a one-molecule ideal gas expanding irreversibly into a large chamber. If the particle is 

initially localized in a small volume ΔV of the dish of total volume V, then the associated entropy 

and free energy changes are given by 

ΔS = k ln (V/ΔV)               ΔF = -kT ln (V/ΔV)                                  (54) 

The probability distribution of the resulting fully expanded equilibrium state is canonical. The 

probability that the particle will be found at any given position x in the water is proportional to 

exp(-E(x)/kT), where E(x) is the energy of the particle at spatial position x. Since this energy is 

constant over all positions in a thin horizontal dish, it follows that the probability of occupation 

by the particle is distributed uniformly over all position. This uniform distribution is a simple 

example of the equiprobable relations of Eq. (11). 

A3.	The	Gravity	Driven	Particle	

 A thermodynamic process that seeks to move the particle from one side of the dish to the 

other can only succeed if it overcomes or suppresses these fluctuations. That suppression is 

effected by inclining the dish and introducing a sufficiently large gravitational driving force, as 

in the case of ordinary thermodynamics. Fig. 3 shows the inclined dish. The particle is released 

in its initial state “init” in the highest part, with height h = H-ΔH to H. We seek to move it to the 

final state “fin,” h = 0 to ΔH.  
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FIG. 3. Gravity Suppresses Fluctuations in a Brownian Particle 

 

 The particle Hamiltonian is 

E = p2/2m + Mgh,                                                                 (55) 

where its momentum is p = (px, py, py), its position is x = (x, y, z)=(h, y, z) and m is the full mass 

of the particle, uncorrected for buoyancy. The horizontal cross-sectional area of the dish at height 

h is A(h). The general partition integral for phase space volume delimited by h=h1 and h=h2 is:  
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For the special case of A(h) = A, we have 
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kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − exp −

Mgh2
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  .                     (57) 

Particular values for the total, initial, final and middle states are 

€ 

Ztotal = Z(0,H ) = (2πkTm)3/2 ⋅ A ⋅ kT
Mg
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1− exp −

MgH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , 

€ 

Zinit = Z(H −ΔH ,H ) = (2πkTm)3/2 ⋅ A ⋅ kT
Mg
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp −

MgH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp

MgΔH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  
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€ 

≈ (2πkTm)3/2 ⋅ A ⋅ exp −MgH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ΔH , 

€ 

Z fin = Z(0,ΔH ) = (2πkTM )3/2 ⋅ A ⋅ kT
Mg
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1− exp −

MgΔH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = (2πkTm)3/2 ⋅ A ⋅ ΔH , 

Zmid = Ztotal – Zinit – Zfin. 

where ΔH is assumed small so that 

€ 

exp −MgΔH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ 1−

MgΔH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

 In the process, the system expands from the “init” state to the “total” state, much of 

which latter state comprises “fin.” The free energy change is 

€ 

ΔF = −kT ln Ztotal

Zinit

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −kT ln

Zinit + Z fin

Zinit
⋅

Ztotal

Zinit + Z fin

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = −kT ln 1+

Z fin

Zinit

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + kT ln 1−

Zmid

Ztotal

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

Since Zfin/Zinit = Pfin/Pinit, Zmid/Ztotal = Pmid/Ptotal and using Eq. (16) to introduce ΔFmin, this 

can be rewritten as 

 

€ 

ΔF = −kT ln Ztotal

Zinit

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = ΔFmin + kT ln 1− Pmid

Ptotal

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,                                     (58) 

where ΔFmin is the minimum free energy decrease needed to assure completion with probability 

Pfin. To assure a high probability of completion, we seek Pfin much greater than the probability 

Pinit that the process reverts by a fluctuation back the initial state. That is we seek 

€ 

Pfin
Pinit

=
Z fin

Zinit
= exp MgH

kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ >>1 .                                     (59) 

Under this assumption,  

€ 

ΔFmin = −kT ln exp MgH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −kT ln exp

MgH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1+ exp −MgH

kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

€ 

= −kT lnexp MgH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − kT ln 1+ exp −MgH

kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

€ 

≈ −MgH − kT exp −MgH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −MgH − kT Pinit

Pfin
.                         (60) 

To assess the second term in (58), we note that  
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€ 

1− Pmid
Ptotal

=
Zinit + Z fin

Ztotal

≈
exp −MgH

kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ΔH +ΔH

kT
Mg
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1− exp −

MgH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

≈
MgΔH
kT

=
MgH
kT

⋅
ΔH
H

. 

That is, we have from Eq. (58) that 

€ 

ΔF −ΔFmin = kT ln MgH
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − kT ln

H
ΔH
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  .                                     (61) 

 

A4.	Minimum	Dissipation	Needed	to	Suppress	Fluctuations	

 The dissipation needed to suppress fluctuations, measured as a free energy decrease, is 

given by Eq. (58). The quantity ΔFmin is the minimum dissipation required by Eq. (16) above to 

enforce completion of the process with probability ratio Pfin/Pinit. Inverting Eq. (59), we have 

that securing this probability ratio requires a minimum H of 

€ 

H =
kT
Mg

ln
Pfin
Pinit

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

This minimum dissipation ΔFmin is computed in Eq. (60), where (in addition to a small 

correction term) it is found to be approximately equal to –MgH. This is just the free energy 

decrease of Eq. (53) associated with the particle falling through a height H. 

 The second term in Eq. (58), 

€ 

kT ln 1− Pmid
Ptotal

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , represents additional dissipation that results 

from the accessibility of intermediate or middle “mid” states in h=ΔH to h=H-ΔH. This 

additional dissipation is approximated in Eq. (61). The major part of the additional dissipation 

comes from the term

€ 

−kT ln H
ΔH
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . It corresponds to the entropy creation in Eq. (54) due to the 

H/ΔH = V/ΔV fold expansion of the particle from its confinement in the small volume ΔV to the 

large volume V. 

 To secure the minimum dissipation, we need to devise a way to make these intermediate 

“mid” states probabilistically inaccessible, so that its probability Pmid ≈ 0. If that can be done, 

then additional dissipation beyond the minimum can be reduced to zero. For, from Eq. (58), 
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€ 

ΔF −ΔFmin = kT ln 1− Pmid
Ptotal

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ kT ln(1) = 0  

In this case, rendering the intermediate states probabilistically inaccessible is easy to achieve. 

We merely replace the intermediate sections of the dish by an extremely narrow channel of 

small, constant cross-sectional area Amid, as shown in Fig. 4.  

h=0

h=H
h=H-ΔH

h=ΔH

Amid

 
FIG. 4. Dish with Spatial Volume of Intermediate States Reduced. 

 

It follows from Eq. (56) that the partition integral Zmid = Z(ΔH, H-ΔH) is proportional to Amid. 

Thus, by making Amid arbitrarily small, we can render Zmid and, as a result, Pmid arbitrarily 

small as well. 
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