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Norton (2013, Section 4) describes how a Maxwell’s demon can be exorcised 

merely by considerations of the conservation of phase volume in classical physics. 

This exorcism is generalized here to quantum physics. 

1.	  Introduction	  

 A naturalized Maxwell’s demon is a device that can manipulate individual molecules or 

other component at molecular scales in a way that leads to macroscopic violations of the second 

law of thermodynamics. The standard view in the present literature, as codified in Leff and Rex 

(2003), is that such a device must fail and that the reason for the failure is to be sought in a 

connection supposed between information and thermodynamic entropy. The demonic device is 

imagined to be structured like a computer. To complete a cycle of its operation, it must erase the 

information in its memory and, it is asserted, the entropic cost of this erasure outweighs any 

reduction in thermodynamic entropy achieved elsewhere in the cycle. 

 In papers written initially with John Earman, I have objected that this analysis is 

defective in many places. (Earman and Norton, 1998, 1999; Norton, 2005, 2011.) The 

connection between information and thermodynamic entropy remains unlikely speculation; and it 

is unclear that this analysis is sufficiently general to apply to the range of Maxwell’s demons 

readily conceivable. 
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 In a recent paper (Norton, 2013, Section 4), it is shown that there is a simple and general 

demonstration of the failure of a Maxwell’s demon that makes no use of the connection supposed 

between information and thermodynamic entropy. When presented with a thermal system such 

as a gas in vessel, a Maxwell’s demon is presumed able to drive the system away from its normal 

state of thermal equilibrium into a disequilibrated state and for it to remain there. Translating this 

behavior into the context of Hamiltonian systems in phase space, this behavior amounts to a time 

development in which a very large volume of phase space, corresponding to the many possible 

microstates of the equilibrium state, must evolve into a much smaller volume of phase space, 

corresponding to the far fewer microstates of the disequilibrated states. This time development 

violates Liouville’s theorem of Hamiltonian mechanics, for that theorem requires that volumes of 

phase space remain unchanged under Hamiltonian time evolution. 

 There is no need to reproduce the full analysis of Norton (2013) here.2 Rather, my 

purpose is to show that there is an analogous result of comparable simplicity if we assume that 

the systems at issue are quantum mechanical, not classical. The bulk of the analysis of Norton 

(2003) remains the same. All that is needed is to substitute quantum analogs for those parts of the 

argument that depend essentially on classical physics. The main substitution is to replace the 

conservation of phase volume of classical physics by its analog in quantum theory, the 

conservation of dimension of a subspace in a many-dimensional Hilbert space. This substitution 

will be described in Section 2 below. The following section will then list the premises of the 

classical exorcism along with their quantum counterparts. 

2.	  Conservation	  of	  Volumes	  

 The statistical treatment of thermal systems in classical and quantum contexts is 

sufficiently close for it to be possible to develop the relevant results in parallel, as in the two 

columns below. Corresponding results are matched roughly horizontally. 

 

Classical Hamiltonian Dynamics 

The state of a system is specified by 2n 

coordinates, the canonical momenta p1, …, 

pn and the canonical configuration space 

Quantum Statistical Mechanics 

The system state |ψ(t)> is a vector in an n 

dimensional Hilbert space, with orthonormal 

basis vectors |e1>, …, |en>. The time evolution of 
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coordinates q1, …, qn of the classical phase 

space Γ. The time evolution of the system is 

governed by Hamilton’s equations: 

€ 

˙ p i =
dpi

dt
= −

∂H
∂qi

  

€ 

˙ q i =
dqi

dt
=
∂H
∂qi

   i = 1, …, n    

(1a)  

where H(q1, …, qn, p1, …, pn) is the 

system’s Hamiltonian. 

the system is governed by Schroedinger’s 

equation: 

  

€ 

i d
dt

|ψ(t) >  = H |ψ(t) >

−i d
dt

<ψ(t) |  =<ψ(t) | H
            (1b) 

where H is the system Hamiltonian. 

Classical Liouville Equation 

If f(qi, pi,t) is a time dependent function 

over the phase space, then the total time 

derivative of f, taken along a trajectory 

(qi(t), pi(t)) that satisfies Hamilton’s 

equations, is: 

€ 

df
dt

=
∂f
∂t

+
∂f
∂qi

dqi (t)
dt

+
∂f
∂pi

dpi (t)
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑  

€ 

=
∂f
∂t

+
∂f
∂qi

∂H
∂pi

−
∂f
∂pi

∂H
∂qi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ =

∂f
∂t

+{ f ,H} 

Set f equal to a probability density ρ(qi, pi,t) 

that flows as a conserved fluid with the 

Hamiltonian trajectories. Thus ρ satisfies the 

equation of continuity:3 

€ 

0 =
∂ρ
∂t

+
∂
∂qi

(ρ ˙ q i )+
∂
∂pi

(ρ˙ p i )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑  

   

€ 

=
∂ρ
∂t

+{ρ,H}  

Combining we recover the classical 

Liouville equation 

€ 

dρ
dt

= 0                            (2a) 

It asserts that the probability density in 

Quantum Liouville Equation 

In place of the classical probability density ρ, we 

have the density operator ρ, which is a positive, 

linear operator on the Hilbert space of unit trace. 

It may be written in general as:4 

€ 

ρ(t) = pαα
∑ |ψα (t) ><ψα (t) | 

where 

€ 

pαα
∑ =1 for some set {|ψα>} of state 

vectors, which need not be orthogonal. This 

operator represents a “mixed state,” that is a 

situation in which just one of the states in the set 

{|ψα>} is present, but we do not know which, and 

our uncertainty is expressed as the ignorance 

probability pα. 5 

If the state vectors | ψα(t)> evolve in time 

according to the Schroedinger equation (1b), the 

quantum Liouville equation follows:6 

  

€ 

i dρ(t)
dt

= Hρ(t)−ρ(t)H = [H ,ρ(t)]        2(b) 

Alternatively, we can write the integral form of 

the Schroedinger equation as 
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phase space evolves in time so that it 

remains constant as we move with a phase 

point along the trajectory determined by 

Hamilton’s equations. 

  

€ 

|ψ(t) >  = exp −iHt /( ) |ψ(0) >  =U(t) |ψ(0) >

<ψ(t) |  =  <ψ(0) | exp iHt /( )  =  <ψ(0) |U −1(t)
 

(1c) 

From it, we recover the integral form of the 

quantum Liouville equation:7 

€ 

ρ(t) =U(t)ρ(t)(0)U −1(t)              2(c) 

 

 A quantum analog of classical phase space volume is the dimension of a subspace of the 

Hilbert space. It is measured by a trace operation. That is, the projection operator 

P = |e1><e1| + … + |em><em| 

projects onto an m dimensional subspace of the n dimensional Hilbert space, spanned by the 

orthonormal basis vectors |e1>, … , |em>, where m<n. We can recover the dimension of the 

subspace as 

€ 

Tr(P) = < ei | P | ei >  =  < e1 | e1 >( )2
+ ...+

i=1

n
∑  < em | em >( )2

= m  

Since the numbering of the basis vectors is arbitrary, the result holds for any subspace that is 

closed under vector addition and scalar multiplication. 

 If the total dimension n of the Hilbert space is small, the dimension of a subspace is a 

coarse measure of size in comparison with the finer measurements provided by volume in a 

classical phase space. However, in the present application, the dimension of the Hilbert space is 

immense, with n at least the size of Avogadro’s number, that is, at least 1024. We need to assess 

the relative size of the thermal equilibrium states in the Hilbert space, in comparison with the 

non-equilibrium states. The equilibrium states are vastly more numerous than the non-

equilibrium states. Our measure need only be able to capture this difference for the exorcism to 

proceed. While the dimension of the subspaces in which the equilibrium and non-equilibrium 

states are found is a coarse measure, it is but fully able to express the great difference in the size 

of the two. 

 We convert the forms (2a), (2b) and (2c) of the classical and quantum Liouville equation 

into expressions concerning conservation of volume by introducing analogous special cases of 

the probability density and density operator: 
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Classical Hamiltonian Dynamics 

Consider a set of states that forms an 

integrable set S(0) in the phase space at time 0 

of phase volume V(0). Under Hamiltonian 

evolution, it will evolve into a new set S(t). 

Define a probability density that is uniform 

over S(0) and zero elsewhere. That is 

ρS(0)(qi, pi) = (1/V(0))  IS(0)(qi, pi) 

where IS (qi, pi) is the indicator function that 

is unity for phase points in the set S and zero 

otherwise.  

The classical Liouville equation (2a) tells us 

that the probability density remains constant 

in time along the trajectories of the time 

evolution. Hence if the initial probability 

density is a constant 1/V(0) everywhere inside 

the set S(0) and zero outside, the same will be 

true for the evolved set S(t). That is, the 

probability density will evolve to 

ρS(t)(qi, pi) = (1/V(0))  IS(t)(qi, pi) 

Since the new probability distribution must 

normalize to unity, we have8 

€ 

1= ρ
Γ
∫

S (t )
(qi , pi )  dγ = 1

V (0)   1
S( t)∫  dγ =

V (t)
V (0)

 

which entails that 

V(t) = V(0)                     (3a) 

Hence the phase volume of a set of points 

remains constant under Hamiltonian time 

evolution. 

Quantum Statistical Mechanics 

The projection operator PS(0) projects onto a 

closed subspace S(0) of the Hilbert space. 

Since PS(0) is a projection operator, it is 

idempotent 

PS(0) = PS(0) PS(0) 

The dimension of the subspace onto which it 

projects is 

V(0) = Tr(PS(0)) 

The uniform density operator corresponding 

to PS(0) is 

ρS(0) = (1/V(0))  PS(0) 

Over time, using the quantum Liouville 

equation (2c), this density operator will 

evolve to a new density operator 

ρ(t) = (1/V(0))  U(t) PS(0) U-1(t) 

= (1/V(0)) PS(t) 

where PS(t) = U(t) PS(0) U-1(t) is the 

projection operator to which PS(0) evolves9 

after t. We confirm that PS(t) is idempotent 

since 

PS(t) PS(t) = U(t) PS(0) U-1(t) U(t) PS(0) U-1(t) 

                = U(t) PS(0) PS(0) U-1(t) 

                 = U(t) PS(0) U-1(t)  = P S(t) 

and define S(t) as the subspace onto which it 

projects. Hence we can write  

ρ(t) = ρS(t) 

Finally, density operators have unit trace, so 
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that  

1 = Tr(ρS(t)) = (1/V(0)) Tr(PS(t)) 

= V(t)/V(0) 

where V(t) is the dimension of S(t). It follows 

that 

V(t) = V(0)                     (3b) 

Hence the dimension of a subspace remains 

constant as the states in it evolve over time 

under Schroedinger equation. 

 

The derivation of the quantum result (3b) was carried out in a way that emphasizes the analogy 

with the classical case. The same result can be attained more compactly merely by noting that the 

trace of a projection operator is invariant under Schroedinger time evolution:10 

V(t) = Tr(PS(t)) = Tr(U(t) PS(0) U-1(t)) = Tr(U-1(t)U(t) PS(0)) = Tr(PS(0)) = V(0) 

3.	  Two	  Versions	  of	  the	  Exorcism	  

 With the parallel results for the classical and quantum cases in hand, we can now restate 

the original assumptions of the classical exorcism, listed as (a)-(f) below. Quantum surrogates 

are needed only for (d)-(f) and are indicated on the right. 

(a) A Maxwell’s demon is a device that, when coupled with a 

thermal system in its final equilibrium state, will, over time, 

assuredly or very likely lead the system to evolve to one of the 

intermediate states; and, when its operation is complete, the 

thermal system remains in the intermediate state.  

(b) The device returns to its initial state at the completion of the 

process; and it operates successfully for every microstate in 

that initial state. 

(c) The device and thermal system do not interact with any other 

systems.  
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(classical) 

(d) The system evolves according to 

Hamilton’s equations (1a) with a time-

reversible, time-independent Hamiltonian. 

(quantum) 

(d) The system evolves according to the 

Schroedinger equation (1b), (1c), with a 

time-reversible, time-independent 

Hamiltonian. 

(e) The final equilibrium state upon which the 

demon will act occupies all but a tiny 

portion α of the thermal system’s phase 

space, V, where α is very close to zero. 

(e) The final equilibrium state upon which the 

demon will act occupies all but a tiny 

subspace of dimension α of the thermal 

system’s Hilbert space, where the 

dimension α is much smaller than the 

dimension of the thermal system’s Hilbert 

space. 

(f) The intermediate states to which the 

demon drives the thermal system are all 

within the small remaining volume of 

phase space, αV. 

(f) The intermediate states to which the 

demon drives the thermal system are all 

within the small remaining subspace of 

Hilbert space of dimension α. 

 

 It is assumed in (e) that the Hilbert space of the thermal system and, tacitly, of the demon 

have a finite, discrete basis. This is the generic behavior of systems such as these that are 

energetically bound, such as a gas completely confined to a chamber. 

 The analysis now proceeds as in Norton (2013, Section 4). In brief, according to the 

behavior specified in (a)-(c), a demon is expected to take a thermal system that we would, under 

non-demonic conditions, consider to be in thermal equilibrium and evolve it to an intermediate 

state, that is, one which we would under non-demonic conditions consider to be a non-

equilibrium state.  

 When coupled with the physical assumptions of (d)-(f) that behavior requires a massive 

compression of phase space volume or Hilbert space volume that contradicts the classical result 

of the conservation of phase space or the quantum analog for Hilbert subspace dimensions.  

 The key assumption is expressed in (e). A thermal system that has attained equilibrium 

under non-demonic conditions occupies one of many states that all but completely fill the phase 
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space or Hilbert space. The demon must operate successfully on all of these states, or nearly all 

of them. The intermediate states to which the demon should drive them must occupy the tiny, 

remaining part of the phase space or Hilbert space. Changes in the demon phase space or Hilbert 

space can be neglected, since the demon is assumed to return to its initial state.  
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Notes	  

                                                
1 I thank Joshua Rosaler and Leah Henderson for helpful discussion. 
2 The analysis is readily accessible since Norton (2103) is published in an open access journal, 

Entropy. There is also a second development of the result on my website as “The Simplest 
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Exorcism of Maxwell's Demon: No Information Needed,” 

http://www.pitt.edu/~jdnorton/Goodies/exorcism_phase_vol/exorcism_phase_vol.html 
3 Since 

€ 

∂
∂qi

(ρ ˙ q i )+
∂
∂pi

(ρ ˙ p i )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ = ρ

∂ ˙ q i
∂qi

+
∂˙ p i
∂pi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ +

∂ρ
∂qi

˙ q i +
∂ρ
∂pi

˙ p i
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑  

Using Hamilton’s equations (1a), the first term on the right vanishes since 

€ 

∂ ˙ q i
∂qi

+
∂˙ p i
∂pi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ =

∂ 2H
∂qi∂pi

−
∂ 2H
∂pi∂qi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑  = 0 and the second term is 

€ 

∂ρ
∂qi

˙ q i +
∂ρ
∂pi

˙ p i
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ =

∂ρ
∂qi

∂H
∂pi

−
∂ρ
∂pi

∂H
∂qi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ = {ρ, H} . 

4 For a proof, see Nielsen and Chuang (2000, Section 2.4.2). 
5 This representation of a mixed state by a density operator is an inadequate one that must be 

used cautiously. Distinct mixed states may be represented by the same density operator. The 

familiar example arises in an SU(2) spin space. The mixed states of equally likely spin-x up and 

spin-x down have the same density operator as the mixed states of equally likely spin-z up and 

spin-z: 
1
2 |x><x| + 12  |-x><-x| = 12 |z><z| + 12  |-z><-z| 

The Born rule gives the probability of a measurement outcome |φ> to be Tr(ρ Pφ), where Pφ = 

|φ><φ|. The probabilities pα of the mixed state do not coincide with these Born rule probabilities 

for measurements of |ψα> if the states in {|ψα>} are not orthogonal. 

6 Applying the Schroedinger equation to each |ψα><ψα| in the expression for ρ yields 

  

€ 

i d
dt

|ψα (t) ><ψα (t) |( )
α

∑ = Hψα (t) >( ) <ψα (t) |− |ψα (t) > <ψα (t) | H( )
α

∑ = Hρ −ρH . 

7 

€ 

ρ(t) = pαα
∑ |ψα (t) ><ψα (t) |  = pαU(t) |ψα (0) ><ψα (0) |

α
∑  U −1(t) =U(t)ρ(0)U −1(t)  

8 dγ is the canonical phase space volume element dq1… dqndp1… dpn. 

9 The derivation of this rule of time evolution closely parallels that of the density operator in 

(2c). 
10 The third equality uses the invariance of trace under cyclic permuation: Tr(ABC) = Tr(CAB). 


