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We are used to talking about the “structure” posited by a given theory
of physics. We say that relativity is a theory about spacetime structure.
Special relativity posits one spacetime structure; different models of
general relativity posit different spacetime structures. We also talk of
the “existence” of these structures. Special relativity says that the world’s
spacetime structure is Minkowskian: it posits that this spacetime structure
exists.

Understanding structure in this sense seems important for understand-
ing what physics is telling us about the world. But it is not immediately
obvious just what this structure is, or what we mean by the existence of
one structure, rather than another.

The idea of mathematical structure is relatively straightforward. There
is geometric structure, topological structure, algebraic structure, and so
forth. Mathematical structure tells us how abstract mathematical objects
�t together to form different types of mathematical spaces. Insofar as
we understand mathematical objects, we can understand mathematical
structure. Of course, what to say about the nature of mathematical objects
is not easy. But there seems to be no further problem for understanding
mathematical structure.
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Modern theories of physics are formulated in terms of these mathe-
matical structures. In order to understand “structure” as used in physics,
then, it seems we must simply look at the structure of the mathematics
that is used to state the physics.

But it is not that simple. Physics is supposed to be telling us about
the nature of the world. If our physical theories are formulated in mathe-
matical language, using mathematical objects, then this mathematics is
somehow telling us about the physical make-up of the world. What is
the relation between these abstract mathematical objects and the physical
objects of our experience? What is the relation between the structure of a
mathematical space in which we formulate a theory, and the structure of
physical space according to that theory? When we infer the existence of
a particular kind of structure—the spacetime structure of relativity, some
other structure posited by a different theory—are we saying something
about the world that theory describes, over and above the mathematics
needed to formulate the theory?

These questions raise lots of big and interesting philosophical issues—
about the existence of mathematical objects, the use of models in science,
underdetermination theses, and more. Though relevant, these are not
the questions I wish to focus on here.

I want to home in on a different issue. One of the puzzling things
about the “structure” of physics is that there can be different mathematical
formulations of a given physical theory—and not just gerrymandered
ones with dangling bits of mathematics tacked on. Examples of this are
ready at hand: Heisenberg’s and Schrödinger’s formulations of quantum
mechanics, Lagrangian and Hamiltonian versions of classical mechanics.

Different mathematical formulations mean different mathematical
structures. If there is more than one such formulation, then what can
we infer from the theory about the structure of the world? Should we
say that different mathematical formulations posit different structures, or
are they simply different descriptions of the same underlying structure?
When is one theory a mere notational variant of another, and when does
it count as a distinct theory, with its own account of what the world’s
structure is like?

The question of what to infer about the structure of the world from the
structure of the mathematics used to state the physics is already dif�cult.
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Cases of equivalent mathematical formulations make it all the more so. I
want to consider these questions with a speci�c example in mind. There
are many to choose from. I wish to minimize technicality and limit the
discussion to classical mechanics, and in particular, the Lagrangian and
Hamiltonian formulations. I will suggest some general conclusions, but
ultimately this really will be a case study. It remains to work through
other cases to see if similar considerations apply.

1. What is structure?

When, and why, do we infer the existence of one structure rather than
another? When, and why, do we make the jump from the structure of a
mathematical space in which we formulate a theory, to the structure of
the physical world according to that theory?

These questions require that we get to the bottom of what this “struc-
ture” talk is all about. What is this thing we call ‘structure’, such that two
theories can posit different ones?

Start with the structure of a mathematical space; we will work up from
there to the structure of physical space. A mathematical space can be
endowed with a certain structure, say, a geometric structure. (We can
think of a mathematical space as, roughly, a set of points with certain
mathematical objects de�ned on it; these objects give the structure of the
space.) We describe such a space in mathematical terms, ascribing to it
various mathematical properties. But there is an important difference in
the kinds of mathematical features we ascribe to such a space. There is a
difference between the intrinsic features of the space, and the features it
has merely because of the way we choose to describe it.1

Take a Euclidean plane. In order to describe the different locations
in the plane, we lay down a coordinate system on it. This allows us to
associate numerical values with the points in the plane. There are many
ways we could do this. We might use a rectangular coordinate system.

1For further discussion on the difference between the coordinate-dependent features
of a space, on the one hand, and the intrinsic structure of the space, on the other, see
Tim Maudlin, Quantum Non-Locality and Relativity (Massachussetts: Blackwell, 2002,
2nd ed.), chapter 2, and “Relativity,” in Encyclopedia of Philosophy, Donald M. Borchert,
ed. (Detroit: Thompson Gale, 2006, 2nd ed.), pp. 345–357.
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We might use a polar coordinate system. We could use some other, non-
rectilinear coordinate system. So long as the coordinates meet certain
general constraints (for example, they must vary continuously2), we can
use any set of coordinates we like to describe the locations in the plane.

The points will get different numerical descriptions depending on
which coordinate system we choose. Take a particular point in the plane.
Choose a Cartesian coordinate system, and the point will get the coordi-
nates (x , y). Rotate coordinate axes through an angle θ about the origin,
and the point will have different coordinates (x′, y′). (See Figure 1.) But
the point itself does not change. Only its description changes.

Figure 1: points

Take a slightly more complicated object, a vector. Think of a vector
as an arrow, a quantity de�ned by both a magnitude and a direction.
Choose a coordinate system, and we can describe the vector in terms
of its components. A component is the part of the vector along one of
the coordinate axes; the vector is equal to the sum of its components.
In the x-y coordinate system we started out with above, a vector v has

2More precisely, the coordinate system within each chart covering the manifold must
satisfy the continuity requirement. We could use weirder, non-numerical labels, though
that will not help us much when it comes to the physics, where we need differentiable
functions on these spaces. I will assume that we are interested in the above sorts of
coordinates.
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components vx and vy. Rotate coordinate axes, and the vector now has
components v′x and v′ y. (See Figure 2.) The components are different
in the new coordinate system. But the vector itself, the arrow with this
length and direction, does not change. Only its description changes.

Figure 2: vectors

Objects like points and vectors are coordinate-independent, geometric
objects: they exist independently of any coordinate system. Change
from one coordinate system to another, and their coordinate-dependent
descriptions will change; the objects themselves do not. We call these
invariant objects, since they are invariant under, or unaffected by, changes
in coordinates.

This difference between coordinate-independent objects, on the one
hand, and their coordinate-dependent descriptions, on the other, is start-
ing to bring out the idea of structure. Intuitively, there is a structure
to these objects, some intrinsic nature that is unaffected by coordinate
changes.

Apply this to the Euclidean plane. We said that there are different
coordinates we can use for the plane. The reason is that, like points and
vectors, the plane itself has a structure that is independent of coordinates.
How do we know this? Because no matter which coordinate system we
choose, some of the plane’s features always remain the same. No matter
what the coordinate system, the distance between any two points in the
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plane is unchanged. This distance measure is a coordinate-independent
feature of the space. It is part of its underlying, geometric structure.

The geometric structure of a mathematical space is given by the geo-
metric objects de�ned on it. Since geometric objects are invariant under
coordinate changes, so too is geometric structure. Geometric structure
is given by quantities that remain intact while we alter what are merely
arbitrary choices of description. This is what we have in the backs of our
minds when we say that we are free to choose different coordinate systems
for the plane. We mean that choosing different coordinate systems does
not alter the underlying structure. It only alters our description of that
structure.

Let me brie�y say something about the Euclidean distance measure,
since you might be wondering about its status as a coordinate-independent
object. The familiar Pythagorean theorem, d =

√
∆x2 + ∆y2, is not wholly

independent of coordinates. Try using non-rectangular coordinates, and
this formula will not calculate the distances correctly. That is right,
but there is an invariant distance on the plane. This is not given by
an algebraic expression like the Pythagorean theorem. It is given by a
geometric object called a tensor. A tensor is an abstract geometric object
that is invariant under coordinate changes, just as points and vectors are.
As with points and vectors, tensors get different component descriptions
in different coordinate systems. In a rectangular coordinate system, the
Pythagorean theorem gives the components of the metric tensor. In
a different kind of coordinate system, it does not. But the Euclidean
distance between any two points, this number (in a given unit), or scalar,
is coordinate-independent. The metric tensor de�ned on the plane is
an invariant object that lets us calculate distances using any allowable
coordinate system. Think of it as a generalization of the Pythagorean
theorem, legitimate for any set of curvilinear coordinates we can use on
the plane.

In general, for any mathematical space, there will be some quan-
tities that all allowable coordinate systems agree on. (If there are no
such quantities, then we have a structureless set of points. Such a space
would not have enough structure to do physics: it does not even have the
topological structure needed to de�ne continuity and differentiability.)
These are features that the space will have no matter which coordinate
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system we use to describe it. These features are part of the intrinsic,
coordinate-independent structure of the space.

Since quantities that stay put under coordinate changes correspond
to intrinsic, structural features of a space, these invariant quantities give
us a way of �guring out the structure of a space: choose an allowable
coordinate system, change to another one, and see what remains the same
when we do this. The fact that coordinate changes preserve Euclidean
distances reveals that this metric is part of the plane’s underlying structure.
Invariant quantities can also indicate a symmetry, or a lack of structure.
The fact that coordinate translations and rotations do not disturb the
geometry of the plane indicates that this structure is uniform with respect
to the different locations and directions in the plane. It indicates that
there is no additional structure picking out a preferred point or direction.3

Of course, which are the allowable coordinate systems in the �rst
place is determined by that structure. We know which coordinate systems
we can use for the plane because we already know what structure it has:
the allowable coordinate systems are precisely the ones that preserve the
Euclidean distances. What we are seeing is that we also have a way of
�guring out the structure of less familiar spaces. Given the allowable
coordinate transformations, we can infer the structure from the invariant
quantities under those transformations.

Here is where we are so far. The geometric structure of a mathe-
matical space is given by quantities that remain intact under changes in
coordinates. There is a difference, then, between the features ascribed to
a space by the coordinate system being used, and the intrinsic features
of the space itself. There is a difference between (genuine) structure and
(mere) description of that structure.

That difference is important in physics, too. In Newtonian mechan-
ics, any reference frame or coordinate system moving with a constant
(non-accelerating) velocity is one in which the laws hold. As far as this

3I have been talking in terms of passive transformations, or coordinate changes.
Active transformations leave the coordinates alone, acting directly on the coordinate-
independent objects to yield changes in their coordinate-dependent descriptions. Both
kinds of transformation capture the idea that there is some underlying geometric struc-
ture of which we can have different, equally good descriptions. Thinking in terms of
passive transformations is more intuitive for our purposes, but either will do.
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theory is concerned, any one of these frames is as good as any other for
describing a given system. Choosing one frame rather than another is just
an arbitrary choice in description. That is why a frame-dependent quan-
tity like velocity is not a fundamental, objective feature of a Newtonian
world. There is no “absolute velocity” on this theory. An object’s velocity
depends on the choice of frame, any one of which is equally legitimate.

In special relativity, the laws hold in any Lorentz frame. Since the
time elapse between events depends on the choice of frame—simultaneity
is “relative” to a frame—temporal distances are not in the fundamental
structure of the world, according to this theory. They are “merely” frame-
dependent quantities.

In physics, the frame-dependent quantities, the quantities whose
values depend on the particular choice of frame, are taken to be non-
fundamental; they are like the coordinate-dependent features of the
plane. Frame-independent quantities, on the other hand, the quantities
which are the same in all allowable reference frames, do correspond to
fundamental, objective features of the world. In special relativity, all
Lorentz frames agree on the spacetime interval between two events, just
as in the Euclidean plane, all coordinate systems agree on the spatial
distance between two points. The spacetime interval is a fundamental,
objective feature of the world, according to the theory of special relativity.
It gives the geometry of its spacetime, in the same way that the Euclidean
metric gives the geometry of the plane.

That is why modern theories of physics are typically formulated in
terms of abstract, invariant, geometric objects, rather than numerical,
coordinate-dependent, algebraic ones. Objective features of the world are
best represented by quantities that do not depend on our arbitrary choices
of description—on choices the theory itself takes to be arbitrary. Since
the physics tells us that many different reference frames or coordinate
systems are equally legitimate, only things that hold in all of them can be
genuine features of the world, apart from our changeable descriptions of
it. And abstract geometric objects are the sorts of mathematical objects
that are invariant under such changes in description.

Above, we saw that invariant quantities can indicate the structure of
a mathematical space. In physics, too, invariant quantities can indicate
underlying structure. They can tell us about the structure of the world,
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according to a physical theory.
An example: the invariance of the laws under time translations suggests

that time itself is similarly symmetric—that there is no preferred point in
time—just as the space-translation invariance of coordinates indicates that
there is no preferred point in Euclidean space. Choosing one temporal
origin rather than another is just a conventional choice in description,
not an underlying distinction in reality. Another: the invariance of the
laws under Lorentz transformations suggests that choosing one Lorentz
frame rather than another is just a conventional choice in description,
not an underlying distinction in reality. There is no temporal-distance
structure in the world, according to the theory of special relativity.

By contrast, in Newtonian physics, there is a temporal-distance struc-
ture to the underlying spacetime. There is a certain preferred-point
structure that is lacking from special relativity. Out of all the pairs of
spatially separated spacetime points, some are picked out as being si-
multaneous, in any frame. According to Newtonian physics, there is a
simultaneity structure in the world. The theory is not invariant under
transformations failing to preserve this structure.4

The inference from invariances in the laws to corresponding sym-
metries in the world is not conclusive. There could still be a preferred
Lorentz frame, say. Yet we tend to infer that there is no more structure
to the world than what the fundamental laws indicate there is. Physics
adheres to the methodological principle that the symmetries in the laws
match the symmetries in the structure of the world. This is a principle
informed by Ockham’s razor; though it is not just that, other things being
equal, it is best to go with the ontologically minimal theory. It is not
that, other things being equal, we should go with the fewest entities, but
that we should go with the least structure. We should not posit structure
beyond that which is indicated by the fundamental dynamical laws. As a

4The laws would not make sense without it. Take Newton’s �rst law: every body
continues in a state of rest or uniform motion unless acted on by a net force. This law
requires that there be a real distinction between the trajectories of particles at rest or
in uniform motion, and the trajectories of accelerating particles. If there were no such
distinction in the world (independent of our descriptions of it), then there would be no
fact of the matter as to whether a given body is accelerating or in uniform motion. See
Maudlin, Quantum Non-Locality and Relativity, p. 38.
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methodological rule, this is what physics has generally done, and success-
fully so. This, in turn, suggests that the symmetries in the laws give us
genuine insight into the world’s underlying structure.5

This gives us a way of �guring out the structure of the world, according
to a theory of physics. The procedure is analogous to the one we can use
for a mathematical space whose structure is not already familiar. Now we
look for invariances in the physical laws:

1. Take the laws of the theory. Take a system governed by these laws.

2. Transform one allowable coordinate- or frame-dependent descrip-
tion of the system into another.

3. See what quantities must remain the same under this transforma-
tion, in order for the laws to continue to hold. Repeat for any
system governed by the theory and any type of allowed coordinate
transformation.

4. These quantities give the mathematical structure needed to formu-
late the theory in an invariant, coordinate-independent way.

5. These quantities then indicate the structure of the world, according
to the theory.6

In special relativity, the laws say that the speed of light is the same in
all inertial reference frames. In order for this to be so, the transforma-
tions between different such frames cannot be the classical Newtonian
(Galilean) ones. They must instead be the Lorentz transformations. The
invariant quantity under the Lorentz transformations—the mappings
which take a system’s description in one allowable frame to its descrip-
tion in another—is the spacetime interval. This spacetime interval then

5Note the two kinds of symmetry in play here: symmetries in the laws, given by
mappings of solutions to the theory onto solutions, and symmetries in the spacetime (or
other) structure of the world, given by mappings of the spacetime (or other structure)
onto itself. The idea is that the former give us reason to infer the latter. See John
Earman, World Enough and Space-Time (Cambridge: MIT, 1989), p. 46, who considers
this a condition of adequacy on dynamical theories.

6I am taking for granted that there is some way in which this mathematical structure
represents the world. How this works is of course a large issue, which I leave aside here.
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picks out a Minkowski geometry for the underlying spacetime structure.
This is the mathematical structure needed to formulate the theory in an
invariant, frame-independent way. Hence this is a part of the spacetime
structure of the world, according to the theory.

Note that we can also compare different degrees, or amounts, of struc-
ture. Compare a Euclidean plane with a similar plane that has a preferred
spatial direction. The Euclidean plane without a preferred direction has
less structure than the one with a preferred spatial direction. Picking out
a preferred direction requires additional structure (an orientation).

In building up a mathematical space, some objects will presuppose
others, in that some of the mathematical objects cannot be de�ned without
assuming others. Starting from a structureless set of points, we can add on
different “levels” of structure. A bare set of points has less structure than
a topological space, a set of points together with a topology (specifying
the open subsets). A topological space has less structure than a metric
space: in order to de�ne a metric, the space must already have a topology.7
(Intuitively, a metric gives distances along curves by adding up the lengths
of segments between nearby points; and without a topology, there is no
sense of the “nearness,” or neighborhoods, of points.) And so on.

We can compare the structures of different physical spaces in the same
way. The spacetime structure of Newtonian mechanics contains a spatial
metric, a temporal metric, and structure identifying spatial locations
across times; whereas the spacetime structure of special relativity is fully
speci�able by means of one spacetime metric. The latter spacetime has
less structure. It lacks the structure to identify spatial locations at different
times, for instance. That would require additional structure.

We can now say some general—admittedly imprecise—things about
“structure” in physics. Structure has to do with the invariant features of a
space, whether an abstract mathematical space or the physical space(time)
of the world. Structure comprises the objective, fundamental, intrinsic
features, the ones that remain the same regardless of arbitrary or con-

7For any metric (or pseudo-metric) space, we can de�ne a topology by using the
open balls as a sub-basis. The open balls Bє(x) = {y ∈ X∣d(x , y) < є} form a basis for
the neighborhoods of x, where d is the metric. We say that this is the topology induced
by the metric. See Chris J. Isham, Modern Differential Geometry for Physicists (Singapore:
World Scienti�c Lecture Notes in Physics, 2003, 2nd ed., volume LXI), p. 33.
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ventional choices in description. And we can learn about structure by
looking at the invariant quantities under allowable transformations. I
suggest that it is part of the structure of the world, according to a theory
of physics, that it contain at least the amount of stuff needed to state the
theory in an objective, coordinate-independent way—in a way best suited
to representing the nature of the world, apart from our descriptions of it.

Structural features of the world are (somehow8) represented by the
mathematical features of the space in which its physics is formulated. But
not just any old mathematical features. In relativity, it is the invariant,
geometric features, not the frame-dependent, numerical ones, which get
at genuine spacetime structure. Since not just any mathematical feature
indicates underlying structure, we might already be witnessing a glimmer
of good things to come. If only certain kinds of mathematical object are
appropriate for representing the structure of the world, then this may
help us with different mathematical formulations of the physics.

For now, rest content with the following observation. It seems pretty
clear why modern physics is so interested in structure. Structure consists
in just the kind of things we take to be candidates for objective features
of the world, for features of reality. Reality is observer-independent.
It does not depend on our arbitrary descriptions or conventions. It is
independent of choice of reference frame. Reality has to do with structure.

2. The Case: Lagrange v. Hamilton

We are not out of the woods yet. If structure is supposed to tell us about
the objective features of the world according to a theory of physics, then
what do we say when there are different structures we can use for the
physics?

Let us turn to our concrete case. There are two formulations of
classical mechanics that are generally assumed to be equivalent: the La-
grangian and Hamiltonian formulations. Each formulation has its own
sets of coordinates and its own equations of motion, given in terms of
those coordinates. But the Lagrangian equations of motion can be recov-
ered from the Hamiltonian ones, and vice versa. The two formulations

8See note 6.
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give rise to the same set of physically possible histories for any classical
system. The consensus view is that these are notational variants, different
mathematical presentations of one and the same theory.

Bear with me for a moment while we run through some details that
will be important later. First, some features of the Newtonian formu-
lation of classical mechanics that carry over analogously to these other
formulations. In Newtonian mechanics, the total state of a system at a
time is given by the position and momentum of each of its particles (in
addition to the particles’ intrinsic features, like mass and charge).9 For
a system moving around in three-dimensional space, the position and
momentum coordinates will each have three components, one along each
of the three spatial dimensions.

The statespace of a system is a mathematical space in which we repre-
sent all its possible fundamental states. Think of this as the fundamental
possibility space of a theory. In Newtonian mechanics, a system with n
particles will have a statespace of 6n dimensions: one dimension for each
of the three position and momentum coordinates for each particle in the
system.10 Each point in this high-dimensional space represents a total
possible state of the entire system. Each point represents the state of
many, many objects—all the particles that make up the system. Keep in
mind that a theory’s statespace does not in general directly correspond to
the physical space of the world. Statespaces tend to look quite different
from that.

9I leave aside the question of whether velocity is properly included in the instanta-
neous state of a system. I tend to agree with arguments that it is not. (See David Albert
Time and Chance (Cambridge, MA: Harvard, 2000), chapter 1; Frank Arntzenius, “Are
There Really Instantaneous Velocities?,” The Monist, LXXXIII, 2 (2000): 187-208.) If
that view is right, then just replace the idea of a system’s state at a time with what Albert
calls a “dynamical condition,” the state within any arbitrarily small time interval. What
we need is the information required to plug into the dynamical laws to make predictions.

10If the system were one particle, we could represent its state by one point in a 6-
dimensional mathematical space; this 6-dimensional space represents all the possible
fundamental states, all possible position-momentum pairs, for this system. Two particles,
and we need 12 numbers to completely specify the state—six numbers for each particle—
and so a 12-dimensional statespace. Three particles, 18 numbers, and an 18-dimensional
statespace. In general, the statespace of a classical system has dimension 2nr, where n is
the number of particles and r is the number of degrees of freedom, here assumed to be
the three spatial dimensions of ordinary space.
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A trajectory through the statespace, a curve through the statespace
parameterized by time, represents a possible history of the system, a
possible sequence of its fundamental states over time. The dynamical
laws say which of these curves are possible histories. In Newtonian
mechanics, F = ma, or F =

dp
dt , governs this evolution. There is one

such equation for each particle, in each component direction. (It is a
vector equation.11) We can group these equations into one big version
of Newton’s law, which says how the point representing the state of the
entire system moves through the 6n-dimensional statespace over time.
Given the initial positions and momenta of the particles and the total
forces acting on the system (given by a vector function on the statespace),
we can (twice) integrate Newton’s equation to get a unique solution.12 A
solution is the history of the system, for this initial state and subject to
these forces.

Lagrangian mechanics is a bit different. It also speci�es a system’s
state by using two sets of coordinates. It is important, though, that the
Lagrangian formulation uses what are called generalized coordinates, or
generalized positions, labeled qi, and their �rst time derivatives, the gen-
eralized velocities, q̇i (i ranging from 1 to n). Generalized coordinates are
any set of independent parameters that together completely specify the
state of a system. Whereas in Newtonian mechanics we use ordinary
position and momentum coordinates13, here we can use any set of gener-
alized coordinates and their corresponding time derivatives; and there are
(in�nitely) many we could use. In particular, the generalized coordinates
need not be ordinary position coordinates. For a pendulum, we can use

11Newton’s law is F(x, ẋ, t) = m d2x
dt2 , a solution to which is a vector function x(t), for

initial values x(t0) and ẋ(t0) at initial time t0, which allows us to �nd also ẋ(t). There
is a transformation rule for vectors, which gives their components in one frame from
those in another. In order for a vector equation to be frame-independent (in Newtonian
mechanics, it is Galilean-invariant), the components of all vectors must transform
according to the same equation. In other words, the law must hold component-wise.

12I set aside the intruiging cases of indeterminism. See Earman, A Primer on Determin-
ism (Boston: Reidel, 1986); John Norton, “The Dome: An Unexpectedly Simple Failure
of Determinism”, Philosophy of Science (Proceedings), forthcoming; David Malament,
“Norton’s Slippery Slope”, Philosophy of Science (Proceedings) forthcoming.

13The laws still hold in other coordinate systems, but their form will change if we
use, say, polar rather than rectangular coordinates. Not so the Lagrangian equations.
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an angle as the generalized “position”; the generalized “velocity” is the
�rst time derivative of that angle. (See Figure 3.) It is an amazing feature

Figure 3: Pendulum with generalized coordinates q = θ and q̇ = θ̇

of the theory that we can treat this angle as if it were a rectangular coor-
dinate of the kind we use to solve Newton’s equations, and everything
goes through just as if we were using ordinary rectangular coordinates.

For a Lagrangian system of n particles moving in three-dimensional
space, we again need 6n coordinates to completely specify the state of a
system; in this case, three generalized coordinates and three generalized
velocities for each particle. Each possible state is represented by one
point in a 6n-dimensional statespace called con�guration space.

This label is a bit confusing. ‘Con�guration space’ is often used for
the space of ordinary positions or con�gurations, that is, a 3n-dimensional
manifold, where each point corresponds to a possible set of particle posi-
tions in ordinary three-dimensional space. Each point in the Lagrangian
con�guration space, on the other hand, picks out both a generalized
position and the corresponding generalized velocity for each particle in
the system. This space comprises a set of possible con�gurations (which,
remember, need not be given by ordinary position coordinates), plus a
space in which we represent their �rst time derivatives. This is really the
tangent bundle of con�guration space: the 3n-dimensional (generalized-
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coordinate) con�guration space together with the 3n-dimensional tangent
space at each point. We need the tangent spaces in order to de�ne the
generalized velocities, which are tangent vectors. Unlike ordinary con�g-
uration space, the Lagrangian statespace is a 6n-dimensional manifold,
each point of which picks out a generalized coordinate-generalized veloc-
ity pair for all the particles in the system.

The Lagrangian equations of motion determine how the point repre-
senting the state of the system moves through the statespace over time.
Whereas Newtonian mechanics requires the forces acting on a system
in order to determine its behavior, here we need a scalar function, called
the Lagrangian, L. At each point in the statespace, this function assigns a
number, (typically14) equal to the kinetic minus potential energy of the
system. Given the initial state and Lagrangian of a system, the equations
determine a unique history.

Hamiltonian mechanics also uses generalized coordinates, but they
14I ignore time-dependent Lagrangians and Hamiltonians and non-conservative

forces, though the theories can accommodate these too. There are many sources for
the physics. Some I found particularly useful: Ralph Abraham and Jerrold E. Mars-
den, Foundations of Mechanics (Reading, MA: Benjamin/Cummings, 1980, 2nd ed.); V. I.
Arnol’d, Mathematical Methods of Classical Mechanics (New York: Springer, 1989, 2nd ed.);
Luca Bombelli, chapter II.0 of Abhay Ashtekar, ed. New Perspectives in Canonical Gravity
(Italy: Bibliopolis, 1988); Dusa McDuff, “Symplectic Structures–A New Approach to
Geometry,” Notices of the American Mathematical Society, XXXXV (1998): 952–960; Dusa
McDuff and Dietmar Salamon, Introduction to Symplectic Topology (New York: Oxford,
1998, 2nd ed.); Herbert Goldstein, Charles Poole, and John Safko, Classical Mechan-
ics (Reading, MA: Pearson Education, 2004, 3rd ed.); Victor Guillemin and Shlomo
Sternberg, Symplectic Techniques in Physics (New York: Cambridge, 1984); Isham, Modern
Differential Geometry for Physicists; Jorge V. José and Eugene J. Saletan, Classical Dynamics:
A Contemporary Approach (New York: Cambridge, 1998); Cornelius Lanczos, The Varia-
tional Principles of Mechanics (New York: Dover, 1970, 4th ed.); Jerrold E. Marsden and
Tudor S. Ratiu, Introduction to Mechanics and Symmetry (New York: Springer, 1999, 2nd
ed.); Roger Penrose, The Road to Reality (New York: Knopf, 2005), chapter 20; Bernard F.
Schutz, Geometrical Methods of Mathematical Physics (New York: Cambridge, 1980); Ana
Cannas da Silva, Lectures on Symplectic Geometry (New York: Springer, 2001); Stephanie
Frank Singer, Symmetry in Mechanics: A Gentle, Modern Introduction (Boston: Burkhauser,
2001). See also Gordon Belot, “The Representation of Time and Change in Mechanics,”
in Jeremy Butter�eld and John Earman, eds. Philosophy of Physics, Part A (Amsterdam:
North-Holland, 2007), pp. 133-227; and Jeremy Butter�eld, “On Symplectic Reduction
in Classical Mechanics, in Butter�eld and Earman, eds. Philosophy of Physics, Part A, pp.
1-132.
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are different from the Lagrangian ones. The Hamiltonian coordinates
are the generalized positions, labeled qi, and the generalized momenta, pi.
As generalized coordinates, these need not be ordinary position and
momentum coordinates. The generalized momentum need not equal
the ordinary momentum of mass times velocity, for instance (and it will
not, if the generalized position is not a regular Cartesian coordinate).
The Hamiltonian coordinates and equations are called canonical, and the
statespace is called phase space. This is (typically15) the cotangent bundle of
con�guration space: the (generalized) con�guration space together with
the cotangent space at each point. We need the cotangent spaces in order
to de�ne the generalized momenta, which are covectors, or one-forms.
Once again, this is a 6n-dimensional manifold; here, each point picks out
a generalized position-generalized momentum pair for all the particles
in the system. Once again, we need a scalar function on the space in
order to predict a system’s behavior; here, we need the Hamiltonian, H,
(typically: note 14) equal to the total energy of the system. For a given
initial state, these equations yield a unique history for a system with that
Hamiltonian.

The Lagrangian and Hamiltonian formulations are both coordinate-
independent versions of classical mechanics. Both are given entirely in
terms of generalized coordinates; their equations of motion retain their
form regardless of which set of such coordinates we use. (More, they can
be formulated without mentioning coordinates at all: Appendix A.) The
reason these theories can do this is that the Lagrangian and Hamiltonian
functions, which determine the motion of a system, are scalar functions.
By contrast, in Newtonian mechanics, the forces determine the motion,
and forces are vector quantities. Vectors, we have seen, are coordinate-
independent objects. But their components change with the coordinate
system, and to solve a problem using Newton’s law, we need to know
the component forces in the chosen coordinates.16 The Lagrangian and
Hamiltonian functions manage to store this dynamical information in

15Hamiltonian phase spaces need not have a global vector bundle structure, though
locally they are guaranteed to look like symplectic vector bundles. That their global
structure is not similarly constrained is one reason for the conclusion of this paper. See
Appendix B for some of the gory details.

16See note 11.
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one scalar energy term.
This suggests that the Lagrangian and Hamiltonian formulations

are both more objective, description-independent versions of classical
mechanics than the Newtonian formulation. In describing a classical sys-
tem’s behavior, these theories allow us to use a wide range of coordinates,
even ones that are not ordinary positions and momenta. These theories
demonstrate that there is a wider range of variables we can use to describe
classical systems than the Newtonian formulation might suggest.

There are differences between the two. Lagrangian and Hamilto-
nian mechanics use different sets of generalized coordinates to describe
systems’ states. And not just different coordinates: the generalized coor-
dinates and velocities of the Lagrangian formulation are not related by a
canonical transformation—the transformation that takes one allowable
set of Hamiltonian coordinates to another—to the canonical position
and momentum coordinates.17 The difference in coordinates means a
difference in statespace structure: the structure of the tangent bundle
versus the structure of the cotangent bundle. (Though they are both
usually �ber bundles, and at that level share an abstract structure.18)

The equations of motion have notable differences as well. For a
classical system with n degrees of freedom (such as the three spatial
dimensions we are assuming here), the Lagrangian formulation gives a
set of n second-order differential equations, one for each particle in each
coordinate direction. The Hamiltonian gives 2n �rst-order equations, two
for each particle in each coordinate direction.19 In each case, though, the
equations uniquely determine the motion, given an initial state speci�ed
by 2n values: for the Lagrangian, the initial n qi’s and n q̇i’s, and for the
Hamiltonian, the initial n qi’s and n pi’s.

Despite these differences, it is universally agreed that either formu-
17This requires a Legendre transformation, which transforms functions on a vector

space (like the tangent bundle) to functions on the dual space (the cotangent bundle).
18See Appendix B for precisi�cation.
19The Lagrangian equations are d

dt (
∂L
∂ q̇ i
) − ∂L

∂q i
= 0, the Hamiltonian q̇ i = ∂H

∂p i
and

−ṗ i = ∂H
∂q i

(i from 0 to n). See Appendix A for coordinate-free versions. Stating the
difference between the two in terms of the order of the equations is a bit misleading,
since the Lagrangian equations can be seen as �rst order equations de�ned on all of
TQ: see José and Saletan Classical Dynamics: A Contemporary Approach, pp. 93-97.
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lation suf�ces for doing classical mechanics. They are each empirically
adequate. Each is completely kosher as far as classical mechanics is con-
cerned. Physics books tell us to use whichever set of equations will make
a given problem easiest to solve.

It seems we have here a distinction without a difference: a difference
in mathematical formulation, not any distinction in reality according to
the two theories. The two formulations simply use different variables to
describe systems’ fundamental states. That is what leads to their differing
statespaces and differing equations of motion. We have but one theory,
and two different ways of formulating it mathematically, in terms of
different, but equally legitimate, coordinates. Just like using polar as
opposed to Cartesian coordinates to describe the Euclidean plane.

Mere notational variants indeed.

3. Irreconcilable differences

But not so fast.
Lagrangian and Hamiltonian mechanics may be equivalent for the

purpose of doing classical mechanics. Nonetheless, there are important
differences between them. There are differences in structure.20

Look more closely at the structure of their statespaces. The statespace
of Lagrangian mechanics—con�guration space, the tangent bundle—
has metric structure. Lagrangian mechanics assigns a de�nite, natural
geometric structure to con�guration space. In particular, the statespace
gets naturally associated with a metric structure.21

How do we know it has this structure? The usual way: look at what
20There are also differences that crop up in the extension to other domains of physics.

The Lagrangian formulation is generally taken to be more natural for generalizing to
�eld theories and relativistic spacetimes, the Hamiltonian for statistical mechanics and
quantum mechanics (though not quantum �eld theory). Though standard, none of this
is uncontroversial. For one source of disagreement, see Penrose, The Road to Reality,
chapter 20. I deliberately limit the discussion here to classical mechanics; things might
change when we carry these considerations elsewhere.

21Often: not so in the completely general case, though even there, I maintain the
basic conclusion about the theories’ comparative structures. For ease of exposition,
I continue to assume the above statespace structure, relegating technical details and
precisi�cations to the appendices.
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is invariant under allowable coordinate transformations. The invariant
quantities of the Lagrangian equations determine the geometric structure
of the statespace. They tell us what structure the statespace must have in
order to formulate the theory in terms of it.

The Lagrangian equations of motion are invariant under a certain set
of (point22) transformations. These transformations give the allowable
sets of coordinates, the ones that preserve the equations of motion. They
indicate which coordinate changes the theory takes to be mere arbitrary
changes in description.

There is a quantity that is invariant under these transformations.
The invariant quantity is the square of the Riemannian line element.
Transformations from one set of Lagrangian coordinates to another—
from one set of coordinates giving rise to the Lagrangian equations to
another that gives rise to these equations—preserve this local structure,
this local curvature, in the form of a quadratic differential form of the q̇’s.
This allows us to say that the structure of the Lagrangian statespace is
that of a Riemannian manifold, with a Riemannian metric de�ned on it.23

The statespace of Hamiltonian mechanics—phase space, the cotan-
gent bundle24—is different. Phase space has symplectic structure; it does
not have metric structure. Symplectic structure comes with, or deter-
mines, a volume element, but not a distance measure.

How do we know it has this structure? In the same way: look at
what is invariant under allowable transformations. There is a quantity,
a fundamental differential form, that is invariant under the canonical
transformations. But it is not the invariant quantity of the Lagrangian

22In a point transformation, each original point is in one-one correspondence with
each transformed point, in such a way that the local structure, in the neighborhoods of
the corresponding points, is preserved.

23A differential manifold with a �xed positive de�nite quadratic form on every tangent
space is a Riemannian manifold, with quadratic form ds2 the Riemannian metric. See
Peter Szekeres, A Course in Modern Mathematical Physics: Groups, Hilbert Space and
Differential Geometry (New York: Cambridge, 2004), p. 469, who de�nes a Lagrangian
system as an n-dimensional Riemannian manifold (M , g), together with a function
L ∶ TM → R (the Lagrangian). Note that there is a more general, coordinate-free
version of the theory that does not make explicit use of this metric: see Appendix A. I
thank David Malament for this point.

24But see Appendix B and note 15 for precisi�cation.
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transformations. It is the symplectic form, a different sort of geometric
object.25 Transformations from one set of Hamiltonian coordinates to
another—from one set of coordinates giving rise to the Hamiltonian
equations to another that gives rise to these equations—preserve symplec-
tic structure. So long as a transformation leaves the symplectic structure
intact, it can alter any metric structure. Hamiltonian statespaces that are
bent or stretched or “�oppy” with respect to one another do not count as
different statespaces—not unless the symplectic form differs.26

Now here is the kicker. The thing is, as far as we can tell, we need only
symplectic structure to do classical mechanics. This structure suf�ces for
the theory; it does not “leave anything out.”27 And there is a clear sense
in which a space with a metric structure has more structure than one with
just a volume element. Metric structure comes with, or determines, or

25A symplectic form is a closed, nondegenerate, antisymmetric 2-form. Note that,
although the symplectic form determines a volume form, a symplectic form is different
from—and stronger than—a generic volume form.

26The structure of a symplectic manifold is “�oppy” in that there is no local notion
of curvature that would distinguish one symplectic manifold from another locally. Two
real symplectic manifolds (of the same dimension and signature) are locally identical:
they can be mapped onto each other so that their symplectic structures correspond.
That symplectic manifolds have no local invariants such as curvature is a consequence
of Darboux’s theorem, which tells us that every pair of symplectic manifolds is locally
isomorphic: within the neighborhood of every point, there are local (canonical) coordi-
nates such that the symplectic form takes the canonical form. See Arnol’d Mathematical
Methods of Classical Mechanics, p. 230; Rolf Berndt An Introduction to Symplectic Geometry
(Providence: American Mathematical Society, 2001), 2.2; da Silva, Lectures on Symplectic
Geometry, 8.1. A corresponding result for Riemannian manifolds does not hold unless
the manifolds have zero curvature (unless they are �at). Symplectic forms are more
�exible than Riemannian metrics, which can be made constant in a local chart iff they
are �at. See Abraham and Marsden, Foundations of Mechanics, p. 177; Marsden and Ratiu,
Introduction to Mechanics and Symmetry, p. 148. More on this in Appendix B.

27There is an additional topological condition for a symplectic manifold to admit a
global Hamiltonian vector �eld (see Abraham and Marsden, Foundations of Mechanics,
p. 189); a classical mechanical phase space cannot be compact (momentum can get
arbitrarily large): see Singer, Symmetry in Mechanics, 3.3. Thus the 2-torus, for example,
cannot be a symplectic phase space, even if it happens to be an even-dimensional
symplectic manifold. There will also be the Hamiltonian function de�ned on the
phase space. For ease of exposition, I continue to refer to this structure as ‘symplectic
structure’, where this should be understood as including the relevant energy function
and any topological conditions.
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presupposes, a volume structure, but not the other way around. (In the
same way that a metric space comes with, or determines, or presupposes,
a topology, and not the other way around: note 7.) Intuitively, knowing
the distances between the points in a space will give you the volumes of
the regions, but the volumes will not determine the distances.28 Metric
structure adds a further level of structure.29

This suggests that the statespace of Lagrangian mechanics has more
structure than the theory really needs. We do not need this structure
for the dynamics of classical particles; therefore, we should infer that it
does not exist, that it does not correspond to fundamental structure. The
fact that we can do classical mechanics without the natural metric of the
Lagrangian formulation suggests that this extra bit of structure is merely
an artifact of the mathematics we need to formulate the theory this way. It
suggests that Lagrangian mechanics contains excess, super�uous structure.

Note that the Lagrangian formulation cannot get by without this
metric structure. The square of the Riemannian line element is what
gives the allowable sets of coordinate transformations, the ones that
preserve the Lagrangian equations of motion. A volume element would
not suf�ce for this, simply because of how the theory is formulated.
The relation between the generalized coordinates and their �rst time
derivatives, the two sets of coordinates that Lagrangian mechanics uses
to describe systems’ fundamental states, requires this metric.30 The
canonical coordinates of the Hamiltonian formulation do not.

(An example helps to picture the canonical coordinates’ relationship.
The phase space for a single particle constrained to move along a line,
like a bead on a straight wire, is a two-dimensional plane. The symplectic
form is the area form, which we can think of as giving the oriented area of
the parallelogram spanned by any two vectors. Coordinatize the plane by
r and p, interpreted as the particle position and momentum, respectively.
For any physically possible motion, along any allowable trajectory, these

28See Schutz, Geometrical Methods of Mathematical Physics, chapter 4. The symplectic
form is not even suitable to be a metric, since for any element, the symplectic inner
product taken with itself is 0 (from antisymmetry).

29I suggest this relationship between the two spaces as a reasonable conjecture; I do
not have a proof. See Appendix B for more details.

30But see note 21 and Appendix A for precisi�cation.
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two coordinates will have a simple kinematic relationship: p will be a
constant multiple of the time derivative of r. This relationship is coded
up in the area form, the symplectic form for this system’s phase space.31)

Of course, this extra bit of structure can be useful. It can help solve
problems, or help extend the dynamics to other realms (like �eld theo-
ries). Nonetheless, if our world’s fundamental physical theory were the
theory of classical particles, we should conclude that the structure of the
mathematical space in which to best represent the theory, and of the
world according to that theory, has only symplectic structure.

Consider an analogy. Newton thought that he needed a spacetime
structure identifying spatial locations across times. But this is more
structure than the theory really needs. We know that Newton’s theory
can be formulated in a completely Galilean-invariant way. So we infer
that, had Newton’s theory been the fundamental theory of the world,
its structure would be more accurately represented by Galilean (or neo-
Newtonian) spacetime, even though Newton believed otherwise.

Similarly here. All the necessary structure for the classical kinematics
is contained in the structure of a symplectic manifold—and for the dynam-
ics, with the Hamiltonian function de�ned on it—even though we can
formulate an empirically adequate theory by utilizing more structure.32

Hence we should infer that symplectic structure is the “real” statespace
structure of the theory. We should infer that this structure corresponds to
the “real” physical structure of a classical mechanical world. We should
infer that Hamiltonian mechanics is more fundamental than Lagrangian

31The canonical symplectic form is then ω = dp ∧ dr; that is, p and r are canonical
coordinates. Another example: the phase space of a spherical point pendulum, or
a particle constrained to move on a unit sphere. The set of possible positions are
represented by points on the surface of a sphere. Since the momentum vector must
be tangent to the sphere, the set of all possible position-momentum pairs gives the
structure of this phase space as T∗Q2 = {(r,p) ∈ R3 × (R3)∗ ∶ ∣r∣ = 1 and pr = 0}, where
Q is the con�guration space and T∗Q is the cotangent bundle. See Singer, Symmetry in
Mechanics, chapter 2.

32Note that the symplectic form is crucial to determining the motion, since the same
Hamiltonian can induce different �ows for different symplectic forms. That is, we
cannot also drop this amount of structure in an effort to �nd a more minimal one. At
what point we can stop removing structure, while still retaining an adequate theory, is a
large remaining question.
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mechanics.
Another way to motivate the idea. The symplectic form picks out the

canonical coordinates by coding up their kinematic relationship; for any
allowable motion, the two sets of canonical coordinates must be related
in this way. The kinematics is then coded up in the symplectic structure
of phase space. The dynamics is given by specifying the Hamiltonian,
a function that depends on the particulars of the system in question
(the kinds of forces among its particles, any external forces, whether the
system is in a potential, etc.). Given the Hamiltonian and initial state of a
system, the equations determine a unique history; different Hamiltonians
yield different histories. The actual relationship that obtains between the
canonical position and momentum coordinates—which curve through
phase space describes the actual behavior—depends on the initial state
and total energy of the system. Finding that relationship amounts to
�nding a solution, the unique curve describing the behavior of the system.
Think of it this way. All the points in phase space represent possible
fundamental states, for any system with that number of particles and
degrees of freedom; feed in an initial state and Hamiltonian, and the
differential equations spit out a unique subset of those points. These
points represent the actual development of fundamental states, of position-
momentum pairs, for the given system. Or this way: all curves through
phase space are functions of q and p; the symplectic form picks out the
physically possible such curves; the rest picks out the actual trajectory
from among all the physically possible ones.

The canonical coordinates thus vary in a way that is dictated by the
physics. Indeed: the relationships between the generalized positions and
the generalized momenta coded up in the symplectic form just are the
equations of motion themselves. The Lagrangian coordinates are not
like this. The generalized coordinates are the only truly independent
variables; the generalized velocities are simply their �rst time derivatives.
We treat them as independent for the purpose of solving the Lagrange
equations, but they are mathematically constrained, by de�nition of the
time derivative, independent of the physical laws.

Again, this suggests that the Hamiltonian formulation is more funda-
mental. It suggests that the fundamental possibility space for any classical
system is a symplectic manifold. Why? Because the relationship between
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the two sets of canonical coordinates, for any physically possible motion,
is contained in the very structure of that space. More boldly: it suggests
that a symplectic manifold just is the coordinate-independent, geometric
representation of classical mechanics. (That is, of the classical kinematics,
with the classical dynamics given once we have the Hamiltonian.) It
suggests that classical dynamics is symplectic geometry.

Notice that, on this picture, momentum is a truly fundamental quan-
tity, on a par with position. In particular, momentum is not de�ned as
the product of mass and the time derivative of position.33 Similarly, it
is the points in canonical position-momentum space that are fundamental,
not the points in ordinary con�guration space. (Confession: this is to
deny that we should understand the fundamental structure of phase space
in the way that it is usually built up, by taking a con�guration space and
attaching the cotangent space at each point. I am arguing that the phase
space structure is fundamental.)

We can now say a bit more about the “structure” of physics. The
structure of physics is the (minimal) structure that is assumed among dy-
namically equivalent—in classical mechanics: canonically transformed—
formulations of a theory. Structure comprises those quantities that remain
intact when we transform one allowable coordinatization of the laws into
another.34

In one sense, the orthodox view that the Lagrangian and Hamiltonian
formulations are notational variants is correct: the two formulations use
different sets of variables to describe the same set of dynamically possible
histories for any classical system. But in another, important, sense, they
are not mere variants: one of them contains excess structure. This is a

33This might be to endorse a modernized “impetus theory”: see Arntzenius, “Are
There Really Instantaneous Velocities?” Since the relationship between the two sets of
canonical coordinates depends on a system’s Hamiltonian, Arntzenius concludes that,
on such a view, this relationship must be regarded as a physical law governing how the
canonical position and momentum are causally related; that is, not as a de�nition of
momentum as mass times the temporal derivative of position.

34One might wish to say that “structure” has to do with the relations among funda-
mental objects, rather than their intrinsic properties. I do not wish to put it this way,
since I am skeptical of the distinction, for reasons argued for by Maudlin in “Suggestions
from Physics for Deep Metaphysics”, The Metaphysics Within Physics (New York: Oxford,
2001): pp. 78-103.
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distinction with an all-important difference.
(The defense rests.)

4. Structural realism, or: how I learned to stop worrying, and trust the
physics

When, and why, do we infer the existence of a particular structure, if
there are different structures we can use to formulate a theory?

Look to the physics. Take the mathematical formulation of a given
theory. Figure out what structure is required by that formulation. This
will be given by the dynamical laws and their invariant quantities (and
perhaps other geometric or topological constraints). Make sure that there
is no other formulation getting away with less structure. Infer that this is
the fundamental structure of the theory. Go on to infer that this is the
fundamental structure of the world, according to the theory.

In classical mechanics, this results in the inference to symplectic
structure. This is what remains intact when we change from one allowable
coordinate description to another. The theory’s alternate formulation
tacks on more structure. Infer that the fundamental statespace of classical
mechanics is a symplectic manifold. Infer that symplectic structure, the
structure that is invariant up to canonical transformations, exists. In
a world whose fundamental theory is classical mechanics, infer that it
fundamentally contains only this amount of structure.35

The Lagrangian and Hamiltonian formulations thus do not have the
thoroughgoing equivalence people readily assume: there is a difference
in structure.

I think this gives us grounds for concluding that they are not even gen-
uinely empirically equivalent. One of the lessons of modern geometric
formulations of physics is the importance of abstract geometric objects.
These invariant mathematical objects, not their coordinate-dependent
descriptions, correspond to fundamental, objective features of the world.

35Plus the things mentioned in note 27 and, perhaps, physical space. I do not address
here the relation between statespace structure and spacetime structure. For now, let us
just say: posit all the fundamental structure required for our best physics, where this
is not yet to say whether statespace structure is something over and above spacetime
structure, or whether one of these can be gotten from the other.
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And we now know that the structure given by these objects can have em-
pirical import. This is most obvious when it comes to spacetime structure.
In a special relativistic world, there may be no experiment to determine
whether there is, or is not, an absolute-velocity structure.36 Still, we
think there is an empirical difference between the two: a difference in
the geometric structure of the spacetimes.

You may not wish to call such a difference “empirical.” Ordinarily, we
say that there is an empirical difference between two things when there
is a possible (idealized, perhaps) experiment to point out that difference.
This is not the case here.37 Some of this is terminological: if you do not
like “empirical”, substitute “physical”, or some other. Yet not entirely
terminological. Part of what is to come suggests that there may not be
any clear-cut distinction between what counts as genuinely empirical, and
not; and in particular, no clear-cut distinction on the basis of something
like “in-principle experimental evidence.” No difference in possible
experimental evidence here, yet even so, we should say there is a difference
between the above two spacetime structures. I say that we might as well
call this an empirical difference: a difference in the way the world is,
according to the physics. Call it some other type of difference if you
prefer.

Modern geometric formulations of physics suggest that there is more
to a theory’s empirical content than its set of dynamically possible histories.
There is also the statespace in which those histories are traced out. And
there is the structure of that space. The equivalence of theories is not just a
matter of physically possible histories, but of physically possible histories
through a particular statespace structure. Hamiltonian and Lagrangian
mechanics are not equivalent in terms of that structure. This means that
they are not equivalent, period.

Of course, the empirical import of phase space structure is not imme-
diately apparent (to say the least). Much easier to see how points in a
mathematical space are supposed to represent the world in relativity: the
world has a spacetime that is directly isomorphic to the mathematical

36But see Albert, “Special Relativity as an Open Question”, in Heinz-Peter Breuer and
Francesco Petruccione, eds. Relativistic Quantum Measurement and Decoherence (Berlin:
Springer, 2000): 3-13 for suggestion that there may be such experiment.

37I thank Adam Elga for this point.
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space representing it. Phase space is much harder to picture. The points
themselves represent objects that are not easily conjured up—the dynam-
ically possible states of a system (even the entire world). The structure of
a �ber bundle is not directly isomorphic to anything familiar from our
experience, such as physical space.

Still, I think we should infer that this structure somehow corresponds
to the fundamental structure of a world governed by classical mechanics,
and for the same reasons we infer a particular spacetime structure from
the abstract geometric structure of relativity. We should infer that the
world contains at least the amount of structure needed to formulate its
fundamental dynamics in an invariant way. And physics has generally
been successful with the further inference that the world contains no
more fundamental structure than that. Just as we take seriously the
structure of physical space from the mathematical structure of relativity,
we should do the same for the structure of classical mechanics, even at
this more abstract, not-so-easily-envisioned level of structure.38 Just as
we take seriously spacetime and its geometry, we should do the same for
statespace and its geometry.

Note, for all that I have said so far, I am not necessarily a substantivalist
about phase space, though I confess that I am happy with that view.39 The

38Other areas of modern physics also suggest that our world’s fundamental structure
might not be isomorphic to everyday physical space. Consider the �ber bundle structure
of modern formulations of classical �eld theories (see Maudlin, “Suggestions from
Physics for Deep Metapysics”), or the con�guration space of quantum mechanics (see
Albert, “Elementary Quantum Mechanics”, in J. T. Cushing, A. Fine, and S. Goldstein,
eds. Bohmian Mechanics and Quantum Theory: An Appraisal (Boston: Kluwer, 1996):
277-284).

39Why? Two steps. (See David Malament, Review of Hartry Field’s Science Without
Numbers: A Defense of Nominalism, Journal of Philosophy 79 (1982): 523-534 for argument
along both lines.) The �rst toward an anti-nominalism. Although we may be able to
do science without numbers, as Hartry Field (Science Without Numbers: A Defense of
Nominalism, New York: Blackwell, 1980) argues, it is hard to see how we can do without
mathematical objects altogether. For we need the abstract—“abstract” in the sense of
“non-coordinate-dependent”—invariant, geometric ones. Our best physics uses these
sorts of mathematical objects to represent the fundamental structure of the world, which
makes it dif�cult to see how we could do without them; say, by using the representation
theorems Field employs to show that we can dispense with numbers. Classical mechanics
is a case in point: the points of phase space themselves represent abstract objects,
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claim is just this: that phase space is as much a part of the representational
content of classical mechanics as the theory’s spacetime is.

Why take the statespace so seriously? Rather than saying that phase
space somehow corresponds to a part of reality, why not regard it as
representing the world more indirectly? Perhaps it merely tells us some-
thing about the relations among fundamental properties in our world.
After all, we do not infer “structures” on the basis of any old relations
among physical properties, even if we can model them in a mathematical
space with a certain kind of structure. Down that road lies temperature
structure, color structure, altitude structure, and on and on and on.40

A few reasons, all of them contentious. One: I am skeptical that
there are any such clear-cut distinctions between fundamental properties
and fundamental relations; worse, between substances and properties.41

Two: unlike temperature, color, and so on, in this case we are dealing in
structures required by our best formulations of the fundamental physics.
Three: there is no principled distinction between arguments pressing us
toward a seriousness about spacetime structure, and arguments pressing
us toward a seriousness about statespace structure. Three-and-a-half: if
we happen to take spacetime seriously by being substantivalists, then we
should not object to the mere idea of positing structures among funda-
mental possibilities, whether unoccupied spacetime points or unoccupied
statespace points (see note 39). Four: there is no principled distinction
between the kinds of considerations singling out a particular spacetime
structure on the basis of the mathematical structure of relativity, and
those singling out a particular statespace structure on the basis of the

dynamically possible states. (Similarly for quantum mechanical con�guration space.)
First conclusion: these mathematical objects are indispensable to our best physics, and
this indispensability is the best evidence we can have for these objects’ existence. Second,
an “anti-abstract/concrete-distinction-ism.” Once we start talking about things like
“spacetime points” at all, the distinction between the abstract and the concrete starts
to feel pretty hazy. Second conclusion: once we have phase space structure, there is
nothing to stop our going whole-hog “substantivalist” about the points as well, whether
or not these are rightfully considered “abstract” in a traditional sense. The �rst step
gets us the existence of at least some mathematical objects: those comprising the phase
space structure. The second gets us the existence of the phase space points in particular.

40I thank Adam Elga for this question.
41As argued by Maudlin, “Suggestions from Physics for Deep Metaphysics.”
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mathematical structure of classical mechanics. Five and up: see below.
And just as we should infer the existence of the basic entities postulated

by our best theories of physics, so too should we infer the existence of the
basic structures posited by those theories. Call this ‘structural realism’.42

I think modern physics suggests that realism about scienti�c theories is
just structural realism: realism about structure. Modern geometric for-
mulations of physics suggest that there is such a thing as the fundamental
structure of the world, represented by the structure of its fundamental
physics. There is an objective fact about what structure exists, there is a
privileged carving of nature at its joints: along the lines of its fundamental
physical structure.

Someone like Reichenbach would disagree.43 Reichenbach thinks
that there is no non-conventional sense to be made of “the” structure of
the world. There is the empirical evidence, and there are different ways
of describing that evidence: in terms of one spacetime geometry, or in
terms of another spacetime geometry plus a global force �eld. Neither
description is privileged. Neither is a candidate for representing the “true”
structure of the world. I do not have much to say against such a view.
Insofar as we wish to be scienti�c realists at all, though, I think we must
be structural realists. And structural realism is precisely the denial of the
Reichenbachian view. Structural realism denies that different theoretical
formulations, utilizing different physical structures, must be on a par—
even if they yield the same results for our possible experimental evidence.

The nominalist may also bristle at my talk of the existence of structures.
Structures, after all, sound awfully like mathematical objects. Still others
will think I have been taking the mathematics too seriously. We must not
too blithely take the physics at face value, for some of its tools may be
just that—useful tools or devices, but representationally inert.44

Yet for all that I have said here, it is open what structure is, even though
I have indeed argued that this structure is not mere idle wheels. At a
minimum, I say that the mathematics of phase space is part of the genuine

42This term was independently used by James Ladyman, “What is Structural Re-
alism?”, Studies in History and Philosophy of Science 29 (1998): 409-424 to describe a
somewhat similar view, though one very differently motivated.

43Hans Reichenbach, The Philosophy of Space and Time (New York: Dover, 1958).
44The phrase is from Brad Skow.

30



content of classical mechanics. This bit of the mathematics used in our
physics cannot be representationally inert: it is inherent to the dynamics.
One way to spell this out further would be to be a substantivalist about
statespace. Again, I happen to be open to the idea. But we need not go that
way. The important thing is that phase space is not just a mathematical
convenience. Some part of reality is more or less directly represented by
it.

There are two big inferences that I am arguing we should make
here. The same considerations leading us to posit a particular spacetime
structure should lead us also to posit a particular statespace structure; and
we should be realists about that structure. You may want to deny either
one, or both. I reply that the combination of these inferences yields the
simplest, most natural interpretation of our best fundamental physics.
You may demur: Surely eschewing additional possibilities and abstract
structures is what really yields the better overall theory! On this, we
simply disagree.

The elusive “structure” of physics is, then, something about the min-
imal, coordinate-independent stuff needed to formulate an empirically
adequate, simple and natural, fundamental physical theory. Structure
is about how the basic building blocks—which, if our current theories
of physics are on the right track, are abstract, coordinate-independent,
geometric objects—�t together to form the world, in such a way that all
the parts and their organizational features are put to essential use; in such
a way that there is no super�uous structure.

In a classical mechanical world, that structure is symplectic structure.

A. Look, Ma: No coordinates!

A.1. Hamiltonian mechanics

With Abraham and Marsden (Foundations of Mechanics 3.3), and others,
de�ne a Hamiltonian system as follows.45 Take a smooth manifold M (the
con�guration space Q, above) together with a smooth, real-valued func-
tion H (the Hamiltonian) on the cotangent bundle of M, T∗M. There is a

45I thank David Malament for discussion.
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natural (canonical) symplectic form, ω, on T∗M. H and ω together deter-
mine a vector �eld, XH (the Hamiltonian vector �eld), on T∗M. (Nonde-
generacy of ω, for �nite-dimensional M, guarantees that XH exists.) This
vector �eld has an associated class of integral curves. Projecting these
curves onto M gives the allowed dynamical trajectories. The Hamiltonian
equations can be written as ιXH = −dH, or ω(XH , ⋅) = −dH, solutions to
which are integral curves of XH. (XH thus de�nes a �ow on the symplectic
manifold, and by Liouville’s theorem, Hamiltonian �ows preserve the
volume form: Hamiltonian �ows are canonical transformations.) We
say that (M ,ω, XH) is a Hamiltonian system. See Abraham and Marsden
Foundations of Mechanics for proofs that this is equivalent to the form of
the equations given in note 19, with canonical coordinates p and q.

A.2. Lagrangian mechanics

De�ne a Lagrangian system analogously (see also note 23). A Lagrangian
system comprises a smooth manifold M and a smooth, real-valued func-
tion L (the Lagrangian) on the tangent bundle of M, TM, where L is
regular. Regularity (as de�ned in Abraham and Marsden, Foundations of
Mechanics 3.5) captures the requirement that at each point in the tangent
bundle to M, the second partial derivative of L with respect to the �ber
(the velocity) is invertible. A curve on M is an allowed dynamical trajec-
tory if, when we lift the curve to the tangent bundle and integrate L along
the lifted curve, the result is extremal (relative to nearby curves in M).
The Lagrangian equations of motion can then be written in coordinate-
free terms (as L∆θL − dL = 0; see José and Saletan, Classical Dynamics: A
Contemporary Approach 3.4), though we do not need the extra details of
that here. See the relevant references mentioned below.

B. Cross-structural comparisons

The invariant quantity of the Lagrangian equations is the square of the
Riemannian line element. This is a quadratic differential form with
components of a metric tensor. The kinetic energy term, a quadratic
differential form of the generalized velocities, is what gives the de�nite
Riemannian element of this space.

32



The invariant quantity of the Hamiltonian equations is the symplectic
form (with canonical form ω = dp ∧ dq), where the generalized q’s and
p’s are allowed to vary independently. Since H is a function of these two
sets of coordinates treated as independent variables, we do not get the
invariant quadratic differential form of the Lagrangian transformations.
Here, the kinetic energy is a simple linear function of the generalized
momenta and positions, considered as independent coordinates.

Add to this Darboux’s theorem demonstrating that any two symplectic
manifolds are locally isomorphic (note 26), and it seems this should mean
that not every Hamiltonian phase space is isomorphic to a Lagrangian
statespace, and further, that the kind of structure had by the former is the
more general, “looser” structure. Since all symplectic manifolds of the
same dimension and signature are locally the same, symplectic forms are
more �exible than Riemannian metrics, which can be made constant in a
local chart iff they are �at.

The immediate worry is that there is a natural isomorphism between
vectors and one-forms, and more generally between tangent bundles
and cotangent bundles. If the Lagrangian and Hamiltonian statespaces
are both vector �ber bundles—the tangent bundle TM and the cotan-
gent bundle T∗M, respectively, for base manifold M—then we can �nd
a natural dual basis, in which case (since they have the same dimension)
they will be isomorphic as vector spaces.46 Indeed47 (here including
abstract indices and using the usual summation convention), for a �nite-
dimensional48 symplectic manifold (M ,ωαβ), nondegeneracy guarantees
that ωαβ has a unique inverse ωαβ (with ωαβωαγ = δβ

γ ), or that the map-
ping ω ∶ TM → T∗M from tangent vectors to cotangent vectors (with
ωαβvβ = vα) is an isomorphism. For a �nite-dimensional symplectic vector
space (M ,ω), nondegeneracy of ω will imply that ω ∶ TM → T∗M is an
isomorphism. But then how can the two spaces be said to have different
amounts of structure?

46Isham, Modern Differential Geometry for Physicists, p. 122.
47See II.0 of Ashtekar, ed. New Perspectives on Canonical Gravity.
48That is, for ω strongly nondegenerate. For weakly nondegenerate ω, the induced

map between vector �elds and one-forms is one-to-one, but in general is not surjective.
For the �nite-dimensional statespaces here, these will be equivalent, since a linear map
between �nite-dimensional spaces of the same dimension is one-to-one iff it is onto.
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Another worry is the more general version of Lagrangian mechanics
(see Appendix A.2), which does not explicitly mention a Riemannian
structure on the base manifold. Often, the Lagrangian function has a
form requiring a metric—when L(x , v) = 1

2 < v , v > −V(x), where V is a
smooth real-valued function on M (the potential)—but it need not have
this form. Given this and the above-mentioned isomorphism, how could
the two statespaces have differing structures?

I do not have a proof, though I do think it plausible that, even in the
most general case, the two formulations will differ in the relevant states-
pace structure. Two main reasons. First, notice that the isomorphism
between TM and T∗M only holds (similarly, the Legendre transform can
only be de�ned) when they are both vector spaces.49 Therefore, if the
Hamiltonian phase space is not at least a vector bundle—where the gener-
alized momenta live in vector space �bers above the generalized-position
points of the base manifold—we will not �nd an equivalent Lagrangian
formulation via the usual procedure.50

49Marsden and Ratiu, Introduction to Mechanics and Symmetry, 2.2; da Silva, Lectures on
Symplectic Geometry, chapter 20.

50As in Abraham and Marsden, Foundations of Mechanics 3.5-3.6; see also Belot, “The
Representation of Time and Change in Classical Mechanics.” Here is the gist of that
procedure. Take a function L on TQ and solutions to a second-order equation, here the
Lagrangian equation. From L we can derive an energy function E on TQ which, when
translated to T∗Q by means of the �ber derivative FL ∶ TQ → T∗Q, yields a suitable
Hamiltonian H on T∗Q. (The �ber derivative is the derivative of L in each �ber of
TQ, mapping the �ber TqQ at q ∈ Q to the �ber T∗q Q. This is what is often called the
Legendre transformation.) The solution curves in T∗Q and TQ will then coincide when
projected to Q. An analogous procedure gets from the Hamiltonian to the Lagrangian
formulation. In general, if we start with vector bundles over a common base space, then
the �ber derivative of a function from L to H, say, will be smooth and �ber-preserving.
Note that FL is not necessarily a vector bundle mapping, but it will be a �ber-preserving
smooth mapping: a �ber-preserving isomorphism. This transformation requires that
the Lagrangian and Hamiltonian functions be hyperregular. (Abraham and Marsden,
Foundations of Mechanics, pp. 218-223; Marsden and Ratiu, Introduction to Mechanics and
Symmetry, 7.4. A Lagrangian is hyperregular iff FL ∶ TQ → T∗Q is a diffeomorphism; a
Hamiltonian is hyperregular iff FL ∶ T∗Q → TQ is a diffeomorphism. In other words,
the �ber derivative will be locally invertible iff L (or H) is regular. Hyperregularity
is thus needed for the global result.) Hyperregularity is needed for the relevant map
from Lagrangians to Hamiltonians to be a bijection. Hyperregularity amounts to the
requirement that the underlying statespaces be isomorphic in this way; and without
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And, in general, a Hamiltonian phase space need not have the structure
of a vector bundle. Though phase space is often the cotangent bundle of
a con�guration space,51 it need not be possible, in a given Hamiltonian
phase space, to separate the position and momentum coordinates in this
way: they can be freely mixed by symplectic transformations.52 Darboux’s
theorem, after all, says that every symplectic manifold is locally like a
symplectic vector space, in suitable local coordinates. That is, locally, any
symplectic phase space will look like a vector bundle. Globally, though, it
can have a different structure, for the phase space might not be naturally
separable in this way.

This is unlike the Lagrangian statespace, which must be a vector
bundle. We build this space up by starting with the con�guration space Q
as the base manifold, and attaching the tangent spaces, on which we de�ne
the q̇’s, at each point. This, after all, is how the generalized velocities are
de�ned. The resultant structure does yield a natural symplectic form,
which may lead you to ask: why not prefer the Lagrangian formulation,

it, we cannot use this procedure to generate a Hamiltonian from a Lagrangian or vice
versa.

51And it can be shown that cotangent bundles are equipped with a canonical symplectic
structure: Abraham and Marsden, Fundations of Mechanics 3.2.

52Any 2n-dimensional vector space Γ can be regarded as a cotangent bundle by
assigning two complementary n-dimensional subspaces, Q and P, with Q⋂ P = {0},
Q⊕ P = Γ. See chapter II.0 in Ashtekar, ed. New Perspectives on Canonical Gravity. When
Γ is also a symplectic vector space, the symplectic form ω picks out a preferred class
of pairs of complementary subspaces, namely the ones with ωαβvα

1 v
β
2 = ωαβwα

1 w
β
2 = 0,

for all vα
1 , v

β
2 ∈ Q and wα

1 ,w
β
2 ∈ P. Then we can choose convenient bases {vα

µ} and
{wα

µ} in Q and P, respectively, such that ωαβvα
µw

β
ν = δµν . With any such choice of basis,

the symplectic form will have the standard (canonical) form, and we have effectively
identi�ed con�guration and momentum variables in Γ: we can write vα

µ = (∂/∂qµ)α

and wα
µ = (∂/∂pµ)α . This, however, is a special case. Here, the state of a system can

be speci�ed by means of its con�guration variables q i and momentum variables p i ,
where there is this natural distinction between the two: the q i ’s are coordinates on a
con�guration space Q, and for each q i , the p i ’s belong to the linear space of cotangent
vectors at q i (in a coordinate system). Here the phase space has a cotangent bundle
structure, T∗Q. In a general Hamiltonian phase space, however, this natural splitting of
Γ is not available: the phase space need not always be a cotangent bundle. An example of
the more general case (from Ashtekar ed. New Perspectives, p. 22) is given by the choice
of Γ = S2, ωαβ = єαβ , a volume 2-form.
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where we seem to get the symplectic structure for free? Answer: the most
general structure for a classical system’s phase space is a kind of structure
that need not be easily or naturally splitable into a con�guration space
plus associated tangent spaces in this way.53 The Lagrangian statespace
structure is therefore a more restrictive, less general structure.

So there is a natural isomorphism between the two statespace struc-
tures. But of course there is, if and when they are both vector �ber
bundles. In that case, there will be an isomorphism that preserves the
vector bundle structure: a vector bundle isomorphism. But this is not
suf�cient to show that the two spaces possess the same amount of struc-
ture. As a general rule, not just any isomorphism will be the relevant
structure-preserving map. (A “cardinality-isomorphism” would often
leave out much to be desired.) And this is one of the cases following that
rule.

Once again, symplectic structure comes out as more fundamental,
permitting just those sets of coordinates that allow for the equations of
motion of classical particles to hold, regardless of whether those coor-
dinates are perspicuously related to ordinary position and momentum
coordinates. Symplectic structure is a simpler, more natural, more gen-
eral underlying structure—but a structure that suf�ces for the theory all
the same.54

Second, look at the underlying groups.55 Start with the linear case
of a 2n-dimensional vector space, call it V . If V is equipped with a

53The induced symplectic form of the Lagrangian formulation requires a vector
bundle structure. Peter Forrest suggested to me this characterization of what is going
on. Despite the natural isomorphism between the two statespaces, there remains
the following order of explanation: the symplectic form on the phase space is more
natural, since the induced symplectic form on the Lagrangian con�guration space is
only de�nable by way of the Hamiltonian.

54Another consideration mentioned to me by Frank Arntzenius, which warrants
further investigation. The Lagrangian formulation seems to presuppose a metric on
time. (Recall its formulation via least action principles, where we integrate the action
term with respect to the time along a path.) The Hamiltonian, it seems, does not.
(Consider the Poisson bracket formulation, independent of the time coordinate and
equivalent to the canonical equations: Abraham and Marsden, Foundations of Mechanics
p. 198.)

55See Abraham and Marsden, chapter 9. For discussion, I thank Gordon Belot (who
disagrees with my conclusions).
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positive-de�nite symmetric bilinear form (the linear analog of a Rieman-
nian metric), then the group of linear transformations preserving this
structure is O(V), a group with dimension 2n2−n. If V is equipped with a
symplectic form, on the other hand, then the group of linear transforma-
tions preserving the structure is Sp(V), a group with dimension 2n2 + n.
The former is a stronger structure, in that it admits a smaller group of
symmetries. The difference magni�es for manifolds. The largest sym-
metry group of a Riemmanian metric on a 2n-dimensional manifold is
2n2−n, whereas every symplectic manifold admits an in�nite-dimensional
group of symmetries.

To put it another way, the Lagrangian equations of motion are in-
variant under a set of point transformations; the Hamiltonian, under
the canonical transformations. Whereas all point transformations are
canonical transformations—point transformations form a subgroup of
the set of all canonical transformations56—point transformations are
orthogonal transformations, and thus only a special type of canonical
transformation. Canonical transformations are more general, precisely
because the generalized momenta are treated as truly independent of
the generalized positions. As Herbert Goldstein, author of the classic
textbook on mechanics, puts it:57

The advantages of the Hamiltonian formulation lie not in
its use as a calculational tool, but rather in the deeper in-
sight it affords into the formal structure of mechanics. The
equal status accorded to coordinates and momenta as inde-
pendent variables encourages a greater freedom in selecting
the physical quantities to be designated as “coordinates” and
“momenta.” As a result we are led to newer, more abstract
ways of presenting the physical content of mechanics.

56Abraham and Marsden, p. 181.
57Goldstein et. al., Classical Mechanics, p. 369.
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