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Interpretive Implications of the Sample Space 

 

 

Abstract 

In this paper I claim that Kolmogorov's probability theory has other basic notions in addition to 

'probability' and 'event'. These notions are described by the sample space component of his 

probability space structure. This claim has several interesting consequences, two of which I 

discuss in this paper. The major consequence is that the main interpretations of probability 

theory are in fact not interpretations of Kolmogorov's theory, simply because an interpretation of 

a mathematical theory in a strict sense must explicate all of the theory's basic notions, while the 

main interpretations of probability do not explicate all of Kolmogorov's theory’s basic notions. 

In particular, the main interpretations only explicate 'probability' and 'event' and do not explicitly 

address the additional basic notions which I claim Kolmogorov's theory includes. The other 

important consequence of my claim concerns the relation between 'probability' and 'event'. Very 

roughly, contrary to the common conception of 'events' as independent of 'probabilities', I claim 

that in some cases 'probabilities' can determine 'events'!  
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1. The main claims 

Kolmogorov's probability theory is almost universally accepted as the mathematical probability 

theory. It is commonly considered to be highly important due to its significant roles in 

mathematics and in the sciences. For example, according to Gyenis and Rédei, Kolmogorov's 

theory "[...] has been widely accepted as the mathematical theory of probability: all the major 

mathematical results on probability theory are obtained in this framework, and the successful 

probabilistic models in the sciences also are created in terms of measure theoretic probability 

theory [...]" (Gyenis & Rédei, 2014, p. 4). The overwhelming acceptance of Kolmogorov's 

theory is interesting since there are known objections to some of its parts1 and also since there 

are several alternative mathematical probability theories2. However, as Gillies points out, "There 

is an enormous body of theorems based on the Kolmogorov axioms. The mathematical 

community is unlikely to give up this formidable structure and substitute another for it unless 

there are very considerable gains in so doing." (Gillies, 2000, p. 136). Hence, despite the 

objections and alternative theories, Kolmogorov's theory retains its status of orthodoxy.  

The term "interpretations of probability" commonly refers to the different theories which provide 

different definitions for the notions: 'probability' and 'event'3. This term gives the impression that 

these theories are different interpretations of the same formal system, in this case Kolmogorov's 

probability theory. However, according to some scholars (specifically Lyon (2016)) this is a false 

impression. Roughly, the argument is that since the main interpretations do not satisfy 

Kolmogorov's axioms, they are not interpretations of his theory: "Even though Kolmogorov’s 

axioms are the orthodox probability axioms, they appear to be incompatible with the most 

common so–called “interpretations” of probability. Finite actual frequencies, infinite 

hypothetical frequencies, propensities, degrees of entailment, and even rational partial belief all 

appear to fail to satisfy Kolmogorov’s axiomatisation of probability." (Lyon, 2016, p 155). 

Lyon's claim is based on the idea that an interpretation of a mathematical theory is a way of 

                                                 
1 See Lyon (2010) for a good survey of the main objections. Also see Hájek (2003) for a specific objection to 

Kolmogorov's definition of conditional probability, but see Z. Gyenis, Hofer-Szabó, & Rédei (2016) for a defense of 

Kolmogorov's definition.  
2 (Goosens, 1979; Popper, 1938, 1955, 1959, Chapter 8; Rényi, 1955). 
3 For good surveys of the various interpretations of probability theory see Gillies (2000); Hájek (2012). For a more 

historical perspective see Von Plato (1994). 
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ascribing meanings to its basic notions and axioms. Hence, since the various interpretations fail 

to satisfy Kolmogorov's axioms, strictly speaking they are not interpretations of his theory4. 

Kolmogorov's theory is commonly said to be based on the two basic notions: 'event' and 

'probability'. Kolmogorov himself explains that "The postulational basis of the theory of 

probability can be established by different methods in respect to the selection of axioms as well 

as in the selection of basic concepts and relations. However, if our aim is to achieve the utmost 

simplicity both in the system of axioms and in the further development of the theory, then the 

postulational concepts of a random event and its probability seem the most suitable." 

(Kolmogorov, 1933, pp. 1–2; my emphasis). 

The fact that Kolmogorov's theory has reached a status of orthodoxy is a good reason for 

analyzing it, including its basic notions. In this paper I argue for the claim that Kolmogorov's 

probability theory has in fact other basic notions in addition to 'probability' and 'event'. The 

major one, which I call 'possibilities', is defined by the members of the sample space component 

of Kolmogorov's probability space. I explain this notion in section 4. Briefly, the idea that 

Kolmogorov's theory has basic notions in addition to 'probability' and 'event' relies on the 

distinction between the sample space and the σ-algebra components of Kolmogorov's probability 

space. I argue that this distinction plays a central role in the explications of the basic notions of 

this theory, whereas in the standard literature this distinction is largely overlooked and is not 

considered central.  

I discuss two consequences of my claim that Kolmogorov's theory has basic notions in addition 

to 'probability' and 'event'. The first, major consequence is that the main interpretations of 

probability are not interpretations of Kolmogorov's theory. Roughly, the reason is that an 

interpretation of a mathematical theory in a strict sense should explicate all of the theory's basic 

notions. However, the main interpretations of probability explicate only the notions of 

'probability' and 'event', but not the additional notions I claim Kolmogorov's theory has. As a 

                                                 
4 Lyon's argument for the claim that the main interpretations of probability are not interpretations of Kolmogorov's 

theory appears in the Stanford Encyclopedia of Philosophy's entry about interpretations of probability: "Normally, 

we speak of interpreting a formal system, that is, attaching familiar meanings to the primitive terms in its axioms and 

theorems, [... Kolmogorov's axiomatization] has achieved the status of orthodoxy, and it is typically what 

philosophers have in mind when they think of ‘probability theory’. Nevertheless, several of the leading 

‘interpretations of probability’ fail to satisfy all of Kolmogorov's axioms [...]" (Hájek, 2012). Interestingly, despite 

this argument, the main interpretations are still commonly considered interpretations of Kolmogorov's theory.  
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result, they are not interpretations of Kolmogorov's theory in a strict sense. Furthermore, I argue 

that the task of explicating the additional notion of 'possibilities' affects our understanding of the 

notions 'probability' and 'event'. This suggests that amending the current interpretations of 

probability to become interpretations of Kolmogorov's theory requires more than just explicating 

'possibilities'. In other words, an explication of 'possibilities' may also call for a change in the 

definitions of the other two notions. This conclusion is important because the task of defining 

probability is at the heart of the philosophy of probability. 

The second consequence of my claim that Kolmogorov's theory has basic notions in addition to 

'probability' and 'event' is that under certain conditions probabilities can determine events. In 

other words, I claim that, according to Kolmogorov's formalism, there are cases where the fact 

that some events have particular probability values determines whether some collections of 

possibilities are events or not. Briefly, the idea is that according to the definition of a probability 

space there can be non-probability-measurable sets of members of the sample space component5. 

By definition, these sets are not events. Moreover, the fact that they are non-probability-

measurable means that they cannot be events! This roughly implies that the probabilities of some 

sets of members of the sample space (which are events) determine whether some other sets of 

members of the sample space can be events or not. I further explain this consequence in sections 

5 and 6. 

This consequence is important since it goes against the common view of events as independent 

of probabilities. Commonly, the fact whether something is an event does not seem to depend on 

any probability value. Hence the second consequence of my claim, that some events' 

probabilities can determine whether something is an event or not, is significant for clarifying the 

relation between 'probability' and 'event' and thus the explication of these notions. 

Lyon's (2016) argument and my own are two different arguments for the same claim, namely, 

that the main interpretations of probability are not interpretations of Kolmogorov's theory. The 

major difference between them is that Lyon's argument focuses on the axioms of Kolmogorov's 

theory while mine involves the theory's basic notions. Furthermore, my argument rests on the 

claim that Kolmogorov's theory has basic notions in addition to 'probability' and 'event'. As 

                                                 
5 More precisely, given a probability space, a set of members of the sample space component is a non-probability-

measurable set iff it is non-measurable by the probability measure component of the given probability space. 
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mentioned above, this claim by itself has other important consequences, particularly for the 

definitions of 'probability' and 'event' and the relation between them.  

 

In the next section I briefly discuss Kolmogorov's theory and its relation to the various 

interpretations of probability. I present the interpretations in a general way which is somewhat 

different than the way they are commonly presented in the standard literature. This enables me to 

focus on the essential difference between them and Kolmogorov's theory, which is important for 

my argument. 

 

 

2. Kolmogorov's Probability Theory and Interpretations of Probability 

In the philosophy of probability there is a commonly made distinction between mathematical 

probability theories (such as Kolmogorov's) and interpretations of probability. According to 

Gillies, "The theory of probability has a mathematical aspect and a foundational or philosophical 

aspect. There is a remarkable contrast between the two. While an almost complete consensus and 

agreement exists about the mathematics, there is a wide divergence of opinions about the 

philosophy." (Gillies, 2000, p. 1). Lyon explains this distinction between the two types of 

probability theories (mathematical theories and interpretations) by claiming that they aim to 

answer different questions regarding the pre-theoretical notion of 'probability': "In philosophy of 

probability, there are two main questions that we are concerned with. The first question is: what 

is the correct mathematical theory of probability? Orthodoxy has it that this question was laid to 

rest by Andrei Kolmogorov in 1933 [...] this is far from true; there are many competing formal 

theories of probability, [...] These formal theories of probability tell us how probabilities behave, 

how to calculate probabilities from other probabilities, but they do not tell us what probabilities 

are. This leads us to the second central question in philosophy of probability: just what are 

probabilities? [...] philosophers have tried to answer this question. Such answers are typically 

called interpretations of probability, or philosophical theories of probability." (Lyon, 2010, p. 

93). 
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Roughly, according to Lyon, mathematical probability theories such as Kolmogorov's are 

concerned with the behavior of probabilities while interpretations of probability are concerned 

with all other aspects of this notion. This explanation seems to me to rely on the implicit idea 

that the definitions of 'probability' (and of 'event') given by the two kinds of probability theories 

(mathematical theories and interpretations) are only partial definitions. This means that 

Kolmogorov's theory does not provide complete definitions of the pre-theoretical notions of 

'probability' and 'event' but only the mathematical parts of some plausible complete definitions. 

Similarly, each of the different interpretations provides different non-mathematical parts of 

different complete definitions of 'probability' and 'event'. Complete definitions of these notions 

can be obtained only by a combination of Kolmogorov's theory (or any other mathematical 

probability theory) and an interpretation of it.  

However, it is important to realize that the two parts of any complete definition of 'probability' 

and 'event' are connected and affect each other. The mathematical parts have implications for the 

non-mathematical (the interpretive) parts6 and vice versa. This means that Kolmogorov's theory 

explicitly describes the mathematical parts of complete definitions of 'probability' and 'event' and 

also implicitly describes some aspects of the interpretive parts. The interpretive aspects which are 

implicitly described by Kolmogorov's theory are common to all interpretations of this theory, 

simply because these aspects stem from the restrictions imposed by the mathematical parts. For 

example, according to the definition of Kolmogorov's probability space, mathematically events 

are sets and every probability space includes the empty set as an event (commonly known as the 

"empty event"). This means that anything that is correctly described by a Kolmogorov's 

probability space has to include something correctly described by an empty event. This 

restriction on the type of things describable by Kolmogorov's theory is in fact an interpretive 

implication of his probability space. It means that any interpretation of Kolmogorov's theory 

must explain the meaning of the fact that there is always an empty event. For example, a 

subjective interpretation of Kolmogorov's theory, according to which events are propositions, 

must explain what an empty proposition is. Similarly, an objective interpretation of the theory, 

according to which events are possible states of the world, must explain what an empty state of 

                                                 
6 At least in the sense that they impose restrictions on them. 
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the world is, etc. I hope that this way of portraying the relation between Kolmogorov's theory 

and the interpretations of probability will become clearer as the current paper progresses. 

 

My argument does not focus on the distinctions between the different interpretations (or types of 

interpretations) of Kolmogorov's theory. On the contrary, my aim is to emphasize features 

common to all of them. I claim that some of these features are implicitly described by 

Kolmogorov's theory. According to Gyenis and Rédei, "Interpretations of probability are typical 

classes of applications of probability theory, classes consisting of applications that possess some 

common features, which the interpretation isolates and analyses." (Gyenis & Rédei, 2014, p. 19). 

Hence, it can be said that the main common feature of all interpretations of Kolmogorov's theory 

is that each of them tries to characterize in non-mathematical terms things which are correctly 

described by this theory.  

For convenience I shell use the term "probabilistic states" to denote the things Kolmogorov's 

theory aims to describe. Hence, an interpretation of Kolmogorov's theory provides a general non-

mathematical description of a collection of probabilistic states. The main characteristic of a 

probabilistic state is that it involves at least two different possibilities7 (or alternatives, or 

options). For example, a probabilistic state of an ideal coin toss involves the possibility of the 

coin landing on 'heads' and the possibility of it landing on 'tails'. Similarly, a probabilistic state of 

an agent picking an integer between from 0 to 10 (inclusive) includes each of the eleven options 

of picking one of these integers and perhaps also the option of not picking any of them. 

Commonly, a state which includes only one possibility is not what we normally consider a 

probabilistic one8. The possibilities which characterize a probabilistic state are mutually 

exclusive and exhaustive, which means that there are no other alternatives which are relevant to 

it. Moreover, it is assumed that necessarily one of these possibilities manifests (or occurs, or 

happens). For example, an ideal coin toss does not include the possibility of the coin landing on 

its side (and hence landing not on 'heads' or 'tails') - this option is simply not part of the ideal 

                                                 
7 Here "possibilities" denotes a pre-theoretical notion. In this paper, I claim that this notion is mathematically 

described by the members of the sample space component of Kolmogorov's probability space. 
8 Interestingly, Kolmogorov's probability space can in fact describe probabilistic states which include only one 

possibility. However, such a state by definition has exactly one event with probability 1 and hence does not seem to 

mathematically describe anything that is normally considered probabilistic. 
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state. Notice that this characterization of the possibilities of a probabilistic state is not a full 

description of them. It is only a rough sketch. Complete definitions of them include a 

mathematical part given by Kolmogorov's theory and an interpretive part which must be given 

by any interpretation of the theory.  

It is also important to explain that possibilities are not events. Roughly, an event is a set of 

possibilities with a certain probability. Mathematically, events are described by the members of 

the σ-algebra component of Kolmogorov's probability space, while, according to my claim, 

possibilities are described by the members of the sample space component. I explain the 

difference between possibilities and events further in the following sections. In the meantime, 

this description of a probabilistic state seems to me to capture features which are common to all 

interpretations of Kolmogorov's probability theory9.  

 

This paper accords special attention to some of the interpretive aspects that stem from 

Kolmogorov's theory10 because such aspects are common to all interpretations of the theory. This 

enables me to discuss issues concerning interpretive aspects of 'probability' and 'event' without 

committing myself to a specific interpretation. This also means that the conclusions of this 

discussion are relevant to all interpretations claimed to be interpretations of Kolmogorov's 

theory. Somewhat ironically, my main conclusion is that the main interpretations of probability 

are not interpretations of Kolmogorov's theory in a strict sense. Furthermore, I raise the concern 

that it might be impossible to amend any of the existing interpretations to become interpretations 

of Kolmogorov's theory without having to change the definitions of 'probability' and 'event'. 

 

                                                 
9 For example, in the classical interpretation of probability the idea of ’possibilities’ seems to an integral part: "The 

theory of chance consists in reducing all the events of the same kind to a certain number of cases equally possible 

[…]" (Laplace, 1902, p. 6). These "cases" seem to be the notion corresponding to possibilities within the classical 

interpretation framework. 
10 More precisely, in this paper I discuss some of the interpretive aspects that stem from Kolmogorov's probability 

space. Hence, I do not assume that all of Kolmogorov's theory is correct, but only that the probability space's 

structure is a correct mathematical formalization of 'event' and 'probability'. This means that my argument is immune 

to some of the known criticisms of Kolmogorov's theory which do not concern his definitions of ‘event’ and 

‘probability’. 
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In the next section I present a definition of Kolmogorov's probability space. I highlight the parts 

that are relevant to my claim that 'possibilities' are a basic notion of Kolmogorov's theory, in 

addition to 'probability' and 'event'. 

 

 

3. Kolmogorov's definition of a probability space 

My claim that Kolmogorov's theory has basic notions in addition to 'probability' and 'event' is 

based on the way these notions are defined in the theory. Roughly, 'probabilities' are 

mathematically defined by the probability measure component of Kolmogorov's probability 

space structure, while 'events' are defined by the σ-algebra component. I claim that the additional 

basic notions are defined by the sample space component of the probability space structure. In 

this section I present a definition of a probability space11 and highlight some points that are 

important for my claim. 

A probability space is defined as a triple <Ω,Σ,P> consisting of the following three components: 

a sample space (Ω), a σ-algebra (Σ) and a probability measure (P). 

The probability space's components are defined as follows: 

1. A sample space (Ω) - a nonempty set.  

The members of the sample space are sometimes called "elementary events"12. Nevertheless, 

these members are not a mathematical formalization of 'events'. 'Events' are mathematically 

defined by the σ-algebra component13 (which is defined just below). However, the sample space 

and its members are indeed elementary in the sense that events (and probabilities) depend on 

them. Roughly, as I show shortly, all events14 are composed of members of the sample space, 

which means that any change in the sample space causes change in the events. And since 

                                                 
11 The following definition is one of several standard ways of defining Kolmogorov's probability space. See 

Billingsley (1995, p. 23) for a similar but more rigorous definition.  
12 For example, Kolmogorov calls the members of the sample space "elementary events" and the members of the σ-

algebra "random events" (See Kolmogorov (1933, p. 2)). 
13 More precisely, since the σ-algebra is defined over the given sample space, Kolmogorov's mathematical definition 

of 'events' requires both components. 
14 Except perhaps for the empty event. 
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probabilities are the values of a function from events to the unit interval, any change in the 

events causes a change in the probabilities as well. Hence probabilities depend on events, which 

in turn depend on the members of the sample space. 

My main claim in this paper is that the members of the sample space describe a new basic notion 

of probability theory which I call "possibilities". In the next section I elaborate on this notion. 

Roughly, I show that since there can be sets of members of the sample space which are not 

events, the members of the sample space mathematically describe a notion which is not just 

"parts of events" but rather a new basic notion of Kolmogorov's theory.  

In the previous section I described the pre-theoretic notion of 'possibilities'. I characterized 

possibilities as being mutually exclusive and exhaustive, which fits well with the fact that they 

are mathematically defined by the members of the sample space, because these members are 

elements of a set and as such they are mutually exclusive and exhaustive by definition.  

 

2. A σ-algebra (Σ) (defined over the sample space) - a subset of the power set15 of the sample 

space (i.e. a set of subsets of Ω) which satisfies the following three conditions: 

2.1. Σ is not empty (or, equivalently, Ω is in Σ) 

2.2. Σ is closed under complementation (i.e. if A is in Σ, then so is Ω\A). 

2.3. Σ is closed under countable unions (i.e. if ��, ��, ��… are in Σ, then so is � = �� ∪ �� ∪

�� ∪ …) 

The members of Σ are the mathematical formalization of the notion of 'events'. In other words, 

according to Kolmogorov's definition, the mathematical part of a complete definition of events 

describes them as the members of the σ-algebra of a given probability space. This means that 

whatever events may be according to the interpretive part of their definition, mathematically they 

are sets that stand in certain relations to one another and together form a σ-algebra. Moreover, 

since this σ-algebra is part of a given probability space, it is defined over a specific sample space, 

                                                 
15 The power set of a set (S) is the set containing all the subsets of S. 
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which means that mathematically events are sets of members of a sample space16. The members 

of the σ-algebra are commonly referred to as "events". 

Two facts are important for my argument later on. The first is that the σ-algebra is defined as a 

subset of the power set of the sample space. Hence it is not necessarily the power set of the 

sample space. In fact, it can be a proper subset of the power set of the sample space. For 

example, the σ-algebra Σ� = 
∅,Ω�, 1�, 2,3�� defined over the sample space Ω� = 1,2,3� is 

not the power set of Ω�. (The power set of Ω� is Σ� = ∅, Ω�, 1�, 2�, 3�, 1,2�, 1,3�, 2,3��). 

The second is that a σ-algebra always contains the sample space event and the empty event (i.e. 

∅, Ω ∈ Σ). Thus, these two events may be called "the mandatory events". 

 

3. A probability measure (P) - a real-valued function defined over Σ which satisfies the 

following conditions: 

3.1. P is non-negative 

3.2. P�∅� = 0 

3.3. P is countably additive (which means that for all countable collections ��� of pairwise 

disjoint sets, P�⋃ ��� � = 	∑ P����� ) 

3.4. The codomain of P is the unit interval [0,1] and P�Ω� = 1 

The value assigned to a member of the σ-algebra (A) by the probability-measure function (i.e. 

P(A)) is called "the probability of A". This means that mathematically the pre-theoretic notion of 

'probabilities' is defined as the values of a function from a σ-algebra to the unit interval which 

satisfies certain conditions (described by the definition of a probability measure17). In other 

words, according to Kolmogorov's definition, the mathematical part of a complete definition of 

probabilities describes them as the values of the probability-measure function of a given 

probability space. (The interpretive parts of different complete definitions of probabilities are 

provided by the different interpretations).  

                                                 
16 The given σ-algebra is also connected to a specific probability measure, which means that mathematically events 

are sets of members of a sample space that have specific probability values.  
17 Notice that conditions 3.1-3.3 of the probability measure's definition are just the formal definition of the 

mathematical notion of measure. Condition 3.4 is what makes the probability measure a special kind of measure. 

Any measure that satisfies condition 3.4 is a probability measure. 
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Notice that the probability measure is a function whose domain is the σ-algebra. In other words, 

it assigns a value to each of the members of the σ-algebra, which means that each event has a 

probability. Hence it can be said that an interpretive implication of this fact is that an event is a 

thing which necessarily has a probability. This implication is important for my argument that the 

members of the sample space mathematically describe a basic notion of Kolmogorov's theory 

which is not 'events'. Very briefly, since the members of the sample space do not have 

probabilities, they are not events. 

In the literature of the philosophy of probability it is quite common to find other mathematical 

definitions of the notions 'event' and 'probability' which seem to be different from Kolmogorov's 

definition given above. More specifically, events are commonly mathematically defined using an 

algebra without the explicit mention of a sample space. However, an algebra is a type of an 

algebraic structure18 and as such it is defined as a set with operations defined on it. This means 

that an algebra always has an underlying set which plays the same role as the sample space plays 

in Kolmogorov's definition. Thus, the common way of mathematically defining events and 

probabilities using only an algebra and a probability measure, without an explicit mention of a 

sample space, is actually just a partial description of the relevant Kolmogorovian probability 

space. Realizing this is very important. It means that the consequences I put forward in this paper 

are relevant even to those who do not explicitly mention Kolmogorov's sample space component 

in their mathematical definitions of the notions 'event' and 'probability'. 

 

A word about notation. In the rest of this paper I use "event" and "probability" (without inverted 

commas) to denote the two fundamental pre-theoretic notions which Kolmogorov's theory and 

the different interpretations aim to describe. Recall that a given mathematical probability theory 

(such as Kolmogorov's) provides the mathematical parts of complete definitions of these notions, 

while the non-mathematical (or interpretive) parts are provided by the different interpretations of 

the given mathematical theory. I use "k-event" and "k-probability" (without inverted commas) to 

denote the mathematical parts given by Kolmogorov's probability theory, meaning that a k-event 

is a member of the σ-algebra of a given probability space, and a k-probability is a value of the 

                                                 
18 "A set, together with one or more operations on the set, is called an algebraic structure. The set is called the 

underlying set of the structure." (Gilbert & Nicholson, 2004, p. 4). 
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probability measure of a given probability space. Similarly, I use "k-possibilities" to refer to the 

members of the sample space and "possibilities" to denote the new fundamental pre-theoretic 

notion which I claim is mathematically defined by the k-possibilities. 

In the literature of the philosophy of probability the pre-theoretic notions which I call "events" 

and "probabilities" are commonly referred to by different names in accordance with the writer’s 

assumed interpretation. For example, events are referred to as propositions or states of the world, 

and the like, and probabilities are referred to as credences, degrees of belief, chances, 

propensities and the like. These names denote different complete definitions of event and 

probability. They suggest that the different definitions share the same mathematical parts (given 

by Kolmogorov's theory) and differ only in their interpretive parts. The terms I use in this paper 

enables me to distinguish between the pre-theoretic notions that Kolmogorov's theory and the 

various interpretations aim to define, and the mathematical parts of their complete definitions 

given by Kolmogorov's theory. 

 

  

4. The basic notions described by the members of the sample space 

In this section I argue for my claim that Kolmogorov's theory mathematically describes basic 

notions in addition to probability and event. I argue that the sample space component of the 

probability space structure describes these new basic notions, and I claim that the k-possibilities 

(i.e., the members of the sample space) mathematically describe the possibilities (or the 

alternatives or options) which are the main characteristic of every probabilistic state.  

My claim that Kolmogorov's probability space mathematically describes basic notions in 

addition to probability and event is based mainly on the fact that there can be sets of members of 

the sample space which are not k-events. Such sets, by definition, do not have a k-probability 

value, which means that such sets mathematically describe things that do not have probabilities. 

And since events are things which necessarily have probabilities, the things described by sets of 

k-possibilities which are not k-events are not events. Moreover, the fact that there can be non-

probability-measurable sets of members of a sample space means that there are sets of k-
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possibilities which cannot be k-events (I will explain this claim shortly). This means not only 

that the things which are mathematically described by non-probability-measurable sets of k-

possibilities are not events, but also that they cannot be events!  

 

I now address one possible objection to the claim that Kolmogorov's probability space 

mathematically describes basic notions in addition to probability and event. Roughly, one can 

claim that the sample space does not mathematically describe a new basic notion but rather only 

an existing basic notion, namely the events. More specifically, one can claim that the sample 

space mathematically describes the elementary parts (or "building blocks") of the events. And 

since a notion of the form "a part of X" where X is a basic notion is not necessarily a basic notion 

itself, possibilities are not a new basic notion (at least not necessarily). Such a claim is based on 

the assumption that k-possibilities are nothing more than parts of k-events, which implies that 

possibilities are nothing more than the parts constituting the events.  

However, Kolmogorov's definition of a probability space provides a good reason for rejecting 

this objection. Recall that according to Kolmogorov's definition, the σ-algebra does not have to 

be the power set of the sample space but may well be a proper subset of this power set. And 

when the σ-algebra is a proper subset of the sample space, some sets of members of the sample 

space are not k-events. In short, according to Kolmogorov's definition, there can be sets of 

members of the sample space which are not k-events. This roughly means that there can be 

collections of possibilities which are not events. In other words, possibilities can constitute 

things which are not events (as well as events). Hence, the members of the sample space 

mathematically describe notions which are not merely "parts of events". For example, given the 

σ-algebra Σ� = 
∅,Ω�, 1�, 2,3�� defined over the sample space Ω� = 1,2,3�, the sets 

{2},{3},{1,2} and {1,3} are all sets of members of Ω� which are not k-events. If these sets 

mathematically describe anything then those things by definition are not events because they do 

not have probability values. 

The above conclusion relies on the facts that according to Kolmogorov's definition events are 

mathematically described by k-events, and that not all sets of members of the sample space are 

k-events. Naively, it seems that one can claim that this definition is wrong and that events should 
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be mathematically defined as any set of members of the sample space, regardless of whether this 

set is a k-event or not. Such a change to this definition would imply that the members of the 

sample space always describe parts of events and nothing else. In this case, assuming that a part 

of an event is not a basic notion would lead to the conclusion that the members of the sample 

space do not describe any new basic notion.  

However, the above claim is not really a valid option, at least unless Kolmogorov's formalism is 

changed even more - roughly because of the issue of non-measurable sets (which is discussed in 

the following sections). Very briefly, due to the non-measurability issue, there are cases where 

not every set of members of the sample space can mathematically describe an event19. In 

particular, there are cases where not every set of k-possibilities can be assigned a k-probability 

by the given probability measure. This is a known fact which Van Fraassen summarizes as 

follows: "It will now be quite clear, therefore, that the requirement to have probability defined 

everywhere, would be unacceptable. We must accept as genuine probability measures also those 

which cannot be extended to measures on all subsets of their domain." (Van Fraassen, 1989, p. 

329, my emphasis). Van Fraassen claims that there are cases when not every set of members of 

the sample space can have a k-probability. Due to this inability, such sets cannot be k-events. 

This fact stands in contrast to the common pre-theoretic assumption that any collection of 

possibilities is an event. Hence the fact that there can be cases where there are sets of k-

possibilities that cannot mathematically describe events means that the k-possibilities can 

describe notions which are not just "parts of events". In short, the members of the sample space 

mathematically describe notions which are not merely "parts of events". 

In conclusion, the members of the sample space mathematically describe a notion which I have 

called “possibilities”. The fact that according to the definition of k-events, there can be sets of k-

possibilities which are not k-events implies that possibilities are not just "parts of events". This 

definition cannot be "amended" easily due to the issue of non-measurability. Hence, it supports 

the claim that the members of the sample space mathematically describe additional basic notions 

to probability and event.  

 

                                                 
19 At least not an event that behaves as events "normally" behave. I elaborate on this point later on. 
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5. Sets of members of the sample space which are not k-events 

The fact that according to the definition of k-events, there can be sets of members of the sample 

space which are not k-events also seems to suggest that perhaps there are other new basic notions 

in addition to possibilities. In particular, it is not clear whether a set of k-possibilities which is not 

a k-event mathematically describes a basic notion of Kolmogorov's theory. As with k-

possibilities, this putative basic notion is also described by the sample space component. The 

main problem with deciding whether a set of k-possibilities which is not a k-event 

mathematically describes a basic notion of Kolmogorov's theory is that the main interpretation of 

probability do not explicitly address such sets. Hence it is not clear what is mathematically 

described by such sets.  

 

To try and clarify this issue, it is important to understand Kolmogorov's reason for his definition 

of a probability space which allows such sets. The fact that there can be sets of members of the 

sample space which are not k-events is a direct result of Kolmogorov's definition of a probability 

space, as a way of dealing with the issue of non-measurability. More accurately, it is a result of 

the explicit distinction between the sample space and the σ-algebra in Kolmogorov's definition. 

The mathematical reason for this distinction is that it is a way (perhaps the most common way) 

of dealing with the issue of non-measurability20. This issue is relevant to Kolmogorov's theory 

because the probability measure is a particular kind of measure21.  

Non-measurability belongs to the mathematical field of measure theory. In this theory it is well-

known that given certain pairs of a set and a measure function, the given set can have subsets 

which are non-measurable by the given measure22. Loosely speaking, in such cases the non-

measurable subsets do not "behave" as expected because their "sizes" (i.e. their measure values) 

change when they undergo certain transformation that are not supposed to change them. The fact 

                                                 
20 See Bogachev (2007, p. 31,58-59). 
21 See footnote n.17 above. 
22 See Billingsley (1995, p. 45) for one proof of the existence of non-measurable sets. 
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that non-measurable sets do not "behave" as expected is commonly considered a problem that 

needs to be dealt with.  

There are several ways to deal with non-measurable subsets of a given set. The most common is 

to have a collection of subsets of the given set which excludes all the non-measurable subsets 

and includes only measurable ones. Such collections are good in the sense that they only include 

sets which "behave" as expected. Another reason that such collections are good is that they are 

sufficient for many mathematical tasks. A σ-algebra is such a collection.  

The main alternative ways which do not try to exclude the non-measurable sets are 1) accepting 

that the measure of some subsets are not invariant to rotation; 2) accepting that some subsets do 

not satisfy the countable additivity condition in the definition of measure23; 3) making a more 

fundamental change in the assumptions of measure theory or set theory (such as accepting an 

alternative to the ZFC axioms24).  

The mathematical fact that there are non-measurable sets has the consequence that there are 

cases when a σ-algebra cannot be the power set of a given set. More precisely, given a set (S) and 

a measure (m), if S has subsets that are non-measurable by m, any σ-algebra defined over S 

cannot be the power set of S25. This is because the power set of a given set includes all its subsets 

by definition, including the non-measurable ones, but a σ-algebra is a set which includes only 

measurable subsets of the set it is defined over. Hence any σ-algebra defined over S has to be a 

proper subset of the power set of S which includes only measurable subsets of S. As a result, a σ-

algebra over any given set (A) is defined as a subset of the power set of A. Thus, a σ-algebra over 

A does not necessarily include all subsets of A. However, every subset of A that is included in a 

σ-algebra is a measurable set. 

 

The fact that a σ-algebra defined over a set (A) does not necessarily include every subset of A is 

the reason for the fact that in Kolmogorov's theory there can be sets of members of the sample 

space which are not k-events. Recall that k-events are Kolmogorov's mathematical definition of 

                                                 
23 In which case the measure will no longer be a measure according to the current definition. 
24 ZFC is the standard axiom system of set theory. See Bagaria (2016, sec. 2) for a list of the axioms of ZFC. 
25 As long as the measure (m) is not changed to a different measure (m2) such that all subsets of S are measurable by 

m2, in which case it would be possible to define a σ-algebra over S that would be the power set of S. 
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events. In this definition, Kolmogorov uses a σ-algebra as a way of preventing all non-

probability-measurable sets of members of a sample space from being k-events. More precisely, 

Kolmogorov assumed that the σ-algebra component is a Borel field (a specific kind of σ-algebra) 

and explained: "Only in the case of Borel fields of probability do we obtain full freedom of 

action, without danger of the occurrence of events having no probability." (Kolmogorov, 1933, 

p. 16). This definition guarantees that all k-events are subsets of the given sample space which 

are measurable by the given probability measure. In short, the usage of a σ-algebra in 

Kolmogorov's definition of a probability space guarantees that all k-events have k-probabilities, 

which means that this definition implies that all events have probabilities.  

 

However, Kolmogorov's definition of a probability space is too "loose" in the sense that it does 

not guarantee that all probability-measurable subsets of the sample space are k-events. More 

precisely, this definition does not guarantee that all subsets of a given sample space which are 

measurable by the given probability measure are k-events. In other words, there can be sets of k-

possibilities which are not k-events, which means that there can be collections of possibilities 

that are not events. From a mathematical perspective, there is nothing special about this 

particular feature of Kolmogorov's definition. However, it does have implications for the 

different interpretations of his theory as it means that any interpretation of this theory must 

address the issue of sets of k-possibilities which are not k-events. In other words, any such 

interpretation must explain what is a set of possibilities which is not an event. 

Kolmogorov's definition allows a σ-algebra to exclude any set of members of the sample space26 

regardless of whether or not it is measurable by the probability measure. This fact about the 

definition explains why the σ-algebra must be given explicitly and why it cannot be assumed that 

the σ-algebra is the power set of the sample space. 

 

To sum up, the usage of a σ-algebra in Kolmogorov's probability space's definition has two 

interesting results. One is that all k-events have k-probabilities. This seems to be a desirable 

                                                 
26 As long as it is not one of the two mandatory k-events, and as long as all k-events together satisfy the definition of 

a σ-algebra. 
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result simply because it means that all events have probabilities27. The other result is that there 

can be sets of members of the sample space which are not k-events. This means that not all 

collections of possibilities are events. These two results should be addressed by any 

interpretation of Kolmogorov's probability theory. Currently, the main interpretations do not 

explicitly address the latter result, that there can be sets of k-possibilities which are not k-events. 

Hence the main interpretations of probability do not explain what a collection of possibilities that 

is not an event might be. This leaves open the question of whether or not a set of k-possibilities 

which is not a k-event is a basic notion of Kolmogorov's theory. The fact that the main 

interpretations of probability do not explicitly address sets of k-possibilities which are not a k-

events supports the claim that they are not interpretations of Kolmogorov's probability theory in 

a strict sense. 

 

 

6. Non-measurable subsets of the sample space: Interpretive implications 

So far, I have argued that Kolmogorov's theory mathematically describes basic notions in 

addition to events and probabilities. I have claimed that these additional basic notions which I 

called possibilities are described by the members of the sample space. I have also suggested that 

there may be other basic notions described by sets of k-possibilities that are not k-events. I now 

focus on a specific kind of such sets, namely non-probability-measurable sets of k-possibilities. 

Not only that such sets are not k-events, but also that they cannot be k-events. I will argue that 

the major interpretive implication of these sets is that in some sense probabilities can determine 

events. Thus, any interpretation of Kolmogorov's theory must explain what the idea that 

probabilities can determine events means. An important consequence of this implication is that 

the main interpretations of probability cannot be interpretations of Kolmogorov's theory without 

providing such an explanation. This also suggests that perhaps fixing the mismatch between the 

main interpretations and Kolmogorov's theory will result with changing the complete definitions 

of events and probability, either the mathematical parts of these definitions or the interpretive 

parts or both. 

                                                 
27 Even if the probability of an event is zero it is still the case that the event has a probability value. 
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There seem to be two ways of dealing with non-probability-measurable sets of members of the 

sample space. The first way is to accept Kolmogorov's mathematical definition of events as k-

events and the second is to reject it. According to the first way, non-probability-measurable sets 

of members of the sample space do not mathematically describe events because they are not k-

events, which means that not every collection of possibilities is an event. The second way is to 

claim that non-probability-measurable sets of members of the sample space do mathematically 

describe events, even though they are not k-events, which means that every collection of 

possibilities is indeed an event, but also that not all events are "normal" events. (I explain what I 

mean by "normal" shortly. Loosely speaking, these events are abnormal in the sense that they do 

not have probabilities in the way events described by k-events have). 

According to the first way of dealing with non-probability-measurable sets of members of the 

sample space, these sets do not describe events. This accepts Kolmogorov's definition and does 

not call for a change in it. However, it does raise the following questions, which are relevant to 

any interpretation of Kolmogorov's theory: Does a non-probability-measurable set of members of 

the sample space mathematically describe any notion? If so, what does it describe? Is this notion 

a basic notion? Currently, none of the main interpretations address these questions or any other 

interpretive aspect of non-probability-measurable sets of members of the sample space.  

According to the second way of dealing with these sets they do describe events. However, the 

events they describe do not behave in the "normal" way in which events described by k-events 

behave. Specifically, they do not have a probability value in the way that events described by k-

events have. (For convenience, in the rest of this section, I refer to this putative new notion of 

events (which covers both normal and abnormal events) as N-events). A complete definition of 

N-events should have a mathematical part and an interpretive part. As mentioned, N-events are 

mathematically defined as any set of members of the sample space. The interpretive part of the 

definition of N-events should addresses the following points: What does it mean for an N-event 

to not behave normally? (For example, what does it mean that an event does not have a fixed 

probability value or that the probabilities of some events are not countably additive?) Why do 

some N-events behave normally while other do not? In particular, what does it mean that an N-

event cannot have a probability value like those described by k-events have?  
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In contrast to the first way, the second way of dealing with non-probability-measurable sets of 

members of the sample space calls for a change in Kolmogorov's theory. Treating all sets of 

members of the sample space, including non-probability-measurable ones, as mathematically 

describing events requires making one of the abovementioned changes28 to Kolmogorov's theory. 

In addition, the second way also raises issues concerning the definition of these N-events which 

need to be addressed by any interpretation of this modified Kolmogorov's theory. Currently none 

of the main interpretations address these issues, since they do not address non-probability-

measurable sets of members of the sample space at all. 

Both ways of dealing with non-probability-measurable sets of members of the sample space call 

for interpretations of probability to address such sets. In other words, any interpretation of 

Kolmogorov's theory should explain these sets. According to the first way, an interpretation of 

Kolmogorov's theory should explain why not every collection of possibilities is an event, and 

what exactly a collection of possibilities is if it is not an event. According to the second way, an 

interpretation of Kolmogorov's theory should explain why not all events behave "normally" and 

what it means that an event can behave in such an "abnormal" way. The fact that the second way 

also involves changes in Kolmogorov's formalism and, in particular, changes in the mathematical 

parts of the definitions of events and probabilities, seems to me to make it worse than the first. 

 

The main reason that any interpretation of Kolmogorov's theory should address the fact that there 

can be non-probability-measurable sets of k-possibilities is that it implies that in some sense 

probabilities can determine events. More precisely, it implies that probabilities can determine 

whether some collections of possibilities are events or not. This implication is important because 

it goes against the common conception of events as independent of probabilities. 

The key point in regard to non-probability-measurable sets of members of the sample space is 

their dependence on the probability measure. Given a sample space (S) and a probability measure 

(P), the fact that some subsets of S are non-probability-measurable depends on the particular 

probability measure P. Given a different probability measure (P2), the same subsets may well be 

                                                 
28 Either the measure of some subsets of the sample space would not be invariant to rotation, or some (other) subsets 

would not satisfy the countable additivity condition in the definition of measure, or some other fundamental changes 

would have to be made (such as an alteration to the axioms of ZFC). 
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probability-measurable by P2. In other words, the fact that some subsets of a sample space are 

non-probability-measurable depends on the fact that some other subsets of the sample space have 

particular k-probabilities (attributed to them by the given probability measure). This roughly 

means that there are cases where some collections of possibilities cannot have any probability 

value29 only because some events have particular probabilities.  

This implication - that in some cases probabilities can determine events - seems to me to be a 

very strong, peculiar addition to the relation between events and probabilities. Events are 

commonly thought of as independent of their probabilities in the sense that they can have any 

probability value, under the restriction that all their probabilities together satisfy the definition of 

Kolmogorov's probability measure. (This restriction can be seen as implying that the 

probabilities of some events determine the probabilities of other events30). More precisely, 

according to Kolmogorov's definition there can be infinitely many probability measures defined 

over the same σ-algebra31, which roughly means that the same events can have different 

probabilities. So, it seems as if probabilities do not determine events. In particular, whether a 

collection of possibilities is an event or not is commonly thought of as independent of any 

probability, and specifically, this fact does not depend on some events having particular 

probability values. 

The fact that there can be non-probability-measurable sets of k-possibilities goes against the 

common conception that probabilities do not determine events. It implies that there are cases 

where some collections of possibilities are not events only because some other collections of 

possibilities (which are events) have particular probabilities. In other words, the probabilities of 

some events determine that some other collections of possibilities are not events. Furthermore, if 

the probabilities of these events were different, then those other collections of possibilities might 

well be events. The fact that this peculiar connection between events and probabilities stems 

from Kolmogorov's definition means that it should be addressed by any interpretation of his 

theory. Moreover, it implies that if events are characterized by a given interpretation of 

                                                 
29 At least not in the "normal" way. 
30 For example, if the probability of event e is p, then the probability of its complementary event (ec - the case that e 

does not occur) must be 1-p. In this sense the probability of e determines the probability of ec (and vice versa). 
31 Except for when the σ-algebra is a trivial one (a σ-algebra that contains only the sample space k-event and the 

empty k-event). The only probability measure that can be defined over a given trivial σ-algebra is its corresponding 

trivial probability measure (which assigns 1 to the sample space k-event and 0 to the empty k-event). 
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Kolmogorov's theory as independent of their probabilities, then that interpretation is actually not 

an interpretation of the theory. Any interpretation of Kolmogorov's theory should define event 

and probability in a way that reflects the dependency relation between them, which stems from 

Kolmogorov's definition. This suggests that perhaps the main interpretations of probability 

cannot be amended so as to become interpretations of Kolmogorov's theory without redefining 

event or probability or both. 

 

 

7. Conclusion 

In this paper I have claimed that Kolmogorov's probability theory mathematically describes other 

basic notions in addition to probability and event. These notions are described by the sample 

space component of Kolmogorov's probability space. In particular, I have claimed that the 

members of the sample space mathematically describe a notion which I call possibilities. 

Roughly, possibilities are the main characteristic of probabilistic states (which is the term I use to 

denote the things Kolmogorov's theory aims to describe). Any probabilistic state involves at least 

two different possibilities (or alternatives or options). These possibilities are mutually exclusive 

and exhaustive, and necessarily one of them manifests. According to Kolmogorov's definition, 

possibilities compose events. However, possibilities can also compose things which are not 

events, which means that possibilities are more than just "elementary parts of events". More 

importantly, according to Kolmogorov's definition possibilities are not events (nor probabilities) 

and hence they are a distinct basic notion described by Kolmogorov's theory. This description of 

possibilities is an interpretive implication of Kolmogorov's definition. It is not a full description 

of possibilities, however, and the exact details should be filled by any interpretation of 

Kolmogorov's theory. 

The major consequence of this claim is that the main interpretations of probability theory are not 

interpretations of Kolmogorov's theory in a strict sense. An interpretation of a mathematical 

theory should explicate all of the theory's basic notions. However, the main interpretations of 

probability do not explicitly ascribe meaning to k-possibilities, which means that they do not 
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explicate all the basic notions of Kolmogorov's theory. Hence, they are not interpretations of this 

theory. 

In this paper I also discussed another interesting consequence of this claim. Very roughly, I 

claimed that in some sense probabilities can determine events. This claim stems from the fact 

that according to Kolmogorov's definition there can be sets of k-possibilities which are not k-

events. More precisely, it stems from that fact that there can be non-probability-measurable sets 

of this sort. This means that not all collections of possibilities are events. Furthermore, 

collections which are mathematically described by non-probability-measurable sets of k-

possibilities simply cannot be events. Interestingly, this impossibility depends on the given 

probability measure, meaning that whether a collection of possibilities is an event or not depends 

on the probabilities of other collections of possibilities which are events. Hence it turns out that, 

contrary to the common conception of events as independent of probabilities, under certain 

conditions probabilities determine events. 
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