
1 

 

 

 

 

 

 

The Indifference Principle, Its Paradoxes and Kolmogorov's Probability Space 

 

 

 

 

 

Dan David November 

  



2 

 

Abstract 

In this paper I show that the validity of the Indifference Principle (IP), in light of its related 

paradoxes, is still an open question. I do so by offering an analysis of the Indifference Principle 

and its related paradoxes in the way they occur in Kolmogorov's probability theory. As such this 

analysis is relevant to all interpretations of his theory. I describe the conditions that any 

mathematical formalization of the Indifference Principle must satisfy. Consequently, I show that 

a mathematical formalization of the Indifference Principle has to be a set of constraints on 

probability spaces which mathematically describe the same events. I claim that the question 

whether IP-related paradoxes undermine the validity of the Indifference Principle depends on 

whether such a set of constraints exist. Since currently there is no mathematical proof of the 

existence of such a set of constraints, nor of the impossibility of there being one, the validity of 

the Indifference Principle remains undecided. 

  



3 

 

1. The Indifference Principle 

Bertrand's Paradox and similar ones (such as the Box Factory Paradox and the Wine-Water 

Paradox) are commonly presented as examples which undermine or even refute the Indifference 

Principle (IP). There is a vast literature about IP and its related paradoxes. Many scholars have 

offered various solutions to these paradoxes with the aim of salvaging IP (Jaynes 1973; Strevens 

1998; Bangu 2010; Mikkelson 2004; Tissier 1984; Di Porto et al. 2011, 2010; Burock 2005), 

while others have objected to them. Some scholars have claimed that the paradoxes simply 

cannot be solved and hence IP faces a real problem (Shackel 2007; Deakin 2006; Howson and 

Urbach 2006; Rowbottom 2013; Milne 1983). Other scholars have claimed that the various 

paradoxes are not "real" paradoxes to begin with and hence that IP is valid (Gyenis and Rédei 

2014; Marinoff 1994; Aerts and de Bianchi 2014). 

The literature about IP and its related paradoxes keeps growing (for example, Drory 2015; 

Gyenis and Rédei 2014; Aerts and de Bianchi 2014), which shows the ongoing interest in this 

topic. More importantly, it shows that there is no consensus about which of the proposed 

explanations for IP's paradoxes is correct. This lack of consensus can be attributed in part to the 

lack of consensus regarding which of the interpretations of probability is the "right" one1. This is 

because almost all the proposed explanations for IP's paradoxes are offered on the basis of a 

particular interpretation of probability (sometimes implicitly). As such, these explanations are 

commonly based on assumptions that are part of these interpretations and not necessarily shared 

by other interpretations of probability. Usually these assumptions are important for the different 

explanations, since they concern the nature of probability (and hence IP and its paradoxes). To 

the best of my knowledge there have been hardly any attempts to explain IP and its related 

paradoxes without relying on assumptions belonging to particular interpretations of probability2. 

My aim in this paper is to fill this lacuna. 

In this paper I explain IP and its paradoxes based on how they occur in Kolmogorov's probability 

theory. This theory is widely considered the standard mathematical probability theory and the 

various interpretations of probability are commonly considered interpretations of Kolmogorov's 

                                                 
1 See Gillies (2000), Hájek (2012) for good surveys of the various interpretations of probability. See Von Plato 

(1994) for a more historical perspective and Lyon (2010) for a short survey which highlights the major problems 

each of the main interpretations faces. 
2 Deakin's (2006) discussion of the Wine-Water Paradox is a step in this direction. 
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theory3. The distinction between mathematical probability theories such as Kolmogorov's and 

philosophical probability theories known as "interpretations of probability" is widely accepted in 

the philosophy of probability. Roughly, the difference between these two types of theories is that 

they address different questions about the basic notions of 'probability' and 'event'4. According to 

Lyon, mathematical probability theories "[...] tell us how probabilities behave, how to calculate 

probabilities from other probabilities, but they do not tell us what probabilities are." (Lyon 2010, 

93). The latter question is answered by interpretations of probability. Hence it can be said that 

mathematical probability theories provide the mathematical parts of the definitions of 

'probability' and 'event', while the interpretations provide the non-mathematical parts. 

 

In this paper I analyze IP and its related paradoxes in a way they could (or should) be 

mathematically formalized within Kolmogorov's theory. My analysis relies on the common 

assumption that Kolmogorov's probability space is a correct mathematical description of the 

notions of 'probability' and 'event'. This assumption seems to be common to all the main 

interpretations of probability. As such my analysis is relevant to all interpretations of 

Kolmogorov's theory. In particular, I describe the conditions that a mathematical formalization 

of IP within Kolmogorov's theory must satisfy and show that such a formalization has to be a set 

of constraints (C) on probability spaces that have the equivalent σ-algebra components. These σ-

algebras are equivalent in the sense that they mathematically describe the same events. As a 

result, the question of whether IP-related paradoxes undermine the validity of IP turns out to 

depend on whether such a C exist. Since currently there is no mathematical proof of the 

existence of such a C (or a proof of the impossibility of there being one), the question remains 

open. 

 

The term "Principle of Indifference" was first coined by Keynes. As he put it, "[t]he Principle of 

Indifference asserts that if there is no known reason for predicating of our subject one rather than 

                                                 
3 However, see Lyon (2016) and Hájek (2012) for objections to this common view. 
4 'Probability' here is used as a general term for notions such as credence, degree of belief, propensity, and chance. 

Similarly, 'event' is used as a general term for anything that has a 'probability' (such as a proposition, a state of the 

world, or a metaphysical event).  
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another of several alternatives, then relatively to such knowledge the assertions of each of these 

alternatives have an equal probability. Thus equal probabilities must be assigned to each of 

several arguments, if there is an absence of positive ground for assigning unequal ones." (Keynes 

1921, 45). Interestingly, in the literature there are other phrasings of IP which are slightly 

different than Keynes'. For example, Bartha and Johns (2001, 109) describe IP as follows: "In the 

absence of any known reason to assign two outcomes different probabilities, they ought to be 

assigned the same probability". Howson and Urbach (2006, 266) describe IP as asserting that 

"[...] equal parts of the possibility space should receive equal probabilities relative to a null state 

of background information"(Howson and Urbach 2006, 266)(Howson and Urbach 2006, 

266)(Howson and Urbach 2006, 266)(Howson and Urbach 2006, 266)(Howson and Urbach 

2006, 266)(Howson and Urbach 2006, 266) and Mellor (2005, 28) states, "[IP] says that 

evidence which gives us no reason to think that any one of a number of mutually exclusive 

possibilities [...] is more probable than any other will give those possibilities equal epistemic 

probabilities", and the list goes on. These different phrasings show that there is no consensus 

regarding the exact phrasing of IP. However, almost all of them seem to have the same three 

components that I describe in the next section. Roughly, in all of IP's phrasings it is assumed that 

events are comparable and that equivalent events should have equal probabilities if there is no 

information indicating otherwise. The differences between the various phrasings are mainly in 

the events' equivalence criteria. These differences depend on the exact definition of 'events', 

which in turn depends on the choice of interpretation of probability. 

 

IP is commonly treated as an epistemic principle in the sense that it is a principle that an agent 

can use when she has to assign subjective probabilities (such as degrees of belief or credences) to 

propositions (i.e. "subjective events"). As such, IP is commonly thought of as relevant only to 

subjective interpretations of probability. However, IP also appears in discussions relying on the 

classical interpretation and others in which probabilities and events are considered objective. In 

such discussions, IP is treated as a tool that agents use to infer the events' objective probabilities 

(commonly referred to as "chances" or "propensities"). Thus, although IP is commonly thought 

of as a way of assigning subjective probabilities, it can also be seen as a way of inferring 

objective probabilities. This means that using IP for assigning probabilities to events does not 
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necessarily imply that these probabilities are subjective. Hence IP is relevant to both subjective 

and objective interpretations of probability. 

Since my purpose in this paper is to explain IP and its related paradoxes within Kolmogorov's 

theory, it is sufficient to think of IP as a description of a connection between mathematical 

events and mathematical probabilities. The question of whether or not IP is taken to be an 

epistemic principle seems to be irrelevant to IP's mathematical formalization itself. Treating IP 

as a description of a mathematical connection between events and probabilities in Kolmogorov's 

probability theory is one of the keys which make my analysis relevant to all interpretations of 

this theory. 

In the next section I give a general characterization of IP as a connection between events and 

probabilities in the aforementioned mathematical sense. 

 

 

2. A characterization of the Indifference Principle 

In this section I characterize the connection described by IP between events and probabilities. 

This characterization seems to be common to almost all the different phrasings of IP regardless 

of whether they rely on a subjective or an objective interpretation. 

The connection described by IP has the following three components: 

1. Presumption – Events5 are comparable and thus can be considered equivalent (or equal) in 

some sense. 

2. Assertion – Equivalent events have (or should have) equal probabilities. 

3. Conditionalization – There is no information indicating otherwise. Thus, equivalent events 

have equal probabilities if (sometimes iff) there is no information indicating otherwise. 

The connection between events and probabilities described by IP's assertion component is that 

equivalent events have equal probabilities6. This connection relies on IP's presumption that 

                                                 
5 Here 'events' is used as a general term which refers to alternatives, outcomes, possibilities, parts of the possibility 

space, etc. 
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events can be considered equivalent in some sense, such as "equipossible cases" (Fraassen 1989, 

298), "equal parts of the possibility space" (Howson and Urbach 2006), "possibilities of which 

we have equal ignorance" (Shackel 2007, 151), and the like. Equivalent events are not 

necessarily identical (but identical events are trivially equivalent because they are the same 

event). The important point is that different events can be considered equivalent according to 

some criterion. The specifics of the criterion commonly depend on the choice of interpretation of 

probability. Obviously, the criterion cannot be that the events have equal probabilities because 

then IP would be the trivial assertion that events with equal probabilities have equal 

probabilities. The key point is that IP relies on there being a way of comparing events and 

deciding that they are equivalent which does not depend on their probabilities. This presumption 

is a necessary condition for IP's assertion. If events cannot be considered equal, IP's assertion 

does not hold. 

According to IP's conditionalization component, IP's assertion is also conditional on there being 

no information indicating that the equivalent events do not have equal probabilities7. This is 

expressed as "[...] in the absence of reasons to the contrary" (Fraassen 1989, 299), "[...] relative 

to a null state of background information" (Howson and Urbach 2006, 266), "[...] iff we have 

insufficient reason to consider any one of these outcomes more or less likely than any other" 

(Mikkelson 2004, 137), "[...] if we have no grounds for preferring one [outcome] over any other 

[...]" (Norton 2008, 47), "[...] in the absence of any known reason to assign two events differing 

probabilities [...]" (Strevens 1998, 231), and the like. 

IP also implicitly relies on the trivial assumption that the probabilities of the events are not 

given. It is obvious that if they are, then the connection between them and the events is already 

given explicitly and there is no need for IP to connect them. In other words, when the events' 

probabilities are given there are two alternatives: equivalent events either have equal 

probabilities or they do not. If they do, then IP is redundant. If they do not, then IP cannot be 

used because the condition that there is no information indicating that the equivalent events do 

not have equal probabilities is violated. In Section 5 I show that given a σ-algebra which 

                                                                                                                                                             
6 IP also implicitly asserts that if one event (e1) is greater than another event (e2) (in the sense in which the events are 

comparable), then e1 has (or should have) greater probability than e2. 
7 Some have argued that this condition is insufficient, and that IP must also depend on information which positively 

indicates that equivalent events have equal probabilities. This is an important point concerning IP, but it does not 

affect the argument presented in this paper. 
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mathematically describes the events, the connection drawn by IP is described by a particular 

probability space whose σ-algebra component is the given one. Thus, this apparently trivial 

assumption is important because it means that the probability space which describes the events is 

not already given. 

 

Another important implicit assumption concerning IP is that an application of it results in a 

unique assignment of probabilities. More precisely, given a set of events, an application of IP 

results in a unique assignment of probabilities to these events. This is a crucial assumption, since, 

as I show below, it is at the heart of all IP-related paradoxes. Roughly, in all such paradoxes, an 

event is assigned different probabilities by different applications of IP, and this result is 

considered paradoxical. Hence, IP's assertion that equivalent events have equal probabilities (as 

long as there is no information indicating otherwise) also implicitly implies that the given 

equivalent events have specific (equal) probability values. In other words, IP asserts that 

equivalent events have specific equal probabilities and no other equal probability values. 

In the next section I discuss how applying IP can lead to paradoxes. 

 

 

3. The Indifference Principle-related paradoxes 

Applying IP arguably is the most common way of assigning probabilities to events. In many 

cases it is used implicitly. The following paradigmatic examples are commonly presented as 

successful applications of IP: 

1. The assignment of probability 1/2 to the event of a coin toss landing on heads (or tails). The 

two events ('heads' and 'tails') are considered equivalent, since there is no information 

indicating that the coin is biased, and hence are assigned equal probabilities. 

2. The assignment of probability 1/6 to each of the events of a die toss landing on one of its 

faces, assuming that the die is unbiased. 
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3. The assignment of probability 1/2 to the event of a dart hitting the left (or right) half of a 

target board. Assuming that the dart hits the board, the two events ('left' and 'right') are 

considered equivalent (if there is no other information about the board, the marksman or any 

other relevant factor) and hence have equal probabilities. 

 

Very roughly, in all these examples some events are considered equivalent in some sense and 

hence, according to IP, have equal probabilities. 

 

IP-related paradoxes are often presented as examples of unsuccessful applications of IP in the 

sense that they do not result in a unique assignment of probabilities to events, in contrast to the 

implicit assumption mentioned in the previous section. Roughly, in each of these paradoxes there 

is a question about the probability of a given event. Each of these questions is answered by 

applying IP. However, this is done in more than one way and as a result the event in question is 

assigned different probabilities by the different applications of IP. These different assignments of 

probabilities are commonly treated as paradoxical because of the aforementioned assumption 

that an application of IP to given events results in a unique assignment of probabilities to the 

given events. 

A simple example of an IP-related paradox is the Box Factory Paradox: "A factory produces 

cubes with side-length between 0 and 1 foot; what is the probability that a randomly chosen cube 

has side-length between 0 and 1/2 a foot? The tempting answer is 1/2, as we imagine a process of 

production that is uniformly distributed over side-length. But the question could have been given 

an equivalent restatement: A factory produces cubes with face-area between 0 and 1 square-feet; 

what is the probability that a randomly chosen cube has face-area between 0 and 1/4 square-feet? 

Now the tempting answer is 1/4, as we imagine a process of production that is uniformly 

distributed over face-area. This is already disastrous, as we cannot allow the same event to have 

two different probabilities [...]. But there is worse to come, for the problem could have been 

restated equivalently again: A factory produces cubes with volume between 0 and 1 cubic feet; 

what is the probability that a randomly chosen cube has volume between 0 and 1/8 cubic-feet? 

Now the tempting answer is 1/8, as we imagine a process of production that is uniformly 

distributed over volume. And so on for all of the infinitely many equivalent reformulations of the 
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problem (in terms of the fourth, fifth, … power of the length, and indeed in terms of every non-

zero real-valued exponent of the length). What, then, is the probability of the event in question?" 

(Hájek 2012, sec. 3.1) 

In the Box Factory Paradox, IP is applied several times. Each application of IP gives a different 

answer to the question about the probability that a randomly chosen cube would have a certain 

size (and hence a certain side-length, face-area and volume). The paradox is the fact that the 

same event is attributed different probabilities by different applications of IP. In this sense, the 

Box Factory Paradox is an example of an unsuccessful use of IP. 

 

Bertrand's Paradox is perhaps the most famous example of an unsuccessful application of IP. It is 

commonly described as the having three different answers to the following question (taken from 

Clark (2007, 22)): "What is the chance that a random chord of a circle is longer than the side of 

an inscribed equilateral triangle? 

(1) The chords from a vertex of the triangle to the circumference are longer if they lie within the 

angle at the vertex. Since that is true of one-third of the chords, the probability is one-third. 

(2) The chords parallel to one side of such a triangle are longer if they intersect the inner half of 

the radius perpendicular to them, so that their midpoint falls within the triangle. So the 

probability is one-half. 

(3) A chord is also longer if its midpoint falls within a circle inscribed within the triangle. The 

inner circle will have a radius one-half and therefore an area one-quarter that of the outer one. So 

the probability is one-quarter."  

The above three answers to the question presented in Bertrand's Paradox are said to be the results 

of different applications of IP. Hence the paradox is that an "[a]pplication of the principle of 

indifference is supposed to suffice for solving probability problems. Probability problems have, 

of their nature, unique solutions, because a solution is a single function from the events of 

interest into [0, 1]. The solution being a function entails that each event has a unique probability. 

Yet different ways of applying the principle here result in different probabilities for the same 

event." (Shackel 2007, 152) 
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Another important IP-related paradox is the Wine-Water paradox: "We are given a glass 

containing a mixture of water and wine. All that is known about the proportions of the liquids is 

that the mixture contains at least as much water as wine, and at most, twice as much water as 

wine. The range for our assumptions concerning the ratio of water to wine is thus the interval 1 

to 2. Assuming that nothing more is known about the mixture, the indifference or symmetry 

principle or any other similar form of the classical theory tells us to assume that equal parts of 

this interval have equal probabilities. The probability of the ratio lying between 1 and 1.5 is thus 

50%, and the other 50% corresponds to the probability of the range 1.5 to 2. 

But there is an a1ternative method of treating the same problem. Instead of the ratio water/wine, 

we consider the inverse ratio, wine/water; this we know lies between 1/2 and 1. We are again 

told to assume that the two halves of the total interval, i.e., the intervals 1/2 to 3/4 and 3/4 to 1, 

have equal probabilities (50% each); yet, the wine/water ratio 3/4 is equal to the water/wine ratio 

4/3. Thus, according to our second calculation, 50% probability corresponds to the water/wine 

range 1 to 4/3 and the remaining 50% to the range 4/3 to 2. According to the first calculation, the 

corresponding intervals were 1 to 3/2 and 3/2 to 2. The two results are obviously incompatible." 

(Von Mises 1981, 77) 

Like the Box Factory Paradox and Bertrand's Paradox, the Wine-Water Paradox presents us with 

a question about the probability of an event and we are given different answers to this question. 

Each of these answers is the result of an application of IP. As such they are said to be 

"incompatible" and thus the Wine-Water Paradox is considered a paradox. 

 

To sum up, IP-related paradoxes can be described as follows: 

1. There is a question about the probability of a given random event. 

2. The question is answered by applying IP. 

3. The problem is that the question is given different answers by different applications of IP. 
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4. The different answers are considered paradoxical because of the aforementioned assumption 

that applications of IP to given events result in a unique assignment of probabilities to the 

events. 

 

Before I move on to describe how IP and its related paradoxes are manifested in Kolmogorov's 

theory, I wish to address the claim that these paradoxes are not well-defined. Some writers have 

claimed that the questions posed (or the terms used) in the different IP-related paradoxes are not 

well-defined (they are vague, ambiguous, underdetermined, etc.). For example: "[...] Bertrand's 

original problem is vaguely posed [...]" (Marinoff 1994, 1), "Bertrand's problem cannot 

undermine Laplace's principle [i.e. IP] provided that the former is posed in non ambiguous terms 

[...]" (Aerts and de Bianchi 2014, 1), "[...] all so-called paradoxes to PI [i.e. IP] are simply 

disagreements and ambiguity in relation to sample space identification [...]" (Burock 2005, 2). In 

particular, it has been claimed that the term 'random' is the cause of the problem: "[randomness] 

is a notoriously difficult concept. In fact, it may not even be a single concept at all, but a cluster 

of concepts [...]" (Bangu 2010, 33), "Bertrand's paradox is of course not a logical paradox. The 

different results arise from assigning three different meanings to the phrase 'at random' [...]" 

(Tissier 1984, 19). 

As mentioned above, there is no consensus among philosophers regarding the exact meaning of 

the notion 'probability', and the same goes for 'randomness'. This lack of consensus is manifested 

in the different interpretation of probability theory. So, philosophically speaking, IP-related 

paradoxes and, in particular, the term 'random' might not be well-defined. However, arguably 

anything that is considered random according to some interpretation of probability can be 

mathematically described by Kolmogorov's probability theory. This suggests that IP-related 

paradoxes can be correctly described by his theory. The key point is that when such paradoxes 

are described by Kolmogorov's theory, they do not seem to be any more vague or ambiguous 

than any other mathematical question concerning the probability of a given event! Such 

questions are exactly the sort that appear in IP-related paradoxes. In Kolmogorov's theory, they 

cannot be answered unless the relevant probability spaces are given. And in all IP-related 

paradoxes, these spaces are assumed to be given by applying IP. However, applying IP in 

Kolmogorov's theory relies on having a mathematical formalization of IP and, as I explain in the 
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rest of this paper, this is an open problem. Thus, it would be more accurate to say that the 

problem with IP-related paradoxes is that the mathematical formalization of IP is still an open 

question, rather than claim that they are not well-defined. 

 

Since my aim in this paper is to explain IP and its related paradoxes based on the way they are 

manifested in Kolmogorov's probability theory, in the next section I give a brief description of 

Kolmogorov's probability space definition and show how IP relates to it. 

 

 

4. Kolmogorov's probability space 

In this section I describe Kolmogorov's definition of probability space8. I highlight several points 

which are important for understanding IP and its related paradoxes and, in particular, how IP can 

be mathematically formalized in Kolmogorov's theory. 

 

Kolmogorov's probability space is defined as a triple <Ω,Σ,P> consisting of the following 

components: a sample space (Ω), a σ-algebra (Σ) and a probability measure (P). 

The probability space's components are defined as follows: 

1. A sample space (Ω) – a nonempty set. 

The members of the sample space are sometimes referred to as "elementary events". However, 

this name is misleading since these members are not a mathematical formalization of 'events'. 

'Events' are mathematically defined as the members of the σ-algebra component (which is 

defined just below). Nevertheless, there is a sense in which the sample space and its members are 

                                                 
8 The definition I present in this paper is one of several standard ways of defining Kolmogorov's probability space. 

See Billingsley (1995, 23) for a slightly different definition.  
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indeed elementary, and it is the fact that Kolmogorov's mathematical formalizations of 'events' 

and 'probabilities' depend on them9. 

2. A σ-algebra (Σ) (defined over the sample space) – a subset of the power set of the sample 

space (i.e. a set of subsets of Ω) which satisfies the following conditions: 

2.1. Σ is not empty (or equivalently: Ω is in Σ) 

2.2. Σ is closed under complementation (i.e. if A is in Σ then so is Ω\A). 

2.3. Σ is closed under countable unions (i.e. if ��, ��, �� … are in Σ, then so is � = �� ∪ �� ∪
�� ∪ …) 

The members of Σ are Kolmogorov's mathematical formalization of 'events'. In other words, 

mathematically 'events' are sets of members of a sample space that together form a σ-algebra. 

Moreover, since the σ-algebra component is part of a given probability space, it is also connected 

to a specific probability measure (the probability measure component is defined below). This 

means that mathematically 'events' are sets of members of a sample space that have specific 

probability values (described by the probability measure). This fact is very important for the 

formalization of IP in Kolmogorov's theory. It is especially important to the formalization of IP's 

assertion that equivalent events have specific equal probabilities. 

3. A probability measure (P) – a real valued function defined over Σ which satisfies the 

following conditions: 

3.1. P is non-negative 

3.2. P
∅� = 0 

3.3. P is countably additive (which means that for all countable collections ���� of pairwise 

disjoint sets P
⋃ ��� � = 	∑ P
���� ) 

3.4. P returns results in the unit interval [0,1] and P
Ω� = 1 

The value assigned to a member of the σ-algebra (� ∈ Σ) by the probability measure function 

(i.e. P(e)) is the probability of e. This means that mathematically 'probabilities' are defined as the 

values of a real function from a σ-algebra to the unit interval which satisfies certain conditions 

(described by the definition of the probability measure).  

                                                 
9 For a detailed analysis of the interpretive meaning of the sample space component, see November (2018a). 
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A key point regarding the possible mathematical formalizations of IP in Kolmogorov's theory is 

that according to the definition of the probability space the same mathematical events can have 

different probability values. This point relies on the assumption that the identity relation between 

mathematical events is the identity relation between σ-algebras10. In other words, two 

mathematical events are the same iff they belong to the same σ-algebra and are set-theoretically 

identical (i.e. contain the same members). According to the definition of the probability space, 

there can be infinitely many probability measures defined over the same σ-algebra (except for 

trivial σ-algebras11). This means that the same mathematical events can have infinitely many 

different probability values. Each time a σ-algebra has a different probability measure defined 

over it, however, it belongs to a different probability space. In other words, each time an event 

has a different probability, it necessarily belongs to a different probability space. 

This point is very important for understanding both IP's mathematical formalization and its 

related paradoxes. Recall that IP's assertion that equivalent events have equal probabilities 

implicitly implies that the equivalent events have specific equal probability values. Thus, they 

have these values and not any other equal probabilities. Loosely speaking, it is assumed that an 

application of IP results in a unique assignment of probabilities to events. Naively, the 

mathematical formalization of this assumptions seems to be the claim that given a set (S) of all 

probability spaces which have the same σ-algebra component (i.e. contain the same events), an 

application of IP is a way to select exactly one probability space out of S. However, this 

formalization is inaccurate because different σ-algebras can be considered equivalent in the sense 

that they mathematically describe the same events. Similarly, different probability spaces (due to 

their different σ-algebra components) can be considered equivalent in the sense that they 

mathematically describe the same events when having the same specific probabilities. Thus, a 

more precise formalization of the above assumption that an application of IP ends with a unique 

assignment of probabilities to events is that it is a way to select all equivalent probability spaces 

out of all probability spaces which have equivalent σ-algebra components. In other words, an 

                                                 
10 Kolmogorov's theory does not actually include an explicit definition of an identity relation between events. See 

November (2018b) for a thorough discussion of this issue.  
11 A trivial σ-algebra is a σ-algebra that contains only the sample space event and the empty event. The only 

probability measure that can be defined over a given trivial σ-algebra is its corresponding trivial probability 

measure, which assigns 1 to the sample-space event and 0 to the empty event. 
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application of IP is a way to select all probability spaces which mathematically describe the same 

events when having specific probabilities out of all the probability spaces which mathematically 

describe the same events. 

The idea that different probability spaces are equivalent in the sense that they can mathematically 

describe the same events having specific probabilities seems to be widely accepted. For example, 

the probability spaces ���,� and ���,� are commonly considered equivalent: ���,� =

〈Ω�,�, Σ�,�, P�,�〉 where Ω�,� = �1,2�, Σ�,� = �∅, Ω�,�, �1�, �2�  and P�,� assigns the following 

probabilities to the events in Σ�,�: 
P�,�
∅� = 0, 	P�,�!Ω�,�" = 1, P�,�
�1�� = �
� , P�,�
�2�� = �

��. 

And ���,� = 〈Ω�,�, Σ�,�, P�,�〉 where Ω�,� = �3,4�, Σ�,� = �∅, Ω�,�, �3�, �4�  and P�,� assigns the 

following values to the events in Σ�,�: 
P�,�
∅� = 0, 	P�,�!Ω�,�" = 1, P�,�
�3�� = �
� , P�,�
�4�� =

�
��. The differences between ���,� and ���,� seem to be irrelevant to their expressive power. 

Anything describable by ���,� is also describable by ���,� and vice versa, simply by mapping 

the sample-space members '1' and '2' from ���,� to the members '3' and '4' from ���,� 

respectively. Arguably (see November (2018b)), the events mathematically describable by ���,� 

and ���,� are also describable by the probability space (���,�) but with different probabilities: 

���,� = 〈Ω�,�, Σ�,�, P�,�〉 where Ω�,� = �5,6�, Σ�,� = �∅, Ω�,�, �5�, �6�  and P�,� assigns the 

following probabilities to the events in Σ�,�: 
P�,�
∅� = 0, 	P�,�!Ω�,�" = 1, P�,�
�5�� =
�
' , P�,�
�6�� = �

'�. The σ-algebra components of the above three probability spaces, ���,�, ���,� 

and ���,�, seem to be equivalent in the sense that any set of events mathematically describable 

by one of them is also describable by the other two. (This can be done by mapping the members 

of Ω�,� to those of Ω�,� (or Ω�,�)). Thus, loosely speaking, all three probability spaces 

mathematically describe the same events because their corresponding σ-algebra components are 

equivalent. But only ���,� and ���,� describe them as having the same specific probabilities (1/3 

and 2/3), while according to ���,� their probabilities are different (1/4 and 3/4). In other words, 

���,� and ���,� are equivalent probability spaces while ���,� is not equivalent to them in the 

sense that it describes the events as having other probabilities. 
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In this paper, I put aside the issues of equivalence relations between probability spaces and 

between σ-algebras. Instead, I focus on the much simpler case of probability spaces that have the 

same σ-algebra component. In other words, I take the set (Si) of all probability spaces which have 

the same σ-algebra component as a representative case of the set of all probability spaces which 

have equivalent σ-algebra components (Se). Si is contained in Se, because identical σ-algebra 

components are trivially equivalent. I show that even in this much simpler case, there is no 

known mathematical formalization of IP which manages to select exactly one probability space 

out of Si, and there is no known proof that there cannot be such a formalization. This implies that 

there is no known mathematical formalization of IP which manages to select the set of all 

equivalent probability spaces out of Se, and that there is no known proof that there cannot be 

such a formalization. 

 

The fact that, according to Kolmogorov's probability space definition, the same mathematical 

events can have different probabilities is important in understanding IP-related paradoxes. As 

mentioned above, in all IP-related paradoxes the same events are assigned different probabilities. 

These assignments are said to be the result of different applications of IP to these events. The 

assignments of different probabilities to these events by applications of IP are considered 

paradoxical because of the aforementioned implicit assumption that such applications should 

result in a unique assignment of probabilities to these events. It is important to understand that, 

according to Kolmogorov's definition of the probability space, assignments of different 

probabilities to the same events in general are not considered paradoxical. In other words, 

assignments of different probabilities by means which are not applications of IP are not 

paradoxical. Such assignments are simply different probability spaces that have the same σ-

algebra components (and hence the same sample space components12) but different probability 

measure components (i.e. <Ω,Σ,P1> and <Ω,Σ,P2> where P1≠P2). (In the rest of this paper I refer 

to such probability spaces as: "same-events spaces"). Assignments of different probabilities to 

the same events by different applications of IP are considered paradoxical only because it is 

                                                 
12 Probability spaces that have the same σ-algebra components necessarily have the same sample-space components. 

This is because a σ-algebra always contains as a member the sample space which the σ-algebra is defined over . This 

means that σ-algebras which are defined over different sample spaces have different members and thus are different. 
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implicitly assumed that an application of IP selects exactly one probability space from a given 

set of all same-events spaces. 

 

In the next section I elaborate on several important issues regarding IP's mathematical 

formalization in Kolmogorov's theory. 

 

 

5. IP's formalization in Kolmogorov's probability space 

In this section I discuss important issues regarding IP's mathematical formalization in 

Kolmogorov's probability theory. Roughly, I claim that this formalization has to be a set of 

constraints on probability spaces. 

Any mathematical formalization of IP has to address the three components of IP (its 

Presumption, Assertion and Conditionalization) and its underlying assumptions. The key issue is 

IP's assertion that equivalent events have specific equal probability values. Thus, a formalization 

of IP has to mathematically describe this connection between events and specific probabilities. 

Such a connection is mathematically described by a probability space. More precisely, given a σ-

algebra which mathematically describes the events, the connection described by IP is 

mathematically described by a specific probability space whose σ-algebra component is the 

given one. Since there can be infinitely many probability spaces whose σ-algebra component is 

the same, a mathematical formalization of IP has to be some mathematical way of uniquely 

selecting exactly one probability space from a given set of same-events spaces. In other words, 

IP's mathematical formalization has to include constraints on sets of same-events spaces. Ideally, 

given a set of constrains (C) which is a mathematical formalization of IP, for each set (S) of 

same-events spaces there is only one probability space (s) in S which satisfies the constraints in 

C, and C is such that equivalent events in s have equal probabilities. Any such set of constraints 

would be a good mathematical formalization of IP in the sense that it successfully formalizes IP's 

assertion. 
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In addition to IP's assertion, it seems that a mathematical formalization of IP also has to address 

IP's presumption and conditionalization. Unfortunately, unlike IP's assertion, it is not clear how 

these components should be mathematically formalized within Kolmogorov's theory. In the rest 

of this section, I show that IP's presumption that events are comparable should be formalized as 

an order relation on the σ-algebra component. However, it is not clear what are the specifics of 

such a relation or even whether such a relation exists in Kolmogorov's theory. I also show that 

IP's conditionalization should be mathematically formalized as a set of constraints on sets of 

same-events spaces. However, due to the formalization of IP's assertion, the formalization of IP's 

conditionalization turns out to be redundant. Moreover, it is not clear that IP's conditionalization 

can be formalized in a non-redundant way in Kolmogorov's theory. 

 

Recall that IP's presumption is that events are comparable. Generally, when things are claimed to 

be comparable (non-mathematically), this claim can be mathematically formalized as an order 

relation on the set of those things13. However, because there seem to be different non-

mathematical senses in which events are compared and considered equivalent, it is not clear 

which mathematical order relation on the σ-algebra should be used to mathematically describe 

their comparability. 

There are two obvious candidates for an order relation on the σ-algebra component. Both stem 

from the fact that by Kolmogorov's definition events are sets. Unfortunately, both are unsuitable 

to be the mathematical formalization of IP's presumption. The first order-relation is based on the 

inclusion relation between sets. By this relation, a set A is considered strictly bigger than a set B 

iff A includes B and B does not include A (i.e. � > ) ⇔ 
) ⊆ �	,-.	� ⊄ )�). This means that 

A and B are considered equivalent iff A includes B and B includes A (i.e. � ≡ ) ⇔ 
) ⊆
�	,-.	� ⊆ )�)14. However, this relation fails to be a good mathematical description of the 

presumption that events are comparable, because it is a partial order relation. This means that by 

                                                 
13 "Two elements a and b of A [where 
�, ≤� is a partially ordered set] are said to be comparable if either a ≤ b or b 

≤ a." (Potter 2004, 104) 
14 More precisely, in set theory such sets are in fact the same set. I.e. they are considered identical (A=B) and not just 

equivalent (� ≡ )). 
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this relation it is possible that not all events in a given σ-algebra component are comparable! And 

that is a problem for IP's formalization because if there are events that cannot be compared, one 

cannot use IP to assign them probabilities. 

The second candidate for an order relation on the σ-algebra component is based on the events' 

cardinality. By this relation, a set A is considered strictly bigger than a set B iff A's cardinality is 

strictly bigger than B's cardinality (i.e. � > ) ⇔ 2
)� > 2
��). This also means that A and B 

are considered equivalent iff A's cardinality is equal to that of B (i.e. � ≡ ) ⇔ 2
)� = 2
��). 

This order relation is a total order relation which means that all events are comparable. However, 

it cannot serve as a mathematical description of IP's presumption that events are comparable 

because of IP's assertion that equivalent events have equal probabilities. The reason is that there 

are cases for which comparing events by their cardinality and assigning them probabilities 

accordingly, using IP, contradicts Kolmogorov's definition. In particular, the problem arises in 

cases when the sample space has cardinality of at least 0א and there are two mutually exclusive 

events whose union is the sample space event (i.e. ��, e�	|	�� ∪ �� = Ω) and they all have the 

same cardinality (i.e. 2
��� = 2
��� = 2
Ω�). In such cases, by IP all three events should have 

the same probability since they all have the same cardinality (i.e. 5
��� = 5
��� = 5
Ω�) and by 

Kolmogorov's definition 5
Ω� = 5
��� + 5
��� and 5
Ω� = 1. Unfortunately, there is no way to 

satisfy these three conditions together in Kolmogorov's theory. In such cases, either 5
Ω� = 0 or 

5
Ω� ≠ 5
��� + 5
���, in contrast to Kolmogorov's definition, or the probabilities of events with 

equal cardinality are not equal. The latter alternative means that when IP's presumption is 

formalized with an order relation based on cardinality, IP's assertion can turn out to be false. This 

means that the mathematical formalization of IP's presumption cannot be the cardinality-based 

order relation. 

The above two failed attempts to formalize IP's presumption are based solely on the fact that 

events are sets. This seems to suggest that any other attempt to formalize IP's presumption will 

require an order relation on the σ-algebra component which would be based on some additional 

information. As such, any other attempt to formalize IP's presumption would require an addition 

to Kolmogorov's definition of events. (For example, Shackel's assumption, which I discuss 

below, is that the σ-algebra component has a measure defined over it which is not a probability 

measure, and thus the order relation between events is based on their measure values.) 
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The third component of IP is its conditionalization that equivalent events have equal probabilities 

only if there is no information indicating otherwise. Here the main question is how to 

mathematically describe the (non-mathematical) information which indicates that equivalent 

events do not have equal probabilities. It seems that there can be very different pieces of 

information which indicate the above, and thus it is not clear that all of them can be described by 

the same mathematical description. However, they all have one thing in common, which is that 

they indicate that equivalent events do not have equal probabilities. In other words, they are 

different pieces of information which refute the possibility that equivalent events have equal 

probabilities. Thus, a formalization of any such piece of information would be a mathematical 

way of selecting one or more probability spaces from a given set of same-events spaces (S) such 

that equivalent events do not have equal probabilities in the selected spaces. In other words, a 

formalization of such information would be a set of constraints (Ccond) on a given S which 

restricts it to one or more spaces in which equivalent events do not have equal probabilities. 

However, the mathematical formalization of IP's assertion as a set of constraints (C) on a set of 

same-events spaces, already precludes Ccond and thus makes it redundant! Recall that IP's 

assertion is conditioned on IP's conditionalization, which means that C holds iff there is no Ccond 

given. But this is trivially true because any s in S which satisfies C is a space in which equivalent 

events have equal probabilities, and thus s does not satisfy Ccond. This means that when IP's 

assertion is formalized as C, IP's conditionalization is redundant and there is no need to explicitly 

formalize it. As a result, it turns out that the mathematical formalization of IP in Kolmogorov's 

theory must be a set of constraints on same-events spaces that is accompanied by a suitable order 

relation on the σ-algebra component. 

 

In the next section I discuss the important implication of IP's formalization for its validity. But 

first I would like to address Shackel's discussion of Bertrand's Paradox. This discussion is 

important mainly because it includes one of the few attempts to explicitly mathematically 

formalize IP. Shackel mathematically defines IP as follows: "Principle of Indifference for 

Continuum Sized Sets. For a continuum sized set X, given a σ-algebra, Σ, on X and a measure, 
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µ, on Σ, and given that we have no reason to discriminate between members of Σ with equal 

measures, then we assign equiprobability to members of Σ with equal measures: For all x, y in Σ, 

if 8
9� = 8
:� then �
9� = �
:�. (This can easily be achieved by setting �
9� = 8
9� 8
;�⁄  

for all x in Σ.)" (Shackel 2007, 159). This mathematical formalization of IP includes a 

formalization of IP's presumption and assertion, but not of IP's conditionalization. According to 

Shackel, the formalization of IP's presumption is that events are comparable by their measure 

values. Hence equivalent events are events that have equal measure values. In other words, 

Shackel implicitly defines an order relation on σ-algebras that is based on the measure values of 

the events. Shackel even provides a method for assigning probabilities to events which 

guarantees that events with equal measure values (i.e. equivalent events) have specific equal 

probability values15. 

The problem with Shackel's formalization of IP lies in his formalization of IP's presumption. The 

key point is that this formalization relies on a strong assumption that is not part of Kolmogorov's 

theory. Shackel assumes that each σ-algebra is given with a "regular" measure defined over it 

(i.e. a measure which is not a probability measure, at least not necessarily). This "regular" 

measure can be seen as an additional component of Kolmogorov's probability space. (By 

definition, the probability space includes only a probability measure component defined over the 

σ-algebra component). Due to this assumption, Shackel's formalization faces a serious problem: 

mathematically there can be infinitely many measures defined over any given σ-algebra, so it is 

unclear which one of these measures should be taken as the "regular" measure in Shackel's 

mathematical formalization of IP16. Without some way of choosing one of these "regular" 

measures, Shackel's mathematical formalization of IP's presumption is incomplete. This means 

that Shackel's formalization of IP remains ill-defined and hence, despite its appeal, cannot serve 

as a mathematical formalization of IP. 

 

                                                 
15 Shackel relies on the fact that a probability measure is a special kind of measure. Conditions 3.1-3.3 of the 

aforementioned probability measure’s definition are just the formal definition of the mathematical notion of 

measure. Any measure which satisfies condition 3.4 is a probability measure. 
16

 This problem was already noticed by Gyenis and Rédei, who state: "[...] there are infinitely many measures µ on S 

[a Boolean σ-algebra of certain subsets of X] that could in principle be taken as ones that define a probability p. 

Which one should be singled out that yields a p that could in principle be interpreted as expressing epistemic 

indifference about elements in X?" (Gyenis and Rédei 2014, 7)  
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The mathematical formalization of IP I have described above clarifies another issue concerning 

IP-related paradoxes. Roughly, it shows that there is a certain type of solutions which is simply 

misguided. In particular, some writers (such as Di Porto et al. (2010, 2011)) believe that 

probabilities can only be obtained by measuring actual frequencies (since they adhere, perhaps 

implicitly, to an objective interpretation of probability). This means that in their view IP-related 

paradoxes can be solved by measuring the relevant frequencies. I call this type of solutions the 

"physical approach". The above mathematical formalization of IP shows that this approach 

cannot succeed. 

Recall that every IP-related paradox includes a question about the probability of a given event 

and that this question is given different answers by different applications of IP. Roughly, a 

physical-approach solution to a given IP-related paradox "solves" the paradox by running the 

"right" experiment. The right experiment is supposed to express the correct way that IP should be 

applied. More precisely, a physical-approach solution to an IP-related paradox is the claim that 

the probability of the event in question can be obtained by measuring the relative frequency of 

the event when running the experiment where IP is applied correctly. 

However, the physical-approach to IP-related paradoxes simply does not address the real 

problem they raise. As I have shown above, the mathematical formalization of IP is a set of 

constraints (C) on same-events spaces (S). The problem is finding a C such that for every S there 

is only one probability space in S which satisfies the constraints in C. This is a mathematical 

problem. As such, it does not depend on a particular interpretation of probability. In particular, it 

does not depend on the interpretation being an objective one or on relative frequencies. 

It is indeed commonly held that there is a connection between relative frequencies and 

probabilities (expressed by the laws of large numbers). This means that relative frequencies can 

confirm or cast doubts on apriori assignments of probabilities. However, and this is the crucial 

point, relative frequencies can confirm or undermine assignments of probabilities only after these 

assignments have been made! This means that they can confirm or undermine probabilities 

determined by applications of IP only after IP has been used. And IP can be used only after it has 

been mathematically formalized. Hence measuring relative frequencies cannot serve as a mean 

for mathematically formalizing IP and as a result it cannot solve IP-related paradoxes. 
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6. The implication of IP's formalization for its validity 

The major question concerning IP's mathematical formalization as a set of constraints on same-

events spaces is whether such a set exists. Is there a set of constraints (C) which manages to 

constrain every set of same-events spaces in such a way that only one space in each of these sets 

satisfies C? This question is highly important, mainly because a positive answer would settle the 

debate concerning whether or not IP-related paradoxes are genuine paradoxes. A positive answer 

would mean that there is at least one set of constraints that is always satisfied by only one 

probability space in every set of same-events spaces. In other words, there are no cases when IP's 

set of constraints (C) fails to constrain a given set of same-events spaces (S) so that only one 

probability space in S satisfies the constraints in C. Hence if the answer to the existence question 

is positive, then there are no cases of IP-related paradoxes. This means that all IP-related 

paradoxes are not genuine paradoxes and the aforementioned debate is settled.17 

On the other hand, a negative answer to the existence question means that there is no 

mathematical formalization of IP as a set of constraints (C) that is always satisfied by only one 

probability space in every set of same-events spaces (S). In other words, there are cases where 

either zero or more than one probability space in the given S satisfy C. This means that there is at 

least one genuine IP-related paradox. Thus, it is possible that one or more of Bertrand's Paradox, 

the Box Factory Paradox and the Wine-Water Paradox are indeed genuine IP-related paradoxes. 

A negative answer to the existence question can also be seen as a solution to IP-related 

paradoxes in the sense that it refutes one of their premises. Recall that IP-related paradoxes rely 

on the assumption that IP is always sufficient for a unique assignment of probabilities to events. 

However, a negative answer to the existence question would be a mathematical proof that this 

assumption is plain wrong. This means that a negative answer would refute one of the premises 

of IP-related paradoxes and thus solve them. 

                                                 
17 A positive answer to the existence question raises an interesting question regarding the uniqueness of C: is this C 

unique or is there more than one such set of constraints? I do not address this question in this paper. 
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A negative answer to the existence question would also imply that IP is not a valid principle in 

the sense that applying it does not always result with a unique assignment of probabilities to 

events. As a result, the discussion surrounding IP should change: Instead of focusing on whether 

or not IP is a valid principle (since a negative answer to the existence question shows that it is 

not), the discussion should be focused on describing the cases where it is safe to use IP, if there 

are any. 

 

The above discussion regarding the existence question sheds new light on Jaynes' famous paper 

about Bertrand's Paradox, "The Well-Posed Problem". In this paper Jaynes presents one of the 

most famous solutions offered for Bertrand's Paradox. Roughly, Jaynes believes that the question 

in Bertrand's Paradox, as in any other probability problem, must have a unique solution: "The 

essential point is this: If we start with the assumption that Bertrand's problem has a definite 

solution in spite of the many things left unspecified, then the statement of the problem 

automatically implies certain invariance properties [...]" (Jaynes 1973, 480). Jaynes adds that 

"[t]he transformation group, which expresses these invariances mathematically, imposes definite 

restrictions on the form of the solution, and in many cases fully determines it." (Jaynes 1973, 

488). Recall that a solution to Bertrand's Paradox is the probability of the event that a random 

chord of a circle is longer than the side of an inscribed equilateral triangle. This solution is 

mathematically described by a probability space. Hence Jaynes' invariance requirements for a 

solution to Bertrand's Paradox can be thought of as (and even translated into) a set of constraints 

on the set of same-events spaces which mathematically describe the question in Bertrand's 

Paradox. 

Now the questions are: what exactly is Jaynes' set of constraints (Cj) and, more importantly, does 

it provide a positive answer to the existence question? In other words, does Cj manage to 

constrain every set of same-events spaces in such a way that only one space in each of these sets 

satisfies Cj? Unfortunately, it seems that the answer is 'no', even according to Jaynes: "There 

remains the interesting, and still unanswered, question of how to define precisely the class of 

problems which can be solved by the method illustrated here. There are many problems in which 

we do not see how to apply it unambiguously; von Mises' water-and-wine problem is a good 

example." (Jaynes 1973, 490). In other words, Jaynes believes that his set of constraints does not 
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manage to constrain every set of same-events spaces to just one. In particular, Jaynes' set of 

constraints fails in the case of the Wine-Water Paradox18. This means that Jaynes does not 

provide a positive answer for the existence question and the status of IP as a valid principle 

remains unknown. 

 

I hope that the above discussion clarifies the importance of the existence question of IP's 

mathematical formalization. However, despite its importance, to the best of my knowledge there 

has not been any explicit attempt to answer it. This is mainly because IP's mathematical 

formalization has not been widely covered in the literature (notable exceptions are Shackel 

(2007) (discussed above) and Gyenis and Rédei (2014)). This does not mean that IP does not 

have a mathematical formalization; On the contrary, since almost all writers about IP claim that 

they apply IP in different circumstances, it seems that each of them has in mind some implicit 

mathematical formalization of it. These formalizations are used implicitly in each of the writers' 

calculations when they apply IP. However, since commonly IP is not explicitly formalized, it is 

not clear whether it has one specific (implicit) mathematical formalization which can be 

considered the mathematical formalization of IP. More importantly, this means that currently the 

existence question is still unanswered and thus the question regarding IP's validity remains open. 

                                                 
18 Moreover, Drory (2015, 458) states that Jaynes' set of constrains is not even sufficient to solve Bertrand's 

Paradox! He claims, "[E]ach of these solutions [the three answers that appear in Bertrand's Paradox] can be 

supported by invariance requirements and even by the very same requirements, in the sense that they will be all 

called rotation, scaling and translation invariance". In other words, Drory believes that each of the three probability 

spaces which mathematically describe the three answers satisfies Cj (Jaynes' invariance requirements). Hence Cj 

fails to be a good mathematical formalization of IP. See also Nathan (1984) for a more general objection to several 

of Jaynes' assumptions and Friedman (1975) for a criticism of  the acceptability of Jaynes' invariance criteria.  
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