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Abstract. We provide a new proof of the following Pa�lasińska’s theorem: Every finitely
generated protoalgebraic relation distributive equality free quasivariety is finitely axiom-
atizable. The main tool we use are Q-relation formulas for a protoalgebraic equality free
quasivariety Q. They are the counterparts of the congruence formulas used for describing
the generation of congruences in algebras. Having this tool in hand, we prove a finite
axiomatization theorem for Q when it has definable principal Q-subrelations. This is a
property obtained by carrying over the definability of principal subcongruences, invented
by Baker and Wang for varieties, and which holds for finitely generated protoalgebraic
relation distributive equality free quasivarieties.
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1. Introduction

In abstract algebraic logic the following theorem of Katarzyna Pa�lasińska
is remarkable [15]: Every protoalgebraic and filter distributive multidimen-
sional deductive system determined by a finite set of finite matrices can be
presented by finitely many inference rules and axioms. By reformulating it
into the context of equality free quasivarieties we have (see Section 2 for
definitions).

Pa�lasińska’s Theorem 1.1 ([22, 23]). Every finitely generated protoalge-
braic relation distributive equality free quasivariety is finitely axiomatizable.

The aim of this paper is to provide a new proof of this theorem. For this
purpose we apply the technique of definable principal Q-subrelations. This
is equality free quasivariety counterpart of the definable principal subcon-
gruences technique invented by Kirby Baker and Ju Wang [2]. They used it
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for providing a very elegant and short proof of the celebrated Baker’s theo-
rem: Every finitely generated congruence distributive variety of algebras is
finitely axiomatizable [1]. This technique was also successfully applied by
authors of this article for quasivarieties. In [21] we obtained a short proof of
Pigozzi’s theorem: Every finitely generated relative congruence distributive
quasivariety of algebras is finitely axiomatizable [24]. Here we go one step
further. To this end we first need to fill a gap in the theory of equality free
quasivarieties: the lack of a counterpart of the notion of congruence formula.
We do it by introducing the notion of a Q-relation formula without equality
for a protoalgebraic equality free quasivariety Q. Let us add that this notion
is more subtle than that of a congruence formula. Indeed, it works properly
only under additional assumptions summarized in Better Universe Theorem
5.2. Here the key property is the definability of Leibniz equalities in Q by a
positive formula.

Let us write few words about Pa�lasińska’s theorem from the perspective
of deductive systems. Note that deductive systems correspond to equality
free quasivarieties in a language with one relation symbol which is unary [5].
Models in such a language are called matrices and their relations filters.
In this context the assumptions of Pa�lasińska’s theorem are very natural.
Namely, filter distributivity may be guaranteed by the existence of disjunc-
tion [13] or by the satisfaction of deduction theorem [9, Corrolary 2.6]. In
fact, the latter yields also protoalgebraicity: a generalized form of deduction
theorem is equivalent to protoalgebraicity [11].

Substantial effort was made to prove finite axiomatization results for de-
ductive systems before Pa�lasińska obtained her theorem. Willem Blok and
Don Pigozzi proved that if a deductive system S with finitely many nonax-
iomatic inference rules Λ is protoalgebraic, filter distributive, and the class
of its finitely irreducible matrices is finitely axiomatizable then S can be pre-
sented by Λ and finitely many axioms [3, Theorem 4.1]. The last condition
of this theorem holds when S is determined by a finite family of finite ma-
trices, i.e., when the equality free quasivariety corresponding to S is finitely
generated. Janusz Czelakowski proved that if the assumptions of protoal-
gebraicity and of finiteness of Λ are dropped, then S may be presented by
finitely many axioms together with, possibly, infinitely many nonaxiomatic
inference rules [8, Theorem 5.1]. Moreover, he showed that if S posses a
disjunction, which implies filter distributivity, and the class of its finitely
irreducible matrices is finitely axiomatizable, then S can be presented by
finitely many axioms and nonaxiomatic inference rules [7, Theorem 3.2].
This means that the corresponding equality free quasivariety of matrices is
finitely axiomatizable [7, Theorem 3.2].
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Pa�lasińska’s theorem yields a result for ordinary quasivarieties in a lan-
guage containing operation and relation symbols. Let Q = Mod(Σ) be such
a quasivariety. Extend the language of Q by one binary relation symbol
x ∼ y, and consider the class Q̃ = Mod(Σ̃) with axiomatization Σ̃ obtained
from Σ by replacing in it all occurrences of t ≈ s by t ∼ s, where t and s are
arbitrary terms, and by adding axioms guaranteeing that the interpretations
of x ∼ y are strict congruences. Clearly, Q̃ is protoalgebraic (even finitely
equivalential) equality free quasivariety and Q is finitely axiomatizable, or
finitely generated, iff Q̃ is. Moreover, the relation distributivity of Q̃ trans-
lates to the relative congruence distributivity of Q in the sense of [18]. Hence
the restriction to algebras in Pigozzi’s theorem is not necessary.

There is a common opinion that techniques and ideas from general alge-
bra (or rather from quasivariety theory) may carry over to abstract algebraic
logic when deductive systems under consideration are protoalgebraic. How-
ever, from the perspective of this paper, we see that what is really necessary
is the definability of Leibniz equalities by a positive formula (Theorem 5.2).
Definability by a set of positive formulas (i.e., protoalgebraicity cf. Theorem
2.4) is not enough as first-order logic would be left and compactness theorem
is lost. Note that in the construction described in the preceding paragraph
we got the desired definability for free. In fact, in this case, the proof of
Pa�lasińska’s theorem may be simplified a bit. Indeed, Section 5 is then
irrelevant, and some definitions may be simplified (Remarks 3.4 and 6.3).

The paper is organized as follows. In Section 2 we gather the needed
information about equality free quasivarieties. In Sections 3, 4, 5 and 6
we develop a general theory needed later: Section 3 is devoted to finitely
generated and locally finite equality free quasivarieties. In Section 4 we
formulate and prove the analogue of Jónsson’s Lemma. When we divide
the set of equality free quasi-identities axiomatizing an investigated equality
free quasivariety into the set of equality free identities and the rest, then
Jónsson’s Lemma shows how to reduce the first set to a finite one. In Sec-
tion 6 we define Q-relation formulas without equality, where Q is an equality
free quasivariety. In Section 5 we describe conditions for Q under which this
definition makes sense. Sections 7, 8 and 9 are devoted to the proof of
Pa�lasińska’s theorem: In Section 7 we say what it means that an equality
free quasivariety Q has definable principal Q-subrelations. In Section 8 we
prove a finite axiomatization theorem for such equality free quasivarieties.
In Section 9 it is showed that a finitely generated protoalgebraic relation dis-
tributive equality free quasivariety Q has definable principal Q-subrelations,
thus Pa�lasińska’s theorem is obtained. Here a brilliant argument due to
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Baker and Wang is used. Finally Appendix contains information about how
to obtain the results when we have more than one relation symbols in the
language. Most of the paper is written under the restriction that there is
just one such symbol. We do so in order not to obscure the reasoning. It
should bring the reader’s attention to relevant aspects of the theory, not to
notational technicalities.

To finish the introduction let us add that the novelty of this paper lies
mainly in introducing the proper notion of Q-relation formula for protoal-
gebraic equality free quasivarieties. With this tool in hand the results are
obtained by translating the arguments from [2] and [21].

2. Toolbox

Here we collect the facts that we need in the paper. We also fix terminology
and notation. The reader may consult the introductory paper [4]. It is fo-
cused on models with just one relation and is written from the perspective
of deductive systems. However it is not difficult to generalize and trans-
late the results obtained there to our setting of equality free quasivarieties.
Moreover, results from [12, 14] are particularly important for us. Further-
more, there are books about abstract algebraic logic that may serve here
[10, 16, 26]. Finally, basic knowledge about quasivarieties [18, 20] (axioma-
tization, freeness, generation, subdirect irreducibility) may help reading.

We fix a default first-order language L. We assume that L is finite,
i.e., it contains only finitely many operation and relation symbols. We also
assume that L does not contain equality symbol ≈. By an equality free
formula or a formula without equality we mean a first-order formula in L.
Sometimes we write that a model M in L satisfies a formula in L ∪ {≈}.
Then we consider M as a structure in L ∪ {≈} where ≈ is interpreted as
the equality on the carrier of M. A model M = (M,O,R) in L will be
written as M = (A,R), where A = (M,O) is an algebra reduct of M and
R are relations of M. We do so because relations are more important than
operations in our considerations. Notice that in abstract algebraic logic M
is traditionally called a matrix, and R a filter, however we decided to stick
with model theoretic terminology.

An equality free quasivariety is a class defined by equality free quasi-
identities, i.e., by equality free sentences of the form

(∀x̄)[ϕ0(x̄) ∧ · · · ∧ ϕn−1(x̄) → ϕ(x̄)],

where n is a natural number and ϕ0, . . . , ϕn−1, ϕ are atomic formulas. The
name “quasi-identity” comes from [18, 20], however sentences of this kind
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are also called strict universal Horn sentences [10]. An equality free variety is
a class defined by universally quantified equality free atomic formulas. Such
formulas are also called equality free identities.

There is a characterization of equality free quasivarieties by the closure on
some class operators. Beside commonly known P product, PU ultraproduct,
PSD subdirect product and S submodel class operators we need to consider
two more C contraction and E expansion class operators. A homomorphism
h : M → N is strict provided M |= R(ā) iff N |= R(h(ā)) for every tuple
ā ∈ M and every relation symbol R ∈ L. (Here and in many places we abuse
the notation writing ā ∈ M instead of a0, . . . , ak−1 ∈ M .) Then M ∈ E(C)
if there is a surjective strict homomorphism h : M → N with N ∈ C, and
N ∈ C(C) if there is a surjective strict homomorphism h : M → N with
M ∈ C. We say that M and N are relatives provided N ∈ EC(M) (or
equivalently M ∈ EC(N)). Note that if M and N are relatives, then they
satisfy the same equality free sentences.

Proposition 2.1 ([12, Theorem 9]). A class Q is an equality free quasi-
variety if and only if it is closed under E,C, S,P,PU class operators. The
smallest equality free quasivariety containing a class G, i.e., generated by G,
is given by ECSPPU(G).

A strict congruence of a model M = (A,R) is a congruence α of the alge-
bra A such that M |= R(ā) ↔ R(b̄) provided ā α b̄ for every relation symbol
R and every pair of tuples ā, b̄ of elements from M of the lengths equal the
arity of R. We alert that this notion is different than the congruences intro-
duced in [18]. The largest strict congruence of M is called Leibniz equality of
M and is denoted by Ω(M). Note that (a, b) ∈ Ω(M) if we cannot distinguish
a from b in the following sense: there is no equality free formula ϕ(x, z̄) and
a tuple c̄ ∈ M such that M |= ϕ(a, c̄) and M |= ¬ϕ(b, c̄). (See e.g. [17] for
the origin and philosophical aspects.) Thus Leibniz equalities are definable
by a set of formulas. Note however, that the existence of the automorphism
of M switching only two elements does not imply that these elements are
indistinguishable in the above sense, and are Leibniz equality congruent,
as the graph ©• ©• shows. We say that a model M is reduced if Ω(M) is
equal to the equality relation on M . We use the notation M∗ = M/Ω(M),
a∗ = a/Ω(M) for a ∈ M , and C∗ = {M∗ | M ∈ C}. Models M and N are
relatives iff the reduced models M∗ and N∗ are isomorphic.

On an algebra A we order all interpretations of relational part LR of
the default language L componentwise: R ⊆L S if for every R ∈ LR the
interpretation of R in R is contained in the interpretation of R in S (i.e.,
if the identity mapping is a homomorphism from (A,S) to (A,R)). For an
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equality free quasivariety Q let RelQ(A) be the set all interpretations R of
LR such that (A,R) ∈ Q. Note that RelQ(A) forms an algebraic lattice
with componentwise intersections as meets. For a model M = (A,R) define
RelQ(M) = {S | (A,S) ∈ Q and R ⊆L S}. If all lattices RelQ(M) are
distributive, we say that Q is relation distributive.

A model M = (A,R) in an equality free quasivariety Q is completely
irreducible relative to Q iff R is completely meet irreducible in the lattice
RelQ(M). Let QCI stand for the class of all completely irreducible models
relative to Q. Because every lattice RelQ(M) is algebraic, every model
M ∈ Q may be represented as (A,

⋂Ri), where all (A,Ri) ∈ QCI . From
this we obtain the following fact.

Lemma 2.2. Let P and Q be equality free quasivarieties. If PCI ⊆ Q, then
P ⊆ Q.

An equality free quasivariety Q is protoalgebraic if for every algebra A
and R,S ∈ RelQ(A) the inclusion R ⊆ S yields Ω(A,R) ⊆ Ω(A,S). In
particular, the protoalgebraicity guarantees that complete irreducibility in
equality free quasivarieties plays the same role as relative subdirect irre-
ducibility in quasivarieties. The following fact may be treated as an exercise.
Optionally, the reader may consult [4, Section 9].

Proposition 2.3. Let Q be a protoalgebraic equality free quasivariety. Then

(1) If M and N are relatives, then M ∈ QCI iff N ∈ QCI ;

(2) Q∗ = PSD(Q∗CI).

Formulas of the form (∀z̄)ϕ(x̄, z̄), where ϕ is atomic, are called pseudo-
atomic. We will need the following nontrivial fact. We encourage the reader
to check the brilliant proof.

Theorem 2.4 ([4, Theorem 13.5], [14, Theorem 7]). An equality free quasi-
variety Q is protoalgebraic if and only if Leibniz equalities are definable in
Q by a set of equality free pseudo-atomic formulas.

Equality free quasivarieties with Leibniz equalities definable by a (finite)
set of equality free atomic formulas are called (finitely) equivalential [6]. For
instance, the equality free quasivariety Q̃ constructed from an ordinary one
Q in Introduction is finitely equivalential.

Finally, the free model in an equality free quasivariety Q over a set
of variables X is constructed as FQ(X) = (T(X),

⋂
RelQ(T(X))), where

T(X) is an algebra of terms over X in the algebraic part of the default
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language. Note that if V is the equality free variety generated by Q, i.e., the
class satisfying equality free identities true in Q, then FQ(X) = FV(X) for
every X.

3. Finitely generated equality free quasivarieties

An equality free quasivariety Q is locally finite if all finitely generated sub-
models of every reduced model from Q are finite. Furthermore, Q is finitely
generated if it is generated by a finite family of finite models.

Lemma 3.1. Let Q be an equality free quasivariety. If Q is finitely generated,
then it is locally finite.

Proof. Assume that G is a finite family of finite models generating Q. Let
M = (A,R) be a model from Q∗. By Proposition 2.1, M ∈ (SP(G))∗. Hence
A belongs to the variety V generated by the algebra reducts of models from
G. By a standard argument in general algebra, V is locally finite, i.e., all
finitely generated algebras in V are finite. Now let N = (B,S) � M be
finitely generated. Then B � A is finitely generated. Thus B and N are
finite.

Lemma 3.2. Let Q be a locally finite protoalgebraic equality free quasivariety.
Then for every natural k there exists a natural m such that if N � M ∈ Q∗
and N is k-generated, then |N | � m.

Proof. Let m be the cardinality of submodel Gk of (FQ(N))∗ generated by
the set {0∗, 1∗, . . . , (k − 1)∗}. By local finiteness, m is finite.

Let N � M ∈ Q∗ and assume that N is generated by {a0, . . . , ak−1}. By
the Löwenheim-Skolem Theorem there exists a countable elementary sub-
model M′ of M containing N. Because Leibniz equalities are definable by a
set of formulas, M′ is reduced. Let h : FQ(N) → M′ = (A′,R′) be a surjec-
tive homomorphism sending each i < k onto ai. Since h−1(R′) belongs to
RelQ(FQ(N)), the protoalgebraicity yields Ω(FQ(N)) ⊆ Ω(T(X), h−1(R)).
Thus there is a surjective homomorphism h∗ : (FQ(N))∗ → M′ sending each
i∗ onto ai, where i < k. We have h∗(Gk) = N and |N | � m.

Lemma 3.3. If Q is a finitely generated protoalgebraic equality free qua-
sivariety, then there is a natural number which is an upper bound of the
cardinalities of all models in Q∗CI .

Proof. Let G be a finite family of finite models that generates Q. It is
sufficient to show that Q∗CI ⊆ S(G)∗. By Proposition 2.1 and Proposition 2.3
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point (1), for every M ∈ QCI there is M′ = (A′,R′) ∈ QCI a relative of
M such that M′ ∈ SP(G). Thus M′ �SD

∏
Mi is a subdirect product of

some models Mi ∈ S(G). Then there are M′
i = (A′,R′i) ∈ E(Mi) such that

R′ =
⋂R′i. Because M′ is completely irreducible, M′ = M′

j for some j, and
hence M and Mj are relatives.

Remark 3.4. In an equivalential equality free quasivariety submodels of
reduced models are reduced. Hence for them being locally finite is equivalent
to having all reduced finitely generated models finite.

4. Jónsson’s Lemma

Jónsson’s Lemma [19, Theorem 1.1] may be thought of as a road map for
proving finite axiomatization theorems. Here we present its variant for equal-
ity free quasivarieties. Our proof is based on [25, Proof of Lemma 4.2].

Jónsson’s Lemma 4.1. Let K be an equality free quasivariety and V be an
equality free variety. Assume that there are finitely axiomatizable classes E
and I such that

(1) K ∩ V ⊆ E;
(2) KCI ∩ V ⊇ K ∩ V ∩ I;
(3) KCI ∩ E ⊆ I.
If KCI ∩ V is finitely axiomatizable, then K ∩ V is finitely axiomatizable
relative to K.

Note that the conditions (2) and (3) hold when KCI ∩ E = I

Proof. By (1) and then by (2), we have

K ∩ V ⊆ (E − I) ∪ (K ∩ V ∩ I) ⊆ (E − I) ∪ (KCI ∩ V) =: C ⊆ E .

By assumption, C is finitely axiomatizable. Hence, by compactness theorem,
there exists a finitely axiomatizable equality free variety W ⊇ V such that
K ∩W ⊆ C. We will show that K ∩ V = K ∩W with the aid of Lemma 2.2.
Let M ∈ (K ∩W)CI . Because RelK(M) = RelK∩W(M), M ∈ KCI . Hence
by point (3)

M ∈ KCI ∩W ⊆ KCI ∩ E ⊆ I.
This and M ∈ C yield M ∈ KCI ∩ V ⊆ K ∩ V.
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5. Better universe

Lemma 5.1. Let Q be a protoalgebraic equality free quasivariety and C ⊆ Q∗.
If C is axiomatizable, then there exists an equality free positive formula x ∼ y
such that

(1) x ∼ y defines Leibniz equalities in E(C);

(2) for every M ∈ Q, Ω(M) is contained in the interpretation of x ∼ y in
M.

Proof. Let C = Mod(Σ) and x � y be a set of equality free pseudo-atomic
formulas from Theorem 2.4 defining Leibniz equalities in Q. Then

Σ, x � y |= x ≈ y.

By compactness
Σ, x �f y |= x ≈ y

for some finite x �f y ⊆ x � y. The formula x ∼ y =
∧

x �f y, which
is equality free and positive, defines equalities in C. Thus it defines Leibniz
equalities in E(C).

Better Universe Theorem 5.2. Let Q be a protoalgebraic equality free
quasivariety with Q∗ axiomatizable. Then there exists a better universe U :
an equality free quasivariety such that

(1) Q ⊆ U ;
(2) U is finitely axiomatizable;

(3) U is protoalgebraic;

(4) there is a positive equality free formula x ∼ y defining Leibniz equalities
in U .

Proof. Let x ∼ y be the formula from Lemma 5.1 when C = Q∗. Let χ
be a sentence such that M |= χ iff the interpretation of x ∼ y in M is a
strict congruence. We have Q |= χ, thus there exists a finitely axiomatizable
equality free quasivariety U ⊇ Q such that U |= χ. We will show that for
M ∈ U the interpretation of x ∼ y in M coincides with Ω(M). Recall
that the Leibniz equality Ω(M) is the largest strict congruence of M. Thus
M |= χ guarantees that the interpretation of x ∼ y in M in contained in
Ω(M). Conversely, let (a, b) ∈ Ω(M). Then M∗ |= a∗ ≈ b∗. Hence, because
the interpretation of x ∼ y in M∗ is reflexive, M∗ |= a∗ ∼ b∗. Now the fact
that x ∼ y is equality free gives us M |= a ∼ b. Thus (4) is proved. Finally,
the positivity of x ∼ y yields (3).
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We indicate the case when Better Universe Theorem is applicable.

Proposition 5.3. Let Q be a protoalgebraic equality free quasivariety and
Q∗CI be axiomatizable. Then Q∗ is axiomatizable and Better Universe The-
orem holds for Q.

Proof. Let x ∼ y be the formula from Lemma 5.1 when C = Q∗CI . We claim
that Q∗ is definable relative to Q by σ = (∀x, y)[x ∼ y → x ≈ y]. By point
(2) in Lemma 5.1, every model from Q satisfying σ is reduced. Conversely,
the positivity of x ∼ y yields preservation of satisfaction of σ under taking
subdirect products. Thus, by Propositions 2.3 point (2), Q∗ |= σ follows
from Q∗CI |= σ.

Everywhere from now on Q is always assumed to satisfy conditions of
Better Universe Theorem, and U , x ∼ y are as there.

6. Q-Relation formulas

Congruence formulas are a key tool in general algebra. Most standard proofs
of finite axiomatization results for (quasi)varieties use them. However their
counterparts for protoalgebraic equality free quasivarieties were overlooked.
The situation is a bit more complicated here and we need to consider two
notions: Q-relation formulas with and without equality. We will introduce
them in the case when there is only one relation symbol R in the default lan-
guage because the general case is a bit cumbersome. We will identify the in-
terpretation R of R in M with the subset of Marity(R). Then (A,R) |= R(ā)
means exactly ā ∈ R. We will present the adjustment to the general case in
Appendix.

For tuples ā0, . . . , ān−1 ∈ M of the lengths arity(R), let

relMQ (ā0, . . . , ān−1) =
⋂

{S ∈ RelQ(M) | ā0, . . . , ān−1 ∈ S}.

Note that relations relMQ (ā0, . . . , ān−1) are compact elements in the lattice
RelQ(M). Relations of the form relMQ (ā) will be called principal Q-relations.
Observe that a model M ∈ Q is completely irreducible relative to Q iff there
exists a tuple c̄ ∈ M such that M |= ¬R(c̄) and whenever M |= ¬R(ā) for
some ā ∈ M , then c̄ ∈ relMQ (ā). Studying definability of principal Q-relations
is one of our main concerns in this paper, as is studying definability of
principal congruences in general algebra.

A Formula Γ(ȳ, x̄) is Q-relation formula with equality if it is (equivalent
to) an existential positive formula (or a disjunction of primitive positive
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formulas), possibly with equality, such that

Q |= (∀x̄, ȳ) [Γ(ȳ, x̄) ∧R(x̄)] → R(ȳ). (�Γ)

A Q-relation formula without equality is any formula Γ̃ that may be obtained
obtained from a Q-relation formula with equality Γ by replacing all occur-
rences of t ≈ s in Γ by t ∼ s, where t and s are arbitrary terms. Note that
Q-relation formulas without equality do not have to be equivalent to exis-
tential formulas, but, due to the protoalgebraicity, they are positive. This is
an important observation that will be useful later. The simplest Q-relation
formulas with(out) equality are x̄ ≈ ȳ (x̄ ∼ ȳ) and R(ȳ).

Lemma 6.1. Let Γ̃ be a Q-relation formula without equality. Then

Q |= (∀x̄, ȳ) [Γ̃(ȳ, x̄) ∧R(x̄)] → R(ȳ). (�
˜Γ
)

Proof. Assume that M ∈ Q and M |= Γ̃(b̄, ā) ∧ R(ā). Then we have
M∗ |= Γ(b̄∗, ā∗) ∧R(ā∗). Hence, by (�Γ), M∗ |= R(b̄∗) and M |= R(b̄).

Proposition 6.2. Let ā, b̄ ∈ M , M ∈ U . The following conditions are
equivalent.

(1) b̄ ∈ relMQ (ā);

(2) M |= Γ(b̄, ā) for some Q-relation formula Γ with equality;

(3) M |= Γ̃(b̄, ā) for some Q-relation formula Γ̃ without equality.

Proof.
(3)⇒(1) Assume that M = (A,R) |= Γ̃(b̄, ā). The positivity of Γ̃ implies
(A, relMQ (ā)) |= Γ̃(b̄, ā). Moreover, (A, relMQ (ā)) |= R(ā). Thus, by (�

˜Γ
),

(A, relMQ (ā)) |= R(b̄).

(1)⇒(3) Let

S = {c̄ | M |= Γ̃(c̄, ā) for some Q-relation formula without equality Γ̃}.

It is enough to show that ā ∈ S ∈ RelQ(M). Because ȳ ∼ x̄ is a Q-relation
formula without equality, ā ∈ S. Similarly, the fact that R(ȳ) is a Q-relation
formula without equality yields R ⊆ S. In order to see that S ∈ RelQ(M)
consider an equality free quasi-identity true in Q

q = (∀z̄)

[∧
i

R(t̄i(z̄)) → R(t̄(z̄))

]
.
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We need to verify that (A,S) |= q. So assume that M |= Γ̃i(t̄i(d̄), ā) for
some Q-relation formulas without equality Γ̃i and some d̄ ∈ M . Put

Γ̃(ȳ, x̄) = (∃ū)

[
ȳ ∼ t̄(ū) ∧

∧
i

Γ̃i(t̄i(ū), x̄)

]
.

Then Γ̃ is equivalent to a Q-relation formula without equality and moreover
M |= Γ̃(t(d̄), ā). Hence (A,S) |= q.

The proof of the equivalence (1)⇔(2) is analogous. Note however that
this equivalence is more general. It holds for arbitrary equality free quasi-
varieties.

Remark 6.3. Note that when Q is finitely equivalential Q-relation formulas
without equality are (equivalent to) existential positive equality free formulas
satisfying (�Γ). Thus then they form a subclass of Q-relation formulas with
equality.

7. Definable principal Q-subrelations

A Q-relation formula with or without equality Υ defines principal Q-sub-
relations in a class C ⊆ Q if for every M ∈ C, and ā ∈ M such that
M |= ¬R(ā), there exists b̄ ∈ M satisfying

M |= ¬R(b̄), M |= Υ(b̄, ā) and relMQ (b̄) = {c̄ ∈ M | M |= Υ(c̄, b̄)}.

We say that Q has definable principal subrelations (DPSR in short) if there
exists a Q-relation formula without equality Γ̃ defining principal Q-subrel-
ations in Q.

Lemma 7.1. Q has DPSR if and only if there is a Q-relation formula with
equality Γ defining principal Q-subrelations in Q∗.
Proof. This is so because M |= Γ̃(b̄, ā) iff M∗ |= Γ(b̄∗, ā∗).

Proposition 7.2. Assume that there exists a natural number m such that
for every M ∈ Q∗ and ā ∈ M , M |= ¬R(ā)

(1) there exist b̄ ∈ M and N � M, such that ā, b̄ ∈ N , |N | � m, M |= ¬R(b̄)
and b̄ ∈ relNQ(ā);

(2) for every c̄ ∈ relMQ (b̄) there exists K � M such that b̄, c̄ ∈ K, |K| � m
and c̄ ∈ relKQ(b̄).
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Then Q has DPSR. The converse is true provided Q is locally finite.

Proof. We will verify the condition from Lemma 7.1. By the finiteness
of the default language it follows that there are only finitely many models
of cardinality at most m. Thus, by Proposition 6.2, there is a Q-relation
formula with equality Γ such that for every N with |N | � m and for all
ā, b̄ ∈ N

b̄ ∈ relNQ(ā) iff N |= Γ(b̄, ā).

Now let ā ∈ M , where Q∗ � M |= ¬R(ā). Let b̄ and N be as in point
(1). Then N |= Γ(b̄, ā) and, because Γ is existential, M |= Γ(b̄, ā). We
analogically verify that c̄ ∈ relMQ (b̄) iff M |= Γ(c̄, b̄) for c̄ ∈ M .

Conversely, by Lemma 7.1 there exists a Q-relation formula with equal-
ity Γ(ȳ, x̄) = (∃z̄) γ(x̄, ȳ, z̄), where γ is quantifier free, defining principal
Q-subrelations in Q∗. Take m to be the number from Lemma 3.2 for
k = (length of z̄) + 2 arity(R).

8. Finite axiomatization theorem

Lemma 8.1. Let Q and P be equality free quasivarieties generating the
same equality free variety V. If for every ā ∈ M and M ∈ Q, we have
relMQ (ā) = relMP (ā), then Q = P.

Proof. First notice that every model has a relative of the form (T(X),R)
for some set X, this is with algebra of terms as its algebra reduct. Moreover,
the assumption gives us FQ(X) = FP(X) =: F. Thus it would be enough
to show that RelP(F) = RelQ(F). But even less is needed. Because both
lattices RelP(F) and RelQ(F) are algebraic, we just need to show that they
have the same compact elements, i.e.,

relFQ(t̄0, . . . , t̄n−1) = relFP(t̄0, . . . , t̄n−1)

for all t̄0, . . . , t̄n−1 ∈ F , n ∈ N. We will verify this equality by induction on
n. For n = 0 the equation clearly holds. So assume that it holds for n. Then

relFQ(t̄0, . . . , t̄n−1, t̄n) = rel
(T(X),relFQ(t̄0,...,t̄n−1))

Q (t̄n)

= rel
(T(X),relFQ(t̄0,...,t̄n−1))

P (t̄n)

= rel
(T(X),relFP (t̄0,...,t̄n−1))
P (t̄n) = relFP(t̄0, . . . , t̄n−1, t̄n).

Here the first and the last equalities hold by the definition, the second fol-
lows from the assumption of the lemma, and the third from the induction
assumption.
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Lemma 8.2. Assume that Q has DPSR. Then Q is finitely axiomatizable
relative to the equality free variety V it generates.

Proof. Let Γ̃ be a Q-relation formula without equality witnessing DPSR
for Q. By compactness theorem, there is a finitely axiomatizable equality
free quasivariety K such that Q ⊆ K ⊆ U , where U is from Better Universe
Theorem and Γ̃ is a K-relation formula without equality. We will prove that
P := K∩V = Q by verifying the condition from Lemma 8.1. So we want to
check that relMQ (ā) = relMP (ā) for ā ∈ M , M = (A,R) ∈ Q.

The inclusion relMP (ā) ⊆ relMQ (ā) follows from the containment Q ⊆ P.
In order to prove the converse one we construct a sequence (Rκ)κ<ρ, where
ρ is an ordinal, of relations on M with the following properties:

• |RelQ(M)| < |ρ|;
• if λ � κ < ρ, then Rλ ⊆ Rκ;

• for κ < ρ, Rκ ∈ RelQ(M);

• for κ < ρ, Rκ ⊆ relMP (ā);

• for κ < ρ, Rκ = Rκ+1 implies Rκ = relMQ (ā);

The first condition yields that (Rκ)κ<ρ is not strictly increasing. Hence, by
the last two conditions, we obtain relMQ (ā) ⊆ relMP (ā). We start by putting
R0 := R. Let κ = λ + 1 and assume that Rλ is already defined. If ā ∈ Rλ,
then Rλ = relMQ (ā) since ā ∈ Rλ ∈ RelQ(M). In this case we simply put
Rκ := Rλ. Otherwise there exists b̄ �∈ Rλ such that

(A,Rλ) |= Γ̃(b̄, ā), rel
(A,Rλ)
Q (b̄) = {c̄ ∈ M | (A,Rλ) |= Γ̃(c̄, b̄)},

and we define Rκ := rel
(A,Rλ)
Q (b̄). Since Γ̃ is a K-, and hence a P-relation

formula without equality, by Proposition 6.2 we have Rκ ⊆ rel
(A,Rλ)
P (b̄) and

b̄ ∈ rel
(A,Rλ)
P (ā). This and Rλ ⊆ relMP (ā) yield Rκ ⊆ relMP (ā). If κ is a limit

ordinal we define Rλ :=
⋃

λ�κRλ.

Lemma 8.3. Let K be an equality free quasivariety contained in U and Γ̃ be a
K-relation formula without equality. Assume further that Γ̃ defines principal
K-subrelations in M ∈ K. Then M ∈ KCI if and only if M satisfies the
sentence

σ = (∃z̄)
[
¬R(z̄) ∧ [

(∀x̄)[¬R(x̄) → Γ̃2(z̄, x̄)]
]]
,

where Γ̃2(z̄, x̄) = (∃ȳ)[Γ̃(ȳ, x̄) ∧ Γ̃(z̄, ȳ)].
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Proof. Assume that M |= σ. Because Γ̃2 is equivalent to a K-relation
formula, there exists a tuple c̄ such that M |= ¬R(c̄) and c̄ ∈ relMK (ā)
whenever M |= ¬R(ā). Hence M ∈ KCI . Conversely, let M be in KCI and
c̄ ∈ M be a tuple such that relMK (c̄) is the only atom in the lattice RelK(M).
Let ā ∈ M be a tuple such that M |= ¬R(ā). Because Γ̃ defines principal
K-subrelations in K, there exists b̄ ∈ M such that M |= ¬R(b̄), M |= Γ̃(b̄, ā)
and relMK (b̄) = {d̄ ∈ M | M |= Γ̃(d̄, b̄)}. We have relMK (c̄) ⊆ relMK (b̄) and
hence M |= Γ̃(c̄, b̄). This way we proved that M |= σ.

Theorem 8.4. Assume that Q has DPSR witnessed by Γ̃. Then Q is finitely
axiomatizable if and only if QCI or Q∗CI is finitely axiomatizable.

Proof. Because we implicitly assume that Q satisfies the conditions of
Better Universe Theorem, QCI is finitely axiomatizable iff Q∗CI is finitely
axiomatizable.
(⇒) It follows from Lemma 8.3.

(⇐) By Lemma 8.2, there exists an equality free quasivariety K ⊆ U , with
a finite axiomatization Σ, such that Q = K ∩ V, where V is an equality free
variety generated by Q, and Γ̃ is a K-relation formula without equality.

Let δ(ȳ) be a formula such that for every M ∈ U and b̄ ∈ M

M |= δ(b̄) iff {c̄ ∈ M | M |= Γ̃(c̄, b̄)} = relMK (b̄). (�)

We may construct δ as follows. For

q = (∀z̄)

[∧
i

R(t̄i(z̄)) → R(t̄(z̄))

]
∈ Σ

let

δq(ȳ) := (∀z̄)

[∧
i

Γ̃(t̄i(z̄), ȳ) → Γ̃(t̄(z̄), ȳ)

]
and

δ(ȳ) := Γ̃(ȳ, ȳ) ∧
∧
q∈Σ

δq(ȳ).

The construction gives us the equivalence

M |= δ(b̄) iff b̄ ∈ {c̄ ∈ M | M |= Γ̃(c̄, b̄)} ∈ RelK(M).

Thus, by Proposition 6.2, (�) holds.
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Now we apply Jónsson’s Lemma. For this purpose we need to define
classes E and I satisfying conditions stated there. The class E is the subclass
of K satisfying

(∀x̄)
[
¬R(x̄) → [

(∃ȳ)[¬R(ȳ) ∧ Γ̃(ȳ, x̄) ∧ δ(ȳ)]
]]
.

In other words, E is the subclass of K where Γ̃ defines principal K-subrel-
ations. In particular, Q ⊆ E and the condition (1) from Jónsson’s Lemma
holds. The class I is the subclass of E satisfying the sentence σ from
Lemma 8.3. The satisfaction of the conditions (2) and (3) from Jónsson’s
Lemma follows from Lemma 8.3. Finally, by the assumption, KCI∩V = QCI

is finitely axiomatizable. This proves that Q is finitely axiomatizable relative
to K. Thus, since K is finitely axiomatizable, Q is finitely axiomatizable.

9. Pa�lasińska’s theorem

For a relation D of arity r on the carrier set of M and a submodel N of
M with the algebra reduct B we will use the notation D|B for D ∩ N r. In
particular, if M = (A,R), then N = (B,R|B).

Lemma 9.1. Let R,S ∈ RelQ(A) and B be a subalgebra of A. Assume that

(1) |(A,S)∗| � |(A,R)∗|;
(2) B contains a representative of each class of Ω(A,R);

(3) S|B ⊆ R|B;
(4) (A,S)∗ is finite.

Then B contains a representative of each class of Ω(A,S).

Proof. We have

|(B,S|B)∗| � |(A,S)∗| � |(A,R)∗| = |(B,R|B)∗| � |(B,S|B)∗|.

Indeed, the first inequality may be deduced from the definition of Leibniz
equality. The second inequality is assumed as point (1). The equality follows
from point (2) and the observation that then Ω(B,R|B) = Ω(A,R)|B. And
the last inequality follows from the protoalgebraicity and point (3). Hence
|(B,S|B)∗| = |(A,S)∗|, and the conclusion follows from point (4).

Theorem 9.2. Let Q be a finitely generated protoalgebraic relation distribu-
tive equality free quasivariety. Then Q has DPSR.
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Proof. By Lemma 3.3, there is a natural number l which is an upper bound
of the cardinality of models in Q∗CI . In particular, Q∗CI is axiomatizable, and,
by Proposition 5.3, Better Universe Theorem holds for Q.

We will verify the condition from Proposition 7.2. By Lemma 3.1, Q is
locally finite, and we may use Lemma 3.2. Let m be the number from this
lemma when k = l + 2 arity(R).

Let M = (A,R) ∈ Q∗. By the algebraicity of the lattice RelQ(M) there
are Ri ∈ RelQ(M) such that R =

∧
iRi and (A,Ri) ∈ QCI . Let ā �∈ R.

Let j be such that (A,Rj)
∗ has the largest possible cardinality with respect

to the condition ā �∈ Rj .

Let N = (B,R|B) be a submodel of M generated by a tuple ā and at
most l-element set of representatives of all classes of Ω(A,Rj). Then N has
generating set with at most l + arity(R) � k elements, and hence |N | � m.
Because (A,Rj)

∗ ∼= (B,Rj |B)∗, by Proposition 2.3 point (1), Rj |B is meet
irreducible in RelQ(N). By the distributivity of RelQ(N), Rj |B is also meet
prime. Hence, since RelQ(N) is a finite lattice, there is the least relation
R′ ∈ RelQ(N) not contained in Rj |B. Moreover, R′ is principal, i.e., it
equals relNQ(b̄) for some b̄ ∈ N . Summarizing, we have the following splitting(∀S ∈ RelQ(N)

) [S � Rj |B xor relNQ(b̄) � S]. (��)

Because ā �∈ Rj , relNQ(b̄) � relNQ(ā). This means exactly b̄ ∈ relNQ(ā).

Now consider a tuple c̄ ∈ relMQ (b̄). Let K = (C,R|C) be the submodel of
M generated by B and c̄. Thus defined K has generating set with at most
k elements, and hence |K| � m. We are going to verify that c̄ ∈ relKQ(b̄). By
the distributivity of the finite lattice RelQ(K)

relKQ(b̄) = relKQ(b̄) ∨
∧
i

Ri|C =
∧
i

(
relKQ(b̄) ∨Ri|C

)
=

∧
i

rel
(C,Ri|C)
Q (b̄).

Hence it is enough to show that c̄ ∈ rel
(C,Ri|C)
Q (b̄) for all i.

Case b̄ ∈ Ri: Then c̄ ∈ Ri and in particular c̄ ∈ rel
(C,Ri|C)
Q (b̄).

Case b̄ �∈ Ri: By (��), Ri|B ⊆ Rj |B, and we may apply Lemma 9.1 with
R = Rj and S = Ri. This proves that B contains a representative of
each class of Ω(A,Ri). Hence C contains a representative of each class
of Ω(A,Ri). Recall that, by Proposition 6.2, c̄ ∈ relMQ (b̄) implies that
(A,Ri) |= γ(c̄, b̄, d̄), where (∃z̄) γ(x̄, ȳ, z̄) is some Q-relation formula with-
out equality, γ is quantifier free, and d̄ ∈ M . Let ē be a tuple in K such that

(d̄, ē) ∈ Ω(A,Ri). Then (C,Ri|C) |= γ(c̄, b̄, ē), and hence c̄ ∈ rel
(C,Ri|C)
Q (b̄).
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Proof of Pa�lasińska’s Theorem. Combine Theorem 8.4 and Theorem
9.2.

Appendix

Here we briefly show what we need to modify in the presented reasoning in
order to obtain the proof of Pa�lasińska’s theorem when the set LR of relation
symbols is of any finite cardinality.

It is convenient to see the interpretation R of LR in a given model M
as a subset of

⋃
R∈LR

Marity(R) × {R}. For relation symbols Ri and tuples
āi ∈ M of the lengths arity(Ri), i < n, now we may define

relMQ ((ā0, R0), . . . , (ān−1, Rn−1))

:=
⋂

{S ∈ RelQ(M) | (ā0, R0), . . . , (ān−1, Rn−1) ∈ S}.

A Q-relation formula with equality is a family Γ = {ΓS,R | S,R ∈ LR} of
existential positive formulas, possibly with equality, such that

Q |= (∀x̄, ȳ) [ΓS,R(ȳ, x̄) ∧R(x̄)] → S(ȳ). (�ΓS,R
)

holds for all R,S ∈ LR. A Q-relation formula without equality is the family
of formulas Γ̃ = {Γ̃S,R | S,R ∈ LR} obtained from Γ, a Q-relation formula
with equality, by replacing all occurrences of t ≈ s by t ∼ s, where t and s
are arbitrary terms in all ΓS,R.

A Q-relation formula with or without equality Υ = {ΥS,R | R,S ∈ LR}
defines principal Q-subrelations in a class C ⊆ Q if for every M ∈ C, and
ā ∈ M such that M |= ¬R(ā), there exists S ∈ LR and b̄ ∈ M of the length
equals arity(S) such that

M |= ¬S(b̄), M |= ΥS,R(b̄, ā), relMQ ((b̄, S)) = {(c̄, T ) | M |= ΥT,S(c̄, b̄)}.
We say that Q has definable principal subrelations (DPSR in short) if there
exists a Q-relation formula without equality Γ̃ defining principal Q-sub-
relations in Q.

With the modified definitions the reader may reformulate the statements
and the proofs of facts obtained in Sections 6,7, 8 and 9. Let us describe
two places where the changes are not completely straightforward.

The definition of the sentence σ from Lemma 8.3 is now more compli-
cated. Let

Γ̃2
T,R(z̄, x̄) :=

∨
S∈LR

(∃ȳS)[Γ̃T,S(z̄, ȳS) ∧ Γ̃S,R(ȳS , x̄)],
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where ȳS is a tuple of variables of the length equals arity(S), and

σ :=
∨

T∈LR

(∃z̄T )
[
¬T (z̄T ) ∧

∧
R∈LR

[
(∀x̄R)[¬R(x̄) → Γ̃2

T,R(z̄T , x̄R)]
]]
,

where x̄R and z̄T are tuples of variables of the lengths equal arity(R) and
arity(T ) respectively.

In the proof of Theorem 8.4 we need to redefine the sentence axiomatizing
the class E relative to K. For

q = (∀z̄)

[∧
i

Ti(t̄i(z̄)) → T (t̄(z̄))

]
∈ Σ

let

δS,q(ȳS) := (∀z̄)

[∧
i

Γ̃Ti,S(t̄i(z̄), ȳS) → Γ̃T,S(t̄(z̄), ȳS)

]
and

δS(ȳS) := Γ̃S,S(ȳS) ∧
∧
q∈Σ

δS,q(ȳS).

Now let E be the subclass of K satisfying∧
R∈LR

(∀x̄R)
[
¬R(x̄R) →

∨
S∈LR

[
(∃ȳS)[¬S(ȳS) ∧ Γ̃S,R(ȳS , x̄R) ∧ δS(ȳS)]

]]
.
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Grant LC505, by Statutory Grant of Warsaw University of Technology, and
by Alexander von Humboldt Foundation.

References

[1] Baker, Kirby A., Finite equational bases for finite algebras in congruence-
distributive equational classes, Adv. Math. 24 (3):207–243, 1977.

[2] Baker, Kirby A., and Ju Wang, Definable principal subcongruences, Algebra Uni-

versalis 47 (2):145–151, 2002.
[3] Blok, Willem J., and Don Pigozzi, Protoalgebraic logics, Studia Logica 45 (4):337–

369, 1986.
[4] Blok, Willem J., and Don Pigozzi, Algebraic semantics for universal Horn logic

without equality, in Universal algebra and quasigroup theory (Jadwisin, 1989), vol. 19
of Res. Exp. Math., Heldermann, Berlin, 1992, pp. 1–56.

[5] Bloom, Stephen L., Some theorems on structural consequence operations, Studia
Logica 34 (1):1–9, 1975.



846 A. M. Nurakunov, M. M. Stronkowski

[6] Czelakowski, Janusz, Equivalential logics (I), Studia Logica 40 (3):227–236, 1981.
[7] Czelakowski, Janusz, Primitive satisfaction and finitely based logics, Studia Logica

42 (1):89–104, 1983.
[8] Czelakowski, Janusz, Filter distributive logics, Studia Logica 43 (4):353–377, 1984.
[9] Czelakowski, Janusz, Algebraic aspects of deduction theorems, Studia Logica 44

(4):369–387, 1985.
[10] Czelakowski, Janusz, Protoalgebraic logics, vol. 10 of Trends in Logic—Studia Log-

ica Library, Kluwer Academic Publishers, Dordrecht, 2001.
[11] Czelakowski, Janusz, and Wies�law Dziobiak, A deduction theorem schema for

deductive systems of propositional logics, Studia Logica 50 (3-4):385–390, 1991.
[12] Dellunde, Pilar, and Ramon Jansana, Some characterization theorems for in-

finitary universal Horn logic without equality, J. Symbolic Logic 61 (4):1242–1260,
1996.

[13] Dzik, Wojciech, and Roman Szuszko, On distributivity of closure systems, Bull.
Sect. Logic Univ. �Lódź, 6 (2):64–66, 1977.
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