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Abstract: According to Aristotle, humans are the rational animal. The borderline between rationality and irrationality is fundamental to
many aspects of human life including the law, mental health, and language interpretation. But what is it to be rational? One answer,
deeply embedded in the Western intellectual tradition since ancient Greece, is that rationality concerns reasoning according to the rules
of logic – the formal theory that specifies the inferential connections that hold with certainty between propositions. Piaget viewed
logical reasoning as defining the end-point of cognitive development; and contemporary psychology of reasoning has focussed on
comparing human reasoning against logical standards.

Bayesian Rationality argues that rationality is defined instead by the ability to reason about uncertainty. Although people are typically
poor at numerical reasoning about probability, human thought is sensitive to subtle patterns of qualitative Bayesian, probabilistic
reasoning. In Chapters 1–4 of Bayesian Rationality (Oaksford & Chater 2007), the case is made that cognition in general, and
human everyday reasoning in particular, is best viewed as solving probabilistic, rather than logical, inference problems. In Chapters
5–7 the psychology of “deductive” reasoning is tackled head-on: It is argued that purportedly “logical” reasoning problems,
revealing apparently irrational behaviour, are better understood from a probabilistic point of view. Data from conditional reasoning,
Wason’s selection task, and syllogistic inference are captured by recasting these problems probabilistically. The probabilistic
approach makes a variety of novel predictions which have been experimentally confirmed. The book considers the implications of
this work, and the wider “probabilistic turn” in cognitive science and artificial intelligence, for understanding human rationality.

Keywords: Bayes’ theorem, conditional inference, logic, non-monotonic reasoning, probability, rational analysis, rationality, reasoning,
selection task, syllogisms

Bayesian Rationality (Oaksford & Chater 2007, hereafter
BR) aims to re-evaluate forty years of empirical research
in the psychology of human reasoning, and cast human
rationality in a new and more positive light. Rather than
viewing people as flawed logicians, we focus instead on
the spectacular success of human reasoning under uncer-
tainty. From this perspective, everyday thought involves
astonishingly rich and subtle probabilistic reasoning – but
probabilistic reasoning which is primarily qualitative,
rather than numerical. This viewpoint leads to a radical
re-evaluation of the empirical data in the psychology of
reasoning. Previously baffling logical “errors” in reasoning
about even the simplest statements can be understood as
arising naturally from patterns of qualitative probabilistic
reasoning.

Why “Bayesian” rationality, rather than mere “probabil-
istic” rationality? The answer is that our approach draws
crucially on a particular interpretation of probability, not
merely on the mathematics of probability itself.

Probability is often taught as capturing “objective” facts
about something, for example, gambling devices such as
dice or cards. It is sometimes presumed to be a fact, for
example, that the probability of a fair coin producing
three consecutive heads is 1/8. However, in the context
of cognitive science, probability refers not to objective
facts about gambling devices or anything else, but
rather, it describes a reasoner’s degrees of belief. Prob-
ability theory is then a calculus not for solving mathemat-
ical problems about objects in the world, but a calculus for
rationally updating beliefs. This perspective is the subjec-
tive, or Bayesian view of probability. We thus argue that
human rationality, and the coherence of human thought,
is defined not by logic, but by probability.

The Bayesian perspective on human reasoning has
radical implications. It suggests that the meaning of even
the most elementary natural language sentences may
have been fundamentally mischaracterized: many such
statements may make probabilistic rather than logical
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claims. And the most elementary aspects of human reason-
ing may have been misunderstood – what appeared to be
logically certain inferences may often instead be better
understood as plausible, probabilistic reasoning. Shifting
from a logical to a Bayesian perspective entirely changes
our predictions concerning the patterns of reasoning that
we should expect people to exhibit. And experimental
work in the psychology of reasoning provides the data
against which these predictions can be compared.

This Précis outlines the argument of BR chapter by
chapter; the section numbering corresponds to the
chapter numbering of the book, with occasional modifi-
cations to assist the flow of what is now a somewhat com-
pressed argument. The first section of the book, Chapters
1–4, outlines the theoretical background of our shift from
logical to Bayesian rationality as an account of everyday
human reasoning, drawing on relevant areas of psychol-
ogy, philosophy, and artificial intelligence. The second
section of the book, Chapters 5–7, relates this approach
to the key empirical data in the psychology of reasoning:
conditional reasoning, Wason’s selection task, and syllogis-
tic reasoning. We argue that the patterns of results
observed in the empirical data consistently favour a Baye-
sian analysis, even for purportedly paradigmatically
“logical” reasoning problems. Chapter 8 reflects on the
implications of this approach.

1. Logic and the Western conception of mind

Since the Greeks, the analysis of mind has been deeply
entwined with logic. Indeed, the study of logical argument
and the study of mind have often been viewed as overlap-
ping substantially. One swift route to such a deep connec-
tion is to argue that minds are distinctively rational; and
that rationality is partly, or perhaps even wholly, character-
ized by logic. That is, logical relations are viewed primarily

as unbreakable, inferential relations between thoughts;
and a coherent, intelligible agent must respect such
relations. In particular, logic aims to specify inferential
relations that hold with absolute certainty: logical infer-
ence is truth preserving, that is, if the premises are true,
the conclusion must also be true.

But which inferences are absolutely certain? Which can
be relied upon to preserve truth reliably? We may feel
confident, from our knowledge of science, that, for
example, all women are mortal. We might generalize
from the mortality of all other living things; or note that
even the most long-lived creature will succumb in the
heat-death of the universe of the far future. But such con-
siderations, however convincing, do not give the certainty
of logic – they depend on contingent facts, and such facts
are not themselves certain. Aristotle answered these ques-
tions by providing the first logical system: the theory of the
syllogism. Syllogisms involve two premises, such as, All
women are people; All people are mortal. Aristotle
argued that these premises imply with absolute certainty
that All women are mortal.

Logical certainty is more than mere overwhelming con-
fidence or conviction. A logical argument depends purely
on its structure: thus, Aristotle noted, our logical argument
put forth here is of the form All A are B; All B are C; there-
fore, All A are C. And this argument is valid whatever A, B,
or C stand for; hence there is no appeal to contingent facts
of any kind. Aristotle’s spectacular discovery was, therefore,
that patterns of reliable reasoning could be obtained
merely by identifying the structure of that reasoning. Logic,
then, aims to provide a theory that determines which argu-
ment structures are truth-preserving, and which are not. In
a very real sense, in a logical inference, if you believe the pre-
mises, you already believe the conclusion – the meaning of
the conclusion is, somehow, contained in the meaning of
the premises. To deny the constraints of logic would thus
be incoherent, rather than merely mistaken. Thus, logic
can be viewed as providing crucial constraints on the
thoughts that any rational agent can entertain (Davidson
1984; Quine 1953).

Aristotle’s theory of the logical structure of the syllogism
proceeded by enumeration: Aristotle identified 64 forms
of the syllogism, along with a systematic, though intuitive,
approach to deciding which of these syllogisms had a valid
conclusion, and if so, what the nature of this conclusion is.
For more than two thousand years, Aristotle’s theory of the
syllogism almost exhausted logical theory—and indeed,
Kant considered all logical questions to have been decisi-
vely resolved by Aristotle’s account, stating: “It is remark-
able also, that to the present day, it has not been able to
make one step in advance, so that, to all appearance, it
[i.e., logic] may be considered as completed and perfect”
(Kant 1787/1961, p. 501).

As we have suggested, although Aristotle’s logic is
defined over patterns of verbally stated arguments (con-
verted from everyday language into the appropriate
formal structure), it is nonetheless tempting to view the
primary subject matter of logic as thought itself. If the
mind is viewed as constituted by rational thought, and
logic captures patterns of rational thought, it seems
natural to view logic as a central part of psychology.
Such was Boole’s perspective, in going beyond Aristotle’s
enumeration of patterns of logical argument. Boole
aimed to describe the “The Laws of Thought” (Boole
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1854/1958); and, in doing so, provided, for the first time,
explicit mathematical rules for logical reasoning. This
allowed him to develop a calculus for logical reasoning,
albeit limited in scope. Boole also opened up the possi-
bility that logical reasoning could be carried out mechan-
istically, purely by the manipulation of logical symbols.
This insight provided a partial foundation for modern
computation and, by extension, cognitive science.

The view that rational thought is governed by logic,
which we term the logicist conception of the mind (Oaks-
ford & Chater 1991), was adopted wholeheartedly by early
cognitive theorists such as Piaget (e.g., Inhelder & Piaget
1955). Piaget viewed the pinnacle of cognitive develop-
ment as attaining the “formal operational” stage, at
which point the mind is capable of reasoning according
to a particular formal system of logic: propositional logic.
He viewed the process of cognitive development as a
series of stages of enrichment of the logical apparatus of
the child, enabling increasingly abstract reasoning, which
is less tied to the specific sensory-motor environment.
Similarly, the early foundations of cognitive science and
artificial intelligence involved attempting to realize
logical systems practically, by building computer programs
that can explicitly derive logical proofs. Tasks such as
mathematical reasoning and problem solving were then
viewed as exercises in logic, as in Newell and Simon’s
Logic Theorist and General Problem Solver (see Newell
& Simon 1972; Newell et al. 1958). Moreover, Chomsky’s
(1957; 1965) revolutionary work in linguistics showed how
the syntactic structure of language could be organized in a
deductive logical system, from which all and only the
grammatical sentences of the language could be gener-
ated. And in the psychology of adult reasoning, this
logical conception of mind was again used as the foun-
dation for explaining human thought.

Simultaneous with the construction of the logicist
program in cognition, there were some discordant and
puzzling observations. Specifically, researchers such as
Wason, who attempted to verify the Piagetian view of
the adult mind as a perfect logic engine, found that
people appeared surprisingly and systematically illogical
in some experiments. Given the dissonance between
these results and the emerging logicist paradigm in cog-
nitive science, these results were largely set aside by
mainstream cognitive theorists, perhaps to be returned
to once the logicist approach had reached a more devel-
oped state. But the general form that an account of
apparent irrationality might take was that all illogical
performance resulted from misunderstandings and
from the faulty way in which the mind might sometimes
apply logical rules. For example, Henle stated: “I have
never found errors which could unambiguously be
attributed to faulty reasoning” (Henle 1978, p. xviii).
But the central notion that thought is based on logic
was to be retained.

This fundamental commitment to logic as a foundation
for thought is embodied in contemporary reasoning theory
in two of the main theoretical accounts of human reason-
ing. The mental logic view (Braine 1978; Rips 1983; 1994)
assumes that human reasoning involves logical calculation
over symbolic representations, using systems of proof
which are very similar to those developed by Hilbert in
mathematics, and used in computer programs for
theorem-proving in artificial intelligence and computer

science. By contrast, the mental models view (Johnson-
Laird 1983; Johnson-Laird & Byrne 1991) takes its starting
point as the denial of the assumption that reasoning involves
formal operations over logical formulae, and instead
assumes that people reason over concrete representations
of situations or “models” in which the formulae are true.
This provides a different method of proof (see Oaksford &
Chater 1991; 1998a, for discussion), but one that can
achieve logical performance by an indirect route.

Although mental logic and mental models both give
logic a central role in human reasoning, they explain
apparent irrationalities in different ways. For example,
mental logics may explain errors in terms of the accessibil-
ity of different rules, whereas mental models explain errors
in terms of limitations in how mental models are con-
structed and checked, and how many models must be
considered.

These logicist reactions to data appearing to show
human irrationality seem entirely reasonable. Every new
theory in science could be immediately refuted if the
mere existence of data apparently inconsistent with the
theory were assumed to falsify it decisively (Kuhn 1962;
Lakatos 1970). The crucial question is: Can a more plaus-
ible explanation of these puzzling aspects of human
reasoning be provided? We argue that the Bayesian
approach provides precisely such an alternative.

2. Rationality and rational analysis

BR aims to promote a Bayesian, rather than a logical, per-
spective on human reasoning. But to make sense of any
debate between the logical and Bayesian standpoints, we
need first to clarify how we interpret the relationship
between a normative mathematical theory of reasoning
(whether logic or probability), and empirical findings
about human reasoning. In particular, how do we deal
with any systematic clashes between the theory’s dictates
concerning how people ought to reason, and empirical
observations of how they actually do reason?

Various viewpoints have been explored. One option is to
take observed human intuitions as basic, and hence as the
arbiter of what counts as a good formal theory of reasoning
(e.g., Cohen 1981). Another is to take the mathematical
theory as basic, and view it as providing a standpoint
from which to evaluate the quality of observed reasoning
performance (e.g., Rips 1994). Still a further possibility
is that clashes between the formal theory and actual
reasoning may arise because human thought itself is
divided between two systems of reasoning (e.g., Evans &
Over 1996a).

Here, we take a different line: We view normative
theory as a component of the project of providing a
“rational analysis” which aims to capture empirical data
concerning thought and behavior. Rational analysis (e.g.,
Anderson 1990; 1991a; Oaksford & Chater 1998b) has
six steps:

1. Specify precisely the goals of the cognitive system.
2. Develop a formal model of the environment to which

the system is adapted.
3. Make minimal assumptions about computational

limitations.
4. Derive the optimal behaviour function given steps

1–3.
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(This requires formal analysis using rational norms, such as
probability theory, logic, or decision theory.)

5. Examine the empirical evidence to see whether the
predictions of the behaviour function are confirmed.

6. Repeat, iteratively refining the theory.
So the idea of rational analysis is to understand the

problem that the cognitive system faces, and the environ-
mental and processing constraints under which it operates.
Behavioral predictions are derived from the assumption
that the cognitive system is solving this problem, optimally
(or, more plausibly, approximately), under these con-
straints. The core objective of rational analysis, then, is
to understand the structure of the problem from the
point of view of the cognitive system, that is, to understand
what problem the brain is attempting to solve.

In the psychology of reasoning, this point is particularly
crucial. We shall see that even when the experimenter
intends to confront a participant with a logical reasoning
puzzle, the participant may interpret the problem in prob-
abilistic terms. If so, the patterns of reasoning observed
may be well described in a Bayesian framework, but will
appear to be capriciously errorful from a logical point of
view. In Chapters 5–7 of BR, and summarized further
on here, we argue that the core data in the psychology of
reasoning, which has focussed on putatively “logical”
reasoning tasks, can be dramatically clarified by adopting
a Bayesian rational analysis.

It might appear that Step 2, concerning the environ-
ment, could not be relevant to rational analysis of the
reasoning, as opposed to, say, perception. Mathematical
theories of reasoning are supposed to apply across
topics, and hence should surely be independent of
environmental structure. We shall see further on that
the reverse is the case. Very general features of the
environment, such as the fact that almost all natural
language categories occur with a low probability and that
arbitrarily chosen probabilistic constraints are often inde-
pendent or nearly independent, turn out to have substan-
tial implications for reasoning. Indeed, the project of
providing a rational analysis of human reasoning gains its
empirical purchase precisely by explaining how a “topic
neutral” mathematical theory applies to a specific goal,
given a particular set of environmental and computational
constraints.

Two caveats are worth entering concerning Bayesian
rational analysis. The first is that rational analysis is not
intended to be a theory of psychological processes. That is,
it does not specify the representations or algorithms that
are used to carry out this solution. Indeed, as Anderson
(1990; 1991a) points out, these representations and algor-
ithms might take many different forms – but certain
general aspects of their behavior will follow irrespective of
such specifics; they will arise purely because the cognitive
system is well-adapted to solving this particular problem.
Hence, the correct analysis of the rational structure of the
cognitive problem at hand can have considerable explana-
tory power.

The second caveat is that the aim of understanding the
structure of human reasoning, whether from a logical or a
Bayesian perspective, should be carefully distinguished
from the goal of measuring people’s performance on
logical or probabilistic problems (Evans et al. 1993; Kah-
neman et al. 1982). Indeed, both logic and probability
provide a fresh and bracing challenge to each generation

of students; performance on logical and probability pro-
blems results from explicit instruction and study, rather
than emerging from capacities that are immanent within
the human mind. But this observation need not impact
our evaluation of logic or probability as explanations
for patterns of everyday thought. Even if the mind is a
probabilistic or logical calculating engine, it may not be
possible to engage that engine with verbally, symbolically,
or numerically stated probabilistic or logical puzzles,
which it is presumably not adapted to handle. This point
is no deeper than the observation that, although the
early visual processes in the retina may compute elaborate
convolutions and decorrelations of the image, this does
not mean that people can thereby readily apply this
machinery to solve mathematics problems concerning
convolution or decorrelation. Thus, empirical evidence
from the psychology of reasoning is not used, in BR, to
evaluate people’s logical or probabilistic reasoning compe-
tence. Rather, this evidence is used to explore the patterns
of reasoning that people find natural; and to relate such
patterns to how people reason outside the experimental
laboratory.

From the standpoint of rational analysis, the question of
whether logic or probability is the appropriate framework
for understanding reasoning is an empirical question:
Which rational analysis of human reasoning best captures
the data? In Chapters 5–7 of BR, we argue, case-by-case,
that a Bayesian rational analysis provides a better account
of core reasoning data than its logicist rivals. First, though,
we consider why. In Chapter 3, we argue that real-world,
informal, everyday, reasoning is almost never deductive,
that is, such reasoning is almost always logically invalid.
In Chapter 4, we consider what has driven the broader
“probabilistic turn” in cognitive science and related
fields, of which the Bayesian analysis of human reasoning
is a part.

3. Reasoning in the real world: How much
deduction is there?

Logic provides a calculus for certain reasoning – for
finding conclusions which follow, of necessity, from the
premises given. But in everyday life, people are routinely
forced to work with scraps of knowledge, each of which
may be only partially believed. Everyday reasoning
seems to be more a matter of tentative conjecture,
rather than of water-tight argument.

Notice, in particular, that a successful logical argument
cannot be overturned by any additional information that
might be added to the premises. Thus, if we know that
All people are mortal, and All women are people, then
we can infer, with complete certainty, that All women
are mortal. Of course, on learning new information we
may come to doubt the premises – but we cannot come
to doubt that the conclusion follows from the premises.
This property of classical logic is known as monotonicity,
meaning that adding premises can never overturn existing
conclusions.

In reasoning about the everyday world, by contrast, non-
monotonicity is the norm: almost any conclusion can be
overturned, if additional information is acquired. Thus,
consider the everyday inference from It’s raining and
I am about to go outside to I will get wet. This inference
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is uncertain – indefinitely many additional premises (the
rain is about to stop; I will take an umbrella; there is a
covered walkway) can overturn the conclusion, even if
the premises are correct. The nonmonotonicity of every-
day inference is problematic for the application of logical
methods to modelling thought. Nonmonotonic inferences
are not logically valid and hence fall outside the scope of
standard logical methods.

The nonmonotonicity of everyday reasoning often
strikes in subtle and unexpected ways. Most notorious is
the “frame problem” (McCarthy & Hayes 1969), which
arose in early applications of logical methods in artificial
intelligence. Suppose an agent, with knowledge base K,
makes an action A (e.g., it turns a cup upside down).
Which other information in K needs to be updated to
take account of this action? Intuitively, almost all other
knowledge should be unchanged (e.g., that the street is
empty, or that the burglar alarm is off). But, from a
logical point of view, the “interia” of such everyday knowl-
edge does not follow, because it is logically possible that A
may have all manner of consequences. For example, given
the additional information that the cup is valuable and
placed in an alarmed glass case, then turning it over may
trigger the burglar alarm and may fill the street with
curious bystanders. The difficulties generated by the
frame problem have had a paralyzing effect on logical
approaches to planning, action, and knowledge represen-
tation in artificial intelligence.

Analogous problems arise more generally (Fodor
1983; Pylyshyn 1987). Given a database with knowledge
K, adding a new fact F (not necessarily concerning an
action) can typically overthrow many of the previous con-
sequences of K, in highly idiosyncratic ways. It proves to
be impossible to delimit the inferential consequences of
a new fact in advance. Learning a new fact about football
can, for example, readily modify my beliefs about philos-
ophy. For example, suppose one has been told footballing
facts and philosophical facts by the same person, of uncer-
tain trustworthiness. Then learning that a footballing fact
is incorrect may cause one to doubt a putative philosophi-
cal fact. Thus, nonmonotonicty may apply to arbitrarily
remote pieces of knowledge. And note, of course, that an
inference that can be overturned by additional premises
cannot be logically valid – because standard logic is mono-
tonic by definition.

Inferences which are nonmonotonic, and hence cannot
be captured by conventional logic, are described in differ-
ent literatures using a variety of terms: non-demonstrative
inference, informal argument, and common-sense rea-
soning. For the purposes of our arguments, these
terms are interchangeable. But their import, across psy-
chology, artificial intelligence, and philosophy, is the
same: nonmonotonic arguments are outside the scope of
deductive logic.

This conclusion has alarming implications for the
hypothesis that thought is primarily based on logical infer-
ence. This is because the scope of monotonic inference is
vanishingly small – indeed, it scarcely applies anywhere
outside mathematics. As we shall see in Chapters 5–7,
this point applies even to verbally stated inferences that
are typically viewed as instances of deduction. For
example, consider the argument from if you put 50p in
the coke machine, you will get a coke and I’ve put 50p in
the coke machine, to I’ll get a coke. This argument

appears to be an instance of a canonical monotonic logical
inference: modus ponens.

Yet in the context of commonsense reasoning, this argu-
ment does not appear to be monotonic at all. There are
innumerable possible additional factors that may block
this inference (power failure, the machine is empty, the
coin or the can become stuck, etc.). Thus, you can put
the money in, and no can of coke may emerge. Attempting
to maintain a logical analysis of this argument, these cases
could be interpreted as indicating that, from a logical point
of view, the conditional rule is simply false – precisely
because it succumbs to counterexamples (Politzer &
Braine 1991). But this is an excessively rigorous stand-
point, from which almost all everyday conditionals will
be discarded as false. But how could a plethora of false
conditional statements provide a useful basis for thought
and action. From a logical point of view, after all, we
can only make inferences from true premises; a logical
argument tells us nothing, if one or more of its premises
are false.

In sum, there appears to be a fundamental mismatch
between the nonmonotonic, uncertain character of
everyday reasoning, and the monotonicity of logic; and
this mismatch diagnoses the fundamental problem with
logic-based theories of reasoning and logicist cognitive
science more broadly. In BR, we draw a parallel with
a similar situation in the philosophy of science, where
there has been a gradual retreat from early positive
claims that theoretical claims somehow logically follow
from observable premises, to Popper’s (1935/1959) limit-
ation of logical deduction, to the process of drawing pre-
dictions from theories, to the abandonment of even this
position, in the light of the nonmonotonicity of predictive
inference (there are always additional forces, or factors,
that can undo any prediction; Putnam 1974). Indeed,
modern philosophy of science has taken a resolutely Baye-
sian turn (e.g., Bovens & Hartmann 2003; Earman 1992;
Horwich 1982; Howson & Urbach 1993). BR also con-
siders attempts to deal with the apparent mismatch by
attempting to deal with uncertainty by developing non-
monotonic logics (e.g., Reiter 1980), a project that
rapidly became mired in difficulties (see, e.g., Oaksford
& Chater 1991). Perhaps it is time to shift our attention
to a calculus that deals directly with uncertainty: prob-
ability theory.

4. The probabilistic turn

We have seen how uncertainty, or nonmonotonicity, is a
ubiquitous feature of everyday reasoning. Our beliefs,
whether arising from perception, commonsense thought,
or scientific analysis, are tentative and provisional. Our
expectation that the car will start, that the test tube will
turn blue, or that one arrow is longer than another, are
continually being confounded by faulty batteries, impure
chemicals, or visual illusions.

Interestingly, Aristotle, the founder of logic, was keenly
aware of the limits of the logical enterprise. After all, he
was interested not only in mathematical and philosophical
reasoning, but also with the scientific description and
analysis of the everyday world, and with practical affairs
and human action. An often quoted passage from the Nico-
machean Ethics (1094b, Aristotle 1980, p. 3) notes that
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“it is the mark of an educated man to look for precision in
each class of things just so far as the nature of the subject
admits: it is evidently equally foolish to accept probable
reasoning from a mathematician and to demand from a
rhetorician demonstrative reasoning.”

Indeed, one key motivation for developing a theory of
probability was closely connected with Aristotle’s rhetori-
cian. The goal in rhetoric, in its traditional sense, is to
provide reasoned arguments for why people should hold
certain opinions concerning matters about which certainty
is impossible. Thus, in deciding court cases by jury, a
different piece of evidence (e.g., eye-witness testimony,
forensic evidence, evidence of previous good character)
must somehow be combined to yield a degree of belief
concerning the likely guilt of the defendant. Here,
probability is interpreted subjectively, in terms of a
person’s strength of opinion, rather than concerning an
assumption about the external world. Indeed, the very
word “probability” initially referred to the degree to
which a statement was supported by the evidence at
hand (Gigerenzer et al. 1989). Jakob Bernoulli explicitly
endorsed this interpretation when he entitled his defini-
tive book Ars Conjectandi, or the Art of Conjecture (Ber-
noulli 1713). This subjectivist, or Bayesian, conception of
probability ran through the eighteenth and into the nine-
teenth centuries (Daston 1988), frequently without clear
distinctions being drawn between probability theory as a
model of actual thought (or more usually, the thought of
“rational”, rather than common, people [Hacking 1975;
1990]) or as a set of normative canons prescribing how
uncertain reasoning should be conducted. As with logic,
early probability theory itself was viewed as a model of
mind.

Over the latter part of the twentieth century, the Baye-
sian perspective has been increasingly influential across
the cognitive sciences and related disciplines. Chapter 4
of BR surveys some of these developments. For example,
if everyday inference is inherently probabilistic, this
raises the possibility that natural language statements
should be interpreted as making probabilistic, rather
than logical, claims. So, for example, Adams (e.g., 1975;
1998) directly imports probability into logical theory,
arguing that the conditional If A then B should, roughly,
be interpreted as saying that B is probable, if A is true.
Later we shall see how this, and other probabilistic ana-
lyses of familiar “logical” structures (e.g., concerning the
quantifiers All, Some, etc.), cast new light on the empirical
reasoning data.

It is, we suggest, significant that three key domains in
which uncertain inference is ubiquitous, philosophy of
science, artificial intelligence, and cognitive psychology,
have all embraced the Bayesian approach. BR reviews
some of the key developments: the application of Bayes’
theorem to hypothesis confirmation (e.g., Earman 1992);
the development of graphical models for knowledge rep-
resentation and causal reasoning (Pearl 1988; 2000); and
the application of Bayesian methods in rational models
of cognitive phenomena (Chater & Oaksford 2008b; Oaks-
ford & Chater 1998b) in areas as diverse as categorization
(Anderson 1991b; Anderson & Matessa 1998), memory
(Anderson & Milson 1989; Anderson & Schooler 1991),
conditioning (Courville et al. 2006; Kakade & Dayan
2002), causal learning (Griffiths & Tenenbaum 2005;
Novick & Cheng 2004), natural language processing

(Chater et al. 1998; Chater & Manning 2006), and vision
(Knill & Richards 1996; Yuille & Kersten 2006).

There has, in short, been a “probabilistic turn” across a
broad range of domains – a move away from the attempt
to apply logical methods to uncertain reasoning, and
towards dealing with uncertainty by the application of
probability theory. In Chapters 5–7, we illustrate how
the switch from logical to Bayesian rationality leads to
a radical re-evaluation of the psychology of human
reasoning – so radical, in fact, that even apparently para-
digmatic “logical” reasoning tasks turn out to be better
understood from a probabilistic point of view.

5. Does the exception prove the rule? How
people reason with conditionals

In Chapters 5–7 of BR, we describe Bayesian probabilistic
models for the three core areas of human reasoning
research: conditional inference (Ch. 5), data selection
(Ch. 6), and quantified syllogistic inference (Ch. 7). The
key idea behind all these models is to use conditional prob-
ability, P(qjp), to account for the meaning of conditional
statements, if p then q (e.g., if you turn the key then the
car starts). The aim is to show that what appear to be
“errors and biases” from a logicist standpoint are often
entirely rational from a Bayesian point of view. In this
Précis, for each area of reasoning, we introduce the task,
the standard findings, and existing logicist accounts. We
then introduce a Bayesian rational analysis for each
problem, show how it accounts for the core data, and
provide a snapshot of some of the further data that we
discuss in BR. Finally, for each area of reasoning, we sum-
marise and describe one or two outstanding problems con-
fronting the Bayesian approach.

Chapter 5 of BR begins with conditional inference, that
is, inferences directly involving the conditional if p then q.
In the conditional, p is called the “antecedent” and q is
called the “consequent.” Four inference patterns have
been extensively studied experimentally (see Fig. 1).
Each inference consists of the conditional premise and
one of four possible categorical premises, which relate
either to the antecedent or consequent of the conditional,
or their negations (p, :p, q, :q where “:” ¼ not). For
example, the inference Modus Ponens (MP) combines
the conditional premise if p then q with the categorical
premise p; and yields the conclusion q.

According to standard logic, two of these inferences are
logically valid (MP and Modus Tollens [MT], see Fig. 1),
and two are fallacies (Denying the Antecedent [DA] and

Figure 1. The four inference patterns investigated in the
psychology of conditional inference: Modus Ponens (MP) and
Modus Tollens (MT) are logically valid. Denying the Antecedent
(DA) and Affirming the Consequent (AC) are logically
fallacious. These inference schemata read that if the premises
above the line are true then so must be the conclusion below
the line. “p) q” signifies the “material conditional” of
standard logic, which is true unless p is true and q is false.
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Affirming the Consequent [AC], see Fig. 1). Figure 2
(Panel A) shows the results of a meta-analysis of exper-
iments where people are asked whether they endorse
each of these four inferences (Schroyens & Schaeken
2003). Panel A also shows the predictions of the standard
logical model, revealing a large divergence.

From a logicist standpoint, this divergence may be
reduced by assuming that some people interpret the con-
ditional as a biconditional, that is, that if p then q also
means that if q then p. This move from conditional to
biconditional is, of course, logically invalid. For example,
if a bird is a swan, then it is white clearly does not entail
that if a bird is white, then it is a swan. Nonetheless, the
biconditional interpretation may be pragmatically reason-
able, in some cases. For example, promises such as if you
mow the lawn, I will pay you £5 do seem to allow this prag-
matic inference; it seems reasonable to assume that I will
only pay you £5 if you mow the lawn (or, at least, that I will
not pay you £5 if you refuse). By assuming that people make
this pragmatic inference for the stimuli used in experimen-
tal tasks and by making some allowance for random error,
the best fit that standard logic can provide is shown in
Figure 2 (Panel B) (see Oaksford & Chater 2003a).

To further close the gap with the data in Figure 2, logi-
cist theories of conditional inference typically assume not
only that people adopt the pragmatic inference to the
biconditional interpretation, but also that they fail to rep-
resent logic completely in their cognitive system. For
example, mental logic (e.g., Rips 1994) is typically
assumed to involve an MP inference rule, but no MT
rule. This means that MT inferences must be drawn in a
more complex way, often leading to error. Similarly,
according to mental models theory, people do not initially
represent the full meaning of the conditional (Johnson-
Laird & Byrne 2002). To draw an MT inference, they
must “flesh out” their representations to fully capture
the meaning of the conditional. In both cases, logically
unwarranted pragmatic inferences and assumptions
about cognitive limitations are invoked to explain the data.

In contrast, the Bayesian approach only invokes prob-
ability theory. There are four key ideas behind the prob-
abilistic account of conditional inference. First, the
probability of a conditional is the conditional probability,
that is, P(if p then q) ¼ P(qjp). In the normative literature,
this identification is simply called “The Equation” (Adams
1998; Bennett 2003; Edgington 1995). In the psychological

literature, the Equation has been confirmed experimen-
tally by Evans et al. (2003) and by Oberauer and
Wilhelm (2003). Second, as discussed earlier, probabilities
are interpreted “subjectively,” that is, as degrees of belief.
It is this interpretation of probability that allows us to
provide a probabilistic theory of inference as belief updat-
ing. Third, conditional probabilities are determined by a
psychological process called the “Ramsey Test” (Bennett
2003; Ramsey 1931/1990b). For example, suppose you
want to evaluate your conditional degree of belief that if
it is sunny in Wimbledon, then John plays tennis. By the
Ramsey test, you make the hypothetical supposition that
it is sunny in Wimbledon and revise your other beliefs so
that they fit with this supposition. You then “read off”
your hypothetical degree of belief that John plays tennis
from these revised beliefs.

The final idea concerns standard conditional inference:
how we reason when the categorical premise is not merely
supposed, but is actually believed or known to be true.
This process is known as conditionalization. Consider an
MP inference, for example, If it is sunny in Wimbledon,
then John plays tennis, and It is sunny in Wimbledon,
therefore, John plays tennis. Conditionalization applies
when we know (instead of merely supposing) that it is
sunny in Wimbledon; or when a high degree of belief
can be assigned to this event (e.g., because we know that
it is sunny in nearby Bloomsbury). By conditionalization,
our new degree of belief that John plays tennis should
be equal to our prior degree of belief that if it is sunny
in Wimbledon, then John plays tennis (here “prior”
means before learning that it is sunny in Wimbledon).
More formally, by the Equation, we know that P0(if it is
sunny in Wimbledon, then John plays tennis) equals
P0(John plays tennisjit is sunny in Wimbledon), where
“P0(x)” ¼ prior probability of x. When we learn it is
sunny in Wimbledon, then P1(it is sunny in
Wimbledon) ¼ 1, where “P1(x)” ¼ posterior probability
of x. Conditionalizing on this knowledge tells us that our
new degree of belief in John plays tenniş P1(John plays
tennis), should be equal to P0(John plays tennisjit is
sunny in Wimbledon). That is, P1(q) ¼ P0(qjp), where
p ¼ it is sunny in Wimbledon, and q ¼ John plays
tennis.1 So from a probabilistic perspective, MP provides
a way of updating our degrees of belief in the consequent,
q, on learning that the antecedent, p, is true.

So, quantitatively, if you believe that P0(John plays
tennisjit is sunny in Wimbledon) ¼ 0.9, then given you
discover that it is sunny in Wimbledon (P1(it is sunny in
Wimbledon) ¼ 1) your new degree belief that John
plays tennis should be 0.9, that is, P1(John plays
tennis) ¼ 0.9. This contrasts with the logical approach in
which believing the conditional premise entails with cer-
tainty that the conclusion is true, so that P0(John plays
tennisjit is sunny in Wimbledon) ¼ 1. This is surely too
strong a claim.

The extension to the other conditional inferences is not
direct, however. Take an example of AC, if it is sunny in
Wimbledon, John plays tennis and John plays tennis,
therefore, it is sunny in Wimbledon. In this case, one
knows or strongly believes that John play tennis (perhaps
we were told by a very reliable source), so P1(q) ¼ 1.
But to use Bayesian conditionalization to infer one’s new
degree of belief that it is sunny in Wimbledon, P1(p),
one needs to know one’s conditional degree of belief

Figure 2. The fits to the experimental data (Schroyens &
Schaeken 2003) of standard logic (Panel A), standard logic plus
the biconditional interpretation and error (Panel B), the
original probabilistic model (Panel C), and the probabilistic
model adjusted for rigidity violations (Panel D).
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that it is sunny in Wimbledon given John plays tennis, that
is, P0(pjq). However, the conditional premise of AC, like
that of MP, is about P0(qjp) not about P0(pjq)
(Sober 2002). The solution proposed by Oaksford et al.
(2000; see also Wagner 2004) is that that people also
know the prior marginal probabilities (at least approxi-
mately). That is, they know something about the prob-
ability of a sunny day in Wimbledon, P0(p), and the
probability that John plays tennis, P0(q), before learning
that it is in fact a sunny day in Wimbledon. With this
additional information, P0(pjq) can be calculated from
the converse conditional probability, P0(qjp), using
Bayes’ Theorem.2 The same approach also works for DA
and MT where the relevant probabilities are P0(:qj:p)
and P0(:pj:q), respectively. The fact that the conditional
premises of AC, DA, and MT do not determine the appro-
priate conditional probability marks an important asym-
metry with MP. For these inferences, further knowledge
is required to infer the relevant conditional degrees of
belief.

The rest of Chapter 5 in BR shows how the errors and
biases observed in conditional inference are a conse-
quence of this rational probabilistic model. The first set
of “biases” relates directly to the data in Figure 2. These
are what, in BR, we call “the inferential asymmetries.”
That is, MP is drawn more than MT and AC is drawn
more than DA (MT is also drawn more than AC).
Figure 2, Panel C shows how well a probabilisitic
account can explain these asymmetries. Here we have cal-
culated the values of P0(qjp), P0(p), and P0(q) that best fit
the data, that is, they minimize the sum of squared error
between the data and the models predictions (“model”
in Fig. 2). As Panel C shows, a probabilistic account can
capture the asymmetries without pragmatic inference or
appeal to process limitations. Panel C also shows,
however, that this probabilistic model (Oaksford et al.
2000) does not capture the magnitudes of the inferential
asymmetries (Evans & Over 2004; Schroyens & Schaeken
2003). It underestimates the MP – MT asymmetry and
overestimates the DA – AC asymmetry.

In BR, we argue that this is because learning that the
categorical premise is true can have two inferential roles.
The first inferential role is in conditionalization, as we
have described. The second inferential role is based on
the pragmatic inference that being told that the categorical
premise is true often suggests that there is a counterexam-
ple to the conditional premise. For example, consider the
MT inference on the rule: If I turn the key, the car starts. If
you were told that the car did not start, it seems unlikely
that you would immediately infer that the key was not
turned. Telling someone that the car did not start seems
to presuppose that an attempt has been made to start it,
presumably by turning the key. Consequently, the categ-
orical premise here seems to suggest a counterexample
to the conditional itself, that is, a case where the key was
turned but the car did not start. Hence, one’s degree of
belief in the conditional should be reduced on being told
that the car did not start. Notice, here, the contrast
between being told that the car did not start (and
drawing appropriate pragmatic inferences), and merely
observing a car that has not started (e.g., a car parked in
the driveway). In this latter situation, it is entirely
natural to use the conditional rule to infer that the key
has not been turned.

Where the second, pragmatic, inferential role of the cat-
egorical premise is operative, this violates what is called the
rigidity condition on conditionalization, P0(qjp) ¼ P1(qjp)
(Jeffrey 1983). That is, learning the categorical premise
alters one’s degree of belief in the conditional premise. In
BR, we argue that taking account of such rigidity violations
helps capture the probability of the conditional; and that, for
MT this modified probability is then used in conditionaliza-
tion. Furthermore, we argue that DA and AC also suggest
violations of the rigidity condition, concerning the case
where the car starts without turning the key. These viola-
tions lead to reductions in our degree of belief that the
cars starts, given that the key is turned (P0(qjp)). Using
this lower estimate to calculate the relevant probabilities
for DA, AC, and MT can rationally explain the relative mag-
nitudes of the MP – MT and DA – AC asymmetries (see
Fig. 2, Panel D).

We now turn to one of the other biases of conditional
inference that we explain in Chapter 5 of BR: negative con-
clusion bias. This bias arises when negations are used in
conditional statements, for example, If a bird is a swan,
then it is not red. In Evans’ (1972) Negations Paradigm,
four such rules are used: If p then q; if p then not-q; if
not-p then q; if not-p then not-q. The most robust
finding is that people endorse DA, AC, and MT more
when the conclusion contains a negation (see Fig. 3). So,
for example, DA on if p then q (see Panel A in Fig. 3)
yields a negated conclusion, not-q. Whereas, DA on if p
then not-q (see Panel B in Fig. 3) yields an affirmative con-
clusion, q (because not-not-q ¼ q). In Figure 3, it is clear
that the frequency with which DA is endorsed for if p then
q is much higher than for if p then not-q.

To explain negative conclusion bias, we appeal to the
idea that most categories apply only to a minority of
objects (Oaksford & Stenning 1992). Hence, the prob-
ability of an object being, say, red is lower than the prob-
ability of it not being red, that is, P0(Red) , P0(:Red).
Consequently, the marginal probabilities (P0(p) and P0(q))
will take on higher values when p or q are negated. Higher
values of the prior probabilities of the conclusion imply
higher values of the relevant conditional probabilities for
DA, AC, and MT, that is, to higher values of the posterior
probability of the conclusion. So, for example, for our rule
if a bird is a swan, then it is white, the prior probability of
the conclusion of the DA inference (P0(:White)) is high.
This means that the conditional probability (P0(:Whitej:

Figure 3. The results of Oaksford et al.’s (2000) meta-analysis
of the negations paradigm conditional inference task for if p
then q (Panel A), if p then :q (Panel B), if :p then q (Panel
C), and if :p then :q (Panel D), showing the fit of the
original probabilistic model.
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Swan)) is also high and, consequently, so is the probability of
the conclusion (P1(:White)). Therefore, an apparently
irrational negative conclusion bias can be seen as a rational
“high probability conclusion” effect. Oaksford et al. (2000)
tested this explanation by manipulating directly P0(p) and
P0(q) rather than using negations and showed results
closely analogous to negative conclusion bias (see Fig. 4).

To conclude this section on conditional inference, we
briefly review one of the most cited problems for a prob-
abilistic account. Like any rational analysis, this account
avoids theorising about the specific mental representations
or algorithms involved in conditional reasoning. This may
seem unsatisfactory. We suggest, by contrast, that it is pre-
mature to attempt an algorithmic analysis. The core of our
approach interprets conditionals in terms of conditional
probability, that is, using the Equation; and our current
best understanding of conditional probability is given by
the Ramsey test (Bennett 2003). But there is currently
no possibility of building a full algorithmic model to
carry through the Ramsey test, because this involves
solving the notorious frame problem, discussed in
Chapter 3. That is, it involves knowing how to update
one’s knowledge-base, in the light of a new piece of
information – and this problem has defied 40 years of arti-
ficial intelligence research.

Nonetheless, an illustrative small-scale implementation
of the Ramsey test is provided by the operation of a con-
straint satisfaction neural network (Oaksford 2004a). In
such a model, performing a Ramsey test means clamping
on or off the nodes or neurons corresponding to the categ-
orical premise of a conditional inference. Network con-
nectivity determines relevance relations and the weight
matrix encodes prior knowledge. Under appropriate con-
straints, such a network can be interpreted as computing
true posterior probabilities (McClelland 1998). A chal-
lenge for the future is to see whether such small-scale
implementations can capture the full range of empirically
observed effects in conditional inference.

6. Being economical with the evidence: Collecting
data and testing hypotheses

Chapter 6 of BR presents a probabilistic model of Wason’s
selection task. In this task, people see four double-sided
cards, with a number on one side and a letter on the

other. They are asked which cards they should turn over,
in order to test the hypothesis that if there is an A (p) on
one side of a card, then there is a 2 (q) on the other. The
upturned faces of the four cards show an A (p), a K
(:p), a 2 (q), and a 7 (:q) (see Fig. 5). The typical
pattern of results is shown in Figure 6 (Panel A, Data).

As Popper (1935/1959) argued, logically one can never
be certain that a scientific hypothesis is true in the light of
observed evidence, as the very next piece of evidence one
discovers could be a counterexample. So, just because all
the swans you have observed up until now have been
white, is no guarantee that the next one will not be
black. Instead, Popper argues that the only logically sanc-
tioned strategy for hypothesis testing is to seek falsifying
cases. In testing a conditional rule if p then q, this means
seeking out p, :q cases. This means that, in the standard
selection task, one should select the A (p) and the 7 (:q)
cards, because these are the only cards that could poten-
tially falsify the hypothesis. Figure 6 (Panel A, Model)
shows the logical prediction, and, as for conditional infer-
ence, the divergence from the data is large. Indeed, rather
than seek falsifying evidence, participants seem to select
the cases that confirm the conditional (p and q). This is
called “confirmation bias.”

The range of theories of the selection task parallels the
range of accounts of the conditional inference task
described earlier. Mental logic theories (e.g., Rips 1994)
assume that people attempt to perform conditional infer-
ences, using the upturned face as the categorical
premise to infer what is on the hidden face. Again, a bicon-
ditional interpretation is invoked: that if A then 2 may
pragmatically imply if 2 then A. If people perform an
MP inference on both conditionals, this will yield a confir-
matory response pattern. To infer that the 7 card should
be turned, involves considering the hidden face. If
people consider the possibility that the hidden face is
not an A, then the complex inference pattern required
for MT can be applied. A problem for mental logic is
that, on this explanation, selection task performance

Figure 4. The results of Oaksford et al.’s (2000) Experiment 1
for the low P(p), low P(q) rule (Panel A), the low P(p), high
P(q) rule (Panel B), the high P(p), low P(q) rule (Panel C), and
the high P(p), high P(q) rule (Panel D), showing the fit of the
original probabilistic model.

Figure 5. The four cards in Wason’s Selection Task.

Figure 6. The fits to the experimental data on the Wason
Selection Task of standard logic (Panel A) and of the optimal
data selection model (Oaksford & Chater 1994) (Panel B).
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should look like conditional inference task performance
where selecting the 2 (q) card corresponds to AC and
selecting the 7 (:q) card corresponds to MT. However,
in conditional inference, MT is endorsed more than AC,
but in the selection task this is reversed, that is, q (AC)
is selected more than :q (MT).3 For mental models,
similar predictions are made if people initially represent
the conditional as a biconditional and do not “flesh out”
this representation.

The optimal data selection (ODS) model of this task
(Oaksford & Chater 1994; 1996; 2003b) is a rational analy-
sis derived from the normative literature on optimal exper-
imental design in Bayesian statistics (Lindley 1956). The
idea again relies on interpreting a conditional in terms of
conditional probability. For example, the hypothesis, if
swan (p) then white (p), is interpreted as making the
claim that the probability of a bird being white given
that it is a swan, P(qjp), is high, certainly higher than the
base rate of being a white bird, P(q). This hypothesis is
called the dependence hypothesis (HD). Bayesian hypoth-
esis testing is comparative rather than exclusively concen-
trating on falsification. Specifically, in the ODS model, it is
assumed that people compare HD with an independence
hypothesis (HI) in which the probability of a bird being
white, given it is a swan, is the same as the base rate of a
bird being white, that is, P(qjp) ¼ P(q). We assume that,
initially, people are maximally uncertain about which
hypothesis is true (P(HD) ¼ P(HI) ¼ 0.5) and that their
goal in selecting cards is to reduce this uncertainty as
much as possible while turning the fewest cards.

Take, for example, the card showing swan (p). This card
could show white on the other side (p, q) or another color
(p, :q). The probabilities of each outcome will be quite
different according to the two hypotheses. For example,
suppose that the probability of a bird being white, given
that it is a swan is 0.9 (P(qjp, HD) ¼ 0.9) in the depen-
dence hypothesis; the marginal probability that a bird is
swan is 0.2 (P(p) ¼ 0.2); and the marginal probability
that a bird is white is 0.3 (P(q) ¼ 0.3). Then, according
to the dependence hypothesis, the probability of finding
white (q) on the other side of the card is 0.9, whereas
according to the independence hypothesis it is 0.3 (as
the antecedent and consequent are, in this model, inde-
pendent, we need merely consult the relevant marginal
probability). And, according to the dependence hypoth-
esis, the probability of finding a color other than white
(:q) on the other side of the card is 0.1, whereas according
to the independence hypothesis it is 0.7. With this infor-
mation it is now possible to calculate one’s new degree
of uncertainty about the dependence hypothesis after
turning the swan card to find white on the other side
(P(HDjp, q)). According to Bayes’ theorem (see Note 2),
this probability is 0.75. Hence, one’s new degree of
belief in the dependence model should be 0.75 and
one’s degree of belief in the independence model should
be 0.25. Hence, the degree of uncertainty about which
hypothesis is true has been reduced. More specifically,
the ODS model is based on information gain, where infor-
mation is measured in bits as in standard communication
theory. Here, the initial uncertainty is 1 bit (because
P(HD) ¼ P(HI) ¼ 0.5, equivalent to the uncertainty of a
single fair coin flip) and in this example this is reduced
to 0.81 bits (because now P(HD) ¼ 0.75 and
P(HI) ¼ 0.25). This is an information gain of 0.19 bits.

In Wason’s task, though, participants do not actually
turn the cards, and hence they cannot know how much
information they will gain by turning a card before doing
so. Consequently, they must base their decision on
expected information gain, taking both possible outcomes
(p, q and p, :q) into account. The ODS model assumes
that people select each card in direct proportion to its
expected information gain.

The ODS model also makes a key assumption about the
task environment – that is, Step 2, in rational analysis: The
properties that occur in the antecedents and consequents
of hypotheses are almost always rare and so have a low
base rate of occurrence. For example, most birds are not
swans and most birds are not white. This assumption has
received extensive independent verification (McKenzie
et al. 2001; McKenzie & Mikkelsen 2000; 2007).

The ODS model predicts that the two cards that lead to
the greatest expected information gain are the p and the q
cards. Figure 6 (Panel B) shows the fit of the model to the
standard data (Oaksford & Chater 2003b). The value of
P(qjp, HD) was set to 0.9 and the best fitting values of
P(p) and P(q) were 0.22 and 0.27 respectively, that is,
very close to the values used in the earlier example. The
ODS model suggests that performance on the selection
task displays rational hypothesis testing behavior, rather
than irrational confirmation bias. Taking rarity to an
extreme provides a simple intuition here. Suppose we con-
sider the (rather implausible) conditional: If a person is
bitten by a vampire bat (p), they will develop pointed
teeth (q). Clearly, we should check people who we know
to have been bitten, to see if their teeth are pointed (i.e.,
turn the p card); and, uncontroversially, we can learn
little from people we know have not been bitten (i.e., do
not turn the :p card). If we see someone with pointed
teeth, it is surely worth finding out whether they have
been bitten – if they have, this raises our belief in the con-
ditional, according to a Bayesian analysis (this is equivalent
to turning the q card). But it seems scarcely productive to
investigate someone without pointed teeth (i.e., do not
turn the :q card) to see if they have been bitten. To be
sure, it is possible that such a person might have been
bitten, which would disconfirm our hypothesis, and lead
to maximum information gain; but this has an almost
infinitesimal probability. Almost certainly, we shall find
that they have not been bitten, and learn nothing.
Hence, with rarity, the expected informativeness of the
q card is higher than that of the :q card, diverging
sharply from the falsificationist perspective, but agreeing
with the empirical data.

It has been suggested, however, that behaviour on this
task might be governed by what appears to be a wholly
non-rational strategy: matching bias. This bias arises
in the same context as negative conclusion bias that we dis-
cussed earlier, that is, in Evans’ (1972) negations para-
digm. Take, for example, the rule if there is an A on one
side, then there is not a 2 on the other side (if p
then :q). The cards in this task are described using
their logical status, so for this rule, 2 is the false consequent
(FC) card and 7 is the true consequent (TC) card. For this
negated consequent rule, participants tend to select the
A card (TA: true antecedent) and the 2 card (FC). That
is, participants now seem to make the falsifying response.
However, as Evans and Lynch (1973) pointed out, partici-
pants may simply ignore the negations entirely and match

Oaksford & Chater: Précis of Bayesian Rationality

78 BEHAVIORAL AND BRAIN SCIENCES (2009) 32:1



the values named in the conditional, that is, A and 2. Prima
facie, this is completely irrational. However, the “contrast
set” account of negation shows that because of the rarity
assumption – that most categories apply to a minority of
items – negated categories are high probability categories
(discussed earlier). Having a high probability antecedent
or consequent alters the expected information gains
associated with the cards. If the probability of the conse-
quent is high, then the ODS model predicts that people
should make the falsifying TA and FC responses,
because these are associated with the highest information
gain. Consequently, matching bias is a rational hypothesis
testing strategy after all.

Probabilistic effects were first experimentally demon-
strated using the reduced array version of Wason’s selec-
tion task (Oaksford et al. 1997), in which participants
can successively select up to 15 q and 15 :q cards
(there are no upturned p and :p cards that can be
chosen). As predicted by the ODS model, where the prob-
ability of q is high (i.e., where rarity is violated), partici-
pants select more :q cards and fewer q cards. Other
experiments have also revealed similar probabilistic
effects (Green & Over 1997; 2000; Kirby 1994; Oaksford
et al. 1999; Over & Jessop 1998).

There have also been some failures to produce probabil-
istic effects, however (e.g., Oberauer et al. 1999; 2004).
We have argued that these arise because of weak prob-
ability manipulations or other procedural problems (Oaks-
ford & Chater 2003b; Oaksford & Moussakowski 2004;
Oaksford & Wakefield 2003). We therefore introduced a
natural sampling (Gigerenzer & Hoffrage 1995) pro-
cedure in which participants sample the frequencies of
the card categories while performing a selection task
(Oaksford & Wakefield 2003). Using this procedure, we
found probabilistic effects using the same materials as
Oberauer et al. (1999), where these effects were not
evident.

In further work on matching bias, Yama (2001) devised
a crucial experiment to contrast the matching bias and the
information gain accounts. He used rules that introduced a
high and a low probability category, relating to the blood
types Rhesus Negative (Rh–) and Positive (Rhþ). People
were told that one of these categories, Rh–, was rare.
Therefore, according to the ODS model and the rule if
p then :Rhþ should lead participants to select the rare
Rh– card. In contrast, according to matching bias they
should select the Rhþ card. Yama’s (2001) data were
largely consistent with the information gain model. More-
over, this finding was strongly confirmed by using the
natural sampling procedure with these materials (Oaks-
ford & Moussakowski 2004).

Alternative probabilistic accounts of the selection task
have also been proposed (Evans & Over 1996a; 1996b;
Klauer 1999; Nickerson 1996; Over & Evans 1994; Over
& Jessop 1998). Recently, Nelson (2005) directly tested
the measures of information underpinning these models,
including Bayesian diagnosticity (Evans & Over 1996b;
McKenzie & Mikkelsen 2007; Over & Evans 1994), infor-
mation gain (Hattori 2002; Oaksford & Chater 1994; 1996;
2003b), Kullback-Liebler distance (Klauer 1999; Oaksford
& Chater 1996), probability gain (error minimization)
(Baron 1981; 1985), and impact (absolute change) (Nick-
erson 1996). Using a related data selection task, he
looked at a range of cases in which these norms predicted

different orderings of informativeness, for various data
types. Nelson found the strongest correlations between
his data and information gain (.78). Correlations with diag-
nosticity (– .22) and log diagnosticity (–.41) were actually
negative. These results mirrored Oaksford et al.’s (1999)
results in the Wason selection task. Nelson’s work provides
strong convergent evidence for information gain as the
index that most successfully captures people’s intuitions
about the relative importance of evidence.

There has been much discussion in the literature of the
fact that selection task results change dramatically for con-
ditionals that express rules of conduct, rather than putative
facts, about the world (Cheng & Holyoak 1985; Mankte-
low & Over 1991). In such tasks, people typically do
select the p and :q cards – the apparently “logical”
response. One line of explanation is that reasoning is
domain-specific, rather than applying across-the-board; a
further claim, much discussed in evolutionary psychology,
is that such tasks may tap basic mechanisms of social
reasoning, such as “cheater-detection” (Cosmides 1989),
which enables “correct” performance.

A Bayesian rational analysis points, we suggest, in a
different direction – that such deontic selection tasks
(i.e., concerning norms, not facts) require a different
rational analysis. In the deontic selection task, participants
are given conditionals describing rules concerning how
people should behave, for example, if you enter the
country, you must have an inoculation against cholera.
The rule is not a hypothesis under test, but a regulation
that should be obeyed (Manktelow & Over 1987).
Notice, crucially, that it makes no sense to confirm or dis-
confirm a rule concerning how people should behave:
People entering the country should be inoculated,
whether or not they actually are. The natural interpret-
ation of a deontic task is for the participant to check
whether the rule is being disobeyed – that is, to look for
p, :q cases (people who enter the country, but are not
inoculated); and indeed, in experiments, very high selec-
tions of the p and :q cards are observed. This is not
because people have suddenly become Popperian falsi-
fiers. This is because the task is no longer about attempting
to gain information about whether the conditional is true
or false. The conditional now concerns how people
should behave, and hence can neither be confirmed nor
disconfirmed by any observations of actual behavior.

We adopted a decision theoretic approach to these tasks
(Oaksford & Chater 1994; Perham & Oaksford 2005). Vio-
lators are people who enter the country (p) without a vac-
cination (:q). Thus, we assume that participants whose
role it is to detect violators attach a high utility to detecting
these cases, that is, U(p, :q) is high. However, every other
case represents a cost, as it means wasted effort. We argue
that people calculate the expected utility associated with
each card. So, for example, take the case where someone
does not have an inoculation (:q). She could be either
entering the country (p, :q) or not entering the country
(:p, :q). Just as in calculating expected information
gain, both possible outcomess have to be taken into
account in calculating expected utility (EU(x)):

EU(:q) ¼ P(pj:q)U(p, :q)þ P(:pj:q)U(:p, :q)

We argue that people select cards in the deontic selection
task to maximise expected utility. As only the utility of
detecting a violator – someone trying to enter without an
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inoculation – is positive, this means that only the p and
the :q cards will have positive utilities (because only
these cards could show a violator). This model can
account for a broad range of effects on deontic reasoning,
including the effects of switched rules (Cosmides 1989),
perspective changes (Manktelow & Over 1991), utility
manipulations (Kirby 1994), and probability manipula-
tions (Manktelow et al. 1995).

Recently, we have also applied this model to rules that
contain emotional content, for example, if you clean up
blood, then you must wear gloves (Perham & Oaksford
2005). With the goal of detecting cheaters (Cosmides
1989), you will look at people who are not cleaning up
blood but who are wearing gloves (:p, q). With the goal
of detecting people who may come to harm, you will
want to check people who are cleaning up blood but
who are not wearing gloves (p, :q). Perham and Oaksford
(2005) set up contexts in which cheater detection should
dominate, but in which the goal of detecting people
who may come to harm may still be in play. That is,
U(:p, q) . U(p, :q) . 0. The threatening word
“blood” can appear for either the p, q case or the p, :q
case. In calculating generalized expected utility (Zeelen-
berg et al. 2000), a regret term (Re) is subtracted from
the expected utility of an act of detection, if the resulting
state of the world is anticipated to be threatening. For
example, by checking someone who is not wearing
gloves (:q), to see if they are at risk of harm, one must
anticipate encountering blood (p). Because “blood” is a
threatening word, the utility for the participant of
turning a :q card is reduced; that is, the utility of encoun-
tering a p, :q card is now U(p, :q) – Re, for regret term
Re. Consequently, selections of the “not wearing gloves”
card (:q) should be lower for our blood rule than for a
rule that does not contain a threatening antecedent, such
as, if you clean up packaging, then you must wear gloves.

In two experiments, Perham and Oaksford (2005)
observed just this effect. When participants’ primary goal
was to detect cheaters, their levels of :p and q card selec-
tion were the same for the threat (blood rule) as for the no-
threat rule. However, their levels of p and :q card selec-
tion were significantly lower for the threatening than for
the non-threatening rules. This finding is important
because it runs counter to alternative theories, in particu-
lar the evolutionary approach (Cosmides 1989; Cosmides
& Tooby 2000), which makes the opposite prediction,
that p and :q card selections should, if anything, increase
for threat rules.

Of the models considered in BR, the optimal data selec-
tion and expected utility models have been in the literature
the longest, and have been subject to most comment. In
the rest of Chapter 6, we respond in detail to these com-
ments, pointing out that many can be incorporated into
the evolving framework, and that some concerns miss
their mark.

7. An uncertain quantity: How people reason with
syllogisms

Chapter 7 of BR presents a probabilistic model of quanti-
fied syllogistic reasoning. This type of reasoning relates
two quantified premises. Logic defines four types of

quantified premise: All, Some, Some. . .not, and None. An
example of a logically valid syllogistic argument is:

Some Londoners (P) are soldiers (Q)
All soldiers (Q) are well fed (R)

Therefore Some Londoners (P) are well fed (R)

In this example, P and R are the end terms and Q is the
middle term, which is common to both premises. In the
premises, these terms can only appear in four possible
configurations, which are called figures. When one of
these terms appears before the copula verb (“are”) it is
called the subject term (in the example, P and Q) and
when one appears after this verb it is called the predicate
term (Q and R). As the premises can appear in either
order, there are 16 combinations, and as each can be in
one of four figures, there are 64 different syllogisms.

There are 22 logically valid syllogisms. If people are
reasoning logically, they should endorse these syllogisms
and reject the rest. However, observed behavior is
graded, across both valid and invalid syllogisms; and
some invalid syllogisms are endorsed more than some
valid syllogisms. Table 1 shows the graded behaviour
over the 22 logically valid syllogisms. There are natural
breaks dividing the valid syllogisms into three main
groups. Those above the single line are endorsed most,
those below the double line are endorsed least, and
those in between are endorsed at an intermediate level.

Table 1. Meta-analysis of the logically valid syllogisms showing
the form of the conclusion, the number of mental models (MMs)
needed to reach that conclusion, and the percentage of times the

valid conclusion was drawn, in each of the five experiments
analyzed by Chater and Oaksford (1999b)

Syllogism Conclusion MMs Mean

All(Q,P), All(R,Q) All 1 89.87
All(P,Q), All(Q,R) All 1 75.32

All(Q,P), Some(R,Q) Some 1 86.71
Some(Q,P), All(Q,R) Some 1 87.97
All(Q,P), Some(Q,R) Some 1 88.61
Some(P,Q), All(Q,R) Some 1 86.71

No(Q,P), All(R,Q) No 1 92.41
All(P,Q), No(R,Q) No 1 84.81
No(P,Q), All(R,Q) No 1 88.61
All(P,Q), No(Q,R) No 1 91.14

All(P,Q), Some. . .not(R,Q) Some. . .not 2 67.09
Some. . .not(P,Q), All(R,Q) Some. . .not 2 56.33
All(Q,P), Some. . .not(Q,R) Some. . .not 2 66.46
Some. . .not(Q,P), All(Q,R) Some. . .not 2 68.99

Some(Q,P), No(R,Q) Some. . .not 3 16.46
No(Q,P), Some(R,Q) Some. . .not 3 66.46
Some(P,Q), No(R,Q) Some. . .not 3 30.38
No(P,Q), Some(R,Q) Some. . .not 3 51.90
Some(Q,P), No(Q,R) Some. . .not 3 32.91
No(Q,P), Some(Q,R) Some. . .not 3 48.10
Some(P,Q), No(Q,R) Some. . .not 3 44.30
No(P,Q), Some(Q,R) Some. . .not 3 26.56

Note. The means in the final column are weighted by sample size.
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Alternative theories of syllogistic reasoning invoke
similar processes to explain these data as for conditional
inference and the selection task. However, here both
mental logic and mental models have to introduce new
machinery to deal with quantifiers. For mental logic
(Rips 1994), this requires new logical rules for All and
Some, and a guessing mechanism to account for the sys-
tematic pattern of responses for the invalid syllogisms.
For mental models, dealing with quantifiers requires re-
interpreting the lines of a mental model as objects
described by their properties (P, Q, and R) rather than
as conjunctions of propositions. For the different syllo-
gisms different numbers of mental models are consistent
with the truth of the premises. Only conclusions that are
true in all of these possible models are logically valid. As
Table 1 shows, for the most endorsed valid syllogisms,
there is only one model consistent with the truth of the
premises, and so the conclusion can be immediately read
off. For the remaining valid syllogisms, more than one
model needs to be constructed. If people only construct
an initial model, then errors will occur. As Table 1
shows, mental models theory provides a good qualitative
fit for the valid syllogisms, that is, the distinction
between 1, 2, and 3 model syllogisms maps on to the key
qualitative divisions in the data.

The probabilistic approach to syllogisms was developed
at both the computational and the algorithmic levels in the
Probabilistic Heuristics Model (PHM, Chater & Oaksford
1999b). One of the primary motivations for this model was
the hypothesis that, from a probabilistic point of view,
reasoning about all and some might be continuous with
reasoning about more transparently probabilistic quanti-
fiers, such as most and few. By contrast, from a logical
standpoint, such generalised quantifiers require a differ-
ent, and far more complex, treatment (Barwise &
Cooper 1981), far beyond the resources of existing logic-
based accounts in psychology. Perhaps for this reason,
although generalised quantifiers were discussed in early
mental models theory (Johnson-Laird 1983), no empirical
work on these quantifiers was carried out in the psychology
of reasoning.

In deriving PHM, the central first step is to assign prob-
abilistic meanings to the central terms of quantified
reasoning using conditional probability. Take the univer-
sally quantified statement, All P are Q (we use capitals to
denote predicates; these should be applied to variables x,
which are bound by the quantifier, e.g., P(x), but we
usually leave this implicit). Intuitively, the claim that All
soldiers are well fed can naturally be cast in probabilistic
terms: as asserting that the probability that a person is
well fed given that they are a soldier is 1. More generally,
the probabilistic interpretation of All is straightforward:
because its underlying logical form can be viewed as a con-
ditional, that is, All(x)(if P(x) then Q(x)). Thus, the meaning
is given as P(QjP) ¼ 1, as specifying the conditional prob-
ability of the predicate term (Q), given the subject term (P).

Similar constraints can be imposed on this conditional
probability to capture the meanings of the other logical
quantifiers. So, Some P are Q means that P(QjP) . 0;
Some P are not Q means that P(QjP) , 1; and No P are
Q means that P(QjP) ¼ 0. Thus, for example, “Some Lon-
doners are soldiers” is presumed to mean that the prob-
ability that a person is a soldier given that he or she is a
Londoner is greater than zero, and similarly for the

other quantifiers. Such an account generalises smoothly
to the generalised quantifiers most and few. Most P are Q
means that 1 2 D , P(QjP),1 and Few P are Q means
that 0 , P(QjP) , D, where D is small. So, for example,
Most soldiers are well fed may be viewed as stating that
the probability that a person is well fed, given that they
are a soldier, is greater than, say, 0.8, but less than 1.

At the level of rational analysis, these interpretations are
used to build very simple graphical models (e.g., Pearl
1988) of quantified premises, to see if they impose con-
straints on the conclusion probability. For example, take
the syllogism:

Some P are Q
All Q are R P! Q! R

Therefore Some P are R

The syllogistic premises on the left define the dependen-
cies on the right because of their figure, that is, the
arrangement of the middle term (Q) and the end terms
(P and R) in the premises. There are four different
arrangements or figures. The different figures lead to
different dependencies, with different graphical struc-
tures. Note that these dependency models all imply that
the end terms (P and R) are conditionally independent,
given the middle term, because there is no arrow linking
P and R, except via the middle term Q. Assuming con-
ditional independence as a default is a further assumption
about the environment (Step 2 in rational analysis). This is
an assumption not made in, for example, Adams’ (1998)
probability logic.

These dependency models can be parameterised. Two
of the parameters will always be the conditional probabil-
ities associated with the premises. One can then deduce
whether the constraints on these probabilities, implied
by the earlier interpretations, impose constraints on the
possible conclusion probabilities, that is, P(RjP) or
P(PjR). In this example, the constraints that P(QjP) . 0,
and P(RjQ) ¼ 1, and the conditional independence
assumption, entail that P(RjP) . 0. Consequently, the
inference to the conclusion Some P are R is probabilisti-
cally valid (p-valid). If each of the two possible conclusion
probabilities, P(RjP) or P(PjR), can fall anywhere in the
[0, 1] interval given the constraints on the premises,
then no p-valid conclusion follows. It is then a matter of
routine probability to determine which inferences are p-
valid, of the 144 two premise syllogisms that arise from
combining most and few and the four logical quantifiers
(Chater & Oaksford 1999b).

In the PHM, however, this rational analysis is also
supplemented by an algorithmic account. We assume
that people approximate the dictates of this rational analy-
sis by using simple heuristics. Before introducing these
heuristics, though, we introduce two key notions: the
notions of the informativeness of a quantified claim, and
the notion of probabilistic entailment between quantified
statements.

According to communication theory, a claim is informa-
tive in proportion to how surprising it is: informativeness
varies inversely with probability. But what is the prob-
ability of an arbitrary quantified claim? To make sense of
this idea, we begin by making a rarity assumption, as in
our models of the conditional reasoning and the selection
task, that is, the subject and predicate terms apply to only
small subsets of objects. On this assumption, if we selected
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subject term P, and predicate term, Q, at random, then
it is very likely that they will not cross-classify any object
(this is especially true, given the hierarchical character
of classification; Rosch 1975). Consequently, P(QjP) ¼ 0
and so No P are Q is very likely to be true (e.g., No
toupees are tables). Indeed, for any two randomly chosen
subject and predicate terms it is probable that No P
are Q. Such a statement is therefore quite uninformative.
Some P are not Q is even more likely to be true, and
hence still less informative, because the probability
interval it covers includes that for No P are Q. The
quantified claim least likely to be true is All P are Q,
which is therefore the most informative. Overall, the
quantifiers have the following order in informativeness:
I(All) . I(Most) . I(Few) . I(Some) . I(None) . I(Some-
not) (see Oaksford et al. 2002, for further analysis and
discussion).

Informativeness applies to individual quantified prop-
ositions. The second background idea, probabilistic entail-
ment, concerns inferential relations between quantified
propositions. Specifically, the use of one quantifier fre-
quently provides evidence that another quantifier could
also have been used. Thus, the claims that All swans are
white is strong evidence that Some swans are white –
because P(whitejswan) ¼ 1 is included in the interval
P(whitejswan) . 0 (according to standard logic, this does
not follow logically, as there may be no swans). Thus, we
say that All probabilistically entails (or p-entails) Some.
Similarly, Some and Some. . .not are mutually p-entailing
because the probability intervals P(QjP) . 0 and
P(QjP) , 1 overlap almost completely.

With this background in place, we can now state the
probabilistic heuristics model (PHM) for syllogistic
reasoning. There are two types of heuristic: generate heur-
istics, which produce candidate conclusions, and test heur-
istics, which evaluate the plausibility of the candidate
conclusions. The PHM account also admits the possibility
that putative conclusions may also be tested by more ana-
lytic test procedures such as mental logics or mental
models. The generate heuristics are:

(G1) Min-heuristic: The conclusion quantifier is the
same as that of the least informative premise (min-
premise)

(G2) P-entailments: The next most preferred conclusion
quantifier will be the p-entailment of the min-conclusion

(G3) Attachment-heuristic: If just one possible subject
noun phrase (e.g., Some R) matches the subject noun
phrase of just one premise, then the conclusion has that
subject noun phrase.

The two test heuristics are:

(T1) Max-heuristic: Be confident in the conclusion gen-
erated by G1 – G3 in proportion to the informativeness of
the most informative premise (max-premise)

(T2) Some_not-heuristic: Avoid producing or accepting
Some_not conclusions, because they are so uninformative.

We show how the heuristics combine in the following
example:

All P are Q (max-premise)
Some R are not Q (min-premise)

Therefore Some_not (by min-heuristic)
Some R are not P (by attachment-heuristic)

and a further conclusion can be drawn:
Some R are P [by p-entailment]

In BR, we compare the results of these heuristics with
probabilistic validity, and show that where there is a
p-valid conclusion, the heuristics generally identify it.
For example, the idea behind the min-heuristic is to ident-
ify the most informative conclusion that validly follows
from the premises. Out of the 69 p-valid syllogisms, the
min-heuristic identifies that conclusion for 54; for 14 syllo-
gisms the p-valid conclusion is less informative than the
min-conclusion. There is only one violation; that is,
where the p-valid conclusion is more informative than
the min-conclusion.

In turning to the experimental results, in BR we first
show how all the major distinctions between standard syl-
logisms captured by other theories are also captured by
PHM. So, returning to Table 1, all the syllogisms above
the double line have the most informative max-premise,
All (see heuristic T1). Moreover, all the syllogisms below
the single line have uninformative conclusions, Some-
not (see heuristic T2), and those below the double line
violate the min-heuristic (heuristic G1) and require a p-
entailment (heuristic G2), that is, Some. . .not$ Some.
Consequently, this simple set of probabilistic heuristics
makes the same distinctions among the valid syllogisms
as the mental models account.

In this Précis, we concentrate on novel predictions that
allow us to put clear water between PHM and other the-
ories. As we discussed earlier, the most important
feature of PHM is the extension to generalised quantifiers,
like most and few. No other theory of reasoning has been
applied to syllogistic reasoning with generalised quanti-
fiers. Table 2 shows the p-valid syllogisms involving gener-
alised quantifiers showing the conclusion type and the
percentage of participants selecting that conclusion type
in Chater and Oaksford’s (1999b) Experiments 1 and 2.
The single lines divide syllogisms with different max-
premises, showing a clear ordering in levels of endorse-
ments dependent on heuristic T1. All those above the
double line conform to the min-heuristic (heuristic G1),
whereas those below it do not and require a p-entailment
(heuristic G2). As Chater and Oaksford (1999b) pointed
out, one difference with experiments using standard
logical quantifiers was that the Some. . .not conclusion
was not judged to be as uninformative, that is, heuristic
T2 was not as frequently in evidence. However, in
general, in experiments using generalised quantifiers in
syllogistic arguments the heuristics of PHM predict the
findings just as well as for the logical quantifiers (Chater
& Oaksford 1999b).

Many further results have emerged that confirm
PHM. The min-heuristic captures an important novel dis-
tinction between strong and weak possible conclusions
introduced by Evans et al. (1999). They distinguished
conclusions that are necessarily true, possibly true, or
impossible. For example, taking the syllogism discussed
earlier (with premises, Some P are Q, All Q are R), the
conclusion Some P are R follows necessarily, No P are R
is impossible, and Some P are not R is possible. Some
possible conclusions are endorsed by as many participants
as the necessary conclusions (Evans et al. 1999). More-
over, some of the possible conclusions were endorsed by
as few participants as the impossible conclusions. Evans
et al. (1999) observed that possible conclusions that are
commonly endorsed all conform to the min-heuristic,
whereas those which are rarely endorsed violate the
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min-heuristic (with one exception). Hence, PHM captures
this important new set of data.

Some experiments designed to test the claim that syl-
logism difficulty is determined by the number of alterna-
tive mental models can also be interpreted as confirming
PHM (Newstead et al. 1999). Participants wrote down or
drew diagrams consistent with the alternative conclusions
they entertained, during syllogistic reasoning. No
relationship was found between the number of models
a syllogism requires (according to mental models
theory) for its solution and the number of conclusions
or diagrams participants produced. This suggests that
sophisticated analytical procedures, such as those
described in mental models, play, at most, a limited
role in the outcome of syllogistic reasoning. By contrast,
participants’ responses agreed with those predicted by
the min- and attachment-heuristics. Furthermore, no

differences in task difficulty dependent on syllogistic
figure were observed, a finding consistent with PHM,
but not mental models.

Recent work relating memory span measures to syllogis-
tic reasoning has also confirmed PHM (Copeland & Rad-
vansky 2004). PHM makes similar predictions to mental
models theory because the number of heuristics that
need to be applied mirrors the one, two, and three
model syllogism distinction (see Table 1). For one model
syllogisms, just the min-heuristic and attachment is
required (two heuristics). For two model syllogisms, the
some__not-heuristic is also required (three heuristics). In
addition, for three model syllogisms a p-entailment is
required (four heuristics). The more mental operations
that need to be performed, the more complex the infer-
ence will be, and the more working memory it will
require. Copeland and Radvansky (2004) found significant
correlations between working memory span and strategy
use, for both mental models and PHM. While not discri-
minating between theories, this work confirmed the inde-
pendent predictions of each theory for the complexity of
syllogistic reasoning and its relation to working memory
span.

As with Chapters 5 and 6, Chapter 7 of BR closes by
addressing the critiques of PHM that have arisen since
the theory first appeared. One criticism is that PHM
does not generalise to cardinal quantifiers (Geurts 2003)
such as Exactly three P are Q, which have no probabilistic
interpretation. Yet, such quantifiers can, nonetheless,
naturally mesh with the generalized quantifiers, to yield
interesting inferences. For example, suppose you are
told that exactly three birds in the aviary are black. If
there are twenty birds in the aviary, then few of the
birds are black; if there are four, then most of the birds
are black; and, in either case, further inferences from
these generalized quantifiers can be drawn, as
appropriate.

8. Conclusion

As we have seen, Chapters 5 to 7 of BR provide the
empirical support for taking a probabilistic approach to
human reasoning and rationality. The final chapter pro-
vides further arguments for pursuing this research
strategy in the form of a dialogue between an adherent
of the probabilistic approach and a sceptic. In this
Précis, we concentrate on two key issues that emerge
from that debate.

The first topic we consider is whether the brain is a
probabilistic inference machine. BR focuses primarily, as
we have seen, on providing rational analyses of human rea-
soning – and we have noted that rational analysis does not
make direct claims about underlying computational oper-
ations. But, to what extent can the mind or brain be viewed
as a probabilistic (or for that matter, a logical) calculating
engine? Although not the primary focus in this book, this is
nonetheless a fundamental question for the behavioural
and brain sciences. We suspect that, in general, the prob-
abilistic problems faced by the cognitive system are too
complex to be solved by direct probabilistic calculation.
Instead, we suspect that the cognitive system has devel-
oped relatively computationally “cheap” methods for
reaching solutions that are “good enough” probabilistic

Table 2. The p-valid syllogisms less the syllogisms that are also
logically valid (shown in Table 1), showing the form of the

conclusion and the proportion of participants picking the p-valid
conclusion in Chater and Oaksford’s (1999b) Experiments

1 and 2

Syllogism Conclusion Mean

All(Q,P), Most(R,Q) Most 85
Most(Q,P), All(R,Q) Most 65
All(P,Q), Most(Q,R) Most 70
Most(P,Q), All(Q,R) Most 55
Few(P,Q), All(R,Q) Few 80
All(P,Q), Few(R,Q) Few 85
Few(P,Q), All(R,Q) Few 85
All(P,Q), Few(Q,R) Few 75

Most(Q,P), Most(R,Q) Most 65
Most(P,Q), Most(Q,R) Most 50
Few(Q,R), Most(R,Q) Few 60
Most(Q,R), Few(R,Q) Few 75
Most(P,Q), Few(Q,R) Few 70

Most(Q,P), Some. . .not(R,Q) Some. . .not 80
Some. . .not(Q,P), Most(R,Q) Some. . .not 60
Some. . .not(Q,P), Most(Q,R) Some. . .not 75
Most(Q,P), Some. . .not(Q,R) Some. . .not 65
Most(P,Q), Some. . .not(Q,R) Some. . .not 75
Some. . .not(P,Q), Most(Q,R) Some. . .not 75

Few(Q,P), Some. . .not(R,Q) Some. . .not 60
Some. . .not(Q,P), Few(R,Q) Some. . .not 40
Some. . .not(Q,P), Few(Q,R) Some. . .not 30
Few(Q,P), Some. . .not(Q,R) Some. . .not 60
Few(P,Q), Some. . .not(Q,R) Some. . .not 60
Some. . .not(P,Q), Few(Q,R) Some. . .not 40

All(P,Q), Most(R,Q) Some. . .not 35
Most(P,Q), All(R,Q) Some. . .not 35
Few(Q,P), Few(R,Q) Some. . .not 35
Few(P,Q), Few(Q,R) Some. . .not 30
Few(P,Q), Most(Q,R) Some. . .not 30

Note. This table excludes the eight MI, IM, FI, and IF syllogisms,
which have two p-valid conclusions only one of which was available
in Chater and Oaksford’s (1999b) Experiment 2.
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solutions to be acceptable. In particular, where we
propose a specific processing theory (in our account of syl-
logistic reasoning) this account consists of simple, but sur-
prisingly effective, heuristics – heuristics that, however,
lead to errors, which we argue are revealed in the empiri-
cal data. Moreover, in related work on the topic of rational
choice and decision making, which we do not consider
here, we and others have proposed models that solve
probabilistic/decision making problems, but do so using
relatively cheap, and hence approximate, methods (Giger-
enzer & Goldstein 1996; Gigerenzer et al. 1999; Stewart
et al. 2006).

To the degree that algorithmic models can be formu-
lated, is rational analysis simply redundant? We argue
that it is not. Rational analysis is essential because it
explains why the particular algorithms used by the cog-
nitive system are appropriate. That is, without a charac-
terization of what problem the cognitive system solves,
we cannot ask, let alone answer, the questions of why
the algorithm has its particular form, or how effectively
it works. Moreover, it may be that a good deal of empiri-
cal data about human reasoning (and indeed, human
cognition more generally) can be understood as arising
from the structure of the problem itself – that is, the
nature of the problem drives any reasonable algorithmic
solution to have particular properties, which may be
evident in the data. This idea is a core motivation for
the rational analysis approach (Anderson 1990; 1991a);
and we have seen that a broad spectrum of data on
human reasoning can be understood purely at the
rational level – that is, without formulating an algorith-
mic theory of any kind.

The second topic we consider is the importance of
qualitative patterns of probabilistic reasoning, rather
than precise numerical calculations. Suppose, for concre-
teness, we consider a person reasoning about a game of
dice. If the dice are unbiased, then it is easy, of course,
for the theorist to formulate a probabilistic model specify-
ing that each throw is independent, and that each face has
a probability of 1/6. But this model is both too strong and
too weak. It is too strong because it generates all manner of
subtle mathematical predictions, concerning, say, the rela-
tive probabilities of rolling at least one six out of six dice
rolls versus rolling at least two sixes out of twelve dice
rolls, predictions that are not available to everyday intui-
tion. And it is too weak because it ignores many factors
of crucial importance in everyday reasoning. For
example, watching a dice being thrown, we have not
only a model of the probability that each face will be
uppermost, but a rough model of where it will land, how
likely it is to fall off the table, how loud that impact is
likely to be, how another player is likely to react to a par-
ticular outcome, given their temperament, the gamble
they have placed, and so on.

This observation implies that, if the cognitive system
is indeed building probabilistic models of the world,
then it is building models of considerable complexity –
models that can take into account any aspect of knowl-
edge, from naı̈ve physics to folk psychology. This
implies that the probabilistic turn does not resolve the
difficulty of representing knowledge – rather it provides
a framework into which this knowledge must be inte-
grated. The advantage of the probabilistic viewpoint,
though, is that it provides a powerful framework for

dealing with an uncertain world; and, indeed, for asses-
sing competing explanations of observed phenomena
(rival interpretations of perceptual input; competing gram-
mars; alternative interpretations of sentences, stories, or
court-cases). Moreover, probabilistic models of complex
domains do not need to be fully specified, at a numerical
level – most critical is that the functional relationships
between pieces of information are represented. What
tends to cause what? What is evidence for what? The direc-
tion and existence of functional dependencies between
pieces of information may be mentally represented, even
though precise numerical probabilities may be unknown.
Thus, probability theory can provide a framework for
qualitative reasoning, without using numerical values
(e.g., Pearl 2000). We tentatively suggest that much of
the power, and limitations, of human reasoning about the
everyday world flows from this qualitative style of reason-
ing. From this point of view, it is perhaps not surprising
that people are not good at explicit reasoning with prob-
abilities – indeed, they fall into probabilistic fallacies
just as readily as they fall into logical contradictions (e.g.,
Kahneman et al. 1982).

The probabilistic mind is not, of course, a machine for
solving verbally or mathematically specified problems of
probability theory. Instead, we suggest, the mind is a
qualitative probabilistic reasoner, in the sense that the
rational analysis of human reasoning requires understand-
ing how the mind deals qualitatively with uncertainty. As
we have stressed, this does not imply that the mind is a
probabilistic calculating machine (although it may be);
still less does it imply that the mind can process probabil-
istic problems posed in a verbal or mathematical format.
Nonetheless, the concepts of probability are, we suggest,
as crucial to understanding the human mind as the con-
cepts of aerodynamics are in understanding the operation
of a bird’s wing.
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NOTES
1. The case where the categorical premise is uncertain can be

accommodated using a generalization of this idea, Jeffrey condi-
tionalization (Jeffrey 1983). The new degree of belief that John
plays tennis (q), on learning that it is sunny in Bloomsbury
(which confers only a high probability that it is sunny in Wimble-
don [p]), is:

P1(q) ¼ P0(qjp)P1(p)þ P0(qj:p)P1(:p)

2. Bayes’ theorem is an elementary identity of probability
theory that allows a conditional probability to be calculated
from its converse conditional probability and the priors:
P(pjq) ¼ (P(qjp)P(p))/P(q).

3. However, this may be because of the different way that
negations are used in each task (see Evans & Handley 1999;
Oaksford 2004b).
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