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Abstract: Human cognition requires coping with a complex and
uncertain world. This suggests that dealing with uncertainty may
be the central challenge for human reasoning. In Bayesian
Rationality we argue that probability theory, the calculus of
uncertainty, is the right framework in which to understand
everyday reasoning. We also argue that probability theory
explains behavior, even on experimental tasks that have been
designed to probe people’s logical reasoning abilities. Most
commentators agree on the centrality of uncertainty; some
suggest that there is a residual role for logic in understanding
reasoning; and others put forward alternative formalisms for
uncertain reasoning, or raise specific technical, methodological,
or empirical challenges. In responding to these points, we aim
to clarify the scope and limits of probability and logic in
cognitive science; explore the meaning of the “rational”
explanation of cognition; and re-evaluate the empirical case for
Bayesian rationality.

R1. Introduction

Bayesian Rationality (Oaksford & Chater 2007, hence-
forth BR) proposed that human reasoning should be
understood in probabilistic, not logical, terms. In Part I,
we discussed arguments from the philosophy of science,
artificial intelligence, and cognitive psychology, which
indicate that the vast majority of cognitive problems
(outside mathematics) involve uncertain, rather than
deductively certain, reasoning. Moreover, we argued that
probability theory (the calculus for uncertain reasoning)
is a more plausible framework than logic (the calculus
for certain reasoning) for modeling both cognition in
general, and commonsense reasoning in particular. In
Part II, we considered a strong test of this approach,
asking whether the probabilistic framework can capture
human reasoning performance even on paradigmatically
“logical” tasks, such as syllogistic reasoning or conditional
inference.

The structure of this response is as follows. In section
R2, we reflect on the ubiquity of uncertainty and address
the theoretical attempts to preserve logic as a separate
and core reasoning process. In section R3, we compare
and evaluate Bayesian and logic-based approaches to
human reasoning about uncertainty. Section R4 focuses
on the methodology of rational analysis (Anderson 1990;
1991a; Oaksford & Chater 1998b) and its relationship
to more traditional algorithmic and neuroscientific
approaches. Section R5 discusses a variety of specific
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issues in the empirical data from the psychology of reason-
ing, and the modeling of that data. Finally, section R6
concludes the case for a “Bayesian turn” in the brain and
cognitive sciences in general, and for the understanding
of human reasoning in particular.

R2. The ubiquity of uncertainty: Distinctions that
might preserve logic

Many commentators suggest ways to preserve a role
for logic as a separate and core component in an account
of human reasoning, despite the challenge provided
by uncertainty (Allott & Uchida, Evans, Politzer &
Bonnefon). We argue that logic does have an important
role in modeling cognition; but we argue against the
existence of cognitive processes dedicated to logical
reasoning.

R2.1. Rationality 1 versus Rationality 2

Evans suggests that a distinction should be drawn
between two types of rationality (Evans & Over 1996a).
Rationality 1 relates to implicit, possibly associative, pro-
cesses, operating over world knowledge, which Evans
also terms “ecological rationality.” This type of rationality
arises from System 1 in Evans and Over’s (2004) Dual
Process Theory (see also Evans & Frankish, in press;
Sloman 1996; Stanovich & West 2000). Rationality 2
involves explicitly following normative rules, and is the
type of rationality achieved by Evans and Over’s (2004)
System 2. System 2 processes are logical, rule-governed,
and conscious. Moreover, Evans has argued for a crucial
asymmetry between the systems. It requires cognitive
effort to ignore System 1, and to use System 2 for logical
inference: that is, to infer only what follows from the struc-
ture of the given premises.

The fundamental problem with this Dual Process view
is that these two systems must interact —and if the
systems obey fundamentally different principles, it is not
clear how this is possible. Consider the familiar example
of inferring that Tweety flies from the general claim that
birds fly and the fact that Tweety is a bird. On the Dual
Process view, this inference could be drawn logically
from the premises given by System 2, from the assumption
that birds fly is a true universal generalization; System 1,
by contrast, might tentatively draw this conclusion by
defeasible, associative processes, drawing on general
knowledge. But a lack of synchrony between the two
systems, presumed to operate by different rational stan-
dards, threatens to cause inferential chaos. Consider, for
example, what happens if we consider the possibility that
Tweety is an ostrich. If System 2 works according to
logical principles, the clash of two rules threatens contra-
diction: we know that birds fly, but that ostriches do not.
To escape contradiction, one of the premises must be
rejected: most naturally, birds fly will be rejected as
false. But we now have two unpalatable possibilities. On
the one hand, suppose that this retraction is not trans-
ferred to general knowledge and hence is not assimilated
by System 1. Then the two systems will have contradictory
beliefs (moreover, if System 2 reasoning cannot modify
general knowledge, its purpose seems unclear). On the
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other hand, if birds fly is retracted from world
knowledge, along with other defeasible generalizations,
then almost all of general knowledge will be stripped
away (as BR notes, generalizations outside mathematics
are typically defeasible), leading System 1 into inferential
paralysis.

The centrality of logic for a putative System 2 is also
brought into doubt by considering that one of its main
functions is to consciously propose and evaluate argu-
ments. Yet, argumentation, that is, the attempt to persuade
onesell or others of a controversial proposition, is uni-
formly agreed not to be a matter of formal logic (Walton
1989), although aspects of argumentation may naturally
be modeled using probability theory (Hahn & Oaksford
2007). Thus, perhaps the core human activity for which
a logic-based System 2 is invoked may, ironically, be
better explained in probabilistic terms.

People can, of course, be trained to ignore some
aspects of linguistic input, and concentrate on
others — for example, in the extreme, they can learn to
translate natural language statements into predicate logic
(ignoring further aspects of their content) and employ
logical methods to determine what follows. But, for the
psychology of reasoning, this observation is no more
significant than the fact that people can learn the rules
of chess and ignore most of the visual features of
the pieces, the board, or indeed, their surroundings.
Conscious application of logical principles is a learned
skill built on top of non-logical machinery (and,
indeed, is highly effortful, even for logicians); it does not
involve, we suggest, tapping in to some underlying
logical “engine.”

It is this conscious application of logical concepts (and
related notions from mathematics, philosophy, and com-
puter science) that underpins, we suggest, the small but
significant correlation between “logical” performance on
some reasoning tasks (e.g., selecting the p and not-q
cards, in Wason’s selection task) and IQ (Stanovich &
West 2000). Logical reasoning is a late and cognitively
challenging cultural innovation, rather than a core
component of our mental machinery.

Evans also expresses disappointment that we do not
address individual differences (Stanovich 2008), which
have been viewed as supporting a Dual Process account.
But from the present perspective, individual differences
concerning the application of learned logical rules are
no different from individual differences in chess
playing — that is, neither are directly relevant to the ques-
tion of whether there are single or multiple reasoning
systems. Indeed, we suggest that individual differen-
ces provide no stronger evidence that cognition involves
core logical competence, than that cognition involves
core chess-playing competence.

It may turn out, indeed, that there is no real incompat-
ibility between Stanovich’s account and ours. In particular,
the distinction Stanovich draws between control processes
and other autonomous systems is a distinction common to
all theories of cognition (see Oaksford & Chater, in press).
But as Kowalski’s (1979) classic equation, “Algorithm =
Logic + Control,” reminds us, logic and control processes
are very different (see, e.g., Anderson 1983). Hence, Sta-
novich may not really be committed to anything like
Evans’ logically competent System 2. (A further compli-
cation is that a distinction between processes of logic
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and control is now reflected in Evans [2007], who moots
the possibility of a tri-process theory.)

R2.2. The split between semantics and pragmatics

Grice’s (1975) theory of conversational implicature orig-
inally attempted to split off a “stripped down” logic-
based natural language semantics, from the complex,
knowledge-rich processes of pragmatic interpretation
involved in inferring a speaker’s intentions. In this way,
he aimed to retain a logical core to semantics, despite
apparently striking and ubiquitous clashes between the
dictates of formal logic and people’s intuitions about
meaning and inference.

Within this type of framework, Allott & Uchida
attempt to preserve the truth of potentially defeasible con-
ditionals (if it’s a bird, then it flies, or, as above, birds fly)
despite the ready availability of counterexamples. They
suggest that this conditional is true in one model, but
not in the model that is considered when an additional
premise giving a counterexample is added (e.g., when we
consider the possibility that Tweety is an ostrich). But in
classical logic, only an inference that holds in all models
is deductively valid, by definition. Thus, accepting that
this inference holds only in some models implies accepting
that the inference is uncertain (contra, e.g., O’Brien).
Indeed, in BR, we argue uncertainty is ubiquitous in
human reasoning; outside mathematics, deductive reason-
ing, which guarantees the truth of a conclusion given the
premises, is, to a first approximation, never observed.

Moreover, understanding reasoning involves working
out pragmatic details about what default background
assumptions are applicable in reasoning. Thus, for
example, our accounts of specific reasoning phenomena,
across conditional reasoning, the selection task, and syllo-
gistic reasoning, involve default assumptions about the
environment, for example, what is rare and what is
common (cf. McKenzie; McKenzie et al. 2001) and
when states are likely to be independent or conditionally
independent. In this light, we agree with Stenning &
van Lambalgen’s claim that “pure” Bayesian analysis,
working from the premises alone, cannot capture suppres-
sion effects in conditional reasoning (see sect. R3.6) — we
view this as illustrating the knowledge-rich character of
reasoning, rather than challenging a Bayesian account.

The ubiquity of uncertain, knowledge-rich inference,
argues for an alternative to invoking the semantics/prag-
matics distinction to maintain a logical semantics for
natural language: namely, that natural language semantics
may be probabilistic “all the way down.” Experiments in
the psychology of reasoning, as reviewed in BR, find
little support for the existence of a level of logic-based
representation or inference. BR proposes a starting point
for a probabilistic semantics: If p then g conditionals are
assumed to express that the conditional probability
P(glp) is high (following Adams 1975; 1998; Bennett
2003; and Edgington 1995, among others); the quantifiers
Some, Few, Most, All are similarly assumed to express con-
straints on probabilities (e.g., Some A are B is rendered as
P(A, B) > 0; Most A are B claims that P(B|A) is high).
Switching from a logical to a probabilistic semantics pro-
vides, we argue, a better fit with patterns of human reason-
ing. Of course, it remains possible that a logical core



interpretation might be maintained — but it seems theor-
etically unparsimonious to do so (Edgington 1995).

A shift from a logical to a probabilistic semantics for
aspects of natural language may also allow a more inte-
grated account of semantics and pragmatics. Indeed,
McKenzie (e.g., Sher & McKenzie 2006) has powerfully
demonstrated the importance of pragmatic factors, even
within a purely probabilistic framework (but see, Hilton
et al. 2005). Nonetheless, the core insight of Grice’s
program remains: that splitting apart semantic factors
(concerning meaning) and pragmatic factors (concerning
inferences about speaker intentions) is a prerequisite for
constructing a tractable semantic theory, whether that
theory be based on logic (as Allott & Uchida argue) or
probability (as BR proposes).

R2.3. Proof and uncertainty and structure and strength

Politzer & Bonnefon argue that a key element missing
from a purely probabilistic account is how premises can
be used to construct proofs to derive conclusions. Thus,
they argue that the probabilistic account allows the evalu-
ation of the strength of the relationship between premises
and conclusion, but not how the conclusion is generated in
the first place. Note, though, that both logic and prob-
ability are theories of the nature of inferential relationships
between propositions (Harman 1986). Neither specify
how reasoning should be carried out, let alone how inter-
esting conclusions should be generated. Moreover, for
both logic and probability, a range of algorithms have
been developed which can both evaluate given con-
clusions, and generate new conclusions (e.g., logic pro-
gramming and Bayesian networks). From both
perspectives, any set of information potentially generates
an infinite set of possible conclusions; so that an immedi-
ate question is: What counts as an interesting conclusion?
A natural suggestion from the probabilistic point of view is
that conclusions with a low prior probability are, other
things being equal, more surprising and hence more inter-
esting (as employed in the account of syllogistic reasoning
described in BR), although interesting logic-based
measures of semantic information content have also
been proposed (Johnson-Laird 1983).

More generally, the probabilistic approach is just as able
as logic-based approaches to serve as the basis for algorith-
mic models of thought. For example, Oaksford & Chater
(in press) use a constraint satisfaction neural network
implementation of the probabilistic approach. The links
in the network captures the conditional and default
assumptions about structural relations between variables
(in the causal context, involving alternative causes and
defeaters); and the strength of each link is captured by a
weight. A similar distinction between structure and
strength has been invoked in causal reasoning using
Bayesian networks (Griffiths & Tenenbaum 2005) and
applied in Hahn and Oaksford’s (2007) probabilistic

account of argumentation.

R3. Logic, probability, and the challenge of
uncertain reasoning?

In this section, we consider whether, as some commenta-
tors suggest, we have mischaracterized the scope of logic
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or chosen the wrong alternative calculus in order to
reason about uncertainty. We deal with logic and prob-
ability in turn.

R3.1. How are logic and probability related?

Pfeifer & Kleiter observe that probability theory already
includes classical propositional logic as a special case.
Thus, one way of understanding the approach outlined
in BR is as enriching conventional logic to give an induc-
tive logic — a system of logic that extends deduction to
less-than-certain inferences (Hawthorn 2008). To a good
approximation, modern inductive logic just is Bayesian
probability (Chater et al., in press; Earman 1992), with
some additional discussion of the measure of the confir-
mation relation (see later discussion of Poletiek and
Nelson). Since Carnap (1950), this Bayesian inductive
logic includes classical logic — if a statement has a prob-
ability of 1, then any logical consequence of that statement
also has a probability of 1. Similarly, if a statement has an
implication with a probability of 0, then that statement has
a probability of 0 (note, however, that probability theory
does not readily represent the internal structure of
atomic propositions, and has no general theory of, for
example, quantification or modality). The Bayesian induc-
tive perspective is required not because classic logic is
incorrect, but because, outside mathematics, it rarely, if
ever, applies (Oaksford & Hahn 2007) — inferential
relations between propositions are relentlessly uncertain
(Jeftrey 1967).

R3.2. Is relevance relevant?

O’Brien proposes a different enrichment of logic, drawing
on his important work with Braine on mental logics
(Braine & O’Brien 1991), which aims to capture a notion
of relevance between antecedent and consequent (i.e., so
that conditionals such as if 2 is odd, then the sky is
purple are no longer automatically true, just in virtue of
the false antecedent). Thus, Braine and O’Brien’s work
aims to go beyond the material conditional, which BR
ascribed to mental logic as a whole (e.g., Rips 1994).

Adding a condition of relevance, while potentially
important, does not help deal with the problem of uncer-
tain reasoning, however. Indeed, O’Brien’s account of
conditionals is, instead, a strictly deductive version of the
Ramsey test (like, e.g., Girdenfors 1986) — conditionals
are only asserted if the consequent, ¢, follows with cer-
tainty from the antecedent p (and background knowl-
edge). Thus, Braine and O'Brien’s (1991) logical
interpretation of the conditional suffers the same funda-
mental problem as material implication: an inability to
capture the fact that generalizations outside mathematics
are inevitably uncertain.!

Moreover, despite Braine and O’Brien’s intentions, their
system does not seem to enforce relevance between ante-
cedent and consequent, either. The introduction rule for if
p then q, used by O’Brien, and described in Braine and
O’Brien (1991), states that if p then ¢ can be inferred if ¢
follows from the supposition of p together with background
knowledge, B. If we know p is false (i.e., background
knowledge B implies not-p), then supposing p and B
implies p & not-p, which is a contradiction, from which
any conclusion follows — including ¢. So conditionals
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such as if 2 is odd, then the sky is purple can be asserted,
after all. Similarly, any conditional whose conclusion is
known to be true (ie., B implies ¢) will automatically
meet the condition that p & B implies ¢ (because this is
a monotonic logic — adding premises can never remove
conclusions). Hence, conditionals such as if the sky is
purple, then 2 is even, will also be asserted — again violat-
ing intuitions of relevance.

R3.3. Uncertain reasoning via nonmonotic logic?

Stenning & van Lambalgen argue that we misrepresent
the scope of current logical methods, noting that a range of
nonmonotonic logics, in which adding a premise may
require withdrawing a previously held conclusion, might
meet the challenge of uncertainty. As noted in BR, and
elsewhere (e.g., Oaksford & Chater 1991; 2002), there
are, however, fundamental problems for nonmonotonic
logics in the crucial case where different “lines of argu-
ment” clash. Thus, if it is sunny, John goes to the park,
and it’s sunny appears to provide a powerful argument
that John goes to the park. But adding the premise, John
is arrested by the police in a dawn raid, together with
background knowledge, appears to vield the conclusion
that John does not go to the park.

From the perspective of classical logic, this situation is
one of contradiction — and what is needed is a way of
resolving which premise should be rejected. For
example, one might claim that the conditional if it’s
sunny, John goes to the park is false, precisely because
of the possibility of, among other things, arrest. But, as
noted in section R2.1, it is then difficult to avoid the con-
clusion that all conditionals, outside mathematics, are
false, because the possibility of counterexamples always
exists. Reasoning from premises known to be false is not,
of course, justified, whether in logic, or any other standard
framework, and hence, the logical analysis of the original
argument collapses.

The strategy of nonmonotonic logic attempts to solve
this problem by treating the conditional as a default rule,
which holds, other things being equal. Indeed, outside
mathematics, almost all rules are default rules. Indeed,
the implicit rule that allows us to infer that being arrested
is incompatible with a trip to the park is itself a default
rule, of course — for example, arrest may be extremely
brief, or perhaps the police station is itself in the park.
Thus, from this viewpoint, uncertain reasoning centrally
involves resolving clashes between default rules. In BR,
we argue that resolving such clashes is not typically poss-
ible by looking only at the structural features of arguments.
Instead, it is crucial to differentiate stronger and weaker
arguments, and degrees of confidence in the premises of
those arguments. Logical methods provide no natural
methods for expressing such matters of degree; but
dealing with degrees of belief and strength of evidence is
the primary business of probability theory.

R3.4. Is logic relevant to cognition?

Several commentators suggest that the powerful machin-
ery of logic should not be jettisoned prematurely (Allott
& Uchida, De Neys, O’Brien, Politzer & Bonnefon,
Stenning & van Lambalgen). As we noted in section
R3.1, probability theory (i.e., modern inductive logic) is
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a generalization of logic, allowing degrees of uncertainty.
However, it is a generalization that is presently limited
in scope. This is because how probability interacts with
richer representations involving, for example, relations,
quantification, possibility, deontic claims, tense and
aspect, and so on, is yet to be worked out. BR has, as we
have mentioned, some preliminary suggestions about the
probabilistic representation of individual connectives
(if.. then...) and quantifiers (Most, Few, Some, etc.).
But this is very far from a full probabilistic generalization
of, for example, the predicate calculus, the workhorse of
classical logic and natural language semantics. The
formal challenges here are substantial. Nonetheless,
much progress has been made, in a number of directions,
in fusing together probabilistic and logical methods (e.g.,
see papers in Williamson & Gabbay 2003), thus advancing
Carnap’s (1950) program of building an inductive logic.
Pfeifer & Kleiter apply logic in an interesting, but
distinct, way: as providing a machinery for reasoning
about probability, rather than using probability to general-
ize logic.

According to De Neys, concentrating on the compu-
tational level means that BR underplays the role of logic
in human reasoning. De Neys argues that latency and
brain imaging studies, investigating the mental processing
involved in reasoning, rather than just the output of these
processes, consistently reveal a role for logic. Yet all the
cases that De Neys cites involve a conflict between
belief and logic such that prior belief suggests one
response, but logical reasoning from the given premises
suggests another. However, the Bayesian approach can
explain at the computational level why such conflicts
might arise and therefore why inhibitory processes might
need to be invoked (De Neys et al. 2008; Houdé et al.
2000). Oaksford and Hahn (2007) point out that probabil-
istic validity of an argument and its inductive strength can
conflict. So, for example, Modus Ponens (MP) is probabil-
istically valid. However, if the probability of the con-
ditional is low, then the inductive strength of the
argument, that is, the probability of the conclusion given
the premises, will also be low. The right computational
level analysis may, therefore, remove the need to
propose two special purpose cognitive systems operating
according to different principles. This view seems consist-
ent with the current state of imaging studies, which
provide little evidence for a dedicated logical reasoning
module (Goel 2007).

O’Brien describes Chrysippus” dog’s ability to follow a
scent down one path in a fork in the road, having elimi-
nated the other as an application of the logical law of dis-
junction elimination — and hence, suggests that logic is
cognitively ubiquitous. However, this logical law cannot
uncritically be imported into a theory of canine cognition.
For one thing, such patterns of behavior are at least as well
modeled in probabilistic (Toussaint et al. 2006), as in
logical, terms. Indeed, probabilistic methods are crucial
in planning tasks in uncertain environments, which is, of
course, the normal case, outside mathematically specified
game-playing environments. In any case, just because a
behavior can be described in logical or probabilistic
terms does not directly imply that it is governed by
logical or probabilistic processes. The issues here are
complex (see the excellent introductory chapter to
Hurley & Nudds 2006) and many possibilities would



need to be ruled out before abandoning Lloyd Morgan’s
canon: that lower-level explanations of animal behavior
should be preferred.

In short, we believe that cognitive science ignores logic
at its peril — logic provides powerful and much needed
tools, just as do other branches of mathematics. It does
not, however, readily capture patterns of human reason-
ing, or, we suggest, cognition at large, unless generalized
into a probabilistic form able directly to deal with
uncertainty.

R3.5. Why probability rather than other numerical
measures?

Danks & Eberhardt and Politzer & Bonnefon ask why
we use probability, rather than other numerical measures
of degrees of belief, such as confidence intervals,
Dempster-Shafer belief functions (Dempster 1968;
Shafer 1976), or fuzzy logic (Zadeh 1975). In BR, our
primary motivation is practical: Bayesian probabilistic
methods provide a natural way to capture human reason-
ing data; and more generally, Bayesian methods have
swept through the brain and cognitive sciences, from
understanding neural coding (Doya et al. 2007), through
vision, motor control, learning, language processing, and
categorization. Even within research on reasoning,
Bayesian methods have proved central to understanding
inductive inference (Griffiths & Tenenbaum 2005;
Tenenbaum et al. 2007), causal reasoning (Sloman 2005;
Tenenbaum & Griffiths 2001), and argumentation (e.g.,
Hahn & Oaksford 2007), as well as the primarily deductive
reasoning problems considered in BR.2 “Moreover,
probabilistic methods connect with rich literatures con-
cerning computational inference methods (e.g., based on
graphical models, Lauritzen & Spiegelhalter 1988; Pearl
1988), machine learning (e.g., Jacobs et al. 1991), and nor-
mative theories of reasoning about causality (Pearl 2000).
Finally, probability also has deep relationships to other
powerful concepts in the brain and cognitive sciences,
including information theory (e.g., Blakemore et al
1991) and simplicity, for example, as captured by Kolmo-
gorov complexity theory (e.g., Chater 1996; Chater &
Vitanyi 2002). Thus, our focus on probability is primarily
pragmatic rather than, for example, depending on a
priori justifications.

Danks & Eberhardt focus, nonetheless, on justifica-
tion, arguing that doubt can be cast on justifications such
as the Dutch Book argument and long run convergence
theorems. We see the project of rational analysis as a
user of probability, on a par with the rest of science, for
example, statistical mechanics, Bayesian image restor-
ation, or economics. We only need to be as concerned
about justification as these other endeavors. Danks &
Eberhardt’s worries are analogous to Berkeley’s objections
to Newton’s infinitesimals: of considerable conceptual
importance, but with little direct impact on the practical
conduct of science. Nonetheless, probability is at least
better justified than alternative formalisms for modeling
uncertainty.

Politzer & Bonnefon and Danks & Eberhardt raise
the possibility that the assumptions of the probabilistic
approach may be too strong. We instead believe that
they are, if anything, too weak; that is, they define
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minimal coherence conditions on beliefs, which need to
be supplemented with richer formalisms, including, as
noted in section R3.4, the ability to represent relations
and quantification, and to represent and manipulate
causal relations (e.g., Pear]l 2000).

R3.6. Are we Bayesian enough?

Other commentators (Over & Hajichristidis, Pfeifer &
Kleiter, Stenning & van Lambalgen) have the opposite
concern: that BR is not Bayesian enough. Over & Hadji-
christidis argue that in conditional inference, not only is
the conditional premise (e.g., if p then ¢) uncertain, but
so is the categorical premise, p. In BR (p. 121), we
mention this general case (implying Jeffrey’s rule [Jeffrey
1983]), but point out that this extra element of uncertainty
appears unnecessary to capture the conditional reasoning
data.

Stenning & van Lambalgen and Pfeifer & Kleiter
also argue, in different ways, that we are insufficiently
Bayesian. Stenning & van Lambalgen argue that our
account of suppression effects is not Bayesian because
coherent Bayesian revision of the probability space
assumes ‘rigidity”: that is, the conditional probability
P(q|p) remains the same if we learn the truth of a categori-
cal premise: p, g, not-p, or not-g (and no other infor-
mation). We agree. But this does not imply that P(g|p)
remains the same if we are told about that p, because prag-
matic factors allow us to infer a great deal of additional
information; and this information can legitimately
change P(q|p). It is this latter case that is relevant for
reasoning with verbal materials. Thus, suppose I believe
if the key is turned, the car starts; and I am told: “the
car didn’t start this morning.” This would be a pragmati-
cally pointless remark, if the key had not been turned.
I therefore infer that the key was turned, and the car
didn’t start for some other reason. Thus, I revise down
the probability of the relevant conditional P(car starts|key
turned) dramatically. So the violation of rigidity, notably in
this type of Modus Tollens (MT) inference, does not
violate Bayesian precepts, but merely applies them to
the pragmatics of utterances (see BR, pp. 126-128;
Sobel 2004; Sober 2002).

Pfeifer & Kleiter suggest that inference can proceed
locally and deductively in a mental probability logic. In
such a logic, the precise probability of a conclusion
cannot typically be deduced from the probabilities of the
premises — but a probability interval can be. We
adopted a similar approach to probabilistic validity for
syllogisms where, according to our probabilistic semantics,
quantifiers describe probability intervals. Nonetheless, in
line with Stanovich and West’s (2000) “fundamental com-
putational bias,” we believe that people spontaneously
contextualize and elaborate verbal input, by adding infor-
mation from world knowledge. Indeed, it takes substantial
cognitive effort not to do this. Consequently, we think it
unlikely that people reason deductively about probability
intervals.

R3.7. Measuring confirmation

People are not merely passive observers. They can actively
search for information to help test hypotheses, or to
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achieve specific goals. In BR, we outline “rational”
accounts for both cases. Where people test between
hypotheses, a natural objective is to search for data in
order to maximize the expected amount of information
that will be gained in the task (Shannon & Weaver
1949). This is “disinterested” inquiry. Where people gain
information to help achieve specific goals, then a natural
objective is to choose information to maximize expected
utility (balancing costs of information search with the
improved choices that may result from new information).
This is “goal-directed” inquiry. In BR, we note that differ-
ent variations of Wason’s selection task are appropriately
captured by versions of one or other model. In particular,
we showed how attending to the goal-directed case avoids
the postulation of specific machinery, such as “cheater-
detection” modules (e.g., Cosmides 1989), to explain
patterns of experimental data (e.g., BR, pp. 191-98).

Focusing on disinterested inquiry, Nelson notes that a
wide range of normative and descriptive proposals for
assessing the strength of information in a piece of data
have been proposed. In testing these models against a
wide range of psychological data (Nelson 2005), he finds
that the information-theoretic measure implicit in our
analysis stands up well against competitors, although it is
not picked out uniquely by the empirical data.

Poletiek notes a further interesting link to philosophy
of science, noting that Popper’s measure of severity of
test is equivalent to P(e|H)/P(e), for data e and hypothesis
H. And the logarithm of this quantity just is the amount of
information carried by the evidence e about H — the quan-
tity which we use in our model of disinterested inquiry in
the selection task. This quantity is also used as a measure
of the degree to which a theory is confirmed by the data in
confirmation theory (Milne 1996). This is, as Poletiek
notes, particularly interesting, given that Popper’s
measure of severity of test is part of a theoretical frame-
work which aims to entirely avoid the notion of confir-
mation (see also Milne 1995). Thus, our account of the
selection task could be recast, from a Popperian stand-
point, as a rational analysis in which people attempt to
choose data to provide the more severe possible tests for
their hypotheses.

R4. Rational analysis, algorithmic processes, and
neural implementation

BR is primarily concerned with the rational analysis of
human reasoning (e.g., Anderson 1990; 1991a; Chater &
Oaksford 2008a; Oaksford & Chater 1998b). In this
section, we consider the role of rational analysis in the
brain and cognitive science and whether this style of
explanation is fundamentally flawed.

R4.1. The power of rational analysis

Hahn notes that the shift away from considerations of
algorithms and representations, encouraged by rational
analysis, has led to a substantial increase in explanatory
power in cognitive science, in a number of domains.
Where the underlying explanation for an aspect of cogni-
tion arises from the rational structure of the problem
being solved, there focusing on specific algorithmic and
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neural mechanisms may be unhelpful. Therefore, building
specific algorithmic models (e.g., connectionist networks)
of a phenomenon may replicate the phenomenon of inter-
est (by virtue of being an adaptive solution to the “rational”
problem in hand), but may throw little light on why it
occurs.

R4.2. Normativity and rational analysis

Evans and Schroyens are concerned about the normative
aspect of rational analysis. Evans questions whether nor-
mativity is a proper part of a computational-level analysis
of human reasoning, and by implication, cognition in
general, and recommends a switch to an ecological
notion of rationality. He suggests rationality should
concern how well people are adapted to their environ-
ment, which may not require following the prescriptions
of any normative theory of reasoning (cf. Gigerenzer &
Goldstein 1996).

We suggest, however, that ecological rationality does
not replace, but rather, complements normative ration-
ality. Normative considerations are still required to
explain why a particular algorithm works, given a particu-
lar environment; indeed, this is precisely the objective of
rational analysis. Thus, for example, in arguing for the eco-
logical rationality of various fast and frugal heuristics
(Gigerenzer et al. 1999), Gigerenzer and colleagues
appeal to a Bayesian analyses to explore the type of
environmental structure for which their algorithms
succeed (e.g., Martignon & Blackmond-Laskey 1999).
Thus, rational analysis cannot be replaced by, but seeks
to explain, ecological rationality.

Note, too, that rational analysis is goal-relative: it speci-
fies how best to achieve a given goal, in a given environ-
ment, with given constraints (Anderson 1990; Oaksford
& Chater 1998b). So, if your goal is to land a rocket on
the moon, your guidance system ought to respect classical
physics; if your goal is to avoid contradictions, you ought to
reason according to standard logic; and if your goal is to
avoid accepting bets that you are bound to lose, you
ought to follow the rules of probability theory (see Ch. 2
of BR).

Ignoring the goal-relativity of rational analysis leads
Schroyens to suggest that we have fallen into Moore’s
(1903) “naturalistic fallacy” in ethics: that we have
attempted to derive an “ought” from an “is.” Moore’s
concern is that no facts about human behavior, or the
world, can justify an ethical theory. Ethics is concerned
with non-relative notions of “ought”: the aim is to establish
universal principles of right behavior. But the goal-relativity
of rational analysis makes it very different from the domain
of ethics, because it is conditional. Rational analysis con-
siders: if you have objective O, given an environment E,
and constraints C, then the optimal action is A. Ethics, by
contrast, considers whether O is a justifiable objective.
And the nature of the solution to a well-specified optimiz-
ation problem is itself firmly in the domain of facts.

Indeed, were Schroyens concern valid, then its
consequences would be alarming, sweeping away func-
tional explanation in biology and rational choice expla-
nation in economics. Yet in all cases, rational /optimality
explanations are used to derive empirical predictions;
and, as in any scientific enterprise, the assumptions of
the rational/optimality accounts are adjusted, where



appropriate, to give a better fit with empirical predictions.
Specifically, empirical data lead to revision of empirical
assumptions in the rationality/optimality analysis — the
empirical data does not lead to a revision of the laws of
logic, probability, or any other rational theory.

Khalil raises the opposite concern: that we use rational
explanation too narrowly. He argues that the style of optim-
ality explanation that we advocate applies just as well in the
explanation of non-cognitive biological structures as it does
to cognitive processes — he argues that, in the sense of
rationality used in BR, stomachs are just as rational as
cognitive mechanisms. This concern appears purely termi-
nological; we reserve “rationality” for information proces-
sing systems. But rational analysis is, indeed, parallel to
optimality explanation in biology (Chater et al. 2003).

R4.3. Relevance of the algorithmic level

McKenzie and Griffiths note, however, that advocating
rational analysis does not make the challenges concerning
algorithmic, and indeed neural, implementation, disap-
pear. Moreover, the mapping between levels of expla-
nation need not necessarily be straightforward, so that a
successful probabilistic rational analysis of a cognitive
task does not necessarily require that the cognitive
system be carrying out probabilistic calculations — any
more than the bird is carrying out aerodynamic calcu-
lations in growing a wing perfectly adapted for flight.
Nonetheless, in many contexts, it is natural to see cogni-
tion as carrying out probabilistic calculations; and a prior
rational analysis (or, in Marr’s [1982] terms, computational
level of explanation) is extremely valuable in clarifying
what calculations need to be carried out. Without a
“rational analysis” for arithmetic calculations (i.e., a math-
ematical theory of elementary arithmetic), understanding
which algorithms might be used by a pocket calculator,
let alone how those algorithms might be implemented in
silicon, would be impossible. Griffiths outlines key chal-
lenges for creating an algorithmic-level theory of cogni-
tion, viewed from a Bayesian perspective; and this
perspective dovetails nicely with work viewing neural
machinery as carrying out Bayesian inference (e.g., Ma
et al. 2006; Rao et al. 2002), which we consider briefly
further on.

BR is largely focused on rational level explanation
(Anderson 1990; 1991a). Indeed, following Marr (1982),
we argued that understanding the rational solution to pro-
blems faced by the cognitive system crucially assists with
explanation in terms of representations and algorithms,
as stressed by Hahn and Griffiths. In BR, this is illustrated
by our model of syllogistic reasoning, which proposes a set
of “fast and frugal” heuristics (Gigerenzer & Goldstein
1996) for generating plausible conclusions, rooted in a
Bayesian rational analysis (Chater & Oaksford 1999b).
More recently, we have suggested methods for causal
and conditional reasoning, based on “mental mechanisms”
(Chater & Oaksford 2006; Ali et al., in press) directly build-
ing on rational and algorithmic models inspired by the lit-
erature on Bayesian networks (Glymour 2001; Pearl 198S;
2000). Moreover, an explicit algorithmic implementation
of our probabilistic account of conditional inference has
been constructed using a constraint satisfaction neural
network (Oaksford & Chater, in press). Moreover, there
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is a signiﬁcant movement in current cognitive science
that focuses on developing and employing Bayesian
machine learning techniques to model cognition at both
the rational and algorithmic levels (e.g., Griffiths et al.
2007; Kemp & Tenenbaum 2008).

Evans’ concern that we ignore the algorithmic level is
therefore puzzling. He worries that BR recommends that
one should “observe some behaviour, assume that it is
rational, find a normative theory that deems it to be so,
and then ... nothing else, apparently.” We assume that
the ellipsis should, in Evans’ view, be fleshed out with an
algorithmic, process-based explanation, which should
then be subject to rigorous empirical test. The abovemen-
tioned list of algorithmic level proposals inspired by
Bayesian rational analysis, both in the domain of reasoning
and in cognitive science more generally, gives grounds for
reassurance. Moreover, the extensive empirical testing of
these models (Green & Over 1997; 2000; McKenzie &
Mikkelsen 2000; 2007; McKenzie et al. 2001; Nelson
2005; Oaksford & Moussakowski 2004; Oaksford &
Wakefield 2003; Oaksford et al. 1999; 2000; Tenenbaum
1999) should allay concerns that rational analysis provides
no testable predictions. Ironically, the only theories in
the psychology of reasoning that have been algorithmically
specified, aside from those within the Bayesian tradition,
are directly based on another rational level theory: logic
(Johnson-Laird 1992; Rips 1994). Theorists who have
instead focused primarily on heuristics for reasoning
have couched their explanations in purely verbal terms
(Evans 1989; Evans & Over 2004). This indicates, we
suggest, that rational analysis assists, rather than
impedes, algorithmic explanation.

R4.4. Relevance of neural implementation

Bayesian rational analysis is, moreover, appealing because
it appears to yield algorithms that can be implemented in
the brain. In BR (Ch. 4), we observed that the Bayesian
approach was sweeping across cognitive psychology.
We might also have added that its influence in compu-
tational neuroscience is at least as significant (Friston
2005). Although our Bayesian analyses of higher-level
reasoning do not directly imply Bayesian implementations
at the algorithmic level, it is intriguing that influential
theorists (Doya et al. 2007; Friston 2005; Ma et al. 2006)
view Bayesian inference as providing the driving compu-
tational principle for neural information processing.
Such models, using population codes (Ma et al. 2006),
which avoid treating the brain as representing probabil-
ities directly on a numerical scale, can model simple per-
ceptual decision tasks (Gold & Shadlen 2000). Such
convergence raises the possibility that Bayesian rational
analyses of reasoning may one day find rather direct
neural implementations.

De Neys specifically appeals to the implementation
level in commenting on BR. He draws attention to
imaging studies of reasoning that suggest a role for
the anterior cingulate cortex in detecting conflict and
inhibiting responses. As we have seen (sect. R3.4), such
a role is entirely consistent with Bayesian approaches.
Indeed, more broadly, imaging work on human
reasoning, pioneered by Goel (e.g., Goel 2007), is at an
exploratory stage, and currently provides few constraints
on theory. Moreover, as we have seen, where cognitive
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neuroscientists concentrate on what computations the
brain performs rather than where, the emerging answer
is Bayesian.

R4.5. Optimality and rational analysis

A range of commentators (e.g., Brighton & Olsson,
Danks & Eberhardt, Evans, and Schroyens) argue
that the methodology of rational analysis faces conceptual
problems. Our general response to these concerns is prag-
matic. As with any methodology, we see rational analysis,
using probabilistic methods or otherwise, as primarily to
be judged by its results. Anderson’s path-breaking work
(1990; 1991a), and the huge literature on Bayesian
models across the brain and cognitive sciences, of which
BR is a part, is therefore, in our view, the best argument
for the value of the approach. Parallels with closely
related work in behavioral ecology and rational choice
explanation in economics give further weight to the view
that a “rational” style of explanation can yield considerable
insights. But, like any style of explanation, rational analysis
has its limits. Just as, in biology, some behaviors or struc-
tures are products of “history” rather than adaptation
(Carroll 2005), and some economic behaviors are the
product of cognitive limitations (e.g., Ariely et al. 2003;
Thaler 2005), so in the brain and cognitive sciences, we
should expect some phenomena to arise from specific
aspects of algorithms/representations or  neural
implementation.

We are therefore happy to agree with commentators
who suggest that there are cognitive phenomena for
which purely rational considerations provide an incom-
plete, or indeed incorrect, explanation (e.g., Brighton &
Olsson, Evans). We also agree that rational analysis is
challenged where there are many, perhaps very different,
near-optimal rational solutions (Brighton & Olsson). In
such situations, rational analysis provides, at best, a
range of options — but it does not provide an explanation
of why one has been chosen. Nonetheless, these issues
often cause few problems in practice, as the results in
BR and in the wider program of rational explanation
illustrate.

We agree, moreover, with concerns that finding exactly
the optimal solution may be over-restrictive (Brighton &
Olsson, Evans). Consider the case of perceptual organiz-
ation, where the cognitive system must decide between
multiple interpretations of a stimulus (Gregory 1970; von
Helmholtz 1910/1925). Accounts based on Bayesian prob-
ability and on the closely related idea of maximizing sim-
plicity (Chater 1996; Hochberg & McAlister 1953;
Leeuwenberg & Boselie 1988) adopt the perspective of
rational analysis, but they do so comparatively. That is,
the perceptual system is presumed to choose interpret-
ation A, rather than interpretation B, if A is more likely
than B (or, in simplicity-based formulations, if it provides
a simpler encoding of the sensory input). Neither the like-
lihood nor the simplicity principles in perceptual organiz-
ation are presumed to imply that the perceptual system
can optimize likelihood/simplicity — and indeed, in the
general case, this is provably impossible (see Chater
1996, for discussion). Indeed, we suspect that rational
analysis will, in many cases, primarily be concerned with
providing a measure of the relative “goodness” of different
cognitive processes or behaviors; and it is explanatory to
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the degree to which the “good” mechanisms are more
prevalent than the “bad.” The parallel with evolutionary
explanation seems to be exact here: Inclusive fitness pro-
vides a crucial explanatory measure in explaining the evol-
ution of biological structures, but the explanatory “bite” is
comparative (i.e., in a certain environment, a flipper yields
greater fitness than a leg). There is no assumption that bio-
logical evolution, in any context, reaches a state of comple-
tely optimized perfection; indeed, quite the reverse (Jacob
1977). Thus, Evans” emphasis on satisficing rather than
optimizing, and Brighton & Olsson’s focus on relative
rationality, seem to us entirely consistent with BR.

Note, too, that in modeling many aspects of cognition, a
full-scale rational analysis (specifying a task, environment,
and computational limitations) may not be required. For
example, conditional inference can be modeled in Baye-
sian terms, assuming only a probabilistic interpretation
of the premises, and the requirement of maintaining con-
sistent degrees of belief. The success of the probabilistic,
rather than a logical, interpretation of the premises can
be assessed by comparing the predictions of both
approaches to data on human reasoning, as well general
philosophical principles.

Brighton & Olsson also raise a different concern: that
the specific sets of probabilistic assumptions (such as the
independence assumptions embodied in naive Bayes)
may sometimes be justified not by rational analysis, but
instead in the light of their general, formal properties,
combined with empirical success in solving some exter-
nally defined task (e.g., estimating the relative sizes
of German cities, Gigerenzer & Goldstein 1996). For
example, a model such as naive Bayes, they note, may be
effective because it has few parameters and hence avoids
over-fitting. We suggest, however, that this is not a separ-
ate type of explanation of inferential success, distinct from
Bayesian rational analysis. Instead, the justification for
preferring simple models can, itself, be provided in
terms of Bayesian reasoning, and closely related formal-
isms, including minimum description length (Chater &
Oaksford 2008b; MacKay 2003; Rissanen 1989; Vitanyi
& Li 2000).

R4.6. Need rational explanation be causal?

Brighton & Olsson, together with Danks & Eberhardt,
raise the fundamental concern that rational explanation
does not provide a causal explanation of behavior. We
agree. Rational explanation is teleological (Fodor
1968) — it explains by reference to purpose, rather than
cause.

In particular, rational explanation does not require that
the rational analysis is itself represented in the mind of the
agent, and does not, therefore, imply that behavior is gov-
erned by any such representation. Aerodynamics may
provide an optimality-based explanation of the shape of
the bird’s wing; but aerodynamic calculations by the bird
(or any other agent) are not causally responsible for the
wing’s shape.

Similarly, delineating the circumstances in which
algorithms such as naive Bayes (Brighton & Olsson;
Domingos & Pazzani 1997), Take the Best (Gigerenzer
& Goldstein 1996; Martignon & Hoflrage 1999), or unit-
weighted regression (Dawes 1979) are reliable may
require highly sophisticated rational explanation. Yet a



cognitive system that employs such models may know
nothing of such rational explanations — and indeed,
these rational assumptions typically play no causal role in
determining the behavior. Thus, in behavioral ecology,
for example, the strategies animals use in foraging, mate
selection, and so on, are typically explained using optimal-
ity explanations; but animals are not assumed to carry out
optimality calculations to validate their behavioral
strategies.

Danks & Eberhardt suggest that there is a “require-
ment for a teleological explanation that the normative
principle must have played a causal role — ontogenetic,
phylogenetic, or both — in the behavior’s existence or per-
sistence. ‘Origin stories’ are required for teleological expla-
nation.” We find this claim puzzling: normative principles,
and rational explanations in general, are abstract — they
are not part of the causal realm. Thus, a Bayesian rational
analysis can no more cause a particular piece of behavior
or reasoning, than the principles of arithmetic cause a cal-
culator to display a particular number. Teleological expla-
nations are distinctively non-causal, and necessarily so.

In this section, we have considered concerns about the
general project of rational analysis. We now turn to con-
sider specific issues relating to the rational models and
empirical data presented in BR.

R5. Reconsidering models and data

Even if the broad sweep of arguments from the preceding
sections is endorsed, there remain doubts about the details
of the particular models described in BR and their ability
to account for human reasoning data. Indeed, in the com-
mentaries, issues of detail emerge most often between
researchers who otherwise are in broad agreement. It is
in this light that we consider the comments of Liu,
Oberauer, Over & Hadjichristidis, and Wagenmakers.
We also consider here Halford’s comments on syllogistic
reasoning, drawn from a different framework.

R5.1. Conditional inference

Liu, Oberauer, and Over & Hadjichristidis, who have
also advocated a probabilistic approach (in particular, to con-
ditional inference), have concerns about our specific model.
We addressed, in section R3.6, Over & Hadjichristidis’s
argument that we are not Bayesian enough, and that we
should employ Jeffrey’s rule to deal with uncertainty in the
categorical premise of conditional inference. We pointed
out that we too explicitly adopted Jeffrey’s rule in BR.
They also cite some unpublished results apparently
showing that people have an imperfect understanding of Jef-
frey’srule. These results are intriguing and suggest that more
extensive empirical testing of this rule is required.
Oberauer argues that our models of conditional infer-
ence and data selection may lead to absurdity. He argues
that if the marginals, P(p) and P(g), remain fixed, which
he describes as “axiomatic” in our theory,4 then if one
increases the probability that someone gets a headache,
given they take drug X, then those who don’t take X will
get fewer headaches. This apparent absurdity stems from
a conflation in Oberauer’s description between the
factual and the epistemic/doxastic: Changing this
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conditional degree of belief does not mean that these
people actually achieve these benefits. In ignorance of
the real conditional probability, but knowing the values
of the marginals, I should revise my degree of belief that
not taking this drug leads to fewer headaches. Yet this
will only be appropriate when the marginals are known —
which is clearly inappropriate in Oberauer’s example.

Oberauer also perceives an inconsistency between our
adoption of The Equation — P(if p then q) = P(q|p) — and
our use of a contingency table to represent the conditional
hypothesis in data selection. However, by The Equation
there is only sufficient information in the premises of a
conditional inference to draw MP by Bayesian (or
Jeffrey) conditionalization (at least a point value). The
remaining inferences can only be drawn on the assump-
tion that people use the marginals to calculate the relevant
conditional probabilities, for example, P(—g|—p) for
Denying the Antecedent (DA). Once P(qlp) and the mar-
ginals are fixed, the contingency table is determined.
Knowing the meaning of a statement is often equated
with knowing the inferences that a statement licenses
(Dowty et al. 1981). According to The Equation, the con-
ditional only licenses “probabilized” MP. Probabilistically,
to draw further inferences requires more information to
be drawn from world knowledge. Hence, there is no
inconsistency. Moreover, in the selection task, people
are presented with an array of possible evidence types
that makes the marginals relevant in the same way as pre-
senting more than just MP in the conditional inference
task. The degree of belief that is modified by selecting
data is in the conditional and the marginals, which consti-
tute the dependence and independence models. Thus,
Oberauer’s concerns can be readily addressed.

Oberauer also suggests that contingency tables are
consistent with a probabilistic contrast approach, that is,
the measure of the strength of an argument, for
example, MP, is P(q|p) — P(q|=p). It is for this reason
that we believe that argument strength may indeed be
two-dimensional (Oaksford & Hahn 2007). The con-
ditional probability alone can mean that a good argument
leads to no increase in the degree of belief in the con-
clusion, for example, for MP when P(g|p) = P(g) = 1.
The probabilistic contrast (and other measures; see, e.g.,
Nelson, Poletiek, and Oaksford & Hahn 2007) captures
the change in the probability of the conclusion brought
about by an argument. Oberauer suggests that there is
no evidence for people’s use of the probabilistic contrast.
Yet Over et al. (2007) found significant sensitivity to
P(q|—p), consistent with some use of the probabilistic con-
trast or a related measure of change, and the evidence is
currently equivocal.

Oberauer also raises two concerns over evidence for
our model of conditional inference. First, fitting a model
with two free parameters to four data points “is no convin-
cing accomplishment.” Even so, as Hahn observes, the
move to detailed model fitting of quantitative data rep-
resents significant progress in the psychology of reasoning
(for early examples, see Krauth [1982] and Klauer [1999]).
Moreover, in BR (pp. 146—49) we fitted the model to the
32 data points produced in Oaksford et al.’s (2000) Exper-
iment 1 using only nine parameters, collapsing far more
degrees of freedom than the model fitting reported
in Oberauer (2006). Although Oberauer (2006) found
poorer fits for our model than alternative theories,
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Oaksford and Chater (2008) found that the revised model
presented in BR may provide better fits to Oberauer’s
data. Second, Oberauer argues that the most relevant
empirical evidence comes from studies where probabil-
ities were directly manipulated, of which he mentions
two, Oaksford et al. (2000) and Oberauer et al. (2004).
Moreover, he argues that their results are equivocal.
However, several other studies have manipulated prob-
abilities in conditional inference and found evidence in
line with a probabilistic account (George 1997; Liu 2003;
Liu et al. 1996; Stevenson & Over 1995). Oberauer also
leaves aside the many studies on data selection showing
probabilistic effects (see BR, Ch. 6).

Liu’s arguments about second-order conditionalization
point, we think, to an important factor that we have yet
to consider in reasoning, that is, the effects of context.
Liu has found that people often endorse the conclusion
that, for example, Tweety flies on being told that Tweety
is a bird in the absence of the conditional premise
(reduced problems). This occurs because they fill in this
information from world knowledge. However, Liu also
found that endorsements increase when the conditional
premise is added (complete problems). In BR, we
argued that this occurs because people take the con-
ditional premise as evidence that the conditional prob-
ability is higher (an inference that may arise from
conversational pragmatics). Liu argues that our account
implies that manipulations affecting reduced problems
should also affect complete problems and provides evi-
dence against this. Yet context, both cognitive and phys-
ical, may explain these differences in a way similar to
recent studies of decision-making (Stewart et al. 2006).
For example, suppose one is told about two swanneries,
both containing the same number of swans. In one, 90%
of swans are black (P(black|swan)=9); in the other,
90% of swans are white (P(white|swan) =.9). On being
told that Tweety is a swan, presumably one would only
endorse Tweety is white at .5. This is because conversa-
tional pragmatics and world knowledge indicate that
Tweety is in one of the just mentioned swanneries, but
the dialogue up to this point does not indicate which
one.” However, the addition of the conditional premise
if a bird is a swan it is white immediately indicates
which swannery is being talked about, that is, the one in
which P(white|swan) is high, and now endorsements
should increase to .9. Clearly, although manipulations of
the relative number of swans in each swannery might
affect the reduced problem, they should not affect the
complete problem. So if the swannery in which most
swans are black were one tenth of the size of the other
swannery, then, given natural sampling assumptions,
endorsements for the reduced problem should increase
to .83, but endorsements of the complete problem
should remain the same.

R5.2. Data selection

Wagenmakers raises a variety of concerns about our
optimal data selection model. First, why do we concede
that people should select the standard “logical” A card
and 7 card choices, if the rule only applies to the four
cards? In BR (p. 210), we argue that people rarely use con-
ditionals to describe just four objects — they assume that
the cards are drawn from a larger population.
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Consequently, we quite explicitly do not make the coun-
terintuitive prediction that Wagenmakers ascribes to us.
Second, Wagenmakers wonders why — when all cards
carry some information — do participants not select all
the cards, if they are maximizing information gain? We
assume that the pragmatics of the task suggests to partici-
pants that they should select some cards, but not others
(BR, pp. 200-201). Third, Wagenmakers suggests that
incentivized individuals with more time might make the
logical response. Work on individual differences (e.g., Sta-
novich & West 2000) is consistent with the view that
logical competence is learned, either directly (e.g., study-
ing logic or math) or indirectly (e.g., learning to program
or learning conventional, non-Bayesian statistics); such
logical competence is a prerequisite for “logical”
responses, and covaries with IQ as measured in University
populations. Wagenmakers also remarks that, as Baye-
sians, we should avoid null hypothesis testing in statisti-
cally assessing our models. This choice is purely
pragmatic: it conforms to the current demands of most
journals.

R5.3. Syllogisms and development

Halford argues that mental models theory and a relational
complexity measure fit the data as well as the probability
heuristics model (PHM), conceding, however, that only
PHM generalizes to most and few. Copeland (2006) has
also recently shown that PHM provides better fits than
mental models and mental logic for extended syllogisms
involving three quantified premises. Halford also suggests
that basing confidence in the conclusion on the least prob-
able premise, as in our max-heuristic, is counterintuitive.
He proposes that confidence should instead be based on
relational complexity, which covaries with the least prob-
able premise. But perhaps Halford’s intuition goes the
wrong way: the least probable premise is the most infor-
mative; and surely the more information you are given,
the stronger the conclusions you can draw?

De Neys and Straubinger, Cokely, & Stevens
(Straubinger et al.) both argue that there are important
classes of evidence that we do not address. De Neys argues
that attention to latency data and imaging studies provides
a greater role for logic, a claim we disputed earlier. Note,
also, that the algorithmic theory in PHM has been applied
to latency data and accounts for the data, as well as mental
models (Copeland & Radvansky 2004). Straubinger et al.
are concerned that we ignore developmental data. In par-
ticular, they view the findings on the development of
working memory as providing a particular challenge to a
Bayesian approach. They do, however, acknowledge that
in different areas (e.g., causal reasoning), Bayesian ideas
are being successfully applied to developmental data
(Navarro et al. 2006; Sobel et al. 2004). Straubinger
et al’s emphasis on working memory provides good
reason to believe that our particular approach to deductive
reasoning may extend to development. Copeland and
Radvansky (2004) explicitly related working-memory
limitations to PHM, finding that it provided as good an
explanation as mental models theory of the relationship
between working-memory capacity and reasoning per-
formance. This result provides some indication that, at
least for syllogistic reasoning, developmental trajectories
explicable by mental models may be similarly amenable
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to explanation in terms of probability heuristics. Our
approach also provides a natural way in which experience,
leading to the learning of environmental statistics, might
influence reasoning development. Exploring these possibi-
lities must await future research.

R6. The Bayesian turn

BR is part of a larger movement across the brain and cog-
nitive sciences — a movement which sees cognition as cen-
trally concerned with uncertainty; and views Bayesian
probability as the appropriate machinery for dealing with
uncertainty. Probabilistic ideas have become central to
theories of elementary neural function (Doya et al
2007), motor control (Kérding & Wolpert 2004), percep-
tion (Knill & Richards 1996), language processing
(Manning & Schiitze 1999), and high-level cognition
(Chater & Oaksford 2008a; Chater et al. 2006). They also
cut across Marr’s (1982) computational (Anderson 1990;
Pearl 2000), algorithmic (Jacobs et al. 1991), and imple-
mentational (Doya et al. 2007) levels of explanation. In
arguing that commonsense reasoning should be under-
stood in terms of probability, we are merely recasting
Laplace’s (1814/1951) classic dictum concerning the
nature of probability theory: “The theory of probabilities
is at bottom nothing but common sense reduced to
calculus.”

NOTES

1. Although Braine and O’Brien (1991) explicitly reject the use of
relevance logic (Anderson & Belnap 1975), this does provide an
interesting possible route for developing these ideas. In particular,
interpretations of the semantics of relevance logics as a ternary relation
between possible worlds, or from an information-theoretic perspective,
as a ternary relation between a source, a receiver, and a channel
(Restall 1996), may provide interesting connections with nonmonotonic
reasoning.

2. By contrast, we know of just one paper in the psychology of reason-
ing discussing Dempster-Shafer belief functions, namely, George (1997).

3. Its normative status has also been questioned for many years (see,
e.g., Field 1978).

4. This is despite the fact that they were not fixed in Oaksford and
Chater (1994).

5. Of course, different assumptions would yield different results. For
example, if the previous dialogue had been talking about the swannery,
where most swans are black, just before introducing Tweety, the assump-
tion may be that Tweety comes from that swannery and so Tweety is white
might only be endorsed at .1.
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