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Abstract

In Connectionism and the Philosophy of Psychology, Horgan and Tienson (1996) argue that cognitive
processes, pace classicism, are not governed by exceptionless, “representation-level” rules; they
are instead the work of defeasible cognitive tendencies subserved by the non-linear dynamics of
the brain’s neural networks. Many theorists are sympathetic with the dynamical characterisation
of connectionism and the general (re)conception of cognition that it affords. But in all the
excitement surrounding the connectionist revolution in cognitive science, it has largely gone
unnoticed that connectionism adds to the traditional focus on computational processes, a new
focus – one on the vehicles of mental representation, on the entities that carry content through the
mind. Indeed, if Horgan and Tienson’s dynamical characterisation of connectionism is on the
right track, then so intimate is the relationship between computational processes and
representational vehicles, that connectionist cognitive science is committed to a resemblance
theory of mental content.

1. Introduction

In Connectionism and the Philosophy of Psychology, Terrence Horgan and John Tienson (henceforth
H&T) set out to develop a comprehensive characterisation of connectionism that both marks it as
a rival to its classical predecessor and explains why it is superior (1996). The result is a
framework they call dynamical cognition, a conception of mind at whose heart is the rejection of
the discrete mathematics of digital computation in favour of the fundamentally continuous
mathematics of dynamical systems theory. Cognitive processes, pace classicism, are not
governed by precise, exceptionless, “representation-level” rules; they are instead the work of
defeasible cognitive tendencies subserved by the non-linear dynamics of the brain’s neural
networks.

Along with many theorists, I am sympathetic with the dynamical characterisation of
connectionism and the general (re)conception of cognition that it affords. What is more, I am
especially sympathetic with H&T’s focus on “content-appropriate” cognitive forces, physically
realised as complex patterns of network activation and connectivity, competing and combining
with one another to determine the temporal evolution of cognitive behaviour (1996, chp.4). This,
I believe, is the proper treatment of connectionism. But revolutions often have unforeseen
consequences – consequences that even those in the vanguard fail to appreciate. And in the case
of the connectionist revolution in cognitive science, one major consequence has largely gone
unnoticed. This is that connectionist cognitive science is committed to a distinctly old-fashioned
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and, for much of this century at least, unpopular theory of mental representation. In a nutshell, if
H&T’s dynamical characterisation of connectionism is on the right track, then connectionists
must embrace a resemblance theory of mental content.

This is a conclusion for which most philosophers of cognitive science are quite
unprepared. As H&T observe, it has been a working assumption in this field that the issue of
intentionality and its naturalisation are orthogonal to debates about cognitive architecture:

[T]hroughout this book we have taken representation for granted. In doing so, we simply follow
connectionist (and classicist) practice…. It is assumed that natural cognitive systems have
intentional states with content that is not derived from the interpreting activity of other
intentional agents. But it is not the business of either classical cognitive science or connectionist
cognitive science to say where underived intentionality “comes from” (although each may place
certain constraints on an answer to this question). (1996, p.13)

But it will be the argumentative burden of this paper to show that, along with the many things
that change with connectionism, this assumption no longer holds good. Connectionism adds to
the traditional focus in cognitive science on the processes by which mental representations are
computationally manipulated, a new focus – one on the vehicles of mental representation, on the
entities that carry content through the mind. Indeed, the relationship between computational
processes and representational vehicles is so intimate within connectionist cognitive science, that
the story about the former implies one about the latter. As a consequence, while classicism is
compatible with a range of different theories of mental content, connectionism, in virtue of its
dynamical style of computation, doesn’t have this luxury.

To see why all of this is so, however, we will need to go back to the beginning. And in
the beginning there was computation.

2. What is Computation?

Jerry Fodor is fond of remarking that there is only one important idea about how the mind
works that anybody has ever had. This idea he attributes to Alan Turing:

[G]iven the methodological commitment to materialism, the question arises, how a machine
could be rational?…Forty years or so ago, the great logician Alan Turing proposed an answer to
this question…Turing noticed that it isn’t strictly true that states of mind are the only
semantically evaluable material things. The other kind of material thing that is semantically
evaluable is symbols…. Having noticed this parallelism between thoughts and symbols, Turing
went on to have the following perfectly stunning idea. “I’ll bet”, Turing (more or less) said, “that
one could build a symbol manipulating machine whose changes of state are driven by the material
properties of the symbols on which they operate (for example, by their weight, or their shape, or
their electrical conductivity). And I’ll bet one could so arrange things that these state changes are
rational in the sense that, given a true symbol to play with, the machine will reliably covert it
into other symbols that are also true. (Fodor, 1992, p.6)

The rest, as one says, is history. Turing’s idea very soon led to the development of digital
computers, and the theory of digital computation when applied to the mind leads to classicism.
All of this is old hat. But in the subsequent discussion of Turing’s insight and its implications for
cognitive science, one detail is sometimes overlooked. This is that there are actually two ideas
embodied in this aspect of Turing’s work; two ideas that can and should be distinguished. One is
a general idea about computation; the other is a more specific idea about how to construct a
computational machine.

In 1936, when the perfectly stunning idea alluded to by Fodor was taking shape in
Turing’s mind, the word ‘computer’ meant nothing more than “a person doing mathematical
calculations” (see Hodges, 1983, chp.2). What Turing did, as everyone knows, was to try to
imagine a computational machine: a machine that could perform such calculations
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automatically, without human intervention. The first step in Turing’s imagining, however, was
to consider not how such a machine could be constructed, but what such a machine had to do.
Turing asked: what, from an objective point of view, occurs when we perform a mathematical
calculation? His answer was: we write a sequence of symbols on a piece of paper. But not just
any old sequence of symbols. Our behaviour constitutes “computing” only when the later
symbols in the sequence are systematically related to the earlier ones, the precise relation
depending on the kind of mathematical operation being performed. For example, in the case of a
simple arithmetical calculation, such as adding two numbers together, the third symbol we write
refers to a number that is the sum of the two numbers denoted by the first and second symbols
we have written. Seen from this perspective, a computation is a process that produces a
mathematically coherent sequence of symbols, where this is a sequence in which later symbols bear
comprehensible mathematical relations to earlier ones. This is the general idea about
computation that is embodied in Turing’s work.

That computational processes are mathematically coherent sequences of symbols is not
an idea that originated with Turing, of course. This is just Turing’s analysis of calculational
procedures with which we are all familiar. The idea that did originate with Turing is the more
specific one about how to construct a machine that performs such computations, that
automatically generates such a sequence of symbols. That is, Turing’s great achievement wasn’t
that he told us what computational processes are; his achievement was to show us one way that
these processes could be mechanised (more about which in the next section).

Distinguishing between these two ideas is important, for the following reason. Once it is
clear that the conception of computation that Turing employed in his work is quite distinct from
his more specific idea as to how computational processes could be mechanised, it is possible to
investigate the former independently of the latter (something that is sorely lacking in most
contemporary discussions in this area). When this is done, it quickly becomes apparent that even
this general conception of computation is too restrictive, and can be liberalised along two
dimensions: one concerning the entities over which computational processes are defined; the
other the systematic relations that obtain between these entities.

First, there seems to be no reason, even in the context of mathematical calculation, to
restrict computation to sequences of symbols. Geometric proofs, for example, use a combination
of symbols and nonsymbolic diagrams. And when we step outside the field of mathematics to
consider the vast range of calculations we routinely perform in other domains (remembering all
the while that it was to our calculational capacities that Turing looked for the conception of
computation he employed), it is obvious that our deliberations engage all manner of
nonsymbolic representational entities (such as when we draw a picture to determine whether A
is taller than C when you are told that B is taller than C but shorter than A),. What seems
essential to computation, therefore, is not that it implicates symbols as such, but that
representational vehicles of some kind are employed, be these vehicles symbolic or nonsymbolic.

Second, there seems to be no reason to restrict the systematic relations between these
representational vehicles to those characterisable in mathematical terms. The computational
process at the centre of Fodor’s discussion of Turing, for example, is deductive inference, where
the systematic relation that obtains between later symbols (the conclusion) and earlier ones (the
premises) is truth preservation. And there are other kinds of representational relations that are
exploited in computation. Consider, as another example, the calculation we perform when using
a street map to determine the best route across a city. One of the crucial things in this case, as we
work out a route by tracing our finger across the map, is that the relations between the map’s
representational vehicles (the black lines that represent streets, the red dots that represent traffic
lights, and so forth) accurately reflect the relations between the map’s representational objects
(the streets, the traffic lights, and so on). In the end, perhaps the best we can say is that the
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representational vehicles participating in a computational process must be semantically coherent,
in the sense that they bear comprehensible (ie, non-arbitrary) semantic relations to one another.

With these emendations in place, we arrive at a very general conception of computation
as a procedure in which representational vehicles are processed in a semantically coherent fashion.1
When this conception is applied to cognition, we arrive, in turn, at the generic version of the
computational theory of mind: cognitive processes are semantically coherent operations over
neurally implemented representational vehicles. This is a very good idea; it is the idea,
moreover, which forms the foundation of cognitive science. But it is an idea that needs to be
fleshed out; we need to know how computational processes, so understood, can be physically
realised. This is where Turing does become important. For Turing showed us a way to bring this
idea to life.

3. Turing’s Way: Digital Computation and Classical Cognitive Science

A computational device is one that mechanistically processes representational vehicles in a
semantically coherent fashion. But how can such a device be constructed? How, to put this
another way, can the semantic properties of physically realised representational states shape the
mechanistic processes by which they are processed? The short answer here is that they can’t –
semantic engines are impossible. The trick to mechanising computation, therefore, is to align the
physical properties of a physical device with semantic ones, such while its causal behaviour is
entirely determined by the former, it nonetheless respects the latter. The trick to mechanising
computation, in other words, is to make a physical engine behave as if it were a semantic one.

Turing saw a way of doing this. What is needed, he reasoned, is a systematic means of
physically encoding information, and a mechanism for manipulating this representational
medium in a semantically coherent fashion. The first requirement, he thought, could be satisfied
by written symbols, and the second by a mechanism that recognises and transforms these
symbols purely on the basis of their material properties, but in accordance with rules that ensure
that these mechanical symbol manipulations are semantically coherent. Turing’s solution was
the specification of an abstract machine – the conceptual basis of the digital computer – replete
with a tape on which symbols are written, and a read/write head so configured that it behaves
as if it were following a set of primitive computational instructions.

Physically implementing Turing’s abstract machine is no easy feat, however. One must
first find a means of physically realising a symbolic representational medium. This is achieved
by systematically partitioning some continuously variable physical property, and then providing
these partitions and their concatenations with a semantic interpretation (whether this
interpretation concerns numbers, propositions, or whatever). The partitioning of a continuously
variable physical property generates syntactic structure, which under interpretation becomes a
symbolic medium. In conventional digital computers this role is performed by the electrical
voltages2 between pairs of wires (eg, strips of aluminium printed on silicon chips), which receive
a binary partitioning into “high” and “low” states. Thus the symbols in such computers are
                                                
1 This more general conception of computation can be found, if one looks carefully enough, in a number of places in
the philosophical literature. See, eg, Cummins and Schwarz, 1991, p.64; Dietrich, 1989; Fodor, 1975, p.27; and Von
Eckardt, 1993, pp.97-116.

2 Strictly speaking, electrical voltage is a continuously variable physical magnitude, where a physical magnitude is a
function that systematically assigns numbers to a physical property or properties of a physical system. But certain
computers use continuously variable physical properties to physically implement their representational media that are
not easily characterisable in these terms. That is, the variability of a particular physical property is not always
comfortably captured in a straightforwardly numerical fashion. To achieve the necessary generality, therefore, I will
talk in terms of the physical properties that realise the representational media of computational systems, rather than in
terms of physical magnitudes that numerically characterise these properties.
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physically inscribed in the form of concatenations of high and low voltages. One must next find
a means of “reading” and “writing” the symbols in this representational medium. This requires
a device capable of detecting and transforming these symbols on the basis of their syntactic
properties, rather than their microphysical details. This is achieved in conventional digital
computers by grouping transistors together to form “gates”, which are differentially responsive
to high and low voltage states, rather than precise voltage values.

Together these two steps lead to the construction of a syntactic engine: a physical device
whose casual behaviour is determined by the syntactic properties of the symbols recorded in its
representational medium. But left to its own devices, a syntactic engine is not terribly useful; it
doesn’t “naturally” transform symbols in a manner that is sensitive to their semantic content,
and hence doesn’t “naturally” perform any computations. In general, there is nothing intrinsic to
the syntactic structure of symbols that ordains that they will be manipulated in a semantically
coherent fashion (eg, there is nothing in the particular sequence of high and low voltages
comprising one symbol in a conventional digital computer that dictates that it must bear some
sensible semantic relation to the sequence of high and low voltages comprising another).
Consequently, it takes work to harness the power of a syntactic engine; the engine must be
forced to perform certain kinds of symbol manipulations (ie, those that are semantically
coherent) and avoid others (those that aren’t). The engine’s behaviour must, in short, be rule-
governed. These rules, while they are syntactically applied, are shaped in accordance with the
semantic relations that obtain between the symbols on which the syntactic engine operates, and
hence contain the semantic coherence of the device. They dictate that this engine will transform
one symbol into another only if their is a sensible semantic relation between them. It is only
when syntactic engines conform to such rules that they become digital computers.

In practice, of course, these rules, like every other feature of the device, must be
physically implemented. It turns out that many of these rules can be explicitly coded in the form
of symbols inscribed in a digital computer’s representational medium (ie, the notion of a stored
program). Ultimately, though, a set of primitive rules (analogous to the primitive computational
instructions resident in the read/write head of Turing’s abstract machine) must be “hardwired”.
This is done, in standard digital computers, by subtly wiring together groups of transistors – the
read/write “gates” mentioned earlier – so that the voltage transformations they execute are
always in accordance with the primitive rules. This microcircuitry thus literally embodies a set of
primitive instructions and with it a basic computational competence

This is Turing’s way of mechanising computation. And when Turing’s way is applied to
the mind, the result is classicism: the theory that cognitive processes are digital computations.
Classicism takes the generic computational theory of mind (the doctrine that cognitive processes
are semantically coherent operations over neurally implemented representational vehicles) and
adds a more precise account of both the representational vehicles (they are complex symbol
structures possessing a combinatorial syntax and semantics) and the computational processes
(they are rule-governed, syntactical transformations of these symbol structures). The rich
diversity of human thought, according to classicism, is the result of a colossal number of
syntactically-driven operations defined over complex neural symbols.

All of this is standard fare, as classicism is normally understood in the literature as the
digital computational conception of mind. According to H&T, for example, the most
fundamental assumption of classical cognitive science is a commitment to what they term
programmable representation-level rules: “cognitive processing conforms to precise, exceptionless
rules, statable over the representations themselves and articulable in the format of a computer
program” (1996, p.24). Their focus on such rules is quite justified, given the foregoing
description of digital computation, as it is these rules, and these rules only, that embody the
computational competence of a digital device and ensure that it behaves in a semantically
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coherent fashion. Without these rules, a syntactic engine is utterly blind; with them, it behaves as
if it were a semantic engine, and in so doing is capable of computational work.

So far, then, so good. However, what is not so clear, reading from the literature at least, is
what happens if we decide that Turing’s way is not the mind’s way; that cognition is not, or not
predominantly, rule-governed symbol manipulation. It is here that the failure to distinguish
between the two ideas embodied in Turing’s work is responsible for a good deal of confusion.
For when some theorists in cognitive science come to reject classicism, as many have been doing
recently, there is a tendency for them to reject too much. When they ask “What might cognition
be, if not [classical] computation?” (Van Gelder, 1995), their answer tends towards a radical, non-
representationalist form of dynamical systems theory which discards the whole idea of
semantically coherent processing, and with it the only idea we have about how intelligent
behaviour could arise in the physical world. Thus it’s important to realise that the theoretical
landscape is more extensive than their thinking implies; that one can reject classicism without
rejecting a computational conception of cognition.

4. An Alternative Way: Analog Computation and Connectionism

Everyone knows that computer science routinely distinguishes between digital and analog
computers. So at first glance it would seem that, in analog computation, there is indeed an
alternative means of mechanising computation. But what are analog computers and how do they
differ from digital devices? The standard account of the distinction between digital and analog
computers in the literature centres on the representational vehicles a computational device
deploys. If the physical material that implements each of these vehicles can vary to some extent
without thereby affecting its representational content, the device is said to employ a discrete
representational medium, and hence is digital. If, on the other hand, any variation in this
physical material constitutes a variation in representational content, the medium is continuous
and the device is thought to be analog.3

As it stands, however, this way of drawing the distinction is not unproblematic, largely
because it is sometimes unclear whether a particular representational medium is more discrete
or continuous. The legitimacy of the distinction has thus been called into question, with
considered opinion varying from those who think the distinction is merely relative to our
explanatory purposes and interests, to those who argue that the (ultimately discrete) nature of
our world dictates that the class of analog computers is empty. Furthermore, even if this way of
drawing the distinction can be made to work, it isn’t terribly illuminating. For what we really
want to know, and what the standard story doesn’t tell us, is how the causal operation of analog
computers differs from their digital counterparts.

Fortunately, there is such an account of the distinction between digital and analog
computers in the offing; one, moreover, that because it focuses on causal operation is able to
explain why digital devices deploy discrete representational media while analog machines tend
towards more continuous forms of information coding. The key here, not surprisingly, is
semantically coherent behaviour and how it is achieved. We’ve already seen how digital
computers do it: they have semantic coherence imposed on them by a set of syntactically
applied, symbol transformation rules. Analog devices, as we are about to see, do it differently.

                                                
3 One encounters different versions of this distinction digital and analog computers in the literature. For example,
some computer scientists talk in terms of the difference between modelling a physical process with real numbers
(analog computation) and with rational number approximations (digital computation). Others invoke a distinction
between discrete symbol manipulation (digital) and the manipulation of real-valued signals (analog). The version in
the text is closer in spirit to the way this distinction is developed in philosophy, mainly by Nelson Goodman (1969,
chp.4) and David Lewis (1971).
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Consider a standard example of an analog computer: a scale model of a proposed
building, onto which light is shone in order to determine shadow patterns. In what sense is this
device mechanistically processing representations in a semantically coherent fashion? First, a
number of its component parts are representational: the light shone on the model represents
sunlight, the model building represents a planned real building, and the shadow patterns
generated represent the shadow patterns that would be produced by sunlight shining on the
actual building. Secondly, these representational vehicles enter into causal relations with one
another: the light shone on the model building causes specific kinds of shadow patterns to be
produced. Finally, and crucially, the causal relations that obtain between these representational
vehicles are semantically coherent: the content of the output representation (the shadow pattern)
is non-arbitrarily related to the contents of the input representations (the light and the model
building), in that sunlight falling at that angle on a real building of that shape would produce
that shadow pattern.

But from whence does this semantic coherence come? The operating principles in the
case of a scale model are obvious and straightforward. The model derives its computational
power from the similarities that exist between the representational elements of its material
substrate and the representational domain its computations are about. Specifically, the light
shone on the scale model behaves the same way as sunlight, and the shape of the model building
is the same as that of the proposed building. These similarities ensure that the physical relations
and hence causal dynamics of the “input” representational vehicles in the scale model (the light
and the model building) automatically track those between the objects in the represented
domain (sunlight and the proposed building), such that the “output” representational vehicle of
this analog device (the shadow pattern across the model) mirrors the behaviour of its
representational object in this domain (the shadow pattern that would occur in the real world).

While a scale model is a very simple analog computer, its operating principles exemplify
the basis of all analog computation. Baldly stated, analog computers compute by physically
manipulating “analogs” of their representational domains. A material substrate embodies an
analog of some domain when there is a structural isomorphism between them, such that
elements of the former (the representational vehicles) resemble aspects of the latter (the
representational objects).4 The resemblance relation here can come in different varieties. In the
case of the scale model, the relation is one of first order structural isomorphism, whereby the
relevant physical properties of the representational objects (sunlight, shape of the proposed
building, etc) are represented by equivalent physical properties of the representational vehicles
(the light source, the shape of the model building, etc.). But this particular requirement can be
relaxed without undermining resemblance. For example, we might suppose that certain
properties of representational objects can be represented by non-equivalent properties of
representational vehicles, as long as variations in the former are systematically mirrored by
corresponding variations in the latter. This gives us a notion of second order structural
isomorphism (see Palmer, 1978; and Shepard and Chipman, 1970). Whether the resemblance
relation is first or second order, however, its obtaining makes it possible for the material
substrate to behave in a semantically coherent fashion. That is, because its representational
vehicles resemble their representational objects, the causal relations between the former can
naturally reflect certain relations (causal or otherwise) between the latter (see Trenholme, 1994).

                                                
4 It’s important to stress the relevant isomorphism here is between representational vehicles and their objects, rather
than between the causal network of vehicles and certain relations (causal or otherwise) between their representational
objects. The latter is sometimes termed functional isomorphism (see, eg, Von Eckhardt, pp.206-14), and is another way of
construing semantically coherent processing. In all computations there is a functional isomorphism between
representational vehicles and their objects. The question, though, is how this functional isomorphism is generated. In
digital computation the isomorphism is imposed by syntactically applied rules. With analog computation, by contrast,
functional isomorphism is founded on structural isomorphism.
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The computational operations of an analog computer are driven by the natural causal
laws that apply to (aspects of)5 its material substrate. This substrate must possess sufficiently
complexity and variability to be capable of representing all of the relevant properties of the
target domain over which one wants to compute, together with their variation. This demands an
intimate relationship between the computer’s substrate and the representational vehicles it
implements, an intimacy that in practice results in a more continuous representational medium
(such that fine-grained variations in the substrate are representationally and hence
computationally significant). All this makes analog computation very different from digital
computation. In the latter case, a material substrate undergoes semantically coherent behaviour,
not in virtue of a structural isomorphism between its representational vehicles and its
representational domain, but by being forced to conform to a set of computational rules. Because
these computational rules are quite distinct from the causal laws that govern the behaviour of
the (continuously variable) physical properties comprising the material substrate, their
enforcement is achieved, as we have seen, through a syntactic partitioning of this substrate. It is
the satisfaction of this requirement that gives rise, in digital computers, to a more discrete
representational medium.

Analog computation is the dynamical alternative to Turing’s way. An analog conception
of cognition would thus represent an alternative to classicism. But what would such an
alternative look like? One answer, or at least I shall now argue, is connectionism.6

Whereas classicism is grounded in the computational theory underpinning the operation
of digital computers, connectionism relies on a neurally inspired computational framework
commonly known as parallel distributed processing (or just PDP).7 A PDP network consists in a
collection of processing units, each of which has a variable activation level. These units are
physically linked by connections, which enable the activation level of one unit to contribute to
the input and subsequent activation of other units. These connections incorporate modifiable
connection weights, which modulate the effect of one unit on another in either an excitatory or
inhibitory fashion. A PDP network typically performs computational operations by “relaxing”
into a stable pattern of activation in response to a stable array of inputs. Human cognitive
processes, according to connectionism, are the computational operations of a multitude of PDP
networks implemented in the neural hardware in our heads. And the human mind is viewed as
a coalition of interconnected, special-purpose, PDP devices whose combined activity is
responsible for the rich diversity of our thought and behaviour. This is the connectionist
computational theory of mind.

A strong hint that connectionism represents an analog conception of mind can be found
in the intimate relation between the PDP computational framework and the neuroanatomy of
the brain (something that is utterly lacking in digital models of cognition). Rumelhart and
McClelland, for example, have been explicit about the fact that PDP systems directly model

                                                
5 Not all of the physical properties of an analog computer's material substrate are relevant insofar as its computational
operations are concerned. It doesn't matter, for example, from what material a scale model of a proposed building is
constructed, as long as the material is opaque. This is because the physical property that implements the relevant
representational vehicle here is something like opaque shape (for want of a better term), and many different materials,
possessing all manner of different physical properties, can exhibit this physical property.

6 Connectionism represents one analog conception of mind, not the analog conception of mind (in contrast with the
way that classicism is the digital conception of mind). This is because connectionism is the analog theory of mind one
gets when one assumes that the neural network level of description of the brain is the right level for understanding
cognition. Other analog conceptions of mind, focusing on different levels of description, are conceivable (though
highly implausible, in my view).

7 The locus classicus of PDP is the two volume set by Rumelhart, McClelland, and the PDP Research Group
(Rumelhart & McClelland, 1986; McClelland and Rumelhart, 1986).
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certain high-level physical properties of real neural networks. Most obviously, the variable
activation levels of processing units and the modifiable weights on connections in PDP networks
directly reflect the spiking frequencies of neurons and the modulatory effects of synaptic
connections, respectively.8 Terrence Sejnowski goes further, arguing that while PDP systems do
not attempt to capture molecular and cellular detail, they are nonetheless “stripped-down
versions of real neural networks similar to models in physics such as models of ferromagnetism
that replace iron with a lattice of spins interacting with their nearest neighbors” (1986, p.388). As
with any idealisation in science, what goes into such an account depends on what properties of
neural nets one is trying to capture. The idealisation must be complex enough to do justice to
these properties, and yet simple enough that these properties are sufficiently salient (see, eg,
Churchland & Sejnowski 1992, chp.3). In this respect, the PDP framework isolates and hence
enables us to focus on the computationally significant properties of neural nets, while ignoring
their fine-grained neurochemistry. Our best neuroscience informs us that neural nets compute
by generating patterns of neural activity in response to inputs, and that these patterns of activity
are the result of the modulatory effects of synapses in the short-term, and modifications to these
synapses over the longer term. It’s precisely these structural and temporal properties that are
captured by the networks of processing units and connection weights that comprise PDP
systems.

In spite of this strong hint, however, most theorists have been reluctant to press the
concept of analogicity into service in their descriptions of how connectionism differs from
classicism. This is due primarily, I think, to the fact that the PDP computational framework
resists easy classification on the standard account of the digital/analog distinction that one
encounters in the literature: since the material substrate of a PDP model comprises connection
weights and unit activation values that need not take on continuous values, it’s often not
obvious whether this substrate realises a continuous or discrete representational medium. But
this all changes when we move to the alternative conception of the digital/analog distinction
that I’ve outlined. Viewed from this perspective, the issue is not whether these models employ
continuous or discrete representational media, but how they produce semantically coherent
behaviour. And the PDP models discussed in the connectionist literature do this by first
constructing and then exploiting structural isomorphisms between their substrates and their
representational domains, not by performing rule-governed manipulations of symbolic
representations. It is clear, in other words, that PDP networks, at least as they are standardly
employed, 9 are analog computational devices.10

                                                
8 See, eg, Rumelhart and McClelland 1986, chp.4. There are other connectionists who are not entirely happy with this
interpretation, however. Paul Smolensky, for example, argues that because we are still largely ignorant about the
dynamical properties of the brain that drive cognitive operations, and because the PDP framework leaves out a
number of properties of the cerebral cortex, connectionism is situated at a level once removed from real neural
networks (1988).

9 This qualification is necessary, of course, because it is well known that a PDP network can implement a Turing
machine. When employed in this fashion, PDP networks operate as digital computers.

10 The analog character of the PDP framework is also obscured by the fact that most PDP networks are simulated on
digital computers. In such simulations, the activation values that compose a network’s activation pattern together with
the values of the connection weights are typically recorded in complex arrays, each of whose elements is subject to
updating according to the algorithms that model the network’s activity. But these data structures are not equivalent to
a pattern of activation or a the configuration of connection weights across a real (non-simulated) PDP network. The
latter are structures constructed from physically connected elements (such as neurons), each of which realises a
continuously variable physical property (such as a spiking frequency) of a certain magnitude. The former, by contrast,
are symbolic representations of such structures, in that they consist of a set of discrete symbol structures that “describe”
in a numerical form the individual activation levels of a network’s constituent processing units together with the
values of its connection weights. The activation landscape embodied in a real network thus has a range of complex
structural properties (and consequent causal powers) that are not reproduced by the data structures employed in
simulations. This fact is most vividly demonstrated by the temporal asymmetries that exist between real PDP
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Consider, as a simple example, the mine/rock detecting network discussed by Paul
Churchland (1988, pp.157-62). The network takes as input a “sonar echo” emanating from either
a rock or a mine (sampled across 13 different frequencies and thus coded across 13 input units),
processes this through a hidden layer (of 7 hidden units), and produces an output (across 2
output units) which should indicate the source of the echo. The network is initially exposed to a
range of rock echoes (which are superficially different) and a range of mine echoes (likewise),
and is trained up using the back propagation learning procedure. This procedure so modifies the
network’s connectivity pattern, that it soon becomes capable of distinguishing between the two
general types of echoes. But how does it do this? Numerical analysis of the activation patterns
generated over the hidden units of the trained up network reveals that they cluster in two
disjoint regions of activation space, and depending on which region is activated the network
outputs either “rock” or “mine”. The back propagation learning procedure has thus moulded the
network’s material substrate, through subtle modifications to its pattern of connectivity, that it
now contains an activation landscape that systematically mirrors abstract properties of the
“sonar echoscape” (for want of a better term). In other words, the trained up network embodies
an analog of its representational domain, in that its representational vehicles (the connection
weight representations stored in its pattern of connectivity, which manifest themselves in the
form of network activation patterns) are structurally isomorphic (in a second order sense) with
objects in this target domain (the “abstract” properties in common to mine and rock echoes,
respectively).

Or consider, as another example, NETtalk, probably the most talked about PDP model in
the connectionist literature (Sejnowski and Rosenberg, 1987). NETtalk transforms English
graphemes into their appropriate phonemes, given the context of the words in which they
appear. The task domain, in this case, is even more abstract, in that it is the letter-to-sound
correspondences that exist in the English language. But NETtalk’s operating principles are
similar to those found in the rock/mine detector. Again, back propagation is used to shape its
activation landscape, this time consisting of patterns across 80 hidden units, such that,
eventually, a structural isomorphism obtains between its representational substrate and the
target domain. It is this isomorphism that is revealed in the now very familiar cluster analysis to
which Sejnowski and Rosenberg subjected NETtalk. It is this isomorphism that makes it right
and proper to talk, as everyone does, of a semantic metric across NETtalk’s activation landscape.
Furthermore, it is this isomorphism that provides NETtalk with its computational power: when
the light of a grapheme, embedded in an array of graphemes, is shone on NETtalk’s surface, it
automatically casts the appropriately contextualised phonemic pattern. This PDP network is
thus an analog computational device in just the same way as the scale model we examined
earlier: its material substrate embodies a complex “scale model” of the letter-to-sound
correspondences found in English.

Nothing could be clearer than that these networks do not transform symbols according to
syntactically applied rules; than that they are not digital computers. Yet they process their
representational vehicles in a semantically coherent fashion. They are able to do this because
their material substrates have been moulded by learning procedures into “shapes” that resemble
aspects of their representational domains. When such resemblance relations are in place, their is
no need to force these networks to conform to rules which dictate how their representational
vehicles are to be processed. Instead, semantic coherence emerges quite naturally in these
networks, driven by the causal laws that apply to the materials from which they are constructed.

                                                                                                                                                              
networks and their digital simulations: the simulations are notoriously slow at processing information, when
compared to their real counterparts, in spite of the incredible computational speed of the digital machines on which
they are run. The bottom line here is that a simulated network does not embody an analog of its representational
domain, and hence is no more an analog device than a simulated hurricane is a hurricane.
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In summary, the standard PDP networks discussed in the literature are analog
computational devices. And if PDP networks are analog devices, then connectionism, the theory
one gets when one applies the PDP computational framework to cognition, is an analog
conception of mind.

5. The Cost of Connectionism: A Resemblance Theory of Mental Content

According to H&T, what sets connectionism apart from classicism is its eschewal of the discrete
mathematics of digital computation in favour of the fundamentally continuous mathematics of
dynamical systems theory; cognitive processes are not governed by exceptionless,
“representation-level” rules, they are the work of defeasible cognitive tendencies subserved by
the non-linear dynamics of the brain’s neural networks. (1996, Chps.2&4). To this extent, their
dynamical characterisation is quite consistent with the analog reading of connectionism
developed in the previous section. But dynamical systems theory, on its own, is not a
computational framework. There is no fundamental difference, from a purely dynamical
perspective, between NETtalk and the convection currents generated in a pot of boiling water. In
this sense, dynamical systems theory dissolves the distinction between intelligent and
unintelligent behaviour, and hence is quite incapable, without supplementation, of explaining
cognition. In order for dynamical engines to be capable of driving intelligent behaviour they
must do some computational work: they must learn to behave as if they were semantic engines.

H&T recognise this fact. They recognise that as classicists have a robust story to tell about
how semantic coherence is achieved in cognition (or “content-appropriateness” to use their
term), connectionists must do the same. The story they subsequently tell (see especially 1996,
Chps.6&9) focuses on the role of “content-appropriate cognitive forces”, subserved by spreading
activation across PDP networks. “Certain kinds of content-relevant interaction are automatic for
systems that have states that emit content-relevant cognitive forces”, H&T claim, which is a key
difference from classical systems “in which the operative PRL [ie, programmable
representational level] rules must determine all such outcomes” (1996, p.99). But exactly how are
such content-appropriate forces realised in PDP networks? The answer H&T provide is that in
training up a network, the representations that comprise cognitive states are placed strategically,
rather than arbitrarily, on an activation landscape, such that “their relative-position relations
systematically reflect key semantic properties and relations of the relevant individual cognitive
states themselves” (1996, p.156).

This is where H&T leave it. But one is entitled to ask for more. In particular, one is
entitled to ask how an activation landscape could be so arranged that its various regions reflect
the semantic relations to which H&T refer. The only answer that would seem to be available
here, the only answer that entitles connectionists to dispense with representation-level rules, is
one that invokes a structural isomorphism between this activation landscape and its
representational domain. It’s this isomorphism that renders the shape of the activation landscape
semantically significant, and hence endows the points in this landscape with the content-
appropriate causal powers. Dynamical engines, left to their own resources, might be incapable of
engaging in semantically coherent behaviour; but once these engines are coupled to an analog of
some region of the world, they are transformed into powerful computational devices. H&T’s
dynamical characterisation of connectionism is thus based, tacitly if not explicitly, on analog
computation.

The implications for connectionist cognitive science are many. Most striking of all, I
think, is that connectionism brings with it a new focus on the representational vehicles implicated
in cognition, in addition to the conventional focus on the computational processes in which they
are involved. This is because the semantic coherence of cognition, according to connectionism, is
actually embodied in these vehicles, rather than in a set of independently defined computational
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rules (independent, that is, of the representational substrate of cognition). To put it bluntly, the
“shape” of these vehicles matters; it’s their “shape” that drives cognition.11 And this completely
changes our view of one of the most important topics in the contemporary philosophy of mind:
the determination of mental content.

Philosophers, as H&T observe (1996, p.13), have long thought that the issue of
intentionality is orthogonal to the question of cognitive architecture. This view is the legacy of
classical cognitive science. Given that digital computations inherit their semantic coherence from
rules that are quite distinct from the structural properties of the symbols they apply to,
classicism appears to place few constraints on a theory of mental content. As long as these
symbols are transformed according to these rules, it matters not where their representational
content derives from. Thus the causal, functional and teleofunctional theories of content that
dominate the current literature are all, prima facie, compatible with the idea that mental
representations are symbols. In fact, of all the psychosemantic theories in the philosophical
marketplace, there is only one that would seem incompatible with classicism. This is the
resemblance theory of mental content, according to which representational vehicles are
contentful in virtue of resembling, in some way, their representational objects. As Robert
Cummins notes, “[classical] computationalists must dismiss similarity theories of representation
out of hand; nothing is more obvious than that data structures don’t resemble what they
represent” (1989, pp.30-1).

But all of this changes when we replace classicism with connectionism. Connectionism,
because it is grounded in analog computation, and because analog computation requires the
presence of a structural isomorphism between representational substrate and target domain,
completely closes the gap between the issues of intentionality and cognitive architecture. In
connectionism, the content a mental representational vehicle carries through the mind cannot be
independent of its “shape”. As a consequence, connectionists just don’t have the same luxury as
classicists when it comes to mental content determination. They are forced to explain mental
content, at least in part, in terms of resemblance relations between representational vehicles and
their representational objects. They are forced, in short, to embrace a resemblance theory of
mental content.

A few years ago this would have seemed a serious objection to connectionism. The
resemblance theory was thought to suffer from a number of fatal flaws, and hence, in most
philosophers’ minds, was not much more than an historical curiosity (see Cummins, 1989,
chp.3). But the last few years have seen the beginnings of a seachange in the philosophy of mind.
A number of theorists are taking resemblance very seriously again, especially in the form of
second order structural isomorphism.12 And if the line of reasoning that has been developed in
this paper is at all on the right track, this group of theorists will soon have its number increased
dramatically.

                                                
11 This is not to say that the “shape” of mental symbols is wholly unimportant in the classical theory of mind. But the
importance of shape in this latter case is relative – relative to the rules according to which these symbols are
transformed. The point is that so long as these symbols are transformed according to these rules, it doesn’t matter
what shape they are.

12 Two theorists who have kept the torch of resemblance, in the form of second order structural isomorphism, burning
over the years are Stephen Palmer (1978) and Roger Shepard (Shepard and Chipman, 1970; Shepard and Metzler,
1971). But more recently, James Blachowicz (1997), Robert Cummins (1996), Shimon Edelman (forthcoming), Craig
Files (1996), Peter Gardenfors (1996), Daniel Gilman (1994), and Chris Swoyer (1991), have all explored, though in
different ways, resemblance relations between representational vehicles and their representational objects.
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