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Abstract:  Recent years have seen rapid progress in the development of 
ontologies as semantic models intended to capture and 
represent aspects of the real world. There is, however, great 
variation in the quality of ontologies. If ontologies are to become 
progressively better in the future, more rigorously developed, 
and more appropriately compared, then a systematic discipline 
of ontology evaluation must be created to ensure quality of 
content and methodology. Systematic methods for ontology 
evaluation will take into account representation of individual 
ontologies, performance (in terms of accuracy, domain coverage 
and the efficiency and quality of automated reasoning using the 
ontologies) on tasks for which the ontology is designed and 
used, degree of alignment with other ontologies and their 
compatibility with automated reasoning. A sound and 
systematic approach to ontology evaluation is required to 
transform ontology engineering into a true scientific and 
engineering discipline. This chapter discusses issues and 
problems in ontology evaluation, describes some current 
strategies, and suggests some approaches that might be useful 
in the future.   

Key words: ontology; evaluation; alignment; semantic interoperability; 
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1. INTRODUCTION 

Recent years have seen rapid progress in the development 
of ontologies intended to capture and represent aspects of the 
real world. Because ontologies explicitly represent domains – 
constituted by the entities, properties, and relationships that 
exist in the real world – they can be used to provide 
heterogeneously structured databases and multiple systems 
with comparable semantics. Ontologies thus support semantic 
interoperability and integration in organizations in many 
domains, with notable successes thus far in the life sciences. 

There is, however, great variation in the quality of 
ontologies. Prospective users of these ontologies typically have 
no insight as to their coverage, their intelligibility to human 
users and curators, their validity and soundness, their 
consistency, the sort of inferences for which they can be used, 
or their ability to be adapted and reused for wider purposes.  

In addition, there are systems such as controlled 
vocabularies, thesauri and terminologies that in the best case 
exhibit some ontological features or that are developed using 
ontology tools, but that are not ontologies in their own right. 
The pervasive use of the term ‘ontology’ for such resources is 
unfortunate. 

Users are unsure whether particular ontologies can help 
them solve their particular data, application, or service 
problems. Enterprises and communities are not confident that 
large ontologies formed from the merging or mapping together 
of smaller ontologies will enable wider semantic operability for 
their aggregated data and complex applications, or merely 
result in greater conceptual confusion.  

If ontologies are to become progressively better in the 
future, more rigorously developed, and more appropriately 
compared, then a systematic discipline of ontology evaluation 
must be created to ensure quality of content and methodology. 
Ideally it will ensure also that an evolutionary path towards 
improvement in ontologies is created, analogous to the paths 
to improvement with which we are familiar in the traditional 
domains of science and engineering.  
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2. ISSUES IN ONTOLOGY EVALUATION  

An ontology can be evaluated against many criteria: its 
coverage of a particular domain and the richness, complexity 
and granularity of that coverage; the specific use cases, 
scenarios, requirements, applications, and data sources it was 
developed to address; and formal properties such as the 
consistency and completeness of the ontology and the 
representation language in which it is modeled. Ontologies can 
also be evaluated per questions such as the following: Is the 
ontology mappable to some specific upper ontology, so that its 
evaluation will be at least partially dependent on the 
evaluation of the latter also? What is the ontology’s underlying 
philosophical theory about reality? Theory perspectives include 
idealist: reality is dependent on mind or is ultimately mental in 
nature, realist: universals or invariant patterns really exist 
independently of minds (and thus of observers), conceptualist: 
universals are neither independently existing nor just names 
but exist only in human and possibly other animal minds as 
abstractions from particulars, nominalist: only particulars 
exist and universals do not exist in reality or in our minds but 
only as general terms; 3-dimensionalist: space and time exist 
independently and material objects are extended in space and 
endure through time, 4-dimensionalist: only a combined 
spacetime exists; etc. [for realist perspective in life sciences, 
see 14]? Finally, what kinds of reasoning methods can be 
invoked on the ontology, i.e., by the inference engine that uses 
it? The latter question highlights the importance also of the 
evaluation of ontology tools, though this chapter will not 
directly address that topic. 

Ontology evaluation includes aspects of ontology validation 
and verification relating to structural, functional, and usability 
issues. [28, 29] develop a theoretical framework and a formal 
model for evaluating ontologies, including a meta-ontology of 
semiotics (the study of signs and signification, i.e., the bearing 
of meaning by those signs, a generalization of linguistics to 
other sign systems beyond natural language) called O2 and an 
ontology of ontology evaluation and validation called oQual 
[29, p. 2]. oQual uses the evaluation matrix of [36] to answer 
general evaluation questions on the goals, functions, use 
cases, stage of development, methodology employed in the 
ontology development process, and usability of the ontology. 
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One issue in evaluating ontologies is whether to perform 
glass box (component-based) vs. black box (task-based) 
evaluation, the latter usually applied to ontologies that are 
tightly integrated with an application performing specific tasks 
[36]. An example of such an application might be a semantic 
search engine that uses a domain specific ontology to search 
over a collection of documents. 

2.1 Knowledge Representation  

Of importance in evaluating an ontology is the expressivity 
of the knowledge representation (KR) language the ontology is 
represented in, in light of the trade-off between the value of 
high expressivity and the cost of computation. Emphasis on 
high expressivity is manifested by First-Order Logic (FOL)-
based languages such as Common Logic (CL) [18], the 
Interoperable Knowledge Representation for Intelligence 
Support (IKRIS) language [38], and the Web Ontology 
Language’s (OWL) most expressive dialect OWL Full [1, 19]. 
Emphasis on minimizing the cost of computation is currently 
manifested by OWL-Lite, OWL-DL (description logic) and other 
description logics.  

Two ontologies, both covering the same domain, one 
expressed in OWL-Lite and one expressed in CL, necessarily 
will be evaluated differently, say, for a given domain 
application that requires fine model precision, e.g., fully 
automated selling and purchasing as envisioned for a range of 
semantic Web services. For a less precise task, say, for 
classifying documents in a loose topic hierarchy, either one 
may be sufficient.  

The KR language defines the syntax and the semantics for 
the ontology models expressed in that KR language. Figure 1 
[54] displays the three levels that are involved: the meta-
language, i.e., the KR language, the ontology concept or type 
level, and the instance level. The lowest level instantiates the 
generic properties described by the middle level.  
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Level Example Constructs 
Knowledge 
Representation (KR) 
Language (Ontology 
Language) Level: 

Meta Level to the 
Ontology Concept           
Level 

Class, Relation, Instance, 
Function, Attribute, 
Property, Constraint, Axiom, 
Rule 

Ontology 
Concept/Type (OC) 
Level:  

Object Level to the KR 
Language Level, 
Meta Level to the 
Instance Level 

Person, Location, Event, Frog,  
non-
SaccharomycesFungusPolarize
dGrowth, etc. 

Instance (OI) Level: 
Object Level to the 
Ontology Concept 
Level 

Harry X. Landsford III, 
Person560234, Frog23, non-
SaccharomycesFungusPolarize
dGrowth822, 

 

Meta-Level to 
Object-Level 

Meta-Level to 
Object-Level 

Language 

Ontology 
(General) 

Knowledge 
Base  

(Particular) 

 

Figure -1. Ontology Representation Levels 

Constructs defined in the KR language can be arbitrarily 
different. For example, description logics such as OWL are 
quite different from FOL languages such as CL. Some first-
order languages such as IKRIS have non-standard extensions, 
e.g., quotations and contexts. OWL-Full allows classes to also 
be individuals (instances). Finally, OWL also has been 
extended with the Semantic Web Rule Language SWRL, which 
combines description logic constructs with a Horn rule-like 
capability as found in logic programming (a generalized Modus 
Ponens proof form syntactically restricted to permit efficient 
automated inference). 

Any evaluation of an ontology has to account for the 
expressivity of the KR language in which it is modeled. One 
way to level the playing field for evaluation therefore is to 
translate the ontology to be evaluated to a canonical KR 
language, typically a very expressive language such as CL, 
which can be problematic insofar as there will likely not be a 
fully automated translation from the less expressive to the 
more expressive language. 

The ontology to be evaluated may also be mapped to an 
upper ontology that defines constructs that are not in the KR 
language. For example, an upper ontology may define class, 
relation, property, attribute, facet, quality, or trope. More 
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commonly, an upper ontology will define notions of space and 
time (3-D), or spacetime (4-D) [63], and endurants, 
perdurants, or both [34], and parts, wholes which lower 
ontologies use [65, 75]. The given ontology thereby can use 
these object-level assertions. Thus, ontology evaluation must 
also consider the mapping to an upper ontology.  

Finally, the formal properties of the KR language will be 
significant for evaluating ontologies and reasoning methods on 
those ontologies. Formal properties include soundness (any 
expression that can be derived from the knowledge base (KB) 
of the ontology and its instances is logically implied by that 
KB), completeness (any expression that is logically implied by 
the KB can be derived), and decidability (being both sound and 
complete). All of these will correlate with the formal complexity 
(time of execution, space of memory needed to compute an 
answer). One can consider undecidability as meaning that a 
query may never terminate, since an inference engine will be 
searching an infinite space. A very expressive language such 
as FOL is semi-decidable: it is decidable in that if a theorem is 
logically entailed by a FOL theory, a proof will eventually be 
found, but undecidable in that if a theorem is not logically 
entailed, a proof of that may never be found. Decidability of a 
language or logic does not mean tractability of the automated 
reasoning on that language, but there is a relationship. 
Expressivity and complexity are typically inversely proportional 
to the tractability of reasoning.  

A related property having to do with the ontology 
represented in the KR language is consistency (if 
contradictions can be proven from a given proposition, then 
the theory is inconsistent).  Inconsistent theories have no 
formal models (interpretations of those theories, the 
semantics). Inconsistency may manifest itself by circularity, 
disjoint partition errors, and other semantic inconsistencies, 
e.g., incorrect classifications. Similarly, there are other 
ontology-level correlates of the formal properties. Ontology 
incompleteness is indicated by imprecisely defined or missing 
concepts, partially defined disjointness properties, redundancy 
of class, instance, or relation [61].  
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2.2 Use Cases and Domain Requirements of 

Ontologies 

In early ontology engineering, methodological considerations 
were introduced that remain significant today. One is the use 
of competency questions to drive out requirements [33]. 
Competency questions are those an ontologist frames prior to 
the development of the ontology. These consist of bottom-up 
questions one would like answered concerning the data 
sources the ontology would encompass and also top-down 
questions one would like answered considering the nature of 
the domain. Such questions tend to push the ontologist to 
construct specific use cases and modeling requirements – 
sound software engineering practices – to drive and constrain 
the ontology development. Once an inference engine can give 
reasonably complete and coherent answers (consider them 
queries or theorems) to the competency questions, as gauged 
by a domain expert, the development effort is completed. These 
competency questions thus also act as a test suite, providing 
value during both analysis and validation.  

The domain requirements driven out by competency 
questions and use cases are ontology evaluation criteria. The 
requirements can focus on aspects such as physical vs. 
functional properties (the latter is more important for human 
artifacts), which will vary for the same entities depending on 
the intent of the model. Consider, for example, a supply chain 
ontology of chemicals. Raw manufacturers may focus on 
physical chemical properties such as valency, Ph factor, 
volatility, human toxicity, purity level, etc., while down-stream 
supply chain vendors such as paint manufacturers may focus 
on properties such as drying time, light reflectability, heat 
resistance , etc. 

2.3 Semantic Agreement and Consensus 
Building 

Measurement of human agreement on classification tasks 
has been well-studied. Similar measurement can be applied to 
the problem of classifying instances in terms of an ontology or 
mapping a concept to candidate classes in one or more 
ontologies. Researchers developing linguistic classification 
schemes for annotating corpora have measured inter-
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annotator agreement using the Kappa statistic [64, 9], defined 
as  

K = ( P(A)  P(E) ) / 1  P(E) 

where “P(A) is the proportion of times that the coders agree 
and P(E) is the proportion of times that we would expect them 
to agree by chance.” [9] 

Such measurements have played a crucial role in the 
evolution of such annotation schemes, some of which have 
resulted in successful solutions to problems in computational 
linguistics. Such metrics are appropriate when the categories 
involved are already defined and where annotators are 
required to choose between possible categories.  

Inter-annotator agreement studies have been carried out in 
the course of Gene Ontology annotation of terms in documents 
[7], in the context of the BioCreative information extraction 
task. It was found here that expert annotators (EBI GOA 
project curators) [23] were generally correct in their 
annotations, but missed a few, and that the specificity of the 
annotation varied depending on their biological knowledge. 

Semantic agreement is highly influenced by the degree to 
which humans are trained in a set of guidelines for how to 
label examples in terms of categories, and the richness of 
these guidelines. For certain problems, guidelines may have to 
be refined to arrive at more agreement; where there is eventual 
disagreement, adjudication may have to be used. The process 
of arriving at the right categories involves a variety of factors 
that include aspects of group collaboration. Delphi methods 
[50] have a role here, but have been relatively underexplored 
for use in ontology evaluation. 

2.4 Semantic Similarity and Semantic 
Distance 

The majority of ontologies exist, or can be represented in, a 
graph-based form. Semantic distance and semantic similarity 
are two measures used in graph representations to capture to 
what extent two nodes in a graph are related. Whereas 
semantic distance measures how closely two nodes are 
topologically related in a graph, semantic similarity captures to 
what extent two nodes might represent the same entity in 
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reality. Obviously, the two notions are closely related, but 
there are some important differences. In a fracture ontology, 
for example, a node representing a “fractured arm” should 
have a very short semantic distance from one referring to an 
“arm fracture”; yet the semantic similarity would still be low: a 
fracture cannot be an arm. It is now a measure of a high-
quality ontology that it should be possible to compute the 
semantic distance of post-coordinated terms such as “patient-
WITH-arm fracture” and “patient-WITH-fractured arm” as 
being minimal, and the semantic similarity as being maximal. 

Various approaches to the calculation of these values have 
been proposed. They tend to fall into two categories. Edge-
based methods exploit mainly the idea of path-length in a 
network (with or without additional weights according to the 
type of link traversed). Node-based methods also take into 
account contextual factors, such as the degree to which 
cognate terms are to be found in a large corpus [58], the idea 
being that the information content associated with nodes 
related to terms that occur often in a corpus is lower than of 
nodes that occur rarely, and that information-low nodes tend 
to appear higher in an ontology hierarchy. Still more 
sophisticated edge-based methods are described in [80] which 
is based entirely on the hierarchical is_a-relationship, and in 
[74], where this idea is expanded to take account also of other 
sorts of relationships between nodes. 

2.5 Alignment with Other Ontologies 

Ontology alignment (mapping, articulation) attempts to 
compare two ontologies, where one ontology is the ‘reference’ 
ontology against which a candidate ontology should be 
compared. Arriving at a suitable reference ontology can be 
challenging; preferably, it should be one that was created 
under similar conditions, with similar goals, to the candidate 
ontology. This issue is less a problem when, say, comparing 
different versions of the same ontology. 

Ontology alignment can provide some information about the 
relative quality of the ontologies aligned. It falls short of 
providing full evaluation metrics, however, since we do not as 
yet have gold standard reference ontologies. In [15] an attempt 
is made to base such a metric on using reality as the gold 
standard. 
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Alignment is usually described as an activity that, given two 
arbitrary ontologies O1 and O2, aims to find for each ‘concept’ 
in ontology O1 a corresponding ‘concept’ in ontology O2 that 
has the same intended meaning [43, 22, 40]. To say that two 
concepts have similar semantics, on this account, means 
roughly that they occupy similar places in their lattices. A 
problem with the above is, however, clear: ontology alignment 
is defined in terms of the correspondence (equivalence, 
sameness, similarity) of concepts. But how, precisely, do we 
gain access to concepts in order to determine whether they 
stand in a relation of correspondence?  

One option is via definitions, but then these definitions 
themselves, supplied by the ontologies to be matched, will 
likely employ different terms (or ‘concepts’), so that the 
problem of matching has merely been shifted to another place. 
Another option, as suggested in [22], is to establish 
correspondence by looking at the positions of given concepts in 
their surrounding concept lattices. But how, unless we have 
already matched some single concepts, can we compare 
‘places’ in distinct lattices (these ‘lattices’ may have very 
different mathematical forms)? This leaves only some 
statistically-based algorithms involving lexical term-matching, 
the results of whose application have thus far proved uneven, 
to say the least.  

When [24] surveyed ontology alignment methods, they 
found that the majority are based on analyzing either the 
vocabulary used to label concepts or the structure in terms of 
which the latter are organized. Term-based comparison is, as 
mentioned above, problematic because of term synonymy 
(multiple terms may have very similar meanings) and term 
ambiguity, i.e., polysemy (a given term may refer to multiple 
distinct referents).  In addition, term comparisons require a 
degree of morphological normalization, and complex multi-
word terms need to be handled. The use of structure-based 
comparison is, however, applicable in the restricted case where 
the ontologies being aligned are very similar, as in version 
comparison [20]. 

One can use coarse-grained methods for comparing 
ontologies in terms of distance, while paying lip-service to the 
term-matching problem. Research on ontology induction for 
biology has followed such an approach in comparing system-
generated ontologies with human ones. For example, [52] 
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limited the terms to those in the reference ontology, comparing 
relations closed among those terms in each of the ontologies. 
Their relation precision measures the proportion of relations a 
distance D1 apart in one ontology that are at most a distance 
D2 apart in the other, subject to a variety of constraints (e.g., 
the direction and type of the links being the same, similar, 
different, etc.) The disadvantage of such distance-based 
measures is their over-sensitivity to small changes in node 
ordering; also, the ‘conceptual’ salience of particular nodes is 
not taken into account. In related work, [41] measures the 
percentage of times terms in a parent-child relationship 
appear in an immediate or transitive parent-child relationship 
in the other. 

3. ONTOLOGIES FOR THE LIFE SCIENCES: 
EVALUATION TECHNIQUES 

In the life sciences, widely-used ontologies such as the Gene 
Ontology, UMLS, BioPAX, etc. are being used primarily to 
perform ‘associative’ query expansion during search or to 
reconcile annotations, rather than for deep reasoning. A 
number of ontologies used in biology have been developed or 
enhanced with description logic representations to permit 
richer inferential use, including the Gene Ontology Next 
Generation Project (GONG) [77], SNOMED-Clinical Terms [73], 
the Unified Medical Language System (UMLS) [57,  42, 17], the 
Generalised Architecture for Languages, Encyclopaedias and 
Nomenclatures in Medicine (GALEN) [59], the Foundational 
Model of Anatomy (FMA) [79], and the National Cancer 
Institute (NCI) Thesaurus [30]. The use of description logics 
here provides a degree of evaluation in terms of error-checking 
of the terminological structure. 

The deeper reasoning tasks that ontologies have been used 
for include: classification, e.g., finding the most specific 
protein family for an entity in a protein database [76], 
answering queries related to process models of a vaccinia virus 
life cycle [37], and reasoning about part-whole models of 
anatomy [35]. However, there are a number of problems with 
such ontologies, of the sorts described in [10, 11] which 
demonstrate that the error-checking mechanisms provided by 
description logic tools do not suffice to find all errors. 
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Many techniques are being used for ontology evaluation in 
the life sciences and more generally. For fairly exhaustive 
summaries of current practice, see [4, 5]. In this section, we 
look at a number of the techniques: evaluation with respect to 
the use of an ontology in an application, with respect to 
domain data sources, assessment by humans against a set of 
criteria, natural language evaluation techniques, and the use 
of reality itself as a benchmark. The section concludes with a 
discussion of prospects for the future: accrediting and 
certifying ontologies that have passed some evaluation criteria, 
and the notion of an ontology maturity model. 

3.1 Evaluate Use Of Ontology In An 
Application 

Task-based evaluations offer a useful framework for 
measuring practical aspects of ontology deployment, such as 
the human ability to formulate queries using the query 
language provided by the ontology, the accuracy of responses 
provided by the system’s inferential component, the degree of 
explanation capability offered by the system, the coverage of 
the ontology in terms of the degree of reuse across domains, 
the scalability of the knowledge base, and the ease of use of 
the query component.  Such task-based evaluations can 
leverage use-cases or scenarios to characterize the target 
knowledge requirements. In the DARPA High-Performance 
Knowledge Bases project [16], the evaluation included a crisis 
management scenario, where evaluators formulated 
parameterized test questions and answer keys, and 
subjectively graded question formulation, answers, and system 
explanations regarding inferential steps. In the case of the 
qualitative assessment of CYC [48] for use by the Internal 
Revenue Service [60], the use-cases were drawn from FAQs 
and topics at the IRS web site. The questions could include 
statements, and were selected to be complex enough to require 
ontology-based inference. Another assessment of CYC [51] was 
focused on its use for word-sense disambiguation and 
coreference in natural language processing. Here the queries 
chosen were taxonomic queries as well as queries that 
examined distances between pairs of concepts. 

Another task-based evaluation scheme involves using 
textbooks and other found material to guide task-specific 
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knowledge capture requirements. In  the Rapid Knowledge 
Formation (RKF) project [37], subject-matter experts added 
knowledge about DNA transcription to two ontological 
systems, Cycorp’s CYC and SRI’s SHAKEN, based on ten pages 
from a standard textbook. Independent judges carried out 
subjective grading of the accuracy of the answers obtained to 
test questions as well as the degree of reuse (old vs. new 
axioms used). Further, comparisons of performance of subject-
matter experts were carried out against knowledge engineers 
from the developer institutions. A particularly interesting 
feature of RKF was the use of challenging ‘explanation’ 
questions, e.g., ‘Can transcription be performed on either strand 
of a given DNA gene segment with equivalent effects? Explain.’ 
A similar approach was taken in the HALO pilot project [27], 
which used a chemistry domain and involved CYC, SHAKEN, 
and Ontoprise’s Ontonova.  In HALO, both the test questions 
and the assessment were modeled on Advanced Placement 
chemistry tests. 

Task-based evaluations, however, can be expensive to carry 
out and the results cannot be used to test systems whenever 
the need arises. Further, measurements of reuse face the 
problem of counting concepts or axioms, which depends on 
what sorts of concepts are reified in a particular ontology. 

3.2 Comparison of Ontology Against a Source 
of Domain Data 

Coverage of the ontology can be evaluated with respect to 
other ontologies and databases representing a particular 
domain. For example, the Gene Ontology has been 
automatically mapped to a number of other classifications as 
well as to databases. However, such coverage estimates are 
subject to noise in the mapping, of the sort discussed earlier 
for term-matching methods. In addition, entity normalization 
(mapping from attested names to database ids) is non-trivial in 
biological domains, as shown in [2], where increased length of 
the names and ambiguity in the vocabulary was tied to 
substantially poorer performance for mouse genes compared to 
yeast genes. 

Ontologies can also be mapped automatically to a corpus of 
documents representative of a particular domain, and this 
mapping can be used to assess or compare ontologies. The 
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approach of [6] compares ontologies by examining only the 
concepts which are common to the ontology and the corpus. 
Each ontology is represented by a feature vector, and the 
distance between the ontologies is represented by the distance 
between the vectors. The approach also provides a method for 
estimating the probability of the ontology given the corpus. The 
approach ignores relationships between concepts, and is 
subject to the standard problems with term-matching.  

3.3 Assessment by Humans Against a Set of 
Criteria 

Assessment by humans against a set of criteria had been 
used extensively by Ceusters and Smith in a series of studies 
of ontologies and terminologies in biomedicine:  
 The Gene Ontology  [69, 72, 68] 
 Systematized Nomenclature of Medicine (SNOMED) Clinical 

Terms (CT) [31, 10, 11, 3] 
 The National Cancer Institute Thesaurus [13,  46] 
 The Unified Medical Language System [71, 45] 
 ICF (International Classification of Functioning, Disability 

and Health) [49] 
 HL7-RIM [67] and ISO terminology and data integration 

standards [66, 70].  
 The principles in question are derived largely from common 
sense: provide clear documentation, use terms in a consistent 
(and consistently non-ambiguous) way, provide updating and 
versioning procedures, and procedures for users to propose 
corrections and additions to the ontology. Some are derived 
from basic (philosophical) logic, including the theory of 
definitions – for example: avoid circular definitions; do not give 
a new meaning to a term with an already established use in 
the domain in which the ontology is intended to be used; 
define the principal relations in the ontology (for example is_a 
and part_of ) and used them in consistent ways. Yet others are 
derived from the tradition of philosophical realism: see section 
[Using Reality as Benchmark] below. For a general overview 
see [12, 44], which describe also how the application of some 
of these principles to the evaluation of ontologies can be 
implemented in automated reasoning systems. 
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3.4 Natural Language Evaluation Techniques 

Natural language processing tasks such as information 
extraction, question-answering, and abstracting are 
knowledge-hungry tasks. It is therefore natural to consider 
evaluation of ontologies in terms of their impact on these 
tasks. Information extraction in biomedical text has made 
heavy use of the Gene Ontology; it is possible to subtract out 
or substitute other ontologies such as UMLS to see the impact 
on performance. Further, in the BioCreative evaluation [76], 
one of the tasks was to find evidence in a paper for the GO 
code provided for a given protein. The best systems for this 
task had around 30% accuracy, in part because of the 
difficulty of the inference involved. For example, the text 
passage “The p21waf/cip1 protein is a universal inhibitor of 
cyclin kinases and plays an important role in inhibiting cell 
proliferation.” is evidence for the GO annotation of that protein 
as having a molecular function of “negative regulation of cell 
proliferation (GO code: 0008285)”, which requires a system to 
make the difficult inference that inhibition is equivalent to 
negative regulation. The impact of ontologies on such an 
‘entailment’ task could be measured. 

Question-answering is another technology where ontologies 
can play a useful role in bridging the gap between a natural 
language question and a candidate passage in a document. 
Current systems use WordNet along with ad-hoc taxonomies 
rather than full-fledged ontologies. Accuracy on question-
answering tasks can provide a task-based measure of the 
impact of an ontological resource and its components. Such 
applications also present challenging requirements in terms of 
performance efficiency. Question-answering systems for the 
life sciences are still in their infancy, however. 

3.5 Using Reality as Benchmark 

The authors of [14] propose a technique for ontology 
evaluation based on determining the semantic 
correspondences between nodes in two ontologies identified 
during ontology matching and subsequent mapping or 
merging, and in particular by the examination of the changes 
made in subsequent versions of an ontology by its curators. 
They build a metric resting on a distinction between three 
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levels which have a role to play where ontologies are used as 
artifacts for annotation and automated reasoning as for 
example in the field of biomedicine: (1) the reality on the side 
of the patient; (2): the cognitive representations of this reality 
embodied in observations and interpretations on the part of 
clinicians and others, and (3) the publicly accessible 
concretizations in representational artifacts of various sorts, of 
which ontologies are examples. To establish the metric it is 
necessary first of all to specify the features by which an 
eventual gold standard must be marked. Each node in such an 
ontology would need to designate (1) a single portion of reality 
(POR) (denoting instances, universals, and the simple and 
complex combinations these form through interrelationships of 
various types [14]), which is (2) relevant to the purposes of the 
ontology, and such that (3) the authors of the ontology 
intended to use this node to designate this POR. Moreover, (4) 
no PORs objectively relevant to these purposes would be 
missed by the ontology. We can now obtain a measure of the 
quality of an ontology (and of the work, and competence, of its 
developers) by determining the degree to which successive 
versions of the ontology approximate ever more closely to this 
ideal, something which can be quantified by documenting the 
different kinds of changes in an ontology, reflecting for 
example (1) changes in the underlying reality (does the 
appearance or disappearance of an entry in a new version of 
an ontology relate to the appearance or disappearance of 
entities or of relationships among entities in reality?); (2) 
changes in our scientific understanding; (3) reassessments of 
what is relevant for inclusion in an ontology, or (4) encoding 
errors introduced during ontology curation (for example 
through erroneous introduction of duplicate entries reflecting 
lack of attention to differences in spelling). We can measure 
the degree of improvement along each of these dimensions in 
each successive version of the ontology by tracking the history 
of revisions. The metric can be used also with measures of the 
performance of an ontology in applications; a divergence 
between the two is once again a sign that the ontology does 
not line up with the reality it is supposed to represent. 
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3.6 Ontology Accreditation, Certification, 

Maturity Model 

Once validation, verification, and evaluation of ontologies 
become standard practice, a further evolution toward more 
rigor is to issue accreditation or certification (to a given 
ontology or to a team of ontology developers or an 
organization) based on a set of recognized evaluation criteria 
by an accrediting body (top-down) or an accrediting process 
(bottom-up) similar to the trustworthiness, reputation, and 
feedback mechanisms of online services and communities 
such as E-Bay and Amazon [21].  This kind of “Good Ontology-
keeping” seal of approval would compute and assign a quality 
rating of the ontology [55, 53]. An alternative approach might 
include ontology repositories that have some entrance 
requirements, e.g., an open-rating system extended with topic-
specific trust [49, 56]. The emerging Extended Metadata 
Repositories (XMDR) project  [78], based on the ISO/IEC 11179 
Metadata Registries standard [39], represents another 
repository paradigm that includes ontology registration, 
mapping services, and prospectively certification.  

As discussed throughout this  paper, additional measures 
associated with an ontology accreditation score could be 
domain, breadth of application or coverage within that domain, 
average taxonomic depth and relational density of nodes, 
completeness of axiomatic specification, adherence to 
principled methodologies such as Methontology [25, 26] and 
OntoClean [34].  

Creation of an ontology maturity model may also be useful 
[55], like the Software Engineering Institute’s Capability 
Maturity Model Integration [8]: a process of subprocesses in a 
full ontology lifecycle model, with gradations and decision 
procedures for maturity of ontologies by which organizations 
and ontologies could be gauged in terms of rigor of the 
ontology engineering process. Levels of maturity in the model 
could be defined by many of the properties discussed in this 
chapter, including degree of logical formalization, 
axiomatizability and satisfiability measures; strictness and 
properties of the ontology development process; quality of 
ontology; linkage to reference, utility, middle, and upper 
ontologies; domain of application usage; and tool support, 
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including KR language, development, and reasoning 
assistance. 

4. NEXT STEPS AND RECOMMENDATIONS  

The ultimate evaluation of an ontology is in terms of its 
adoption and successful use, rather than its consistency or 
coverage.  The Gene Ontology, while clearly impoverished in 
many representational aspects, is a fundamental success 
story.  

In the long run, rigorous ontology evaluation must evolve in 
support of a broader engineering discipline of semantics and 
ontologies, which itself would be part of an information 
engineering discipline. A rigorous engineering discipline in 
semantics and ontologies must therefore include certain 
attributes in common with other engineering disciplines: 
 A formal, verifiable science base 
 Tested theories that allow prediction 
 Defined units of measure 
 Well-defined engineering practices 

If as a society we hope to reliably build complex information 
systems incorporating ontologies, these foundational elements 
must be available to engineering practitioners. This will not be 
an easy undertaking. A measurable science of semantics or 
ontologies requires some fundamental questions to be 
answered, such as what are meaningful, theoretically 
grounded units of measure in this new science. Beyond the 
early work performed by [62] on information entropy as a 
measure for uncertainty in a message, little progress has been 
made. And yet, intuitively we deal with notions such as 
‘semantic proximity’ in our daily lives. In other words, we 
satisfy ourselves, usually through dialogue, that our own 
conceptualization of some notion is ‘close enough’ to that of 
another to allow meaningful discourse. Just how to 
characterize the dimension in which ‘close enough’ is 
evaluated, much less what the unit of measure is, remains an 
unsolved problem. 

Therefore, as a community we need to approach ontology 
evaluation as part of a larger endeavor to systematize the 
construction of information systems. In this way, we can 
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realistically hope to succeed in building ever more complex 
systems without drowning in complexity.  
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