Skip to main content
Log in

Negative Equivalence of Extensions of Minimal Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Two logics L1 and L2 are negatively equivalent if for any set of formulas X and any negated formula ¬ϕ, ¬ϕ can be deduced from the set of hypotheses X in L1 if and only if it can be done in L2. This article is devoted to the investigation of negative equivalence relation in the class of extensions of minimal logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Almudena Colacito, Dick de Jongh & Ana Lucia Vargas

References

  1. Burris S., and H. P. Sankappanavar, A course in universal algebra, Springer-Verlag, 1981.

  2. Curry H. B., Foundations of mathematical logic. McGrow-Hill Book Company, New York, 1963.

    Google Scholar 

  3. Jankov V. A., ‘The relationship between deducibility in the intuitionistic propositional calculus and finite implicational structures’, Soviet Math. Dokl. 4:1203–1204, 1963.

    Google Scholar 

  4. Jankov V. A., ‘Constructing a sequence of strongly independent superintuitionistic propositional calculi’, Soviet Math. Dokl. 9:806–807, 1968.

    Google Scholar 

  5. Johansson I., ‘Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus’, Compositio Mathematika, 4:119–136, 1937.

    Google Scholar 

  6. Maksimova L. L., ‘On maximal intermediate logics with the disjunction property’, Studia Logica 45:69–75, 1986.

    Google Scholar 

  7. McKay C. M., ‘On finite logics’, Indagationes Mathematicae 29:363–365, 1967.

    Google Scholar 

  8. Odintsov S. P., ‘Maximal paraconsistent extension of Johansson logic’, Logique at Analyse 161/163:107–120, 1998.

    Google Scholar 

  9. Odintsov S. P., ‘Logic of classical refutability and class of extensions of minimal logic’, Logic and Logical Philosophy 9:91–107, 2002.

    Google Scholar 

  10. Odintsov S. P., ‘Algebraic semantics and Kripke semantics for extensions of minimal logic’, Logical investigations (electronic journal) No.2, 1999 [in Russian] (http://www.logic.ru/LogStud/02/No2-06.html).

  11. Odintsov S. P., ‘Negatively equivalent extensions of minimal logic and theirs logics of contradictions’, Logical investigations 7, Moscow, 117–129, 2000 [in Russian].

  12. Odintsov S. P., ‘Representation of j-Algebras and Segerberg’s Logics’, Logique et Analyse 165/166:81–106, 1999.

    Google Scholar 

  13. Ono H., ‘Kripke models and intermediate logics’, Publications of Research Institute for Mathematical Sciences, Kyoto University 6:461–476, 1970.

    Google Scholar 

  14. Rasiowa H., An algebraic approach to non-classical logics, North-Holland, 1974.

  15. Rautenberg W., Klassische und nichtclassische Aussagenlogik, Vieweg, 1979.

  16. Segerberg K. ‘Propositional logics related to Heyting’s and Johansson’s’, Theoria 34:26–61, 1968.

    Google Scholar 

  17. Suzuki N.-Y., ‘Constructing a continuum of predicate extensions of each intermediate propositional logic’, Studia logica 54:173–198, 1995.

    Google Scholar 

  18. Woodruff P. W., ‘A note on JP’, Theoria 36:183–184, 1970.

    Google Scholar 

  19. Wroński A., ‘The degree of completeness of some fragments of the intuitionistic propositional logic’, Reports on Mathematical Logic 2:55–62, 1974.

    Google Scholar 

  20. Wroński A., ‘On the cardinalities of matrices strongly adequate for the intuitionistic propositional logic’, Reports on Mathematical Logic 3:67–72, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei P. Odintsov.

Additional information

The author acknowledges support by the Alexander von Humboldt-Stiftung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odintsov, S.P. Negative Equivalence of Extensions of Minimal Logic. Stud Logica 78, 417–442 (2004). https://doi.org/10.1007/s11225-004-6043-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-004-6043-0

Keywords

Navigation