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1. G E N E R A L I Z E D  C O M P O S I T I O N A L I T Y  

Through language, we are able to assign symbolic analyses to linguistic 
entities - physical objects and events - whose complexity has no intrinsic 
upper bound. Such symbolic analyses are abstract, since a single physical 
entity can support distinct analyses. Yet we have partial intuitive access 
to the properties of these analyses through their projections in different 
'dimensions', including the widely recognized and studied dimensions of 
phonology, syntax, and semantics/pragmatics. Each of these dimensions 
gives rise to a dimension-specific problem of compositionality: 

given an analysis of a linguistic entity e, which has, for a specific 
dimension d the projection d(e), how do the global properties of 
d(e) depend on the correlative properties of the components of 
e, together with their mode of composition? 

But an additional question - which we call the problem of generalized 
compositionality - arises as well: 

how does composition in one dimension depend on composition 
in other dimensions? 

There are many possible answers to this question and existing grammatical 
architectures instantiate some of them. The question deserves to be stud- 
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ied more systematically, however, so that we may gain deeper insight into 
the properties of multidimensional grammatical systems. 

The family of formal systems known generically as Categorial Grammar 
provides a useful framework in which to undertake investigations of this 
kind. Categorial grammars easily accommodate composition in multiple 
dimensions; moreover, a variety of grammatical architectures compatible 
with composition in multiple dimensions can be simulated within the 
general categorial framework, making comparison in a common frame- 
work a possibility [32, 34, 35]. Finally, the general tenets of the family of 
categorial grammars are not rigidly fixed: the general perspective is open 
to innovation. 

In what follows, we begin with a characterization of the general form 
of categorial grammars that accommodates a broad range of grammatical 
systems. We then investigate how three of the more prominent grammat- 
ical systems in this family accommodate quantifier types and quantifi- 
cational scope ambiguities, a problem prominent in the categorial litera- 
ture since Ajdukiewicz's work [2]. Analysis of this problem leads to the 
study of term-labeled type-deduction. The interest of this study centers 
on the division of deductive labor between the types and the terms that 
label them: some familiar systems arise as special cases, but new solutions 
to the problems of generalized compositionality arise as well. 

2. CATEGORIAL GRAMMARS AS DEDUCTIVE SYSTEMS 

A categorial grammar is standardly determined by the following infor- 
mation: 

• a finite set A t ( T )  o f  primitive types 
• a finite set f~ of type-forming operators 

• a finitely axiomatizable type-calculus C 
• a finite vocabulary V 
• an initial type-assignment 

Together, the primitive types and the type-forming operators determine 
a type-language T. The  type-calculus characterizes a set of valid type 
structures of the form E(tl  . . . . .  tk) F- to, (where X(t~, . . . , tk) is a brack- 
eted sequence of types, or a concatenation of types, or some other struc- 
ture which is definable over both elements of the type-language and ele- 
ments of V). The initial type-assignment ~': V ~ P o w ( T )  associates each 
element v E V with a non-empty subset of types in T. When the type 
t E ~'(v), we write v F- t. 

Now, these assumptions determine a relation between complex struc- 
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tured expressions and types in a natural way: we extend the initial type- 
assignment ¢ to a complex expression X ( v l , . . . ,  vk) formed from the 
atomic elements of the vocabulary va . . . .  , vkby the rule: 

X(V~,. . . ,Vk) Fto iff there are types h , . . . , t k  with 
v~ F ta . . . .  , vk F & such that X(tl . . . .  , tk) F to is valid accord- 
ing to the type-calculus C. 

Categorial systems defined in this fashion can be compared in three 
ways, according to 

• the deducibility relation between types that they characterize; 
• the relation between expressions and types they characterize; 
• their Curry-Howard properties: the correspondence they determine 

between proofs and A-terms. 

The interaction of these properties is instructive. In the sequel, we will 
consider three well-known categorial systems: AB, L, and LP. All three 
examples have type-systems which are positive logics, with type-construc- 
tors corresponding to implication and (in the cases of L and LP) conjunc- 
tion. The sequent perspective of Gentzen [13] provides an illuminating 
picture of the basic categorial landscape. 1 

3. S E Q U E N T  C A L C U L I  

We take a sequent, here, to consist of a pair (F, B> of structured sets of 
types, characteristically written F F B. 2 F is called the antecedent and B 
the succedent. The sequents we shall be concerned with require that the 
succedent consist of exactly one type, and that the antecedent consist of 
a nonempty sequence of types As, • • . ,  Ak (1 ~< k). 

In logical contexts, a sequent F F B counts as true on an appropriate 
interpretation v of the types in F and B if, when v makes every type in F 
true, it makes B true. In grammatical contexts, we interpret the sequent 
F ~- B as meaning that any expression corresponding to the structured set 
of types F is assigned the type B. On both interpretations, the identity 
axiom A F A and the Cut rule shown below are true under any interpreta- 
tion v. 

1 For a sketch of this landscape as a whole, and the place in it of the three categorial systems 
discussed below, see [29, 30]. 
2 We use upper-case Greek letters as variables for structured sets of types (possibly empty 
unless their being so conflicts with the appropriate definition of sequent) and upper-case 
Roman letters for individual types. 
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F k B  A,B, O k C  

A,F, O F C  

All the systems we shall discuss contain this identity axiom and the Cut 
rule. What distinguishes these systems from each other are the other 
inference rules they contain, including the logical rules governing the 
behavior of type-constructors and structural rules governing the resources 
that the sequents themselves are assumed to provide. 

4. CURRY--HOWARD MORPHISMS: PROOFS ---> TERMS 

For eategorial type-languages containing only implicational and product 
type-constructors, a rule which associates each primitive type A of the 
categofial type language with a corresponding type typ(A) in a typed h- 
calculus induces an association between the full set of categorial types and 
h-types: 

• associate each implicational type with domain A and codomain B 
(such as A---~B, A\B, or B/A) with the A-type typ(A)-+typ(B) - 
that is, the type of functions from typ(A) to typ(B); 

• and associate the product type with first projection A and second 
projection B with the pairing of typ(A) and typ(B). 

On the basis of this type-correspondence, it is possible to associate with 
each valid sequent a corresponding h-term in a way defined by its proof. 
In the pure type-calculus itself, we are not concerned with the interpreta- 
tion of any particular lexical element (since in the pure system there are 
no lexical assumptions), and in a given proof, we associate each atomic 
type A with a variable A-term of the appropriate type. We indicate such 
an association by pairing the atomic type in question (for example, A) 
and the variable in question (for example u), by writing (A, u). 

We may annotate the postulates of a type calculus to indicate how the 
h-terms associated with the types of the sequent in the conclusion of each 
inference rule depend on the h-terms associated with the types of its 
premise-sequent or premise-sequents. 

The Curry-Howard isomorphism between natural deduction proofs in 
the positive intuitionistic propositional calculus and h-terms [20, 15] re- 
veals a deep underlying similarity between two formal systems that were 
constructed for different purposes. Adapting the details of the Curry- 
Howard isomorphism to the present context does not preserve the iso- 
morphism: sequent calculus formulations can associate different proofs 
with the same h-term; moreover, implicational logics without contraction 
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and weakening - such as the ones discussed below - do not provide proofs 
for every A-term. These mismatches provide fuel for current research 
efforts in a variety of directions: proof systems which combine the elegance 
of natural deduction and the clarity of sequent calculus [14, 27, 28, 42, 46]; 
subsystems of the A-calculus which allow a Curry-Howard morphism to be 
defined for particular subsystems of the positive intuitionistic propositional 
calculus [6, 8]. 

The importance here of Curry-Howard morphisms lies in two related 
points. First, the fact that Curry-Howard morphisms associate proofs to 
terms means that they embody in the most direct way possible the Fregean 
principle of compositionality. Second, the Curry-Howard framework pro- 
rides a simple account of the sources of ambiguity: one source of ambiguity 
involves non-uniqueness of syntactic or semantic lexical type-assignment; 
a second source of ambiguity involves multiplicity of proofs. These two 
related properties have immediate consequences for the assessment of 
systems of grammatical analysis, as we shall see in the examples of categor- 
ial systems discussed below. 

5 .  E X A M P L E S  

5.1. AB 

The classical type-system AB introduced by Ajdukiewicz [2] and for- 
malized by Bar-Hillel [3] corresponds to the implicational logic which 
results from splitting the implicational type-constructor ~ into the two 
directionally sensitive variants \ and / ,  and introducing for each variant a 
rule of inference governing its behavior in sequent antecedents. This yields 
the following set of postulates: 

identity A F- A 

cut F~-A A,A,A}-B 

A, F, A ~-B 

L~ F~-A A,B,A~-C 

A,B/A,F, AF-C 

L\ F~-A A,B, AFC 

A,F,A\B,A~-C 

If we add A-terms to types in accordance with the Curry-Howard prin- 
ciples, the postulates take the following form: 

identity (A, u) ~- (14, u) 
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cut 
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FF(A,u) A , ( A , u ) , A F B  

A,F, At-B 

L~ FF-(A,u) A, (B, t (u)) ,AFC 

A, (B/A, t), F, A F- C 

L\ FF-(A,u) A, (B, t (u)) ,AFC 

A , F , ( A \ B , t ) , A P C  

In the discussion to follow, we sometimes use the pure syntactic system 
illustrated first and sometimes use the system that incorporates the Curry- 
Howard assignment. As the discussion progresses, the latter will become 
increasingly prominent. 

A sequent is valid, relative to this type calculus, if it is an axiom instance 
or is derivable from valid premises according to one of the inference rules 
Cut, L/, or L\ .  A proof of the validity of a sequent is easily displayed in 
the form of a proof-tree, a tree whose root is labeled with the sequent 
proved, whose leaves consist of instances of the identity axiom, and whose 
interior nodes consist of conclusions (looking up) or premises (looking 
down) of inference rules. Below are proofs of the two syntactic sequents 
B/A, A ~- B and A, A \B ~- B, sometimes referred to as forward application 
and backward application, respectively. 

A F A  B F B  L/ A F A  B P B  L \  
B/A, A F B A, A \ B  b B 

The grammatical applications of these rules arise from the fact that we 
regard an expression of type B/A (respectively, type A\B) as having the 
property that the result of concatenating it with an expression of type A 
to its fight (respectively, its left) is an expression of type B. Consequently, 
if we adjoin to an AB type calculus whose type language consists of the 
primitive types np and s, the simple lexicon {Zim, Yim, caught} and the 
lexical type assignment below, we may prove (by the natural extension of 
the lexical type assignment function described above in §2) that the string 
Zim caught Yim can be assigned the type s. Moreover, if Zirn is assigned 
the A-term z, Yim the A-term y, and caught the A-term c, our proof 
assigns the type s associated with the string Zim caught Yim to the A- 
term (c(y))(z): 
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Zim k (np, z) 
Yim k (np, y) 

caught k ((npXs)/np, c) 

(np, z)k(np, z) (s, (c(y))(z))k(s, (c(y))(z)) 

(np,y)k(np,y)  (np, z) , (np\s ,c(y))k(s ,  (c(y))(z)) 
(np, z), ((np\s)/np, c), (np, y) k (s, (c(y))(z)) 

Zim caught Yim k (s, (c(y))(z)) 

5.1.1. Remarks 

In any Gentzen-style sequent proof, the leaves of the proof tree pair up 
types. As with all the proof systems we shall consider here, there are All 
sequents which can be proved in more than one way and among whose 
proofs we find different leaf-pairings of types. A simple example (due to 
van Benthem [5]) is the sequent s/s, s, s\s k s, which can be proved in 
two essentially different ways, depending on whether the second term of 
the antecedent - the type s - is paired with the right-hand sub-type of the 
type s/s on its left or with the left-hand sub-type of the type s\s on its 
right. We can indicate these two admissible pairings by attaching common 
subscripts to the subformulas which are ultimately paired, as illustrated 
below: 

SJSz, s2,  slkso F So 

So[Sz, $2,$2\SI ~ S O 

Every valid AB sequent proof induces a pairing in this way of subfor- 
mulas. But not every pairing of subformulas corresponds with an AB 
proof. For example, the subformulas of the sequents below can be paired 
up uniquely in obvious ways: 

a/b, b/c k a/c 

a/b k (a/c)/(b/c) 

a\(b/c) k (a\b)/c 

(a\b)/c ka\(b/c) 

None of these sequents is valid in AB. Nevertheless, they are all valid in 
the type calculus L, which we now turn to. 
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5.2. L 

L is Lambek's associative syntactic calculus [23]. It extends the type lan- 
guage of AB by the addition of a product type-constructor '.'; it retains 
the AB characterization of sequents and all the AB postulates; the major 
innovation is that it extends the set of postulates so that there are inference 
rules governing the behavior of each of the type-constructors with respect 
to both sequent antecedents and sequent succedents. The type calculus 
that results may be formulated as follows: 

identity (A, u) F- (.4, u) 

cut 
F~-(A,u) A , (A ,u)A~-B 

A,F, AF-B 

L~ FF-(A,u) A,(B,t(u)) ,AF-C r , (A,u)~-(B, t )  uq~r R~ 
A, (B/A, t),F, A ~- C FF- (B/A, Au.t) 

L\  FF-(A,u) A,(B, t(u)) ,A~-C (A,u),FF-(B,t) uqiF R\  
A, F, (A \B, t), A ~- C F~- (A \B, Au.t) 

L. F, (A, 7rL(t)), (B, 7rR(t)), A ~- C r (A, A (B, R. 

F , ± t - ( A .  B,t)  

Every valid AB sequent is valid in L, but there are many L-valid sequents 
which are not provable in AB. In the following representative list of L- 
valid sequents, only the Application rules hold in AB: 

Some L-valid sequents 
Application 

Lifting 

Co-division 

Contra-division 

Swapping 

Currying 

(_.4, u), (A \B, t) ~- (B, t(u)) 
(B/A, t), {A, u) t- (B, t(u)) 
(A, u) ~- ((B/A ) \B, Au.t(u)) 
(A, u) F- (B/(A \B), Au.t(u)) 
(A/B, t) F- ((A/C)/(B/C), Au.Av.t(u(v))) 
(B\A, t) F ((C\B)\(C\A ), Au.Av.t(u(v))) 
(A/B, u) F ((C/A)\(C/B), At.Av.t(u(v))) 
(B\A,  u) t- ((B\ C)/(A \C), At.Av.t(u(v))) 
((B\A)/C, t) F- (B\(A/C), Au.Av.((t(v))(u))) 
(B\(A/C), w) F- ((B\A)/C, Ax.Ay.((w(y))(x))) 
(A/(B . C), t) ~- ((A/C)/B, Ax.Ay.t((x, y))) 
((A/C)/B, t) t- (d/(B . C), AU.(t(~L(U)))(CrR(U) )) 
((B . C)\A, t) 1- (C\(B\A),  Ax.Ay.t((y, x))) 
(C\(B\A),  t) ~- ((B . C)\A, AU.t(~R(U), ~L(U))) 
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The richer type-calculus of L has consequences even for the analysis of 
simple sentences. For example, relative to the same 3-word lexicon and 
type-assignment used in the AB examples above, L provides more than 
one proof of the assignment of the string Zim caught Yim to the type s. 
The AB-proof exhibited earlier is an L-proof as well, but in addition, we 
have the proof (not valid in AB): 

np F np s ~- s 
np F np rip, np\s  b s 
np, (np\s)/np, np F s np F np s F s 
np, (np\s)/np F s/np np F np s/np, np F s 
(np\s)/np F np\(s/np) np, np\(s/np),  np F s 

np, (np\s)/np, np ~- s 

Together with the earlier proof, this proof suggests that L ignores differ- 
ences among different binary bracketings of strings. In fact, L also disre- 
gards differences between 'functor' (that is, a type of the form A / B  or 
B \ A )  and 'argument' (such as type B in the case of the functor-types 
just mentioned), since the rules R/  and R\  countenance the reversal of 
functor/argument relations: corresponding to the validity of the appli- 
cation sequent B, B \ A  F A (where the 'functor' is the second element of 
the antecedent) is the validity of the sequent A / ( B \ A ) ,  B \ A  F-A (where 
the first element of the antecedent is the 'functor'). These observations 
concerning bracketing and functor/argument structure form the basis of 
Buszkowski's notion of the 'functional completeness' of L: see [7, 33]. for 
discussion. 

The flexibility of L lies in its approach to constituency; all of the postu- 
lates of L are order-preserving. The postulates of L also depend on the 
adjacency of active types, so no action at a distance is countenanced. As 
a consequence, while L counts the Swapping rules a\(b/c) F (a\b)/c and 
(a\b)/c) F a\(b/c) as valid, there is no valid rule in L which relates (a/b)/c 

, and (a/c)/b). This is reasonable from the point of view of preserving string 
order: the two types in question do not have the same properties with 
respect to the order of string combination. On the other hand, it is 
unreasonable if we wish to regard as equivalent two binary functors which 
differ only in the order in which they combine with their arguments. The 
contrast between these two cases reveals one of the characteristic proper- 
ties of L: it cannot disentangle string conditions and type-structure. 

One way to disentangle the two is to disregard string conditions com- 
pletely. This is the difference between L and LP. 
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5.3. LP 

The Lambek/van-Benthem calculus LP results from the addition of the 
structural rule Permutation to the postulates of L. In this system, the 
sequents A/B k B\A and B\A ~-A/B are valid, as the following proofs 
illustrate: 

A/B, B k A B, B\A k A 
Permutation B, A/B k A B\A, B k A Permutation 
R\ A/B k B\A B\A b AIB R/ 

As a result, the types A/B and B\A fall together and it is convenient to 
represent them both as B----> A .  3 

Similarly, the addition of the structural rule of Permutation makes the 
product operator commutative, so that we have A • B---> B • A: 

B k B  A k A  
R. B, A k B . A  
Permutation A~ B k B- A 
L. A . B k B . A  

To distinguish the commutative product in LP from the noncommutative 
product in L, we write the commutative product as '®' and the noncom- 
mutative product as '.' 

One of the consequences of Permutation is that the symmetrical pairs 
of valid sequents found in All and L fall together into a single valid LP 
sequent, in which 0/',/3 is replaced by o~ --->/3 and/3/a is replaced by a --+/3. 
In general, however, systematically undoing the results of such a transfor- 
mation shows that such LP sequents represent a wider class of L sequents, 
some of which may be L valid and some of which may not be. 

For example, consider the LP analogues of Swapping and Lifting. In 
L, there are two forms of Swapping: 

(B\A)/Ck B\(A/C) and B\(A/C) k (B\A)/C 

By replacing both a\/3 and/3/a by a ~ / 3  in these two sequents, we have 
the representations: 

C--->(B--->A) ~ - B ~ ( C ~ A )  and B--->(C--,A) ~- C--,(B--->A) 

s Technically, this changes the type language by collapsing two type-constructors into one. 
This is not important here, but it will be worth remembering later. 
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Unlike the two L-valid instances of Swapping, however,  these two se- 

quents are alphabetic variants. 
But they also represent (by the same transformation) sequents which 

are not L-valid. In particular, they represent the fact that the sequent 
(A/B)/C F- (A/C)/B (among others) is valid in L + Permutation, but not 
valid in L. 

Similarly, the LP analogue of Lifting is A F-(A---~B) ~ B. But this 
represents not just the two L-valid forms of Lifting A t-(B/A)\B and 
A F- B/ (A\B)  but also such L-invalid sequents as A F- B/(B/A).  

5.4. Remarks 

There are many other  examples of categorial logics based on products and 
implicational operators. For  a survey, see [29, 30]. We turn shortly to 
the investigation of how these systems accommodate quantification and 

quantificational scope ambiguities. As a preliminary to this discussion, it 
is helpful to survey some properties of proofs in the three systems under 
consideration here. 

6. DECIDABILITY OF A B ,  L,  L P  

All three of the categorial type-calculi discussed above are decidable, in 
the following sense: for each calculus C, there exists an algorithm which 
determines, for an arbitrarily chosen C-sequent X, whether or not X is 
provable in C. The insight on which these algorithms are based originates 
with Gentzen [13]; its connection with categorial grammar is due to Lam- 
bek. 

Gentzen observed that for certain logical systems, 4 the structural rule 

Cut is eliminable, in the sense that any sequent proof  of a sequent 
involving Cut can be transformed to a Cut-free proof  of ~ - that is, a 
proof  of ~ in which no step involves Cut. 

Proofs in the Cut-free versions of AB and L have two interesting proper- 
ties. First, they have the subformula property: all the types which occur 
in the proof  of a sequent X are subformulas of X.5 Second, in the absence 
of Cut, the inference rules of AB and L are complexity increasing: in every 

4 In particular, the calculi LK and LJ which he introduced and which correspond, respec- 
tively, to classical and intuitionistic first-order logic. 
5 In the obvious sense of subformula: the only subformula of an atomic type A is A itself; 
the subformulas of complex types of the form A/B (respectively, B\A or A • B) consist of 
A/B (respectively, B\A or A • B), together with the subformulas of A and the subformulas 
of B. 
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case, the conclusion of an inference rule contains one more occurrence of 
a type-forming operator than the premises. 

For a type-calculus C to have the subformula property means that the 
search space involved in determining whether or not any C-sequent E is 
provable in C contains only types constructible from the atomic types 
contained in E. The complexity-increasing property of inference rules 
means that the search space is bounded and decreases as we move from 
conclusions to premises in the search for a valid proof. This situation lays 
the basis for a simple inductive argument, whose structure is clarified by 
the following two definitions. 

The degree of  a type is the number of type-forming operators it contains. 
For example, primitive types are of degree 0; the degree of types of the 
form A/B or B\A or A • B is the sum of three terms: degree(A) + deg- 
ree(B) + 1. 

The degree of  a sequent is the sum of the degrees of the occurrences of 
antecedent types and the consequent type. For example, the degree of 
the sequent A/B, B k A is the sum of the three terms: degree(A/B) + deg- 
ree(B) + degree(A). (If A and B are both atomic types, the degree of this 
sequent is obviously 1; otherwise, it is greater.) 

It is a simple matter to tell whether or not a sequent is an instance of 
the identity axiom or not. Moreover, in the Cut-free variants of AB and 
L, all the inference rules are degree-increasing, in the sense that the degree 
of the conclusion strictly exceeds the sums of the degrees of the premises. 
Thus, the only provable sequents of degree 0 are axiom instances. And, 
since we can decide whether a sequent of degree 0 is an axiom-instance, 
we thus have a solution to the decidability question for degree-0 sequents. 

Now make the inductive assumption that we have a solution to the 
decidability question for degree-n sequents. Any degree-n + 1 sequent is 
derivable from premises of strictly lesser degree in one of only finitely- 
many ways: the final rule of inference must introduce one of the principal 
type-forming operators in one of the antecedent-types or in the succedent 
type. Since there are only finitely many types in any sequent, there are 
only finitely many possible ways in which a given sequent of degree n + 1 
can be derived, and each of these possibilities depends on premises of 
strictly lesser degree. In each case, then, it is decidable (by the inductive 
assumption) whether the premises required are provable. If they are, so 
is the sequent in question. On the other hand, if all of the finitely-many 
ways of introducing a principal type-forming operator among the elements 
of the antecedent or the succedent are considered and in no case is it found 
that the required premises are themselves provable, then the sequent in 
question has no proof. Thus, the Cut-free variants of AB and L are 
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decidable. And, since every proof in AB or L (respectively) has a Cut- 
free variant, it follows that AB and L are decidable as well. 

The case of LP is the same, except that at the inductive step, we have 
to take into account the possibility that the final step of the proof of 
the degree-n + 1 sequent in question may have been the structural rule 
Permutation. This introduces no fundamental difference, since there can 
be only finitely many permutations to examine (since sequents contain 
only finitely many types). Thus, LP is decidable as well. 

As an example, consider the following sequents, none of which is an 
axiom instance: 

Right Application: A/B,  B F-A 
Left Lifting: B F- (A /B) \A  
Backwards Application: B, A / B  ~- A 
Lowering: (A /B) \A  ~- B 

The Right Application sequent is not an axiom instance and has only 
one occurrence of a principal type-forming operator; this occurrence could 
only be introduced by the rule L/,  as follows: 

B~-B A ~ A  

A/B,  B ~ A 

Since this inference rule appears among the postulates of AB, of L, and 
of LP, this sequent is valid in all three systems. 

The Left Lifting sequent B ~-(A/B)\A is also not an axiom instance 
and contains only one occurrence of a principal type-forming operator, 
namely, the principal type-forming operator of the succedent type 
(A /B) \A ,  which has the form fl\a. This type-forming operator could only 
have been introduced by the rule R\.  This rule is lacking in the calculus 
AB, and thus this sequent is not provable in AB. On the other hand, R\  
is a postulate of both L and LP. And in these two systems, applying the 
inference rule R\  to the premise sequentA/B,  B ~-A - which, as we have 
just seen, is provable in both L and LP - yields the Left Lifting sequent 
as the end-sequent. Thus Left Lifting is provable in L and LP, but not 
provable in AB. 

The sequent B, A /B  F-A is not provable in either AB or L, since the 
only possible Cut-free proof would introduce at the final step both the 
antecedent type A/B  and a further non-empty sequence of antecedent 
types to its right, matching F in the left-hand premise of the inference 
rule L/. But no such F occurs in the antecedent. Thus, we have exhausted 
the search space for a proof in either system without finding one. In LP, 
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however, there is another possible last proof-step: Permutation. That is, 
the final step can take the form: 

A/B ,  B F- A 

B, A / B  ~- A 

And since the premise A/B ,  B F- A is provable in LP, so is the conclusion. 
Thus, Backwards Application is provable in LP, but neither in AB nor in 
L. 

Finally, the Lowering sequent ( A / B ) \ A  F- B is provable in none of the 
systems examined here. Since both the antecedent and succedent consist 
of single types, Permutation has no effect here. Thus, the last step in a 
proof of Lowering would have to be L \ ,  since the only principal type- 
forming operator in any sequent type is the occurrence of \ in the antece- 
dent type. But this cannot be the last step, since it would have to introduce 
additional antecedent types which are not present. 

These simple examples show how it is possible to demonstrate that a 
given sequent is or is not provable in the systems under examination here. 
These proof-theoretic techniques are especially useful in the investigation 
of the Curry-Howard properties of these different systems when they 
contain types corresponding to generalized quantifiers. 

7. P R O O F  S T R U C T U R E S  AND A - T E R M S  

For our purposes later on, there are two relations between proof structures 
and A-terms which are important. 

First, the Cut Elimination theorem respects the Curry-Howard assign- 
ment of A-terms to proofs, in the sense that the transformation from a 
proof containing one or more Cut inferences to a Cut-free proof does not 
change (up to/3-equivalence) the A-term assigned to the endsequent. We 
will not prove this here, but refer the reader to [17, 27]. This result means 
that insofar as we are interested in the readings associated with a particular 
sequent in a given system, we need only consider the readings associated 
with it by Cut-free versions of the system, which in the cases under 
consideration here are decidable. Thus, if a sequent is provable in one of 
the systems investigated here, the range of readings associated with it is 
determinable as well. This fact is reassuring. 

Second, in the Cut-free systems, the A-term associated with a valid 
endsequent by the Curry-Howard correspondence is determined (up to 
alphabetic variance) by two factors: 

• the bindings of types at axiom leaves; 
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• the form of the consequent term. 

Proof: Note first that this property is trivial for axioms. For the inductive 
step, there are two cases to consider. In the inference rules L/, L\,  
L. which introduce antecedent connectives, the Curry-Howard term is 
inherited directly from one of the premises. Thus, the inductive step in 
these cases is immediate. For the fight rules R/, R\,  R., we make the 
inductive assumption that the claims to be shown hold for the premises 
and show that this determines the Curry-Howard term of the conclusion. 
For example, if we know the axiom bindings for the two sequents F f- A 
and 2~ ~- B, and if these bindings and the form of A and B determine the 
association of the A-term u with the first of these and the association of 
the A-term v with the second, then these same axiom bindings and the 
form of the type A.B determine the association of the A-term (u, v) with 
the endsequent F, A ~-A.B derived from these two sequents by the rule 
R.. A similar argument provides the inductive step in the case of the rules 
R~ and R\.  

This result is of interest in a variety of ways. First, the property of 
having the same axiom-leaf bindings (up to alphabetic variance) defines 
an equivalence relation among proofs. Defining the Curry-Howard map- 
ping on the equivalence classes sharpens the correspondence between 
proofs and A-terms. Second, the result places an upper bound on the 
number of distinct A-terms that can be associated with a given endsequent 
by the Curry-Howard mapping. And these possibilities can be easily 
enumerated by examining the sub-formulas of the endsequent in question. 

It is this last point which is of primary interest here, since it allows us 
to characterize the readings assigned to a given endsequent in a given 
calculus simply by stating the axiom bindings that it depends on. For 
example, van Benthem's example s/s, s, s\s ~-s has two distinct readings 
(in any of the systems discussed above): 

(s, v(u)) ~ (s, v(u)) (s, t(v(u))) ~ (s, t(v(u))) 
(s, u) ~- (s, u) (s]s, t), (s, v(u)) ~- (s, t(v(u))) 

(s/s, t), (s, u), (s\s, v) t- (s, t(v(u))) 

(s, t(u)) ~- (s, t(u)) (s, v(t(u))) ~- (s, v(t(u))) 
(s, u) ~ (s, u) (s, t(u)), (s\s, v) ~ (s, v(t(u))) 

(s/s, t),(s, u), (s\s, v) F (s, v(t(u))) 

We can characterize these readings more simply by assigning subscripts 
to the atomic subformulae and noting which subscripts are bound to one 
another at the axiom leaves: 
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Sequent Bindings A-term 

(sa/sb, t), (so, u), (sa\s,,  v) F (sf,  term) b = c, a = d, e = f term = v( t (u) )  
(Sa/Sb, t), (Sc, U), (Sd\S~, V) F (Sf, term) a = f ,  b = e, c = d term = t (v(u))  

While this way of indicating the A-terms that may be associated with a 
given endsequent is more succinct than actually exhibiting all the proofs 
that lead to these A-terms, one must bear in mind that not all possible 
pairings of atomic subformulae correspond to possible proofs (in one 
system or another). In the next section, we turn to a detailed discussion 
of a class of examples bearing on this issue, namely the number of readings 
assignable (in different systems) to simple sentences containing quantifiers. 

8. QUANTIFIERS AND QUANTIFICATION 

In the extensional fragment of Montague's P T Q  [45], quantifiers (and 
terms generally) are assigned the syntactic type t/(t/e) and are constrained 
to be interpreted as functions of type ((e, t), t). In the three systems under 
consideration here, this type assignment has a direct analog: quantifiers 
in subject position of declarative English sentences may be assigned the 
type s / (np \ s ) ,  together with an interpretation on which quantifiers are 
functions from predicates (that is, functions from individuals to truth 
values) to truth values, in accordance with Generalized Quantifier Theory. 

We may suppose, then, that if the interpretation of the noun detective 
is represented by the set D in a model d/t, the expression every detective 
is interpreted in ~ by the generalized quantifier VD, which determines a 
truth value when combined with a 1-place predicate P, according to the 
rule: true iff D C_ P. And we may cast these suppositions in the form of 
the following lexical assumptions: 

lexical assumptions 
every F ( ( s / (np \ s ) ) /n ,  V) 
detective I- (n, D) 
sneezed F (np\s ,  Ax.sneezed(x))  

And on these assumptions, we have the following proof, valid in AB, in 
L, and in LP, that every detective sneezed is assigned type s, with an 
acceptable interpretation: 
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(np, x) F (np, x) (s, sneezed(x)) ~ (s, sneezed(x)) 
(np, x), (np\s, hx.sneezed(x)) F (s, sneezed(x)) 

(np\s, hx.sneezed(x)) F (np\s, Ax.sneezed(x)) (s, VDhx.sneezed(x)) F {s, VDAx.sneezed(x)) 

every detect ive sneezed I- (s, VDAx.sneezed(x)) 

Given that this proof exists, the information that it contains concerning 
axiom bindings can be displayed: 

((sa/(npb\sc))/n d, V), (n e, D), (npf\s g, Ax.sneezed(x)) ~ {s h, VDhx.sneezed(x)) 
every detective snoozed F (s, VDhx.sneezed(x)) 

a=h, b= f ,  c=g, d=e 

The bindings on the last line indicate the axiom pairings produced by the 
proof above. 

This account of quantification is satisfactory for the monadic case in 
which a quantifier always bears the same syntactic position relative to its 
argument - satisfactory in the sense that it provides a type for quantifiers 
consistent with the principles of the Curry-Howard interpretation. But it 
does not extend easily to more complex cases, either in the extensional 
fragment of PTQ or in any of the three frameworks examined here. 

8.1. Quantification and 2-Place Predicates 

The interaction of quantifiers with 2-place predicates raises two basic 
questions. First, what types are to be assigned to the quantifiers and 
to the 2-place predicate, in such a way that syntactic composition is a 
consequence of general syntactic principles? Second, how are quantifi- 
cational scope ambiguities to be accounted for? 

The extensional fragment of Montague's P TQ contains a solution to 
both of these problems. He assigned transitive verbs a type - (t/e)/(t/(tle)), 
in his syntactic type system - according to which transitive verbs are 
functions from (monadic) quantifiers to 1-place predicates. The corre- 
sponding type for English transitive verbs in the systems discussed here is 

(np\s)/(s/(np\s)). 

It is completely straightforward to see that the sequent 

(np \s ) / ( s / (np \s ) ) ,  s / (np\s)  F np\s  

is valid, since this sequent has the form A/B ,  B F A.  
But what about interpretation? A simple transitive sentence such as 

every detective caught  s o m e  thief has two interpretations, which we 
shall represent as a quantificational scope ambiguity: 
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VDAd3 TAt. (d caught t) 
3TAtVDAd.(d caught t) 

Neither of these interpretations is assigned to the proof of the sequent 
corresponding to Montague's type assignment for every detective caught 
some  thief. Instead, we have the interpretation 

VDAd.(d caught (3T)) 

This representation is not necessarily incorrect. Montague imposes the 
requirement that the interpretation of caught (and, mutatis mutandis, of 
every other extensional transitive verb) be equivalent, for some corre- 
sponding 2-place predicate caught, of type (e, (e, t)), to 

A~.Ad.~At.(d caught, t) 

This function, when applied to 3 T reduces to 

Ad. 3 TAt. (d caught, t), 

which is the more standard representation exhibited earlier. 
Quantifier scope ambiguities arise in Montague's system in an entirely 

different way, through the rule of Quantifying In, which involves combin- 
ing a term-taking expression with a variable and then binding the variable 
later in the derivation. 

Montague's account of quantification has a number of interesting, even 
admirable, properties: 

• it is based on a single type for quantifiers; 
• the syntax is driven by type-theoretic considerations; 
• there is a principled relation between syntactic type and semantic 

interpretation. 

But these properties impose a cost: in order to characterize quantifi- 
cational interpretations, external mechanisms - meaning postulates and 
quantifying-in rules - are introduced ad hoc. Are these costs inevitable 
consequences in any system with a single type for quantifiers, a type-driven 
syntax, and a principled relation between syntactic types and semantic 
interpretation? To explore this question, we shall look first at the treat- 
ment of quantification afforded by the type-calculi AB, L, and LP. 

8.2. AB with Quantifiers 

In adding quantifiers to AB, one finds that every fact about quantification 
must be treated as sui generis. To see why, consider the types that are 
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necessary to allow a generic quantifier (which we would like to type simply 
as (Q, ~)) to occur in various syntactic positions under different scopings. 

Context Syntactic type A-term 

Subject, wide scope sl(np\s) 
Object of a 2-place predicate ((np\s)/np)\(np\s) AP.~c.22Ay.P(y)(x) 

narrow scope 
Subject of a 2-place predicate (s/np)/((np\s)/np) AP.Ay.~Ax.P(y)(x) 

narrow scope 
Object of a 2-place predicate (s/np)\s 

wide scope 

With each new argument position, new types are necessary. This hardly 
accords with the fact that natural language quantificational terms do not 
standardly vary both according to their position and according to their 
scope. 

8.3. L with Quantifiers 

The situation in L is slightly better. If we associate a quantifier with two 
types, one for subject position, and one for object position, the ambiguity 
of scope for simple English transitive sentences falls out: 

Context Syntactic type A-term 

Subject sl(np\s) 
Object (slnp)\s) 

Here are the final steps of two distinct proofs of the sequent correspond- 
ing to every detective caught some  thief, proofs assigning interpreta- 
tions with different quantifier scopes to the consequent of the endsequent: 

s/np ) 
s/(np\s), (np\s)/np F \ANDAd(d caught t) 

( s >) 
s F 3 TAtVDAd(d caught t 

s/(np \s), (np \s)/np, (s/np) \s P s 

(np\s)/np, (slnp)\s F 
\Ad3TAt(d caught t)) s F (VDAd3TAt(d caught 

np \s 

s/(np\s), (np\s)/np, (s/np)\s Fs 

We can represent these two proofs in our notation of indexed atomic 
types as follows: 
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every detective caught some th ief  t- (s, 3ThtVDhd(d caught t)) 
sa/(tlpb\sc), (npa\se)np f, ( s g / n p h ) \ s  i ~- S i 

a =g ;  b = d; c = e ; f =  h;i  = j  

every detective caught some  thief F- (s, VDhd3Tht(d  caught t)) 
sa/(npb\sC), (npakse)/np f, (sg/nph)\siF S / 

a =j; b = d; c = i; e = g; f = h 

What is intriguing about these alternative proofs is the fact that the quanti- 
ficational scope ambiguities are consequences of the combinatorial proper- 
ties of the type calculus L. Thus, unlike All, it is not necessary to code each 
scope possibility with a separate, ad hoc type assignment. The difference 
between L and All lies in two related properties. First, in L, a transitive 
verb (in English) may combine with its arguments in either order, because 
of the validity of the Swapping rules: 

(np\s)/np F np\(s/np); np\(s/np) ~- (np\s)/np 

Second, and equally important, is the fact that L enjoys the Division rule, 
whose importance for quantifier types may be illustrated by the sequent: 

s/(np\s) t- (s/np)/((np\s)/np) 

Thus a monadic subject quantifier of type s/(np\s), which combines with 
a verb phrase of type np\s to form a sentence of type s, automatically 
combines as well, in virtue of the principles of L, with a transitive verb 
of type (np\s)/np to form a 1-place predicate of type s/np. Neither of 
these rules is valid in AB. Their applicability here suggests the possibility 
of finding a type calculus in which quantifiers can be assigned a single 
type and in which scope ambiguities are consequences of basic and simple 
syntactic principles, rather than being the consequence of specially-de- 
signed rules introduced expressly for the purpose of dealing with scope. 

The calculus L, however, does not match these specifications. First, 
even in simple transitive sentences, two basic types for quantifiers, rather 
than a single type, are necessary. Moreover, the useful properties of the 
Swapping rule are available only when a binary predicate is flanked on 
either side by its arguments: in soy or vos orders, there is no correspond- 
ing rule, since the combinatory rules of L respect the principle of adjacency 
and there is no possibility of combining subject and transitive verb across 
an intervening object in either the soy or the v o s  c a s e .  6 

6 An interesting attempt to overcome this difficulty can be found in Keenan's  'Semantic 
Case Theory'  [22], although this approach is not based on a general syntactic type calculus. 
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8.4. LP with Quant i f i ers  

In LP, quantifiers can be assigned a single type: 

(np  ~ s) --+ s 

On the basis of this type, quantifier scope ambiguities fall out naturally 
as a consequence of the properties of the LP type calculus. What makes 
this possible is the fact that in LP, the Division rule is still valid and the 
Swapping rule is generalized to the following form: 

A ----> ( B ---> C ) F B --~ ( A ---> C ) 

As a consequence of Division, a quantifier can combine with a predicate 
of any arity greater than or equal to 1. This solves the type-assignment 
problem. As a consequence of Swapping, quantifiers can combine with a 
predicate in any order. This solves the scope-ambiguity problem. 

This pleasing picture is marred only by the fact that in LP, word order 
is irrelevant and the distinct sentences every detective called some  
schurk, some schurk called every detective, some detective called 
every schurk, and every schurk called some detective are assigned the 
same range of interpretations. Some - but not all! - of these possibilities 
are indicated below, where the axiom-leaf bindings of atomic types are 
indicated with superscripts: 

every detective called some schurk I- (s, ~ a A d ~ c A c ( d  cal led c) )  

(np  ] - s b) ---~ s c, np obj ____~ ( i  n p s u b j  j -'--~ sa) ,  (npi--'-~ sa)  -'~ sb)  ~ s c 

every detective called some  schurk ~- (s, ~ d A c ~ c A d ( d  cal led c))  

(nP j - s b) -+ s c, npio.j ~ (np ~ubj ""~ sa) ,  (rip j ---~ s a) -+ S b) I- s c 

every detective called some  schurk I- (s, ~ c A c ~ a A d ( d  cal led c))  

( n g  - s a) - - ,  s b, np'obj + ( n p  ~ubj ~ s°), ( n p  i ~ s ~) ~ s c) ~ s ~ 

every detective called some  scburk F (s, E ~ A d ~ a A c ( d  cal led  c))  
(np  i - s " )  ~ s b, i n p  o~j ~ (np~ub~ ~ s " ) ,  ( n p  + ~ s b)  ~ s c ) ~- s c 

8.5. Con t ro l  Proper t i e s  

The inadequacies of these accounts derive from inadequate con tro l  of 
properties across dimensions. The common difficulty in each case involves 
an overly rigid correspondence between properties in the string dimension 
and properties in the interpretive dimension. 

In LP, flexibility of quantifier scope is tied to flexibility of string order. 
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This system provides the key ingredients to a solution of quantifier-typing 
and quantifier scope, but it overshoots the mark: along with the desired 
ambiguities, it yields unwanted readings as well. 

In L, flexibility of quantifier scope is tied to string positions flanking 
predicates. This is insufficiently general, since the solution to quantifier- 
scope ambiguities is only available in special cases. 

In AB, there is no inherent quantifier scope flexibility at all, just as 
there is no inherent combinatorial flexibility syntactically. 

One possible solution to the problem of cross-dimensional control is to 
continue to tie syntactic combination and string properties tightly together 
in a system (like either AB or L) based on concatenation, but to introduce 
at the same time independent rules in the semantic dimension which do 
not depend on the same principles of adjacency. A fundamental step 
forward in this direction can be found in the work of Hendriks [16], 
who proposed a calculus of semantic types to generate scope ambiguities 
involving quantifiers and Boolean operators. The proposed calculus oper- 
ates in a type-driven way on semantic representations generated by a 
GPSG-style phrase-structure grammar. 

Moortgat [25, 26] shows that the semantic type-shifting principles pro- 
posed to generate the full range of interpretations have basic affinities 
with type-shifting principles found in L and LP. Moortgat proposes to 
treat quantificational scope ambiguities by the addition of a new type- 
constructor whose associated inference rules incorporate the effects of the 
LP structural rule Permutation in the semantic dimension, leaving the 
string dimension invariant. The resulting system is an elegant one, with 
many attractive properties [10]. 

Nevertheless, on both Hendriks's account and Moortgat's, scope ambi- 
guities and the other forms of discontinuous dependency treated with 
them are still regarded as special cases whose accommodation calls for 
special means. But with the aid of these achievements, it is possible to 
find a type-theoretical framework in which quantificational scope ambiguit- 
ies and related forms of discontinuous dependency are an emergent pro- 
perry, in the sense that a single theoretical framework which can be 
justified on the basis of simple phenomena where the property is not 
observable accounts automatically for the emergence of the property in 
question under more complex conditions. 

There is in fact an attractive formal setting (whose instances will be 
referred to here as term-labeled categorial type systems) which is consistent 
with the approach of categorial grammar to the problem of generalized 
compositionality and in special cases of which quantificational scope ambi- 
guities are an emergent property. Certain aspects of the resource-sensitiv- 
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ity of term-labeled type systems are expressed by the terms of a system 
of string-term labels and the role of term operations in term-labeled deduc- 
tion. This leads to different possibilities for the the division of grammatical 
labor. And while it is possible to construct term-labeled categorial type 
systems of the kind defined below which are equivalent to standard cate- 
gorial systems, it is of linguistic interest to note that the system which 
exhibits freedom of quantifier scope is simpler than many of the more 
restrictive systems. 

9.  TYPES AND TERMS 

We wish to label syntactic types with pairs of terms representing interpretive 
and phonological (here: orthographical) properties. The interpretive terms 
will be drawn from the extensional fragment of Montague's IL, augmented 
by pairing and projection operations and additional constants as needed. 
We call the phonological terms ~terms and the interpretive terms IL- 
terms. Like the/L-terms, the go-terms will be terms of a system of typed 
A-terms. Labeling of syntactic types with terms is regulated by compati- 
bility of the syntactic type to be labeled and the types of the labeling 
terms, as described below. 

Syntactic types. Let A t  be a set of atomic types (including s, np, n). The 
set 2~ of syntactic types is the smallest set containing At  and closed under 
the binary operations ® (product) and --0 (residual). We drop parentheses 
of nested residual types according to the convention of right-associativity, 
so that a --0 b ~ c represents (a ~ (b ~ c)). 

go-types. There is a single atomic ~type:  the type s (for 'string'). If A 
and B are go-types, so are A ---, B and (A, B). 

go-terms. Let V be a set of string atoms. For each go-type a, we adjoin 
denumerably many variable terms x~ . . . . .  (We typically use x, y, z as 
variables of type s and P, Q, R as variables of type s ~ s ,  suppressing 
subscripts and superscripts.) The point of the definition below is to charac- 
terize a set of linear higher-order terms over a simple algebraic structure, 
where linear means that any variable occurs in a term at most once and 
vacuous abstraction is forbidden. Accordingly, the set of go-terms is the 
least set satisfying the conditions below, which also define for each go-term 
t, the multiset FA(t) of free atoms of t and the multiset FV(t) of free 
variables of t, which will be useful later: 

1. Each element v of V is a go-term of type s; FA(v) = v, FV(v) = 0; 
2. Each variable x ~ is a 0-term of type a; FA(x) = x = FV(x); 
3. If A and B are two &terms of type s with F V ( A ) ~  FV(B)=  
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0, then A .  B is a c-term of type s; F A ( A .  B) = FA(A) U FA(B), 
F V ( A .  B) = FV(A) U FV(B); 

4. For all C-terms A, B, C of type s, (A • B) .  C = A .  (B.  C) whenever 
either side (hence, both sides) is defined; 

5. There is a designated c-term constant 1 of type s, with 1 • A = A = 
A .  1 for all c-terms A of type s; FA(1) = FV(1) = 0; 

6. If A is a c-term of type a --->/3 and B is a c-term of type o4 and 
FV(A) Fq FV(B) = 0, then (AB) is a c-term of type/3; FA((AB))  = 
FA(A) U FA(B); FV((AB))  = FV(A) U FV(B); 

7. If x is a variable c-term of type ot and A is a c-term of type/3 with 
x E FV(A),  then (Lr.A) is a c-term of type a ~ / 3 ;  FA(Ax.A)= 
FA(A)\{x}, FV(Lr.A) = FV(A)\{x}; 

8. If A and B are two c-terms of types a and /3, respectively, with 
FV(A) [-] FV(B) = 0, then (.4, B> is a c-term of type <or,/3>; 
FA((A, B>) = FA(A) U FA(B); FV((A, B>) = FV(A) U FV(B); 

9. If A = (B, C> is a c-term of type <a,/3), then 7rlA = B and 7rzA = 
C are c-terms of types a and t ,  respectively; FA(TriA) = FA(B), 

FA(~r2A) = FA(C), FV(qrlA) = FV(B) ,  FV(rczA) = FV(C).  

Remarks. The set of c-terms just defined contains the free monoid 
<V*,., 1> generated by V. Because the underlying algebra of c-terms is a 
monoid, we call the resulting system mon:LP. On the other hand, if V is 
empty, the above definitions extend the usual definition of a term algebra 
[21] to a certain set of higher-order terms - namely, those terms which 
contain at most one occurrence of any free variable and which disallow 
vacuous abstraction. Thus, if a term of the form L,c.A is a c-term, then 
A contains exactly one occurrence of the variable x. 

For all the terms employed, substitution and t-conversion are defined 
in the standard way [19]. We write a D a '  when a '  is the result of 
removing one or more/3-redexes from a by/3-conversion, or by replacing 
an occurrence in oz of the form 7ri<u, v> (respectively, 7r2(u, v>) by u 
(respectively, v). 

Labeled types. A labeled type is an element of Typ associated with a 
c-term and an /L- te rm.  This association is regulated by type-compatibility 
functions ~',~: Typ ~ c-types and ~'ZL: Typ ---~IL-types. For each atom 
A E Typ, we have r+(A) = s; and we assume that ~IL(A) is defined. In 
particular, we shall assume that ~'ZL makes the assignments: 

s ~--~ t, 
np ~--~ e, 
n~--~ (e---~ t). 
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These assumptions are obviously too extensional, but the simplifications 
involved do not affect the properties of interest here. Inductively, we have 
the clauses: 

r , (A  --> B) = T,(A ) --> r,(B) 
rzL(A --+ B) = rzL(A) -* ,,L(B) 
re~(A " B) = (r+(A), rc~(B)) 
rm(A " B) = <'rIL(A), "OL(B)) 

We display labeled types, in the notation of Pereira [40], in the form 
t: T~ , t ' ,  with T E  Typ, t a &term of type re (T  ) and t' a n / L - t e r m  of 
type rIL(T). 

9.1. Labeled Deduction 

We give below a sequent presentation of a system of labeled deduction 
for the labeled types just defined. A sequent F ~-t: A ,,,o, t' is a pair 
(F, t: A ~.  t'), whose antecedent F is a nonempty multiset of labeled types 
with no flee variables in common, and whose succedent t: A ,~-t' is a 
single labeled type whose terms are in A-normal form - that is, they 
contain no/3-redexes and no terms of the form ~-l(t, t') o r  7r2(t ,  t'). Identi- 
fying individual labeled types with the corrseponding singleton multiset, 
we display antecedent multisets as lists of multisets. For a labeled type 
t: A ~- t, we write FA(A) for FA(t) II FA(t); similarly for FV(A). If F = 
t l :Al~ , '~h , . . . , t k :Ak , ,~ , tk  is a sequent antecedent, then F A ( F ) =  
FA(AI) 11 . . .  U FA(Ak); FV(F) is defined similarly. For a sequent of the 
form F h t: A ~,~ t, we indicate that FA(F) = X by writing F hxt:  A ,,~ t. 
To denote the multiset union of two disjoint multisets X and Y, we write 
x r. 
X U Y. In the presentation below, postulates appear on the left and 
accompanying term conditions appear on the right. 

ident i ty  axiom: 

L---~ 

R - +  

L ®  

R N  

t: A ,c~ t' h u: A ,,,,* u'  

F Fx u: A , '~ u '  ( tu) :  B .,'* ( t 'u ' ) ,  A FytS~a(A) V: C " ~  v '  

F,t:  A --+ B ,.~ t ' ,  A hxt5 v v :  C,~-  v '  

F, x: A . . ' ~ x '  h x ~ x  CJx, t: B ' ~ " t '  

F h x  hX. t: A -+ B , ~  ax ' . t '  

7rl(t): A ~ 7rl(t ' ) ,  ~'2(t): B ' ~  ~r2(t'), F h v: C , .~  v'  

t: A ® B , c * t ' , F h  v: C , ~  v' 

F h x u : A , ~ u '  A ~ - y v : B , ~ - v  ' 

F, A h x c  v { U , v ) : A ® B , ~ ( u ' , v ' )  

A ~ A t ,  t D u, t' > t' 



658 R I C H A R D  T .  O E H R L E  

cut: FF u : A ~ u '  v : A , , ~ v ' , h F t : C , ~ t '  v E > u , v ' E > v '  

F, AF t :  C,¢*t '  

Remark 1: normalization. We have required that the terms of succedent 
types be in h-normal form. For typed A-terms, such normal forms always 
exist and are unique. The requirement that the terms of the antecedent 
type in axiom instances convert by t-reduction to the corresponding suc- 
cedent terms arises in connection with the rule L -% as may be observed 
in the proof below: 

j: np ,,,*] F j: np ,,-,j  (A u. u walks)j :  s ,,,* (Au .walk ' (u ) ) j  F j walks:  s ~ walk ' (])  

j: np ,,~], ~ u. u walks:  np ~ s ,,,-, Xu .walk '  (u) F j walks:  s ,¢* walk ' (])  

In general, we must allow the qS-term of the residual type in the conclusion 
of the rule to be an abstraction, since abstractions play an essential role 
in introducing the directionality of combination of phonological structure. 
But then we need a step of normalization to convert redexes to A-normal 
form. In the formulation above, this step is enforced at the level of axiom- 
leaves. Alternatively, normalization could be enforced in the premises of 
the rules L ~ and L @ .  7 

Normalization also plays a role in the term conditions on Cut. 
Remark 2: parameters. In the proof step which introduces the principal 

type- and term-constructors in succedents of the form h x . t : A ~  
B ~ hx'.t', it is required that the term variables x and x' not occur in the 
antecedent. This is the analogue in the present context of the eigenvariable 
condition on the rule RV, in the following sense: if the variables x and x' 
are of types a and a ' ,  respectively, then the intuitive interpretation of 
the ¢- and/L-terms h x.t and hx'.t' is as functions defined for all entities 
of types a and a '. Thus, we countenance the deduction of a sequent of 
the form 

F F- Lr. ~b: A ---> B ~- ~x'. ¢' 

from a premise sequent of the form 

7 In an earlier version of this paper,  I a t tempted to compile normalization into the s ta tement  
of the  L ~ rule, by stating it along the following lines, in a way connected to the practice 
in Prolog programming called 'pseudoabstract ion '  by Pereira [39, 40]: 

F b- u :  A ,~  u [u/x]t: B "* [u/x]t' ,  A F v: C ~ v' 

hx.t: A - ~ B , c ' , A x . t ' ,  F, A Fv: C ' ~ , v '  

As Pereira stresses, and as a referee for this paper pointed out,  this is in general  not  
adequate,  as may be  seen when the the  terms u or u in the  above formulation s tand 
themselves for higher order terms: in this case, substitution eliminates a fl-redex at the top 
level, but  can lead to new /3-redexes internal to [u/x]t, as for example in 
[ AP.P(a)/ .~]( ~ (  Ay.y)  ). 
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F, x: A ~', x' F 4~: B ,~  4)' 

because the term variables represent arbitrary objects of the appropriate 
type. We call x and x' parameters or parametric terms: they are always 
single variables - that is, terms with no internal structure - and each one 
occurs only once among the variables of any sequent antecedent. (For 
discussion, see [24] and [40].) 

Remark 3: free atoms. The following theorem is the analog here of a 
result first observed by van Benthem [5]. 

DEFINITION. A sequent F F t: A ,~ t for which FA(F) = FA(A)  is said 
to be term-linear. 

THEOREM. I f  a sequent E is valid in mon:LP, then E is term-linear. 
Proof. Induction. If t E> u, then FA(t) = FA(u). So the claim holds of 

axiom instances. Checking the inference rules is straightforward: the term 
conditions on inference rules are specifically designed so that this theorem 
will hold. [] 

9.1.1. Cut Elimination 

Gentzen's Cut elimination proof can be adapted to show that any theorem 
of the above sequent system can be proved without using the Cut inference 
rule. The proof can be carried out in a way that closely follows Lambek's 
adaptation of Gentzen's idea to the associative syntactic calculus L. The 
only difference is that we need to ensure that the term conditions are 
respected. We omit the proofs here. 

9.1.2. Decidability 

In the calculus LP which forms the basis of the type system for the term- 
labeled types used here, the proof of Cut Elimination opens the way to a 
straightforward demonstration that the calculus is decidable: there is an 
effective method for determining whether a sequent is deducible from the 
postulates of LP or not. Does the proof carry over directly to the system 
of labeled deduction considered here? There is one sticking point: the 
label of the left-hand premise of the rule L ~ is not determined by the 
sub-terms of its conclusion. Nevertheless, decidability follows from the 
proof of a slightly stronger result. 

THEOREM. Given an antecedent multiset F of  term-labeled types and a 
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succedent type A,  it is possible to determine the set of pairs (Term, Term) 
for which the sequent F k Term: A ~-~ Term is provable. 

Proof. The proof is by induction on sequent-degree. In the base case 
of the induction, we take the sequent-degree to be 0. A sequent of degree 
zero contains only atomic types and the only provable sequents of degree 
0 constitute axiom instances of the form: 

u:A~,-,u k Term: A,,,-, Term 

Since it is decidable whether or not we have u D Term and u D Term, 
it is decidable whether sequents of degree 0 are provable. In the inductive 
step, we assume that the Theorem holds for sequents of degree k and 
examine sequents of degree k + 1. In the absence of Cut, any provable 
sequent of degree k + 1 must be derived by an application of one of the 
inference rules R -% L ---~, R •, L Q in a way that introduces the principal 
type-constructor of an antecedent labeled type or the succedent labeled 
type. This can be done in only finitely many ways. For each possibility, 
the inductive hypothesis ensures that it is possible to determine both the 
provability and term-labeling of candidate premises; and when a candidate 
set of premises is provable, the conclusion is provable as well, with labeling 
determined by the labeling of the premises. [] 

9.2. Grammatical Applications 

In grammatical applications, we are interested in proofs from lexical as- 
sumptions. The &terms of lexical assumptions have a special character: 
if functional lexical &terms are applied to arguments of the required 
type, they should in fact determine (by normalization) elements of the 
underlying algebra V +. The following examples illustrate lexical and non- 
lexical &terms of various simple types, with the non-lexical terms prefixed 

by a t: 

Type Term 

S -'--~ S 

(S ---> S) "---> S 

((S -- ,  S) S) -- ,  S 

Ax.x • c, Ax.c • x, Xx.c • x • d 
?~_,c.x 
AP.P(c), AP.e. P(1), AP.(P(1)) .c 
?AP.P(1) 

As in these examples, we require that the &term associated with a lexical 
assumption must: 

• contain a subterm drawn from V+; 
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• contain no free variables; 

We list below some lexical assumptions which satisfy these requirements: 

A x.A y. (y.  questioned • x: np ---> (np ---> s) ~ ,  

Ax A y .ques t ion '  (x ) ( y ) 

smith: np ~ ,  s 

jones: np ,"-,'j 
,~ x. A O. (Q (every x)): n ~ ((np ~ s) ~ s) ~ aP ,~QV(P) (Q)  

A x. A Q. (Q (a x)): n --> ((np -->s) ---> n) ~ ,  A P A Q 3 ( P ) ( O )  

dean: n ~ dean'  

student:  n -->student' 

9.2.1. Grammat ica l  Composi t ion  in mon:LP 

Grammatical composition in mon:LP depends both on the underlying type 
system - identical with the system of LP - and on the properties of the 
labeling algebras and the method of linking between terms and types. 
With regard to the &terms, four properties stand out. 

First, since the underlying phonological algebra is a free monoid, the 
algebraic product of any two distinct normal &terms of type s distinct 
from 1 is never idempotent and never commutative. That is, the following 
inequalities hold: 

s ~ . s z 4 : s 2 . s ~ ;  s . s - - / : s  

Second, because a A-operator need not bind only string-peripheral vari- 
ables, phonological composition is not restricted to concatenation, but is 
generalized to substitution. This means that phonologically discontinuous 
constituents are possible, as illustrated by the perfectly well-formed la- 
beled type A x. take x to task: np--~ vp ~ ,  Ax.( take(to task)) (x) .  

Third, although the underlying algebraic structure on which &terms are 
constructed and the underlying algebraic structure on which/L-terms are 
constructed are distinct, the two systems of terms share common proper- 
ties of pairing, projection, abstraction, and application. It is through this 
common system that terms are linked to types, in a way that systematically 
enforces corresponding links between subtypes and subterms. 

Fourth, since phonological order is expressed in the structure of the & 
terms, there is no need to impose linear order on the structure of term- 
labeled types. It is this division of labor which makes it possible to assume 
that sequent antecedents are formed by multisets of labeled types, rather 
than sequences of labeled types. 

To illustrate these properties, we present a proof below of the analog 
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in mon:LP of the LP-valid Permutation rule A --9 B --~ C F B ~ A --+ C, 
which illustrates this rule's independence of the details of basic word order. 
Let Term range over linear monoidal products of two string variables x 
and y and a string constant c. Thus, Term ranges over the string c • x • y 
and its permutations. Think of c as representing the phonological structure 
of a transitive verb and any value of Term as representing one possible 
convention governing the phonological properties of the mode of combi- 
nation of the transitive verb c and its np arguments x and y. Consider 
now the following proof, where npsubj stands for the type of a subject np, 

and npobj stand for the type of an object np. We give the proof sche- 
matically, with each type labeled by a single schematic term (appearing 
directly below it), which exhibits all the relevant information governing 
the relation between types and labels. Thus, the schematic term labeling 
a type does not present the internal structure of either C-term label or 
the/L-term label, but only the structure of application, abstraction, pair- 
ing, and projection which connects deduction in the type system with the 
corresponding term operations. Thus internal structure of the th-term is 
consistent with any of the basic words orders soy, svo, ovs, osv, vso, 
VOS. 

npobj F npobj S F S 

y y ((hx. hy.T)x)y T 

npsubj F /'/Psubj npobj ~ S nP°bJ F S 

x x (hx. hy.T)x '  y T 

npsubj ~ npobj ~ S npobj npsubj k s 

hx. hy.T y x T 

npsubj '-+ npobj  ~ S npobj  k npsubj ~ S 

hx. hy.T y h x . T  

n p s u b  j -'--9' n p o b j  ---~ S ~- n p o b j  --~ npsub j  ""9" S 

hx. hy.T by. hx. T 

9.2.2. Applications to Quantification 

Quantifiers in mon:LP can be associated with a single type, as illustrated 
below, 

t hP.P(every doctor): (np --~ s) --~ s hP.V(doc to r  ) (P)  
hP.P(a problem)(np ~ s) ~ s ,,~ hP .3 / (prob lem ' ) (P)  
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Because of the proof-induced polymorphism of mon:LP, a labeled type 
with this structure can combine not only with a 1-place predicate of type 
np ~ s ,  but with any k-place predicate whose k arguments include an 
argument of type np.  One way to see why this is possible is to recall that 
mon:LP allows both Permutation (so the k-place predicate may be as- 
signed a type of the f o r m . . .  ~ np  ~ s, with the np  argument of interest 
represented as the last argument that the predicate combines with) and 
Division (so the quantifier type ( n p - - - , s ) ~ s  is shiftable to type 
( . . .  np  --+ s) ~ ( . . .  -+ s) ). 

If a k-place predicate (k t> 2) takes two or more np-arguments, then it 
can combine with two or more quantifiers. Fixing the argument position 
associated with each quantifier, there are as many orders of combination 
as there are ways of assigning a linear order to the set of quantifiers. 
Different orders of combination give rise intrinsically to different scopes. 
As a result, the system contains no special rule for introducing quantifier 
scope ambiguities: rather, such ambiguities arise in mon:LP as a form of 
p r o o f  inde terminacy  - the inability of the proof system to fix a particular 
order of combination. 

To illustrate these ideas concretely, we examine the set of /L- terms 
assignable to the succedent term-labeled type e v e w  detective caught  
some  thief: s ~ ,  Term  on the basis of the lexical assumptions below: 

A P. P(every detective): (np  ~ s) ~ s ~ ,  AP .V(de tec t i ve ' ) (P)  

A P.P(some thief): (np  ~ s )  --+s , ~  A P 3 ( t h i e f ' ) ( P )  

A x. A y.(y caught  x): n ~ np  ~ s ,~ ,  A x . A y . c a u g h t ' ( x ) ( y )  

In mon:LP, there are two essentially-different cut-free proofs of this kind. 
One of them is equivalent (in the sense of having the same axiom-leaf 
bindings) to the schematic proof below: 

np  F_n p s F_ s 

r r (TV(P))(r) E 

np  ~_np np---~ s np  F_ s 

p p TV(p) '  r E 

np --+ np  ---~ s np  np  ~_ s 

TV r p E 

np ---~ np  ---~ s np  np  ---~ s t- 
TV r Ap .E  

s 

p. E) 
s F- 
D 
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n p ~ n p ~ s  ( n p ~ s ) - - , s  np k s 

TV B r D 

np- - - - ,np~s  ( n p ~ s ) ~ s  n p ~ s  s s 
, I- t- 

TV B h r . D  A ( h r . D )  C 

( n p ~ s ) - - , s  n p - - , , n p ~ s  ( n p ~ s ) ~ s  s 
, , [- 

A TV B C 

The schematic terms in this proof have the values displayed below: 

A := k P. P(every detective), hP.V(detective')(P) 
TV.= h x.k y.y caught x, Ax.hy.caught'(x)(y) 
B := A. P. P(some thief), , tP.3(thief ')(P) 
C := every detective caught some  thief, 

V(detective') ( Ar.3(thief')( hp.caught'(p)(r) ) ) 
D := r caught some  thief, 3(thief ')(hp.caught'(p)(r)) 
E := r caught p, caught'(p)(r) 

The reader may check that all the required normalizations of terms, such 
as that represented schematically as A(h r. D) L> C, in fact hold. 

There is a second proof whose endsequent differs from that of the proof 
above only in the IL-term assigned to the succedent type. We present the 
last two lines of a schematic proof below. 

( n p ~ s ) ~ s  n p ~ n p ~ s  l _ n p ~ s  s ~ s 

A TV hu.G B(Au.G) F 

(np ~ s )  ~ s  np ~ n p ~ s  (rip ~ s )  ~ s  ~_ s 

A ' T V  ' B F 

The schematic terms A, TV, and B have the same values here as in the 
previous proof; the newly introduced schematic terms F and G have 
values: 

F :-- every detective caught some thief, 
3(thief ')  (hu.V(detective') (Av.caught'(u)(v))) 

G := every detective caught u, 
V(detective') (Xv.caught'(u)(v)) 

The two proofs above illustrate precisely the two/L-terms that can be 
paired with the &term every detective caught some  thief relative to 
the assumed lexical assumptions. In particular, in contrast with LP, the 
succedent types below cannot be proved from these lexical assumptions: 
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every doctor caught some thief: s , ~ V ( d e t e c t i v e ' )  

( hp.3( thief')( hr.caught' (p)(r) ) 
every doctor caught some thief: s ~ .  3 ( t h i e f ' )  

( hv.V( detective')( Au.caught'(u)(v) ) 

And the reason for this is a simple one: there is an implicit regulation 
of variables between ~terms and/L-terms. 

9.3. Explicit Cross-Dimensional Control 

In the presentation above of mon:LP, there is a correspondence across 
dimensions that is governed by the design properties of the type language. 
For example, we can represent any type in these systems by a schema of 
the form (for k/> 0): 

~ t X  k . . . /~ x 1 . T :  ' t k  ----). • " " T 1 ---~ 7 " O ' V *  /}tX k . . . AxlT 

In this schema, the type ri and the variables x,:, and xi (1 ~<i ~< k) are 
implicitly linked, and in proofs this triple corresponds to one of the atomic 
labeled types of an axiom leaf. Note that there is no intrinsic property of 
type or label which connects the corresponding elements of different 
dimensions: rather, in the schema above, it is the common sequential 
ordering of types, on the one hand, and the interpretive and phonological 
abstraction operators, on the other. In general, it is possible to permute 
the elements of these sequences as long as the correspondence across them 
is maintained. This suggests that the sequences are merely a particular way 
of keeping track of the correspondence. In fact, the common sequencing 
of the elements represented in the schema above merely means that 
these elements are indexed by a single linearly-ordered set. Although the 
assumption that this set is linearly-ordered has some advantages - in 
particular, the advantage that the correspondence can be expressed im- 
plicitly by the design features of the type language -, it has some disadvan- 
tages as well. To gain some insight into these properties, we shall describe 
two families of systems in which the correspondence of elements across 
dimensions is expressed explicitly. 

9.3.1. Decomposition of Signed Types to Signed Atomic Types 

A fundamental idea in the sequent systems is that axioms take the form 
A ~-A, with the turnstile flanked by two occurrences of a single type. 
Axioms thus encode a kind of matching of occurrences of types, a match- 
ing of an antecedent occurrence and a succedent occurrence. It is useful 
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[43, 46] to indicate this matching in another way by assigning a polarity 
to each type. If we assign a succedent type A the polarity 0 and an 
antecedent type A the polarity 1, then we can replace the identity sequent 
A F- A with the multiset of signed types [(A, 1), (A, 0)]. If we inspect the 
standard rules for products and residuals, we might hope that signed 
products and residuals obey the following rules: 

[F, (.4 ---> B, 0)] ::} [F, (.4, 1), (B, 0)] 
[F, (A ~ B, 1)] ::), [F, (A, 0), (B, 1)] 
[F, (14 ® B, 0)1 ::), [F, (A, 0), (B, 0)] 
[F, (A ~ B, 1)] ~ [F, (A, 1), (B, 1)] 

If we decompose complex types in the conclusion of the inference rules 
for products and residuals according to these rules, we observe that the 
polarity of a type is a global proof invariant. This is shown for the rules 
below, where sequent antecedents are multisets of types and sequent 
succedents constitute a single type. 

Inference figure Polar types Decomposed polar types 

R ----> O, A F- B [O', (.4, 1), (B, 0)] 
O F-A --)B [O', (A ---* B, 0)] 

FF-A A,B~-C [F',(A,O)] [A',(B, 1),(C,O)] 
L---> 

F,A,A---->BF-C [F',(A--,B, 1),A',(C,O)] 

L® F,A, BF-C [F',(A, 1),(B, 1),(C,O)] 
F,A ® B~ C [F', (A ® B,1), (C, O)] 
r f - A  AI-B [F',(A,0)] [A,(B,0)] 

R® 
F, AFA®B [F', A'(A ® B, 0)1 

On this basis, then, we may translate 

[o', <A, 1), <B, 0>] 
[O', <A, 1), <B, O> 
[F', (A, 0)] [A', (B, 1), (C, 0)] 
[r', <A, 0>, <B, 1>, A', <C, 0>l 

[r', <A, 1>, <B, D, <C, 0>] 
[F', (.4, 1), (B, 1), (C, 0)] 
[r', (A, 0)1. [~, (B, 0)] 

[r', a'(A, 0), (B, 0)] 

any sequent A1 . . . .  , Ak F- B 
into a multiset of polar types [(, A, 1 ) , . . . ,  (Ak, 1), (B, 0)], and then by 
performing the unfolding transformations on any complex types, convert 
this multiset of polar types into a multiset of atomic, polar types. If the 
original sequent is valid, the axiom leaves of the proof tree correspond 
precisely to pairs of atomic types of opposite polarity. This is a proof 
invariant similar to van Benthem's notion x-count [5, 6] or Roorda's notion 
balance [42]. 

Although such a pairing exists for every valid sequent, such pairings 
can exist as well for sequents which are invalid in all of the systems 
discussed here, such as the Lowering sequent (see §6) (B --->A) --->A F- B, 
whose atomic polar normal form is {(B, 1), (A, 0), (A, 1), (B, 0)}. In con- 
verting a sequent to its atomic polar normal form, a critical property of 
proof structures is lost: namely, information concerning the scope of each 
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type-constructor. The two-premise rules L --~ and R ® not only introduce 
a new occurrence of ~ or ®, they also merge the endsequents of their 
two premises into a single sequent. In trying to construct a proof bottom- 
up from such an endsequent, one must take apart the antecedent occur- 
rence of --* or the succedent occurrence of ® and in addition, decide how 
to split the sequent context of the complex type into two independent 
contexts for the two components of the complex type. It is this aspect of 
proof structure which is ignored in the transition from a sequent to its 
atomic polar normal form. One way of building in information about the 
scope of a connective is to refer to the corresponding properties of the 
associated A-term. Roorda [41, 42] uses this method to extend to L and 
LP the proof-nets - les substantifiques moelles - of Girard [14, 15]. Moort- 
gat [27, 28] uses string-term conditions for the same purposes. Here we 
discuss the extension of these methods involving term-relations to mon:LP. 

If we take an atomic labeled type in mon:LP, such as jones: np ~ , j ,  

we can assign it an atomic polar normal form by simply adding a polarity, 
0 or 1. To extend the assignment to complex types, it is necessary to add 
conditions on the terms involved. In certain cases, it is necessary to 
introduce flesh variables or parameters, adding appropriate information 
concerning their interpretation. We write x r--Term to mean that x 
FA ( Term) . 

Complex polar type Decomposed polar form 

Term: A @ B ° ~ .  Term 

Term: A @ B ~ ~'* Term 

Term: A --~ B ° ,,~ Term 

Term: A --> B 1 ~  Term 

[Term ~ (~'1 Term, ~r2Term,) 
Term ~ ( ~ Term, ¢;2 Term,) ,  

~r~Term: A °  ~* zrl Term, ~r2Term: B ° ,,~ Ir2Term] 

[Term ~ <lhTerm, ~r2Term,} 
Term ~ <~h Term, Ir2Term,), 

~r,Term: A ~ ~'* zr, Term, ~-2Term: B ~ , ~  ~r2Term] 

[x, x fresh, Term = h x.Term', x U_ Term', 
Term = a x. Term' ,  x I- Term' ,  

x: A ~ ,~ x,Term: B °~.,  Term] 

[x, x fresh,Term = a x.Term', x r-Term',  
Term = a x . T e r m ' ,  x r-- Term' ,  

x: A ~ ~ . x ,  Term': B ° A,-, Term'] 

Iteration leads to atomic polar normal forms, in which every type-forming 
operator is replaced by its polar decomposition. 

Applying these methods to some of the lexical assumptions introduced 
earlier, we have: 
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), x. hy. y caught x: np ~ np ~ s t ,,~. Ax .hy .caught ' (x ) (y )  

[x: np°N'*x,  y: np°,,~,y,  y caught x: s~,~ .caught ' (x) (y)]  

A P. P[every student): (np---~s)--~s ~,-, AP.V(s tudent ' ) (P)  

[P: np --, s o ,~, P,  P(every student): s 1 ~-* V(student ' ) (P)]  

::),[x,Q,x, Q fresh, P = h x . Q ,  x r - Q , P =  hx .Q ,  x r -  Q, 

x: np 1 ~,~, x,  Q: s °~-  Q, P(every student): s a ~ V(student ' ) (P)]  

A P. P(some thief)) (np ~ s )  ~ s  ~,,~, A P .3 ( th i e f ' ) (P )  

~ [ z ,  N , z , N  fresh, M = A z . N , z l - - N , M =  A z . N . , z E N ,  

Z: np 1 A,~ Z, N: s°,x~ N ,  M(some thief): s ~ ,~. 3 ( t h i e f ' ) ( M  )] 

Consider now the following examples of the decomposition of sequents: 

Example  1. 

sequent:a,/3, y ~- jay chased kay: s,,,'* chased ' (k ) ( j )  

a = jay: np ~ .  j 

/3 = hx. by .  y chased x: np ~ n p  ~ s , ~ ,  

hx.A y.chased'  (x ) (y  ) 

y = kay: np ,.'* k 

atomic polar decomposition 

[ jay: np 1 ,,~.], 

x: np° ,,", x,  

y: np°,,,~, y,  
y chased x: s 1 ~* chased ' (x ) (y )  

kay: np 1 ~ k 
jay chased kay: s o ~ chased'(k)O') ] 

O: 
x ~ kay. x ~-> k. 
y ~-> jay .y  ~ j 

jay: npl  ,,~*j~-> y: np° ,~ ,  y 

kay: np l  ,,,'* k~-> x: np° ~'-~ x 
y chased x: s 1 ,,.-. chased ' (x ) (y )  ~ jay chased kay: 

s o ~ chased ' (k ) ( j )  

In this example, 0 is a function which anchors term-variables to terms;/z 
is function from labeled polar types with polarity 1 to labeled polar types 
with polarity 0 which satisfies the requirements that if /z:t: 
Tl,,~.t~--> u: U°,,~,u,  then T =  U, 0(t)= 0(u), and 0(t)= O(u). These re- 
quirements are related to sequent-style proofs in the following way: atomic 
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types of opposite polarity paired by /z correspond to axiom leaves of a 
sequent proof; the term conditions imposed on axiom bindings are speci- 
fied by 0; the scope of each connective in the endsequent is expressed by 
the type- and term-conditions of its decomposition, and the inclusion 
relations on terms. 

A simple example involving multiple quantification is exhibited below: 

Example  2. 

sequent: a,/3, 3't- every detective caught some thief: 
s ~ ,  V (de t ec t i ve ' ) (hw .3 ( th i e f ' ) (h z . caugh t ' ( z ) (w) ) )  

a = A P. P(every detective): (np ~ s) --> s ~', hP.V(detec t ive ' ) (P)  

/3 = h x. h y. y caught  x: np ---> np -->s ~'* hx .hy .caugh t ' ( x ) (y )  

3, = h R. R(some thief); (rip--+s) ~ s ~ *  h R . 3 ( t h i e f ' ) ( R )  

atomic polar decomposition: 

P: np ~ s° ~ ,  P ~  h w .  Q: np --+ s °~¢~. h w . Q ,  w r--Q, w F-Q, 
R: np --> s°,,~ R ~-> h z. N: np ---~ s ° ~ .  h z .N ,  z [Z N, z F-N, 
w: np 1 ~ w, 

Q: s° ~..* Q, 
(h w.Q)(every detective): s l y ,  V(detect ive ' ) (hw.  Q) 
X: r i p  0 ~ X,  

y: np° ~ ,  y,  

Y caught x: sl,.., caught' (x ) (y)  
z: np 1 ,,~ z,  

N: s°"~" N ,  

(h z. N)(some thief): s 1 ~'~ 3 ( t h i e f ' ) ( h z . N )  

every detective caught some  thief: s ° ~ .  V(detective')  

( A w . 3 (  thief ' ) (  hz.caught '  (z ) (w)  ) ) 

For this set of atomic polar types, where the global interpretation is fixed, 
there is just one solution that satisfies the inclusions relating terms: 

O: 

y ~-~ w ,  y ~--> w 

X ~--> Z,  X ~--> Z 

N ~ w c a u g h t  z, N~--> caught ' ( z ) (w) ,  

Q ~ w caught some  thief, Q ~-> 3 ( t h i e f ' ) ( h z . N )  
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/z: 

w: np 1,,,'* w ~--> y: np  ° ,~, y 

Z: np I "~ Z ~ X: np°  ~'* x 

y caught x: s 1 , , ~ c a u g h t ' ( x ) ( y )  ~ N: s ° ~ . . N  

(h z.N)(some thief): s 1 ~ 3 ( t h i e f ' ) ( h z . N )  ~ Q: s o ~ Q 
(A w.Q)(every detective): s ~,~. V(de tec t ive ' ) ( ,Xw.Q)  

every detective caught some  thief: s o ~,, V(detec t ive ' )  

(hw.El(thief')(hz.caught'(z)(w))) 

If we change the scope of quantifiers in the interpretation of the endse- 
quent, the atomic polar decomposition differs only in that respect as well, 
but we have a different, but still unique, solution set O' and/x': 

E x a m p l e  3. 

sequent: a,/3, y F every detective caught some thief: 
s ~ 3 ( t h i e f ' ) ( h z . V ( d e t e c t i v e ' ) ( h w . c a u g h t ' ( z ) ( w ) ) )  

a = h P. P(every detective): (np  ~ s) ~ s ~ ,  hP .V (de t ec t i v e ' ) (P )  

/3 = Ax. by .  y caught x: np  --~np - ->s~ ,~ ,hx .hy .caugh t ' ( x ) (y )  

y = h R. R(some thief: (np --~,s) --~s ~ .  h R . 3 ( t h i e f ' ) ( R )  

atomic polar decomposition: 

P: np ---~ s°~- ,  P~--~ A w .  Q: np -+ s°,~-~ h w . Q ,  

w I - Q ,  w r - Q ,  

R: np  ---~ s ° , ,~  R ~---~ )t z. N: np ---~ s° ,,,-~ h z . N ,  

z E N ,  z E N ,  
W: n p  1 ~ W, 

Q: s ° ~  Q,  

(h w.Q)(every detective): s 1 ,~, V ( d e t e c t i v e ' ) ( h w . Q )  

x: n p ° , , ~  x ,  

y: np°  ~* y ,  

y caught x: s 1,,~ c a u g h t ' ( x ) ( y )  

z: n p l  ,,~* z ,  

N: s° ,,'~ N ,  

(A z.N)(some thief): s t ~ a ( t h i e f ' ) ( h z . N )  

every detective caught some thief: 
s o ~ 3 ( t h i e f ' ) ( h z . V ( d e t e c t i v e ' ) ( h w . c a u g h t ' ( z ) ( w ) ) )  ] 
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In this case, we have the solution: 

0: 

y ~-~ w, y ~-~ w 

X ~--> Z, X~--> z 

Q ~ w caught z, Q ~ caught'(w)(z) 
N ~ every detective caught z, N ~  V(detective')(hw.Q) 

I-6: 

w: np1,~, w~--~ y: np°,,", y 
z: npl~' ,  z~--~ x: np° ~o,x 
y caught x: s I ~ ,  caught'(x)(y) ~ Q: s ° ,~  Q 
(h z.N)(some thief): s ~ ~ ,  3( thief ' ) (hz .N) 

every detective caught some thief: 

s °~,* 3(thief')(hz.V(detective')(hw.caught'(z)(w))) 
(A w.O)(every detective): s ~ ~ V(detective')(hw. Q) 

N :s°:N 

Call a multiset of atomic polar types (and an associated set of inclusions 
relating the terms of the those types) paired and anchored if there is a 
matching substitution 0 of term variables associated with types of polarity 
0 with ground terms or parameters which is consistent with term inclusion 
relations and/3-conversion (and is extended to a map from terms to terms 
in the usual way), and a bijection /.~ from labeled types of polarity 1 to 
polarity 0 which satisfies the condition: if/z: Term: A 1~,. Term = Term': 
B °~-, Term', then A = B and 0(Term) E> 0(Term') and O(Term) D 
O(Term'). 

THEOREM. I f  a sequent E is provable in mon:LP, then the atomic polar 
decomposition of  I£ is paired and anchored. 

Proof. If a sequent is provable, then the set of axiom-leaf bindings 
provide/z; if the decomposition procedure introduces a new term variables 
v at any point that is distinct from the associated term u of type corre- 
sponding to the type labeled by v, impose the requirement O(v) = u. Since 
introduced variables are always fresh, this can be done in a globally 
consistent way. This yields the required substitution O. [] 

We know already that any valid sequent in mon:LP is term-linear. We 
can use term-linearity to attain a result that goes in the other direction. 

THEOREM. I f  the atomic polar decomposition o f  a term-linear sequent 
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is paired and anchored relative to 0 and t~, then O('Z) is provable in 
mon:LP. 

Proof. By induction on the degree of the sequent ]£. If the degree of 
is 0, then every labeled type in the sequent is atomic. Moreover, there 

is only one succedent type t': T'  ~-~ t', by the definition of sequent, and 
there can be only a single labeled antecedent type, t: T~.~t, since /.~ 
is a bijection. Thus, we have i ~ ( t : T l ~ . t ) = t ' : T ' ° ~ . ~ t  ' with T =  
T ' ,  O(t) D~ O(t'). Therefore, 0(X) has the form 0(t): T ~ ,  O(t) I- 0(t'): 
T~-~ O(t'). Thus, 0(~) is an instance of the identity axiom. 

Now suppose that the theorem holds for sequents of degree k and 
consider a sequent ~ of degree k + 1 whose atomic decomposition is 
paired and anchored. If ~ has the form F f-t: A ~ B,,~ t, then we may 
choose terms x, r and x, r according to the decomposition of X so that we 
have a sequent ~'  = F, x: A ~ * x  t- r: B~- ,r .  But the decompositions of 
and/U can be carried out so that they are identical; thus, the decomposi- 
tion of X' is paired and anchored; by the inductive hypothesis, 0(~') is 
provable in mon:LP. But since 0(~) is derivable from 0(~') in mon:LP by 
an application of R ~ ,  0(~) is derivable in mon:LP. A similar argument 
holds for sequents derivable by the other 1-premise rule L ®: namely, if 

is of the form A , t : A Q B , ~ , t ~ - u :  C,,~,u, then 0(~) is derivable in 
mon:LP. Thus, we may assume that the succedent type of ~ is either an 
atomic type or a product, and that no antecedent type of ~ is a product. 

Suppose, then, that the succedent type is an atom of form u: C ,~  u; 
then /x pairs this atom with an atom of the form u': C ~ , u '  derived by 
decomposition from the final type of a type of the form 
term: Dk --+" • " DI ~ C ~ .  term (k >! O, with the understanding that if k = 
0, then Dk ~ ' . "  ~ DI ~ C = C). (Note that u: C,,-~ u cannot be paired 
with any non-leading type C' of an implicational type C' ~ E, since the 
&term of C' is properly included in the ~b-term of E (by the decomposition 
procedure) and the 4~-term of E is included in FA(u) (by term-linearity), 
so the &term of C' would have to be properly included in the ~b-term of 
the atomic type it is paired with. Impossible!) If k = 0, we're done: the 
qS-term of the atomic type corresponding to the antecedent type C coin- 
cides under 0 with 0(u) and is disjoint from the &term associated with 
any other antecdent type; but this is impossible if there is any other 
antecedent type, since (by term-linearity) its free atoms must be contained 
in FA(u);  hence, if k = 0, the sequent is an axiom instance, and we're 
done. If k i> 1, let D* be the multiset union of the atomic polar types 
derived from Dk and their pairs under/x; none of these atomic polar types 
is paired with any atomic polar type derived from the decomposition of 
Dk-~--~" • • --~ C, since this is prevented by the term conditions of the 
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decomposition. Now note that the final type B of any implicational antece- 
dent type with form Ak---~''' ~AI--~B (k>~O) belongs to D* if and 
only if all the atomic types derived from Ai (0 ~< i ~< k) belong to Dk. This 
partitions the multiset of antecedent types into two disjoint multisets of 
types: a multiset A, whose atoms belong to D* and a multiset @, whose 
atoms do not. The atoms of the latter class must be paired with the atoms 
derivable from D~_ 11_1.. .D*. Thus, we have the following situation 
(with term-labels suppressed): 

A~-Dk ®,Dk-1-->" " - - > D I - + C F C  
®, A, Dk --~ Dk-1 --~" " • ---> D1 ---> CI- C 

The endsequent, which is identical to 2, is derivable from the premises if 
they are provable. Since each of the premises inherits an atomic decompo- 
sition from the conclusion relative to which it is paired and anchored, the 
induction hypotheses assures us that they are derivable. Thus, so is the 
conclusion 2. 

A similar argument - using the linearity of terms and sequents to 
partition 2 into two smaller sets of paired and anchored terms correspond- 
ing to appropriate premises for the rule R ® - applies in the case that the 
succedent type is a product. 

This concludes the proof. [] 

Atomic polar decompositions, then, provide an alternative presentation 
of mon:LP. What is attractive about this presentation is the fact that 
proofs no longer display excessive and redundant bookkeeping: passive 
assumptions need not be carried along with each inference step; different 
orders of inference steps need not be addressed. These issues are compiled 
inside the unification algorithm. 

9.3.2. Indexed Terms 

There is another way to explicitly manage proof resources which is related 
to the atomic polar normal forms, but which is technically more com- 
plicated. Instead of decomposing types into atomic polar types, one associ- 
ates each occurrence of an atomic type with an index and assigns the 
same index to the associated component of each dimension. Earlier, we 
translated the lexical type declaration for caught  as: 

kx. Ay. y caught x: np ----~np --~s~,Ax.Ay.caught'(x)(y) 
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This determines a multiset of atomic polar types which are linked by term 
inclusions: 

[x: np° ~,~, x,  y: np° ~-y,  y caught x: s 1 ~ hx. ,~y.caught '(x)(y)] 

In the indexed format, this declaration takes the form below, with the 
links explicitly represented by a common set of indices: 

[u i, vq. u i caught vJ: [np i, np j] ~ sk,, ,o. [xJ, S] .caught ' (xJ) (y  i) 

A system along these lines is midway between the system of implicit 
control found in type languages that rely on A-terms and sequentially- 
residuated types for cross-dimensional control and the atomic polar normal 
forms just examined. It is like the implicit, sequential control systems in 
that residuated types and terms display a collection of argument types or 
argument variables initially. It is distinct from the sequentially-organized 
systems in that it is not required that the arguments be linearly ordered. 
Instead, like the atomic polar normal forms, there is a registration - here, 
using a common index set - of corresponding arguments in different 
dimensions, correlating exactly those components in a complex type which 
belong to individual atomic polar types in the atomic polar normal form. 
Moreover, within this framework, the rules for the type-constructors cor- 
responding to products and residuals can be constructed in a non-determi- 
nistic way that combines (partial) application with composition in the way 
schematically indicated by the inference figure below (corresponding to 
the standard rule L ---~): 

x 
F F { Z U n p  a} { V U Z } ~ A U A F B  

X,~s,a=b 
F U { V U n p b } ~ A , A  I- B 

In this rule, the index a is bound to b (as indicated in the unification 
bindings of indices above the turnstile), one of the arguments - np b - 
disappears in the transition from the conclusion to the right-hand premise, 
but other possible arguments - indicated by V are carried along, and the 
arguments represented by Z appear in both premises. An elaboration of 
this schema allows a functional type to combine simultaneously with a 
number of arguments. Like the proof net systems discussed above, type 
systems constructed along these lines allow simpler proofs than the sequen- 
tial systems. But their construction involves technical complexities which 
go beyond the bounds of the present paper .8 

8 After  this paper was written, it came to my attention that  there may  be interesting 
connections between the system of indexed terms just sketched and the systems of application 



T E R M - L A B E L E D  C A T E G O R I A L  TYPE SYSTEMS 675 

1 0 .  V A R I A N T  SYSTEMS 

The system of labeled deduction mon:LP depends on taking the types of 
LP and labeling them with terms from a higher-order term algebra based 
on a free monoid. The resulting system allows relations to be defined 
between ~terms and/L-terms that are not definable in a natural way in 
the substructural systems AB, L, or LP. A natural question to ask is what 
other systems arise as variants of this form of labeled deduction. We 
mention two possible modes of variation here, deferring discussion to 
another occasion. 

The first possibility is to consider other algebraic possibilities as the 
basis on which higher-order ~terms are constructed. For example, if we 
replace the free monoid V* by the free commutative monoid comV*, we 
have a system common:LP in which the C-terms of atomic type are simply 
multisets of elements of V. This system is the analog within the landscape 
of C-term labeled deduction of LP. 

A second possibility is to consider variations on the set of admissible 
terms. One limitation already observed is to the set of linear A-terms: 
terms in which each abstraction operator A~c in a term of the form Lr.¢ 
binds exactly one free occurrence of the variable x. But other forms of 
limitation are possible. For example, we may require that in A~c.¢, either 
¢ = (xt) or ¢ = (tx), limiting the depth of the free occurrence. The inter- 
esting consequences of this restriction - it disallows Division and the 
general form of Permutation, for example - and the question of how the 
standard categorial type systems can be modeled within the landscape of 
term-labeled deduction are discussed in more detail in [38]. 

11. SUMMARY 

The term-labeled categorial type systems studied in this paper are a form 
of labeled deduction [12]. It is not surprising that there are forms of labeled 
deduction corresponding to known cases of unlabeled deductive systems. 
Yet it is interesting to observe that the addition of &term labeling intro- 
duces new possibilities for the division of linguistic labor. 9 And among 
these new possibilities, we encounter not only familiar systems in a new 

and abstraction developed in detail by Aczel ancl Lunnon in the context of Situation Theory 
[1], These connections might be worth exploring. 
9 For other investigations of ~terrn labeling in categorial grammar, see Moortgat [27, 28], 
Morrill [31], Hepple [18], and Calcagno [9]. The treatments in these papers start with the 
directional type-constructors of L, rather than the non-directional LP system adopted in 
mon:LP. 
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guise, but  also unfamiliar  systems with attractive propert ies .  Wha t  I have 

tried to emphasize  here  is the interact ion be tween  term-labeled type  infer- 

ence and the behavior  of  quantifiers. This at least allows us to compare  

formally the behavior  of  the systems examined  in this paper  no t  only with 

regard to the relat ion they define be tween  & t e r m s  and types,  but  with 

regard to the more  informative relat ion among  ~b-terms, types,  and 1L- 

terms. 
The  examples  examined above  have been  e lementary  ones.  It  will be 

useful to see whether  such systems as m o n : L P  can be extended to more  

complex cases involving quantification and binding, 1° or  the integrat ion 

of  prosodic  propert ies  of  strings into proof-s t ructures  [44, 25, 36]. Re-  

search in these areas, which involve complex interactions a m o n g  the pro-  

perties of  different linguistic dimensions,  demonst ra tes  the need  for  a 

deeper  abstract  unders tanding  of  the p rob lem of  general ized composi-  
tionality, n 
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