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Abstract

The concept of a judgment as a logical action which introduces new in-
formation into a deductive system is examined. This leads to a way of
mathematically representing implication which is distinct from the famil-
iar material implication, according to which “If A then B” is considered
to be equivalent to “B or not-A”. This leads, in turn, to a resolution of
the paradox of the raven.

1 Introduction

This note examines the relationship between the theory of quantification of
information and the concept of judgment, which is the word used here to refer
to the action whereby a proposition which provides information is given.

The information presented here is intended to be self-contained, but the
interested reader can consult references [1, 2, 3] for background information
regarding information, [4, 5] for probability, [6, 7, 8] for evidence, [9, 10] for
judgment and [11, 12] and the references in [13] for the paradox of the raven,
also called the raven paradox or the paradox of confirmation. On a first reading,
the reader may find it advisable to skip mathematical proofs which appear
laborious; the text should remain largely comprehensible.

Section 2 introduces the concept of a judgment in terms of its relation to
probability. The central point to understand is that a judgment involves a
change in what is thought to be true rather than merely a statement that some-
thing is true, or an assertion.

Considering judgments instead of statements makes it necessary to take into
account the distinction between the subject and the predicate. For example,
“John is taller than Mary” and “Mary is shorter than John” express the same
relation between John and Mary when the sentences are interpreted as mere
statements of fact. It makes no difference whether John or Mary is considered to
be the subject, because one proposition is true if and only if the other proposition
is.

If they are interpreted as judgments, though, they produce different changes:
In the judgment that “John is taller than Mary,” John is the subject and “taller
than Mary” is the predicate. Mary is used only for reference, so if we are
incorporating this new information about John into what we already know,
then we will increase our estimate of John’s height without changing what we
think about Mary.
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Conversely, in the proposition that “Mary is shorter than John”, Mary is
understood to be the subject, so when this judgment is passed, it is what is
believed about Mary that changes.

Sections 3 and 4 introduce the quantities of information and evidence in the
context of judgment. The amount of information given when a judgment occurs
measures how much the judgment can accomplish, that is, what changes in the
probabilities of propositions can be effected by the judgment.

Evidence accumulated in favour of a proposition inclines one towards the
judgment through which that proposition would be given; one can set a thresh-
old for evidence and pass the judgment that a proposition is true if the evidence
in favour of that proposition exceeds the threshold. It is also shown in section
4 that quantities of evidence determine what changes should be made when a
proposition of probability zero is given.

Section 5 examines the various ways in which it can be established through a
judgment that one proposition implies another. The statement that one propo-
sition implies another is unambiguous because it refers to a pre-existing state
of affairs. If one is to judge that one proposition implies another, however,
one must decide what changes to make, and there are several different ways to
change the relationship between the propositions so that, after the changes have
been made, the one proposition implies the other.

In section 5, the rules relating quantities of information to counterfactuals
are examined. In this context, counterfactuals are propositions of the form “If
A then B” where P(A) = 0. This leads to a consideration of what changes can
be effected when a proposition with probability one is given.

Finally, section 6 explains how distinguishing between judgments and state-
ments resolves the paradox of the raven. The paradox arises when one regards
“All ravens are black” and “All non-black things are non-ravens” as equivalent,
which would lead one to believe that evidence favouring one proposition must
also favour the other. The observation of a black raven, then, should provide
evidence that “All non-black things are non-ravens”, and the observation of a
blue sky, which is a non-black non-raven, should provide evidence that “All
ravens are black”, which is absurd.

The equivalence between the two propositions disappears when one consid-
ers the judgments through which the propositions are given rather than the
statements which assert that the propositions are true.

The propositions have different subjects and different predicates: The judg-
ment that “All ravens are black” changes what we think about ravens, while
the judgment that “All non-black things are non-ravens” changes what we think
about non-black things. Evidence inclines us towards a judgment, not a state-
ment; when we see that the evidence is sufficient to persuade us, we change
what we believe, rather than merely stating what we already believed.

Section 6 makes this qualitative solution quantitative by explicitly calculat-
ing the amounts of evidence provided by the observation of a black raven in
favour of the respective propositions.



2  Judgment

The word “circumstance” is used here to refer to a situation in which certain
propositions are given and every proposition can be assigned a probability. A
judgment is a logical action which changes the circumstance by giving a new
proposition. If A is judged to be true then, after the judgment, the new value
of P(B) is equal to the old value of P(B|A).

Since the probabilities of propositions depend on the circumstance, an un-
ambiguous notation would indicate, for each probability mentioned, what the
relevant circumstance was. Pg(A) could be used, for example, to denote the
probability of A in the circumstance C. Since we will mostly be considering
individual judgments here, though, we will drop the C' and refer to the values
of probabilities before the judgment as the old values and the values after the
judgment as the new values.

The expression P(B|A) is read as “the probability of B given A” but in this
case A is only hypothetically given; it is not actually taken as an axiom in the
present circumstance. When the judgment occurs, A is actually given. P(B|A)
is more exactly described by the phrase “the probability that B would acquire
if A were to be given”.

When P(A) # 0, P(B|A) = P(BA)/P(A), where BA has been used to
denote the proposition B and A. This is not a definition of P(B|A). Since it
has already been said that P(B|A) is the probability that B would acquire if
A were to be given, we are not free to define P(B|A) again. That P(B|A) =
P(BA)/P(A) when P(A) # 0 is something which must be justified, or proven,
instead of chosen. The justification is easily understood when the equation is
expressed in terms of information, as it is in the next section.

The interpretation of probabilities is not important here. It is only necessary
to observe that P(A) = 1 may provisionally be considered as a sufficient proof
of the proposition A, but that it is not a logical impossibility for P(A) to equal
one and for A to be false. For example, if a real number, z, is chosen randomly
from between zero and one, so that the probability that x lies in the interval
[c,d) is d — ¢, then before the value of x is revealed to us, the probability that
x = 1/2 is zero, but it is not logically impossible that = 1/2. There is in
any case some number which = equals, and the probability that = equals that
number is zero.

The inference from P(A) =1 to A is therefore weaker than a perfect proof,
and if P(A) = 1 in a particular circumstance, then it remains a logical possibility
that A is false. It should therefore be possible to incorporate the information
that A is false without encountering a logical contradiction, although after this
information has been incorporated, the probability of A will be zero instead of
one.

It will be said that a proposition, A, is “believed” when, in a particular
circumstance, P(A) = 1, and, correspondingly, that it is not believed when
P(A) # 1. This word is used because it is weaker than, for example, the word
“known”, which would suggest not only that the proposition is believed, but
also that it is true.



When P(A) = 0, P(B|A) cannot be determined by using the expression
P(BA)/P(A). However, all that is necessary for the judgment to occur is that
every proposition B be assigned a probability consistent with the rules of prob-
ability?, which is enough to specify the new circumstance.

For example, the assignment:

P(x:y|x:1/2):{(1) ! zi

B[00 |~

is consistent even though the expression P(z =y and z = 3)/P(z = 3) yields
0/0.

If P(A) = 0, then, the value of P(B|A) is not constrained by the values of
probabilities of propositions in the current circumstance, while if P(A) > 0, it
is. The inference from P(A) = 1 to A is therefore legitimate insofar as P(A)
is guaranteed to equal one in every future circumstance unless a proposition of
probability zero is given, after which P(A) may take any value.

3 Information

3.1 Introduction

i(B) = —log P(B) is the amount of information which would be provided by
the revelation that B is true, since it is zero if B is already believed, one bit if
P(B) =1/2, two bits if P(B) =1/4 and so on.

If we are willing to say that information is something which can be believed,
in addition to saying that propositions can be believed, then i(B) can be called
the amount of information which it is necessary to believe in order to believe
B. If B implies and is implied by CD and C and D are independent, that is,
P(CD) = P(C)P(D), then in order to believe B it is necessary to believe C'
and also to believe D, and the amount of information which it is necessary to
believe in order to believe B is equal to the sum of the amount necessary to
believe C and the amount necessary to believe D.

It can be seen that i(B) is the minimum amount of information which must
be given before P(B) can reach one from the fact that:

P(BJA) = 1= 1= P(BA)/P(A) < P(B)/P(A) = i(A) > i(B)

If A implies B but is no less probable than it3, then B also implies A,
because:

1 = P(B|A) = P(BA)/P(A) = P(BA)/P(B) = P(A|B)

This applies only if P(A) # 0. We can therefore infer from the truth of
the consequence of a proposition to the truth of the proposition itself if the

2The rules relating probability to propositions are: P(A or B) = P(A) + P(B) — P(AB),
P(AB) + P(AB) = P(A) and 0 < P(A) < 1, where B denotes the negation of B.

3 A cannot be more probable than B if A implies B, so if A is no more informative than B
and implies it then P(A) = P(B).



proposition is no less probable, or equivalently, no more informative than the
consequence.

3.2 Common Information

The amount of information which it is necessary to believe in order to believe
a proposition can never be negative, because P(A4) <1 = i(A) > 0.

If we consider the quantity i(A; B) = i(A)+i(B)—i(AB), then this quantity
can be positive or negative.

When i(A; B) is positive, less information is required to believe both A and
B than the sum of the amounts of information required to believe A and B.
This is the condition under which three independent propositions, C', D and F
can be known of such that A implies and is implied by C'D and B implies and
is implied by DE, with i(D) = i(A; B). In that case, i(A4; B) could be called
the amount of information common to A and B.

On the other hand, if the quantity i(A4; B) is negative, then in order to
believe both A and B it is necessary to believe more than the sum of the
amounts necessary to believe A and B individually. When i(A; B) is negative,
then, AB implies something additional besides what is implied by A and what
is implied by B. The question which naturally arises is whether a proposition,
C, can be known of, such that C is independent of A and independent of B but
is implied by AB, with P(AB|C) = P(A)P(B), which in this case would be
equivalent to i(C) = —i(A4; B).

For a proposition such as C to stand in that relationship to A and B, it would
be necessary for P(A) + P(B) to be less than or equal to one. This is because
if C'is independent of A and B, then it must be possible to learn that C is false
without changing the probabilities of A and B, so P(A) + P(B) = P (A|C) +
P (B|C’). If C is discovered to be false, however, then AB will be believed to
be false and hence the truth of A would imply the falsity of B and vice versa,
P (AB |C’) = 0. That is, A and B would be mutually exclusive, and therefore
P (A|C) + P (B|C) could not exceed one, and neither could P(A) + P(B).

Provided i(A4; B) < 0 and P(A) + P(B) < 1, though, a proposition such as
C, which A and B jointly imply but are individually independent of, can be
known of. C' could be called the independent consequence of A and B.

It can be seen that:

i(4;B) <0 = log 5x3prs7 <0
= P(AB) < P(A)P(B)
=1—P(A)— P(B)+ P(AB) < (1—-P(A))(1 - P(B))
~ P(AB) < P (A) P (B)
P(AB
=i(4;B) <0

where it has been assumed in the second-last step that P (/1) >0 and P (B) >
0. Now either P(A) + P(B) < 1or P (A)+ P (B) <1 or both. Combining this



with the result above proves that either A and B or A and B will satisfy the
conditions necessary to have an independent consequence.

More generally, for any two propositions, A and B, which are not indepen-
dent and with probabilities strictly between zero and one, two of the quantities
i(A; B), i (A;B), i(A;B) and 1 (14_1; B) will be negative and two will be posi-
tive. Of the two pairs of propositions which yield negative quantities, it will be
possible for at least one pair to have an independent consequence.

3.3 The Justification of P(A|B) = P(AB)/P(B)

We can denote the amount of information which it is necessary to believe in
order to believe A assuming that B is true as i(A|B) = — log P(A|B). Whenever
P(B) # 0, i(A|B) is equal to i(AB) — i(B). This is equivalent to the statement
that P(A|B) = P(AB)/P(B) but is more obviously true. The following three
expressions clearly all refer to the same quantity:

e The amount of information which it is necessary to believe in order to
believe that A is true if we can assume that B is true

e The amount of information which it is necessary to believe in order to
believe that both A and B are true if we can assume that B is true

e The amount of information which it is necessary to believe in order to
believe that both A and B are true minus the amount necessary to believe
B (which has been assumed and therefore does not need to be believed)

This can be taken as a justification of the statement that P(A|B) = P(AB)/P(B)
whenever P(B) # 0. i(A|B) is also equal to i(4) — i(4; B).

3.4 How Much a Judgment can Accomplish

For any two propositions, A and B, such that P(B) # 0, i(A|B) is always greater
than or equal to i(A) — i(B) because log P(AB)/P(B) < log P(A)/P(B). If,
when B is given, i(A) decreases to i(A) — i(B), then the judgment through
which B is given can not alter the probability of any proposition which is inde-
pendent of A both before and after the judgment. This is because, if D is such a
proposition and P(D|B) # P(D), then either i(D|B) < i(D) or i(D|B) < i(D),
so either

i(AD|B) = i(A|B) +i(D|B) = i(A) — i(B) + i(D|B) < i(AD) — i(B)
i(AD|B) = i(A|B) +i(D|B) = i(A) — i(B) + i(D|B) < i(AD) — i(B)

either of which would contradict the statement that the amount of information
necessary to believe a proposition can decrease by at most ¢(B) when B is given.
In this sense, if all of the information given in a judgment is contained within the
information required to believe a particular proposition, then that judgment can
accomplish nothing else, that is, no changes in the probabilities of propositions
which are independent of that particular proposition.



4 Evidence

4.1 Quantifying Evidence

If a coin is biased so that it lands on one particular side 90% of the time, but it
is not known which side the coin is biased in favour of, then repetitively tossing
the coin and observing which side it most frequently lands on provides a way to
discover which side the bias favours.

If H is the hypothesis that the bias in favour of heads, and B, is the propo-
sition that the result of the nt! toss is heads, then:

P(H|B;1B3)

P(B1By|H) P(B1By) P(H)
P(H|B1B>) 7

P(B1B2) P(B1B2|H) P(H)
P(H) | 1o P(B1BalH)
P(H) & P(B1B;|H)

log = log

= log

If we can assume that H is true, then observing the result of one coin toss
does not change the probability that the next toss will result in heads; it remains
at 90%. Similarly, if we assume that H is false, then the probability that the
second result will be heads is 10%, regardless of what the result of the first toss
is. The probabilities P(ByBz|H) and P (B1Bs|H) therefore factorize:

P(B1By|H) = P(B1|H)P(By|H) and  P(B1By|H) = P(B,|H)P(B;|H)
leading to:

P(H|B, Bs) ) P(H)

) P(BIH) | P(Bs|H)
P(HB.B,)  °P(H) &

log P (BiH) ¥ P (BylH)

+ log

In this way, each occurrence of a heads provides an additional contribution
to the logarithm of the odds of H, independent of the contributions provided
by the results of the other coin tosses.

The quantity which accumulates as more occurrences of heads are observed,
with each occurrence providing a contribution independent of the others, and
such that the accumulation of this quantity inclines one towards the belief that
the bias is in favour of heads, is coll?qlllia)lly called evidence. We will use the
P(Bi|H
P(B1|H)
(which would be) provided by the proposition By (if it were to be given) in
favour of the proposition H.

No finite number of coin tosses can ever provide enough evidence to prove
that the bias is in favour of heads or of tails, because the logarithm of the
odds of a proposition must reach infinity in order for the probability of that
proposition to reach one. Instead one can introduce a threshold for evidence,
and if the amount of accumulated evidence in favour of a proposition exceeds
that threshold, one can pass the judgment that the proposition is true, having
been persuaded by the evidence.

The logarithm of the odds of H, log f:(g), could be called the amount of

evidence in favour of H, and denoted by e(H). In cases where P(H) = 0, or

notation e(B; — H) to refer to log , and call it the amount of evidence




P(H) = 1, however, this quantity is infinite and does not change when new
evidence in favour of H or against H is given. Keeping track of the amount of
evidence which has accumulated is therefore not accomplished by keeping track
of P(H).

If we want, for example, to be able to initially believe that the bias of the
coin is in favour of tails, P(H) = 0, but change and believe that it is in favour
of heads when the accumulated evidence has reached some threshold?®, then it
would be necessary to keep track of the quantity of accumulated evidence, e, (H),
instead of e(H). e,(H) would start at zero and receive additive contributions
from each observation of a coin toss. Until the threshold for e,(H) is reached,
P(H) would remain at zero and e(H) would remain at —oo.

Evidence is related to information as follows:

P(B|A) ., P(B|A) PB) . .
P(Bm)—log P(B) +10gm—l(A,B)—@(AyB)

e(B— A) =log

4.2 When a Proposition with Probability Zero is Given

The quantity

P(BJA) PB) oy

PB) + log P(BIA) i (B|A) —i(B|A)
has another significance with respect to judgment in circumstances in which
P(A) = 0. In those circumstances, P(B) = P (B|A) so i(B) =i (B|A).

In order to pass the judgment that A is true, it is necessary to know what
changes to make to the probabilities of other propositions such as B. This
is equivalent to specifying the changes that should be made to quantities of
information such as i(B). If i(B) = i (B|A) initially, then the quantity which
must be subtracted from it when A is given is i (B|A) — i(B|A) = (B — A).

The amount of evidence provided by B in favour of A is therefore equal to
the amount by which i(B) should change if A is given in a circumstance in which
P(A) =0.

In the example where the results of coin tosses are observed, it might be
initially believed that the bias is in favour of tails, P(H) = 0, in which case the
probability that the next toss will land on heads, P(B,), would be P (B,|H) =
0.1.

If H is given, i(By,) will change to:

e(B— A) =log

0.9
i(Bp|H) = —10g0.1 — (B, — H) = —1og0.1 — logo—1 = —1og0.9
so P(B,,) would change to 0.9, which is P(B,|H).
It is therefore sufficient to know the values of quantities of evidence such
as e(B, — H) in order to know what changes to make to the probabilities of
propositions when a proposition of probability zero, such as H, is given.

4Since a judgment which is made on the basis of a finite amount of evidence always carries
with it the risk of error, it is wise to retain the possibility of making the opposite judgment if
enough evidence subsequently accumulates favouring the opposite conclusion.



4.3 Evidence and Independence

If P(A) = 0, then i(B|A) = i(B) —e(B — A) so if A is judged to be true,
e(B — A) will be subtracted from i(B).

To undo the judgment through which A was given, and return to the original
circumstance, the same quantity which was subtracted from i(B) can be added
to the new value of i(B) to obtain the original value of i(B). The quantity
which is to be added is then equal to the old value of e(B — A), that is, the
value which e(B — A) had before A was given.

Performing this addition must be equivalent to subtracting the new value
of e (B — A) since this is what must be subtracted from i(B) when P (A) =0
and A is given. Since e(B — A) is equal to —e (B — A) in every circumstance,
this shows that e(B — A) does not change when either A or A is given in a
circumstance where its initial probability is zero, unlike, for example, i(A; B).

Whenever i(A4; B) > 0, i(4;B) < 0, and, correspondingly, i(4;B) < 0
implies that i(A; B) > 0, so if the amount of evidence that B provides in favour
of A is zero, then the amount of information common to A and B is zero.

The converse is not true, however. That is, it is possible for i(A; B) to be
zero while e(B — A) is non-zero, namely if A has probability one. The condition
that P(A)P(B) = P(AB) is therefore a weaker type of independence than the
condition that e(B — A) = 0.

Even if e(B — A) =0, it is still possible for e(A — B) to be different from
zero, namely if P(B) = 1. The quantity:

em(A; B) = i(A; B) —i(A; B) —i(A; B) +i(A; B) = (B — A) — e(B — A)

is what must equal zero in order to ensure that A and B are fully independent,
that is, that each of the four quantities i(A; B), i(4; B), i(A4; B) and i(A; B)
vanishes. e;,(A; B) is the amount by which the log of the odds of A changes if
B is given in a circumstance where P(B) = 0. Since it is symmetric, it is also
the amount by which the log of the odds of B changes if A changes from being
believed to be false to being believed to be true.

em(A; B) can be called the amount of evidence which A and B mutually
provide in favour of one another, or the mutual evidence, since it is a quantity
of evidence which is symmetric under interchange of the propositions A and B,
and it pertains to each proposition in respect of the other. i(A;B) is called
common instead of mutual because the information referred to pertains to each
proposition as well as the other, rather than in respect of the other. For reasons
analogous to the case of e(B — A), e,,(A; B) does not change when any of A,
A, B or B is believed to be false but then given.

5 Implication
In propositional logic it is customary to use the proposition B or A as the logical

or mathematical representation of the implication which is expressed in English
as “If A then B”.



We can consider the information common to A and B or A:

P(A and (B or A)) P(A)
(A)P(B or A) P(A)P(B or A)

=1 (B or A)

i (fl; B or A) = log = log

=198 55 or 4y

Unless it is already believed that B is true or A is false, this quantity is

positive. This implies that:

i (A|B or A) =i(A) —i (B or A) < i(A)
which in turn implies that P (/_1|B or [l) > P (14_1), or equivalently P (A|B or [l) <
P(A).

This result can be stated in words by saying that if it is judged that B is
true or A is false then the probability of A must decrease unless it was already
believed that B is true or A is false. Similarly, the probability of B must
increase.

If we examine the senses in which the English expression “If A then B”
can be used, however, we find that it is not always the case that incorporating
the information provided leads us to regard A as less probable and B as more
probable. Four possible cases can be distinguished:

Both P(A) and P(B) change.

P(A) remains unchanged; P(B) changes.

P(A) changes; P(B) remains unchanged.
Both P(A) and P(B) remain unchanged.

We can examine each of the four cases in turn, using the letter T' to denote
the proposition which is given by the judgment establishing that A implies B.

5.1 The Judgment that B is True or A is False
P(A|T) = P(A)/P(A or B) and P(B|T)= P(B)/P(A or B)

This case is the familiar identification of T" with A or B, the so-called ma-
terial implication. The minimum amount of information associated with the
judgment is clearly i(A or B).

Unlike the other three cases, the new probabilities of the propositions A and
B, that is, the probabilities of those propositions after the judgment, are not
equal to old probabilities of logical expressions such as AB or B or A.

In this case, if T is given, AB is given, and so the negation of the material
implication, A or B, does not yield another relation of implication between the
relevant propositions.

The assignments of probabilities accomplished by this judgment are left un-
changed by the substitution of B for A and A for B, because the expression
A or B is left unchanged by this substitution.

10



5.2 The Judgment that A is a Sufficient Condition of B

If the proposition B implies and is implied by the proposition By or By or --- By
then it is reasonable to call the propositions By, Bs and so on the sufficient con-
ditions of B.

If the judgment through which T is given establishes A as a new suffi-
cient condition of B, then B will, after the judgment, imply and be implied
by By or --- By or A.

This leads to:

P(A|T)=P(A) and P(B|T)= P(B or A)

In this case, the judgment that A implies B does not make A any less likely,
but it does make B more likely.

An example in English would be given by the sentence, “If the weather
is good tomorrow, then I will go outside.” For a protagonist who makes this
decision or a spectator who learns about it, the probability that the weather will
be good tomorrow does not decrease, but the probability that the protagonist
will go outside does increase.

We can quantify the minimum amount of information which must be given
by the judgment by observing that P(AB|T) = P(A|T) = P(A). The amount
of information necessary to believe AB therefore decreases from i(AB) to i(A)
and so the amount of information provided, namely i(7T), must be at least
i(AB) — i(A). This is equal to i(B|A), which is perhaps not surprisingly the
quantity of information which it is necessary to believe in order to believe that
B is true if A can be assumed.

i(T) is also related to the question of what happens if T is given instead of
T. Since the probability of AB increases if T' is given, it can be expected to
decrease if T is given. It can be calculated explicitly as follows:

P(AB) = P(ABT)+ P(ABT)
= P(ABT) = P(AB)— P(AB|T)P(T)
= P(ABT) = P(AB)— P(A)P(T)
= P(AB|T) = P(ABl)*llj((?))P(T)

which has two extreme solutions as P(T') is varied, one of which is P(AB|T) = 0
at P(T) = P(B|A) or i(T) = i(B|A), and the other of which is P(AB|T) =
P(AB) at P(T) = 0 or i(T) = co. The constraint i(T") > i(B|A) is necessary
to ensure that all assigned probabilities, such as P(AB|T), are non-negative
numbers. It applies only if P(A) # 0.

If i(T) = i(B|A), then:

i(AB;T) = log Piig)BPT()T) = log Pf(:éf;? = log P]—ZZA;) =i(B|A) =(T)

which establishes that AB implies T. This is the condition under which the
judgment that 7' is true can accomplish nothing independent of AB, and so in
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this sense, this is exactly the amount of information required to establish the
implication and nothing else.

When i(T) = i(B|A), P(AB|T) = 0, which shows that A will imply B if T
is given and B if T is given.

Of the four cases discussed here, this form of judgment most closely matches
what is understood when the information provided by the simple expression “If
A then B” is incorporated for the first time, since that expression on its own
does not indicate that the condition, A, is any more or less likely to be satisfied.
It does, however, indicate a new condition under which B can be known to be
true, and B then becomes correspondingly more probable.

After this section, when the expression “If A then B” is used to indicate a
proposition, it should be understood that the corresponding judgment estab-
lishes that A is a sufficient condition of B.

5.3 The Judgment that B is a Necessary Condition of A

If the proposition A implies and is implied by the proposition A; As - - - A then
it is reasonable to call the propositions A, A5 and so on the necessary conditions
of A.

If the judgment through which T is given establishes B as a new neces-
sary condition of A, then A will, after the judgment, imply and be implied by
Ay---ANB.

This leads to:

P(A|T) = P(AB) and P(B|T) = P(B)

Here, the judgment makes A less likely without changing the probability of
B. In words it could be said that B is judged to be a necessary condition of A.

In English this is seen in the sentence, “If the team is to win the game, then
they will need to score another goal.” The probability of the proposition that
the team will win the game decreases when this information is understood for
the first time, while the probability of the proposition that the team will score
another goal is not increased by the information provided in the sentence alone
(although it might increase if extra information is added, such as the information
that the team is trying to win the game).

If we replace A with B and B with A in the probabilities above, we get:

P(B|T) = P(AB) and P(A|T) = P(A)
which are equivalent to:
P(B|T)=P(B or A) and P(A|T)=P(A)

which is exactly the same as the previous case, in which A was judged to be a
sufficient condition of B.

It can then be said that the judgment that B is a necessary condition of
A accomplishes the same as the judgment that B is a sufficient condition of
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A. This allows us to say immediately that the information associated with the
judgment is i(AB) — i(B), or i(A|B).

However, it is evidently not the case that the judgment that B is a necessary
condition of A is equivalent to the judgment that A is a sufficient condition of
B.

This illustrates the distinction between an assertion and a judgment. An as-
sertion merely involves a statement that a proposition is true, while a judgment
involves a decision to regard the proposition as true. A judgment can change
the circumstance, while an assertion is merely true or false. Judgments and
assertions therefore have different criteria of equivalence: Two judgments are
equivalent if they effect the same change in circumstance, while two assertions
are equivalent if, whenever one is true, the other is also true, and whenever one
is false, the other is also false.

The assertion that B is a necessary condition of A is then equivalent to
the assertion that A is a sufficient condition of B, because each proposition is
true if and only if the other is. The respective judgments of those propositions,
however, are not equivalent, because one judgment changes the conditions of,
and hence the probability of, A, while the other changes the conditions of B.

5.4 Judging that A Implies B Without Changing Either P(A) or P(B)
P(A|IT)=P(A) and P(B|T)= P(B)

In addition, since the judgment establishes that A implies B, it is also true
that P(AB|T) = P(A|T) = P(A) and P(AB|T) = P(B|T) = P(B).

If the judgment is to leave the probabilities of A and B unchanged but is
to establish that A implies B then it must be the case before the judgment
that the probability of B is greater than or equal to the probability of A, or,
equivalently, that the amount of information which it is necessary to believe
in order to believe A is greater than or equal to the amount of information
necessary to believe B. This kind of judgment can therefore only be made in
certain circumstances, unlike the other three.

In a sense, the judgment places the information which it is necessary to
believe in order to believe B within the information which it is necessary to
believe in order to believe A. At the same time, it places the information
required to believe A within the information required to believe B. Like material
implication, the effect of the judgment is invariant if A is replaced by B and B
is replaced by A.

To quantify the amount of information associated with the judgment, we
can observe that:

P(AB) = P(ABT)+ P(ABT)
= P(AB|T) = ZABZPD

as in the second case, which implies that i(T) > i(B|A).
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In this case, however, there is the additional constraint that
P(AB) = P(ABT) + P(ABT)
= P(AB|T) = ZAB-FPM
which gives the constraint i(T) > i(A|B).

In order for both of these to be satisfied, i(T') must be greater than or equal
to whichever of i(B|A) and i(A|B) is greater.

We can also see that i(AB;T) = i(B|A) and i(AB;T) = i(A|B) using the
same reasoning which led to i(AB;T) = i(B|A) in the second case. Taking i(T")
to equal whichever of i(B|A) and i(A|B) is greater, then, we see that either
i(AB;T) = i(T) or i(AB;T) = i(T), so this judgment would establish the
implication and nothing else, meaning nothing independent of AB if i(B|A) >
i(A|B) or nothing independent of AB if i(A|B) > i(B|A).

In the case when i(B|A) > i(A|B) and i(T) = i(B|A), it can easily be seen
from the above that P(AB|T) = 0, so if T is given then A will imply B and B
will imply A.

If, instead, i(A|B) > i(B|A) and i(T) = i(A|B), then P(AB|T) =0, so if T
is given then A will imply B and B will imply A.

5.5 Counterfactuals

If the material conditional, B or A, is the only way which can be used to rep-
resent “A implies B”, then it must be said that a true proposition is implied by
any proposition and a false proposition implies every proposition.

If, however, “A implies B” is represented by P(B|A) = 1, then it is not
possible for A to imply both B and B. If P(B|A) = 1, then P (B|A) must
equal zero because P(B|A) is the probability that B would have if A were to
be given. If A is given, P(B) + P(B) will need to equal one, regardless of what
the probability of A was before the judgment.

Reflecting on the fact that a proposition, A, with P(A4) = 0 in the current
circumstance, does not already imply every other proposition, B, in the sense
that P(B|A) = 1, we can ask how much information is given when it is judged
that A implies B. That is, we can consider what is involved in a judgment
which changes the value of P(B|A) to one.

In particular, we can consider the proposition, T', which establishes that
A is a sufficient condition of B, so that P(B|T) = P(B or A) = P(B) and
P(A|T) = P(A) = 0. This evidently coincides, in this case, with the judgment
which establishes the implication without changing either P(A) or P(B).

In section 5.2, it was shown that, when P(A) # 0, ¢(T) must be greater
than or equal to i(B|A). The proof relied on the fact that i(AB) decreases to
i(A) when T is judged to be true, and so i(T) must account for this decrease,
i(AB) —i(A). If P(A) = 0, though, the expression i(AB) — i(A) gives co — c0.

The other way of proving that i(T") > i(B|A) relied on the fact that:

AB) — P(A)P(T)
1- P(T)

paB|T) = 2
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and so P(T) must be less than or equal to P(AB)/P(A) for P(AB|T) to be
non-negative. If P(A) = 0, however, this does not apply, because P(AB) —
P(A)P(T) = 0, and so the lower bound on #(T"), namely i(B|A), does not apply
if P(A) =0.

There is, however, a different condition which must be satisfied, because:

P(B|A) = P(BT|A) + P(BT|A) = P(B|TA)P(T|A) + P(B|TA)P(T|A)
In combination with P(B|T'A) = 1, this establishes that:
P(B|A) > P(T]A)

i(T|A) > i(B|A)

When T is the proposition that A is a sufficient condition of B, in a cir-
cumstance where P(A) = 0, then, the condition i(T|A) > i(B|A) applies but
i(T) > i(B|A) does not.

5.5.1 When a Proposition with Probability One is Given

In fact, there is no reason why i(7T") can not equal zero, or, equivalently, why
P(T) can not equal one. If P(A) were greater than zero, i(T") = 0 would imply
i(T|A) = 0. However, if P(A) = 0, then P(T|A) is not constrained by the values
of P(A) and P(TA), so i(T|A) can take any value, even if i(T") = 0.

When P(T) = 1, it is guaranteed that P(X|T") = P(X) for every proposition,
X, because:

P(X)=P(XT)+ P(XT) = P(X|T)P(T)+ P(X|T)P(T) = P(X|T)

It is not, however, guaranteed that P(X|T A) = P(X|A). In order to guarantee
P(X|TA) = P(X|A), the relevant condition is P(T|A) =1, not P(T) = 1.

There is, then, the peculiar possibility that a judgment which gives a propo-
sition, T, with P(T') = 1, can actually produce a change in the value of P(B|A),
although it cannot change the value of P(X) for any proposition, X.

This illustrates the distinction between believing a proposition and being
given the proposition. As a more explicit example, if the proposition “B or not-A”
is believed, then

P(BorA)=1 < P(B)+ P(A)— P(BA) =1
< P(B)+1— P(A)— (P(B)— P(AB)) =1
& 1—-P(A)—-P(B)+ P(AB)=1- P(B)
& P(AB) = P(A) or equivalently P (AB) = P (B)
& P(B|A)P(A) = P(A) or equivalently P (A|B) P(B) = P (B)
so either:

e B is believed, P (B) =0, or

15



e not-A is believed, P(A) =0, or
e P(B|A)=1and P (A|B) =1.

That is, if “B or not-A” is believed, then either B is believed or not-A is
believed or the truth of each can be inferred from the falsity of the other.

“B or not-A” can therefore be believed without it being possible to infer
B from A. If P(A) = 0, then P(BJA) can take any value, even 0, while
P (B or fl) =1.

On the other hand, if the proposition “B or mot-A” is given, rather than
merely believed, then it can be used in combination with A to infer B, so
P(B|A) =1, and, similarly, P (A|B) = 1.

A proposition with probability one, therefore, such as “B or not-A” when
P(A) = 0, can change the values of hypothetical, or conditional, probabilities,
such as P(B|A), when it is given, although it can not change the values of any
actual probabilities.

It can be observed that, when P(A) = 0, the changes produced when
“B or not-A” is given are identical to those produced by the judgment that
A is a sufficient condition of B. In each case, P(B|A) changes to one, while the
probabilities of propositions are unchanged.

It may seem inappropriate to say that no information is provided when a
proposition with probability one is given, since the judgment actually produces
a change.

The changes which can be made by a judgment through which a proposition
with probability one is given are always changes to quantities such as P(B|A)
where A is a proposition of probability zero. They will never have any influence
on the probabilities of propositions, such as B, unless a circumstance is reached
in which P(A) # 0. In order for this to happen, a proposition of probability
zero (for example, A) must be given.

It can then be said that no information is provided when a proposition, T,
of probability one is given, until a proposition of probability zero, such as A,
is given later, at which point the amount i(T'|A) of counterfactual information
associated with the earlier judgment becomes relevant. This exception always
applies, though. The judgment that A is true, for example, establishes only that
A will be believed until a proposition of probability zero is given. The caveat
“until a proposition of probability zero is given” applies to any description of
what is accomplished by a judgment.

6 The Paradox of the Raven

6.1 The Judgment that all Ravens are Black

The paradox [11] can be summarized as follows:

e The statement that all ravens are black is logically equivalent to the state-
ment that all non-black things are non-ravens.

16



e An observation which provides evidence supporting one statement, such
as the observation of a black raven, therefore also supports the other
statement.

e Therefore the observation of a non-black non-raven, such as a blue sky,
provides evidence in favour of the statement that all ravens are black.

The universal proposition, “All ravens are black,” can be expressed in the
form “If x is a raven then z is black,” where z is understood to be a variable.
Any name can be substituted for x in the expression above to form a singular
proposition which is implied by the universal one, for example, “If Socrates is a
raven then Socrates is black.”

Now “Socrates is a raven” and “Socrates is black” are propositions which
take the place of the propositions A and B from the previous section, where it
was shown that “If A then B” can be interpreted in at least four ways. One
can ask which of the four ways is understood when it is judged that all ravens
are black on the basis of evidence in the form of observations of black ravens.

The first question is whether, in making such a judgment, one intends to
reduce the probability that “Socrates is a raven,” since two of the four ways of
judging that “If A then B” reduce the probability of A, namely the judgment
that either B is true or A is false and the judgment that B should from now on
be regarded as a necessary condition of A.

Upon inspection, the judgment that all ravens are black does not appear
to involve any reduction in the probability that something is a raven. After
the judgment, one does not think that there are fewer ravens than one had
previously thought there were. One merely thinks that the ravens there are,
however many there may be, are black, where it was previously uncertain what
colour they were.

The two remaining ways of judging that “If A then B” are the judgment
that A is a sufficient condition of B, which sets the new value of P(B) to the
old value of P(B or A) without changing the value of P(A), and the judgment
which establishes the implication without changing either P(A) or P(B).

The second question, then, is whether the judgment that all ravens are black,
made after the observation of many black ravens, changes the probability that
“Socrates is black” by setting it equal to the old probability that “Socrates is
black or Socrates is a raven”, or leaves it unchanged.

If it was the case before the judgment that Socrates was believed to be a
raven but it was uncertain whether he was black, then after the judgment he is
believed to be black. The overall effect is then to increase the probability that
“Socrates is black” by setting it equal to the old probability that “Socrates is
black or Socrates is a raven.”

The judgment that all ravens are black, made after observing black ravens,
therefore makes “x is a raven” a sufficient condition of “x is black”, thereby
increasing the probability that x is black without changing the probability that
x is a raven.

Correspondingly, the judgment that all non-black things are non-ravens
would increase the probability that “z is a non-raven” and leave the proba-
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bility that “z is not black” unchanged. It would therefore leave the probability
that x is black unchanged while decreasing the probability that x is a raven.

6.2 The Evidence Provided by the Observation of a Black Raven

The different judgments, “All ravens are black,” and “All non-black things are
non-ravens,” require different evidence. In both cases, it is possible to quantify
the amount of evidence provided by the observation of a black raven.

Let A be the proposition that “All ravens are black”®, and let N be the
proposition that “All non-black things are non-ravens.” Let R be the proposition
that “Socrates is a raven” and let B be the proposition that “Socrates is black.”

The amount of evidence provided by the proposition that Socrates is black,
in favour of the proposition that all ravens are black, given that Socrates is a

raven, is®:

P(B|AR)
P (B|AR)

It is clear that “All ravens are black” implies that “Socrates is black” when
“Socrates is a raven” is given, so:

e(B — A|R) = log

e(B — A|R) = log =i (B|AR)

1
P (B|AR)
Since it is not already believed that Socrates is black, 1 > P(B|R), which,
together with:

P(B|R) = P(B|AR)P(A|R) + P (B|AR) P (A|R)
and P(B|AR) = 1, implies that P (B|AR) < 1, leading to:
e(B — A|R) =i (B|AR) > 0

which proves that discovering that “Socrates is black” when it is already be-
lieved that “Socrates is a raven” does in fact provide evidence in favour of the
proposition that “All ravens are black”.

If we want to calculate the amount of evidence provided by the proposition
that Socrates is black in favour of the proposition that all non-black things are

non-ravens, we must first calculate:

P(BINR
e(B — N|R) = log BN
P (B |N R)

which involves calculating the value of P(B|NR) which is the probability that
B would have if NV were to be judged to be true after R had already been given.

5Whether this refers to all logically possible ravens or merely all the ravens in a particular
collection is not addressed here. In the former case, P(A) would have to equal zero (since we
are supposing that ravens are not by definition black) and in the latter case P(A) could be
greater than zero.

SWe are considering a circumstance in which R is actually given, but we occasionally
include R in expressions such as P(B|AR) to serve as a reminder of this fact.
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Now B is the proposition that Socrates is black and N is the proposition
that all non-black things are non-ravens. N clearly implies “If Socrates is not
black then Socrates is not a raven”, or “If B then R”. If N is judged to be
true, the new probability that “Socrates is a non-raven” will be equal to the old
probability that “Socrates is a non-raven or Socrates is not black.”

If N is judged to be true, then it is not necessarily believed that “Socrates
is a raven” any more, since the later judgment that “If Socrates is not black
then Socrates is not a raven,” conditionally overrules the earlier judgment that
“Socrates is a raven”. This illustrates another distinction between judgments
and assertions, namely that assertions can contradict other assertions, while
judgments overrule earlier judgments.

Overruling the earlier judgment requires an infinite amount of information:
It was previously completely certain that “Socrates is a raven”, P(R) = 1 or
P(R) =0 or z(R) = o0, but i(R|N) = —logP(R or B) < oo. When N
is given, the amount of information which it is necessary to believe in order to
believe that R is false decreases from infinity to a finite value, and a correspond-
ingly infinite amount of information must be given. That is, P(N) = 0.

This can be confirmed by observing that the amount of information required
to establish “If B then R” is i (R|B), which is infinite if R is already believed
to be true. Since N implies “If B then R”, i(N) > i (R|B) = .

The proposition that “All non-black things are non-ravens” does not pred-
icate blackness or non-blackness of anything. The probability that Socrates is
black, P(B), is therefore unaffected by the judgment, just as the judgment that
“If B then R” does not change the probability of B.

The result is that P(B|NR) = P(B|R), and it follows from P(N) = 0 that
P (B|NR) = P(BJ|R), so:

P(B|R)
— = =
e(B — N|R) =log (BIR) 0

The result does not change if it is initially believed that “Socrates is black”
and then subsequently discovered that “Socrates is a raven”: In circumstances
where “Socrates is black” is believed, the proposition “If Socrates is not black
then Socrates is not a raven” is a counterfactual so when it is given it does not
change the probability that “Socrates is a raven”.

The judgment that “All non-black things are non-ravens” therefore does
not change the probability that “Socrates is a raven”, P(R|NB) = P(R|B).
This implies that P (RINB) = P(R|B) since P(R|B) = P(R|NB)P(N|B) +
P (RINB) P (N|B) and P (N|B) # 0, leading to:

e(R—>N|B):10g§((lZ||BI;)>:O

This shows that the amount of evidence, provided by the observation of
a black raven, in favour of the proposition that all non-black things are non-
ravens, is zero. Correspondingly, the observation of a non-black non-raven, such
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as a blue sky, provides zero evidence in favour of the proposition that all ravens
are black.
This resolves the paradox.
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